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The ALICE collaboration performed the first rapidity-differential measurement of coherent J/ψ photopro-
duction in ultra-peripheral Pb–Pb collisions at a center-of-mass energy √sNN = 5.02 TeV. The J/ψ is 
detected via its dimuon decay in the forward rapidity region (−4.0 < y < −2.5) for events where the 
hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to 
an integrated luminosity of about 750 μb−1. The cross section for coherent J/ψ production is presented 
in six rapidity bins. The results are compared with theoretical models for coherent J/ψ photoproduction. 
These comparisons indicate that gluon shadowing effects play a role in the photoproduction process. The 
ratio of ψ ′ to J/ψ coherent photoproduction cross sections was measured and found to be consistent 
with that measured for photoproduction off protons.
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1. Introduction

Ultra-peripheral collisions (UPC) between two Pb nuclei, in 
which the impact parameter is larger than the sum of their radii, 
provide a useful way to study photonuclear reactions [1–4]. Pho-
toproduction of vector mesons in these collisions has an easily 
identifiable experimental signature: the decay products of the vec-
tor meson, in the case of this analysis a μ+μ− pair, are the only 
signals in an otherwise empty detector. This process is akin to ex-
clusive vector meson production in electron–proton collisions, al-
ready studied extensively at HERA [5]. The exchange photon, which 
carries a momentum transfer squared Q 2, is typified by very small 
values of Q 2, and may be described as quasi-real. The intensity of 
the photon flux scales as the square of nuclear charge resulting in 
large cross sections for the photoproduction of vector mesons in 
Pb–Pb collisions at the CERN Large Hadron Collider (LHC), where 
the measurement presented in this Letter was performed.

Photoproduction of vector mesons on nuclei can be either co-
herent, where the photon couples coherently to the nucleus as 
a whole, or incoherent, where the photon couples to a single 
nucleon [2]. Coherent production is characterized by low vector 
meson transverse momentum (〈pT〉 � 60 MeV/c) and by the tar-
get nucleus not breaking up. Incoherent production, corresponding 
to quasi-elastic scattering off a single nucleon, is characterized 
by a somewhat higher average transverse momentum (〈pT〉 � 500
MeV/c). The target nucleus normally breaks up in the incoherent 
production, but, except for single nucleons or nuclear fragments 
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in the very forward region, no other particles are produced. The 
incoherent production can be accompanied by the excitation and 
dissociation of the target nucleon resulting in even higher trans-
verse momenta of the produced vector mesons, extending well 
above 1 GeV/c [6].

Coherent photoproduction of the J/ψ meson, a charm-anti-
charm bound state, is of particular interest since, for a leading 
order QCD calculation [7], its cross section is expected to scale 
as the square of the gluon parton density function (PDF) in the 
target hadron. The mass of the charm quark provides an energy 
scale large enough to allow for perturbative QCD calculations. For 
this process, a variable corresponding to Bjorken-x can be defined 
using the mass of the vector meson (mJ/ψ ) and its rapidity (y) 
as x = (mJ/ψ/

√
sNN) exp(±y). Though next-to-leading order effects 

and scale uncertainties complicate extraction of gluon PDFs from 
J/ψ photoproduction data [8], the related uncertainties are ex-
pected to largely cancel in the ratio of coherent photoproduction 
cross sections off nuclei and off protons [9]. Thus, coherent J/ψ
photoproduction off lead nuclei (γ + Pb → J/ψ + Pb) provides a 
powerful tool to study poorly known gluon shadowing effects at 
low Bjorken-x values ranging from x ∼ 10−5 to x ∼ 10−2 at LHC 
energies [10,11].

The ALICE collaboration has pioneered the study of charmo-
nium photoproduction in ultra-peripheral Pb–Pb collisions at the 
LHC at a center-of-mass energy per nucleon pair 

√
sNN = 2.76 TeV 

[12–14]. Coherent J/ψ photoproduction was studied both at for-
ward rapidity (−3.6 < y < −2.6) with the ALICE muon spectrom-
eter and at mid-rapidity (|y| < 0.9) with the central barrel. The 
CMS collaboration studied coherent J/ψ photoproduction accom-
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panied by neutron emission in the semi-forward rapidity range 
1.8 < |y| < 2.3 [15]. The ALICE and CMS results on J/ψ photo-
production were compared with predictions from models available 
at that time, and suggested that moderate shadowing in the nu-
cleus was necessary to describe the measurements. In particular, 
the nuclear gluon shadowing factor Rg , i.e. the ratio of the nuclear 
gluon density distribution to the proton gluon distribution, was ex-
tracted from the ALICE measurements [10], and found to be, at 
the scale of the charm quark mass, Rg(x ∼ 10−3) = 0.61+0.05

−0.04 and 
Rg(x ∼ 10−2) = 0.74+0.11

−0.12. The ALICE collaboration also measured 
the coherent cross section for ψ ′ photoproduction at mid-rapidity, 
and the results supported, within the experimental uncertainties, 
the moderate-shadowing scenario [14].

