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ABSTRACT

The choice of parameters, and the design of the network ar-
chitecture are important factors affecting the performance of
deep neural networks. However, this task still heavily depends
on trial and error, and empirical results. Considering that there
are many design and parameter choices, it is very hard to
cover every configuration, and find the optimal structure. In
this paper, we propose a novel method that autonomously and
simultaneously optimizes multiple parameters of any given
deep neural network by using a modified generative adver-
sarial network (GAN). In our approach, two different mod-
els compete and improve each other progressively. Without
loss of generality, the proposed method has been tested with
three different neural network architectures, and three very
different datasets and applications. The results show that the
presented approach can simultaneously and successfully op-
timize multiple neural network parameters, and achieve in-
creased accuracy in all three scenarios.

Index Terms— Deep learning, neural networks, parame-
ter choice, generative adversarial networks

1. INTRODUCTION

Training of deep learning methods requires large amounts of
data, and they usually perform better when training data size
is increased. Yet, for some applications, it is not always pos-
sible to obtain more data when the existing dataset is not
large enough. Even though the raw data can be collected
easily, data labeling or annotation is difficult, expensive and
time consuming. Successors of [1] yielded better accura-
cies with less number of parameters on the same benchmark
with some architectural modifications using the same build-
ing blocks. This shows that the choice of parameters, and
the design of the architecture are important factors affecting
the performance. Many researchers proposed different CNN
architectures [2, 3, 4, 5, 6, 7, 8] to achieve higher accuracy.
However, building the neural network structure still heav-
ily depends on trial and error, and empirical results. Consid-
ering that there are many design and parameter choices, it is
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not possible to cover every possibility, and it is very hard to
find the optimal structure. Moreover, the hyper-parameters in
the training phase also play an important role on how well
the model will perform. Likewise, these parameters are also
tuned manually in an empirical way most of the time.

Most existing work on optimizing network architectures
is based on the genetic algorithms (GA) or evolutionary al-
gorithms [9, 10, 11, 12, 13]. Many of these works focus
only on a small subset of many design choices. More impor-
tantly, GA-based optimization uses a given set of blueprints
and models, and performs a search over a limited set of candi-
dates. GAs can search better solutions from limited possibili-
ties, such as type of layers and activation functions. However,
they cannot search for a solution that is not defined before. In
addition, the complexity of GAs increases significantly when
the number of choices increases to large scale. Rylander [14]
has shown that the generations needed for convergence in-
creases exponentially with the node size.

Generative Adversarial Networks (GANSs) [15] are an im-
portant milestone in deep learning research, and have been
adapted in many applications [16, 17, 18, 19]. In a GAN,
a generator and discriminator are trained together until dis-
criminator cannot distinguish the generated instances from
the instances in the source domain. In this paper, we propose
a novel and systematic way, which adopts a ‘modified” GAN
to find the optimal network structure and parameters for any
given neural network model. In our approach, two different
models compete and improve each other progressively with a
GAN-based strategy. For this work, we have tested the per-
formance of our approach on three different base neural net-
work structures covering Long Short Term Memory (LSTM)
networks and 3D CNNs, and different applications. Without
loss of generality, we have chosen simpler network structures
(not necessarily very deep ones) to optimize in order to show
that the performance improvement is obtained not because of
the increasing number of layers, but instead thanks to better
refinement and optimization of the network parameters.

2. PROPOSED METHOD

The proposed architecture using a modified GAN-based net-
work is shown in Fig. 1. In contrast to a traditional GAN, it is
composed of two generators (G and G3), two evaluators (E
and F>), and one discriminator (D).
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Fig. 1. Proposed modified GAN with 2 generators, and 2 evaluators.

2.1. Generative part

The two generators (G; and G2 have the same neural net-
work structure shown in Fig. 2. Their input is a Gaussian
noise vector z ~ pPpoise(2). As seen in Fig. 2, genera-
tors are composed of fully connected layers with leaky relu
activations. At the output layer, tanh is employed so that
G!(z) € (—1,1), where j € {1,2,...,length(G;(z))} and
i € {1,2}. Then, the range of G;(2) is changed from (—1,1)
t0 (D110)531 P1Mqq) by using

GZ(Z)/ = [Gi(z) % PMmaxz — PMmin 4 PMimax ;’pmmin]'

2

In (1), pmynar and pm,,;, are preset maxima and miniI(I}a{
values, which are defined empirically based on values that a
certain parameter can take, so that the value of the refined pa-
rameters can only change between pm,,q, and pm,,;,. The
re-scaled values G1(z)" and G2(z)’ are then used as parame-
ters of the evaluator networks. The length of G;(z) is deter-
mined by the number of network parameters that are refined,
and is set at the generator network’s last fully connected layer.

Generators are trained/improved by the discriminator,
which is a binary classifier used to differentiate the results
from generator outputs G1(z) and Go(z). Labels “H” and
“L” (where H € {1,2},L =!H) represent the generators
with higher and lower accuracy results, respectively. The
generator, which has the worse performance and is labeled by
“L”, is trained by the stochastic gradient descent (SGD) from
the discriminator to minimize log(1 — D(GL(z)) by using

m

1 )
w%glogu — D(GL(zD))), )

where m is the number of epochs.