In this Letter, we present the first measurement of the coher-
ent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at a 
center-of-mass energy per nucleon pair 

√
sNN = 5.02 TeV. The 

measurement was performed with the ALICE muon spectrometer 
covering the rapidity range −4.0 < y < −2.5. The results presented 
here are based on data taken in 2015 and in 2018, during Run 2 
of the LHC. The recorded data sample is some 200 times larger 
than the data used in the 

√
sNN = 2.76 TeV Pb–Pb analysis [12]. 

The new result is based on the absolute luminosity normalization 
in contrast to previous measurement based on the normalization 
relative to the continuum γ γ → μ+μ− cross section predicted 
by STARlight [16]. These two improvements imply a considerable 
reduction in the statistical and systematic uncertainties and the 
possibility to study the rapidity dependence in the forward region.

2. Detector description

The ALICE detector and its performance are described in 
[17,18]. Muons from J/ψ decays are measured in the single-arm 
muon spectrometer, while other activity is vetoed using the Silicon 
Pixel Detector (SPD), the V0 and ALICE Diffractive (AD) detec-
tors. The muon spectrometer covers the pseudorapidity interval 
−4.0 < η < −2.5. It consists of a ten interaction length absorber 
followed by five tracking stations, the third of which is placed 
inside a dipole magnet with a 3 T·m integrated magnetic field, 
a 7.2 interaction length iron wall, and a trigger system located 
downstream of the iron wall. Each tracking station is made of two 
planes of cathode pad chambers, while the trigger system consists 
of four planes of resistive plate chambers arranged in two stations. 
Muon tracks are reconstructed using the tracking algorithm de-
scribed in [19]. The central region |η| < 1.4 is covered by the SPD 
consisting of two cylindrical layers of silicon pixel sensors. The 
V0 detector is composed of the V0A and V0C sub-detectors, con-
sisting of 32 cells each and covering the pseudorapidity interval 
2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. The newly in-
stalled AD detector is composed of the ADC and ADA sub-detectors 
located at −19.5 and +16.9 m from the interaction point covering 
the pseudorapidity ranges −7.0 < η < −4.9 and 4.7 < η < 6.3, re-
spectively [20]. The V0 and AD detectors are scintillator tile arrays 
with a time resolution better than 1 ns, allowing one to distinguish 
between beam-beam and beam-gas interactions.

3. Data analysis

The analysis presented in this publication is based on a sample 
of events collected during the 2015 and 2018 Pb–Pb data taking 
periods at 

√
sNN = 5.02 TeV, characterized by similar beam con-

ditions and interaction rates. The muon spectrometer performance 
was stable during the whole Run 2 thus allowing for the merging 
of the two data sets. The trigger required two oppositely charged 
tracks in the muon spectrometer, and vetoes on V0A, ADA and 
ADC beam-beam interactions. The single muon trigger threshold 

was set to a transverse momentum pT = 1 GeV/c [21]. The inte-
grated luminosities of 216 μb−1 in 2015 and 538 μb−1 in 2018, 
with relative systematic uncertainty of 5%, were estimated from 
the counts of a reference trigger, based on multiplicity selection 
in the V0 detector. The reference trigger cross section was derived 
from Glauber-model-based estimates of the inelastic Pb–Pb cross 
section [22].

Events with only two tracks with opposite electric charge 
(unlike-sign) in the muon spectrometer were selected offline. The 
pseudorapidity of each track was required to be within the range 
−4.0 < η < −2.5. The tracks had to fulfill the requirements, de-
scribed in [12], on the radial coordinate of the track at the end of 
the absorber and on the extrapolation to the nominal vertex. Track 
segments in the tracking chambers had to be matched with corre-
sponding segments in the trigger chambers.

Additional offline vetoes on the V0A, ADA and ADC detector 
signals were applied to ensure the exclusive production of the 
muon pair. Exclusivity in the muon spectrometer region was as-
sured by requiring a maximum of 2 fired cells in V0C. Online and 
offline veto requirements may result in significant inefficiencies 
(denoted as veto inefficiencies) in the exclusive J/ψ cross sec-
tion measurements due to additional V0 and AD detector activity 
induced by independent hadronic or electromagnetic pile–up pro-
cesses accompanying the coherent J/ψ photoproduction. The prob-
ability of hadronic pile–up did not exceed 0.2%, however there was 
a significant pile–up contribution from the electromagnetic elec-
tron pair production process γ γ → e+e− . The veto inefficiency 
induced by these pile–up effects in the V0A, V0C, ADA and ADC 
detectors, was estimated using the events selected with an un-
biased trigger based only on the timing of bunches crossing the 
interaction region. The veto rejection probability, defined as the 
probability to detect activity in these sub-detectors, was found to 
scale linearly with the expected number of collisions per bunch 
crossing reaching 10% in V0A. The veto inefficiency correction fac-
tors were determined by weighting the corresponding veto rejec-
tion probabilities over periods with different pile–up conditions, 
taking the luminosity of each period as a weight. The veto in-
efficiency of the V0A online and offline selection was found to 
be pV0A = (4.6 ± 0.2)%, where the uncertainty is related to the 
limited statistics in the unbiased trigger sample. The veto ineffi-
ciencies in ADA (pADA) and ADC (pADC) were found to be about 
0.2%, because these detectors are far away from the interaction 
point and are thus much less affected by soft e+e− pairs. The veto 
inefficiency in V0C, associated with the requirement of maximum 
2 fired cells, was found to be negligible. The average veto effi-
ciency correction factor εveto = 95.0%, and this is applied to raw 
J/ψ yields to account for hadronic and electromagnetic pile–up 
processes, was calculated as a product of individual veto inefficien-
cies εveto = (1 − pV0A)(1 − pADA)(1 − pADC).