When G, (z) becomes equal to G’ (z) for two consecu-
tive iterations, the weights of G, will be re-initialized to de-
fault random values. The purpose of this step is to prevent the
optimization stopping at a local maxima and also prevent the
vanishing tanh gradient problem.

2.2. Evaluation part
The evaluator networks have the same structure as the neural
network whose parameters are being optimized or refined.

BatchNorm(0.8)
BatchNorm(0.8)
BatchNorm(0.8)
Dense(para_len tanh)
parameters

o
e
2
©
4
>
=
=
[
=
@
]
g
Il
o
e
@
=

Dense(512,LeakyRelu(02))|

[Dens (1024 L eakyRelu(0.2)

Fig. 2. Generator network

Thus, one of the strengths of the proposed approach is that it
can be used to refine/optimize parameters of any deep neu-
ral network structure. As will be shown in Sec. 3, we have
tested the proposed approach with three different network
structures, and different sets of parameters.

Evaluator networks are built by using the parameters
G1(z)" and Ga(z)’ provided by the generators. The training
data © ~ pgatq () is used to evaluate these network models.
We employ an early stopping criteria. More specifically, if no
improvement is observed in ¢ epoches, the training is stopped.
We then obtain the accuracies acc; = E,op,.,. () Ei(T),
i = {1,2}. Let H be the value of i resulting in higher accu-
racy, and L =!H. Then “H” is used as the ground truth label
for the discriminator, which marks the generator with better
parameters, and trains the worse generator G ..

2.3. Discriminator

We define the discriminator D as a network (Fig. 3), whose
output is a scalar softmax output, which is used for binary
classification between better and worse generator. G1(z) and
G4(z) are fed into the discriminator D, and the ground truth
label indicating which is the better generator comes from the
evaluators. Let D(G(z)) represent the probability that G(z)
came from the more accurate generator Gy rather than Gp,.
We train D to maximize the probability of assigning the cor-
rect label to the outputs G (z) and G2(z) of both generators.
Moreover, we simultaneously train the worse generator G 1, to
minimize log(1 — D(GL(z)). The discriminator D provides
the gradients to train the worse performing generator. The
whole process can be expressed by:

minGHmawDEzrvpz(z) (log(D(GH(z)))+l0g(1—D(GL(z))))7

where, H = argmax;—q; 2} (E yEi(x)), L ='H.
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Fig. 3. Discriminator network

3. EXPERIMENTAL RESULTS

To show the promise of the proposed approach, we tested
its performance, without loss of generality, with three dif-
ferent neural network structures, and different training data
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Fig. 4. Evaluator network for shape classification on ModelNet

types and applications. The network architectures, whose
parameters are optimized, are shown in Figures 4, 5 and 6,
wherein the parameters that are being refined/optimized are
highlighted in red.

y

Fig. 5. Evaluator network for activity classification
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3.1. Experiments with ModelNet

We applied the proposed approach on a 3D convolutional net-
work by using the ModelNet40 dataset [20]. ModelNet is a
dataset of 3D point clouds. The goal is to perform shape clas-
sification over 40 shape classes. Some example voxelized ob-
jects from the ModelNet40 dataset are shown in Fig. 7.

The 3D CNN model, shown in Fig. 4, is used for evalua-
tors. Each generator’s output is a 9-dimensional vector com-
posed of different parameter settings. Two of the parameters
are the number of neurons for two fully connected layers. Six
of the parameters indicate the choice of activation function
for fully connected and convolutional layers from (‘Sigmoid’,
‘Relu’, ‘Linear’, ‘Tanh’) functions. One of the nine parame-
ters is a flag indicating whether to add a dropout layer be-
tween fully connected layers. In this case, pmq. and pm,in
are set to be: [4000, 4000, 4, 4,4, 4,4,4, 1] and [1, 1, O, O,
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Fig. 6. Evaluator network for character recognition
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Fig. 7. Sample voxelized objects from ModelNet40 dataset.

0, 0, 0, 0, 0], respectively. Selecting the number of neurons
is a regression problem and choosing the activation function
is a classification problem. In other words, for choosing the
activation function, the tanh output is put into bins, and the
corresponding function is selected. It should be emphasized
that the number of neurons is in a large range, which would
be very difficult to handle with only a GA.

The accuracy over number of epochs is shown in Fig. 8.
The blue and red lines show the accuracies for Generator 1
and Generator 2, respectively. Green line is the saved model
with the refined parameters providing the best accuracy. The
accuracies of the original network (start accuracy) and the
proposed approach (end accuracy) are presented in Table 1
for different early stopping criteria, more specifically, when
c=1 and ¢=5. As can be seen, the proposed approach provides
an increase in accuracy by autonomously and simultaneously
refining nine parameters of the network in a systematic way.

Saved best model

Generator 1

Generator 2

AR RsesIRARGILRRErUNBRAREC4BE4 5 A epochs

Fig. 8. Accuracy over number of epochs for the two generators on
the ModelNet dataset.

Number of epochs (c) for early stopping 1 5
Start accuracy 83.43% | 84.31%
End accuracy 85.71% | 86.72%

Table 1. Accuracies of the original network (start accuracy) and
the proposed approach (end accuracy) with different early stopping
criteria (when c=1, and c=5).
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3.2. Experiments with UCI HAR Dataset and an LSTM-
based network

UCI HAR dataset [21] is composed of Inertial Measurement
Unit (IMU) data captured during activities of standing, sit-
ting, laying, walking, walking upstairs and walking down-
stairs. These activities were performed by 30 subjects, and the
3-axial linear acceleration and 3-axial angular velocity were
collected at a constant rate of 50Hz.

In this case, the network model shown in Fig. 5 is used
for evaluators. As can be seen, this network is an LSTM
model. The output of each generator is a 9-dimensional vec-
tor which is composed of different parameter settings. More
specifically, first four of the parameters are the number of
neurons for two fully connected layers and two LSTM layers.
Next four of the parameters indicate the choice of activation
function for fully connected and two LSTM layers from (‘Sig-
moid’, ‘Relu’, ‘Linear’, ‘Tanh’) functions. Last of the nine
parameters is a flag indicating whether to add a dropout layer
between the fully connected layers. In this case, prm,q, and
pPmmin, are set to be: [4000, 4000, 2000, 2000,1,1,1,1,1]
and [10, 10, 10, 10, 0, 0, 0, 0, 0], respectively.

The accuracy over number of epochs is shown in Fig. 9.
The blue and red lines show the accuracies for Generator 1
and 2, respectively. Green line is the saved model with the re-
fined parameters providing the best accuracy. The accuracies
of the original network (baseline accuracy) and the proposed
approach are presented in the second row of Table 2. The
proposed approach provides an increase in accuracy for this
LSTM network and this IMU dataset as well.

1305 7 9

1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 epochs

Fig. 9. Accuracy over number of epochs for the two generators on
the UCI human activity recognition dataset.

Dataset Baseline Accuracy | Proposed Method
ModelNet 84.17% 86.72%
UCI HAR 81.17% 84.85%
Words built from Chars74k 85.5% 86.64%

Table 2. Accuracies of the original networks (baseline accuracy)
and the proposed approach.

3.3. Experiments with Chars74k Dataset

We also tested our proposed approach with a word recognition
method [22], which uses the characters from the Chars74k
dataset [23] to build words. Chars74k dataset contains 64

classes (0-9, A-Z, a-z), 7705 characters obtained from natural
images, 3410 hand-drawn characters using a tablet PC and
62992 synthesized characters from computer fonts giving a
total of over 74K images. Some example words built from

these characters are shown in Fig. 10.

fantion segment
Fig. 10. Sample words built from the Chars74k dataset.

[22] uses the network model shown in Fig. 6 for char-
acter recognition, and then employs belief propagation for
word recognition. We used the same network model in Fig. 6
for our evaluators, and performed the word recognition the
same way to compare the word recognition accuracies. For
the generators, the output is a 7-D vector composed of dif-
ferent parameter settings. More specifically, first two of the
parameters are the number of neurons for two fully connected
layers. Next four of the parameters indicate the choice of ac-
tivation function for fully connected and convolutional layers
from (‘Sigmoid’, ‘Relu’, ‘Linear’, ‘Tanh’) functions. The last
of the seven parameters is a flag indicating whether to add a
dropout layer between fully connected layers. In this case,
PMimaz and pm,, are set to be: [4000,4000,4,4,4,4, 1]
and [10, 10,0, 0,0, 0, 0], respectively.

The word recognition accuracies obtained by using the
original network [22] (baseline accuracy) and the proposed
approach are presented in the last row of Table 2. As can be
seen, the proposed approach consistently provides an increase
in accuracy for different types of networks and datasets.

In Table 3, we present the parameters used in the original
networks, and the parameters that were refined and optimized
by the proposed method for all three different scenarios.

Dataset Baseline Parameters Parameters w/ Prop. Meth.
ModelNet [1024,256,1,1,1,1,1,1,0] [1242,1790,2,2,1,1,1,1,1]
UCIHAR [512,2014,1024,256,1,1,1,1,0] | [771,939,2597,1403,1,1,1,1,0]

Words Chars74k [1024,256,1,1,1,1,0] [2804,2121,1,1,1,1,1]

Table 3. Parameters used by the original networks and the parame-
ters that were refined and chosen by the proposed approach.

4. CONCLUSION

We have presented a novel method to autonomously and si-
multaneously optimize multiple parameters of any given deep
neural network. The set of parameters can include the num-
ber of neurons, the type of activation function, the choice of
using drop out and so on. In our proposed approach, two dif-
ferent models compete and improve each other progressively.
The use of the proposed modified GAN allows the choice of
parameters from a very large range of values as opposed to
using a small set. Without loss of generality, the proposed
method has been tested with three different neural network ar-
chitectures, and three different datasets. The results show that
the presented approach can simultaneously and successfully
optimize multiple neural network parameters, and achieve in-
creased accuracy in all three scenarios.
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