The acceptance and efficiency of J/ψ and ψ ′ reconstruction 
were evaluated using a large sample of coherent and incoherent 
J/ψ and ψ ′ events generated by STARlight 2.2.0 [23] with decay 
muons tracked in a model of the apparatus implemented in GEANT 
3.21 [24]. The model includes a realistic description of the detec-
tor performance during data taking as well as its variation with 
time. The acceptance and efficiency of feed-down ψ ′ → J/ψ + ππ
decays were also evaluated using the STARlight generator under 
the assumption that feed-down J/ψ mesons inherit the transverse 
polarization of their ψ ′ parents, as indicated by previous measure-
ments [25]. The same samples were also used for modeling the 
signal shape and different background contributions.

A sample enriched in coherent candidates was obtained by 
selecting dimuons with transverse momentum pT < 0.25 GeV/c. 
The invariant mass distributions for selected unlike-sign muon 
pairs are shown in Fig. 1, left, in the full dimuon rapidity range 
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Fig. 1. Left: invariant mass distribution for muon pairs satisfying the event selection described in the text. The dashed green line corresponds to the background. The solid 
magenta and red lines correspond to Crystal Ball functions representing J/ψ and ψ ′ signals, respectively. The solid blue line corresponds to the sum of background and signal 
functions. Right: transverse momentum distribution for muon pairs in the range 2.85 <mμμ < 3.35 GeV/c2 (around the J/ψ mass).
−4.0 < y < −2.5 and in Fig. 2 in six rapidity subranges. The in-
variant mass distributions are fitted with a function modeling the 
background and two Crystal Ball functions [26] for the J/ψ and the 
ψ ′ peaks. The shape of the background at large invariant masses is 
well described by an exponential distribution, as expected if it is 
dominated by the process γ γ → μ+μ− . However, at masses be-
low the J/ψ , the distribution is strongly influenced by the muon 
trigger condition. In order to model this, the whole background 
distribution is fitted using a template made from reconstructed 
STARlight events corresponding to the γ γ → μ+μ− process. The 
results of the fit are parametrized using a fourth-order polynomial, 
which turns smoothly into an exponential tail as from 4 GeV/c2. 
The coefficients of the polynomial are then kept fixed in the fit to 
the experimental data, while the slope of the exponential term and 
the normalization are left free. The fitted slope is found to agree 
within 2.5 standard deviations with the value obtained from the 
generated sample.

The raw inclusive J/ψ and ψ ′ yields, N(J/ψ) and N(ψ ′), were 
obtained by fitting the dimuon invariant mass spectrum in the 
range 2.2 < mμμ < 6 GeV/c2. The slope parameters in the Crys-
tal Ball functions were fixed from fits to the respective Monte 
Carlo sets. The width parameter σJ/ψ was left free for the J/ψ , 
and was fixed to σψ ′ = σJ/ψ · (σMC

ψ ′ /σMC
J/ψ ) for the ψ ′ , where the 

ratio σMC
ψ ′ /σMC

J/ψ ∼ 1.09 of the ψ ′ to the J/ψ widths was obtained 
from the fits to corresponding Monte Carlo sets. The mass parame-
ter of the Crystal Ball function was left unconstrained for the J/ψ . 
Due to the small ψ ′ statistics, the ψ ′ mass was fixed so that the 
difference with respect to the J/ψ mass is the same as quoted by 
the PDG [27]. The J/ψ mass mJ/ψ = 3.0993 ± 0.0009 GeV/c2, ob-
tained from the fit in the full rapidity range −4.0 < y < −2.5, is 
in agreement with the PDG value within 3 standard deviations.

The raw inclusive J/ψ yields obtained from invariant mass fits 
contain contributions from the coherent and incoherent J/ψ pho-
toproduction, which can be separated in the analysis of transverse 
momentum spectra. The pT distributions for dimuons in the range 
2.85 < mμμ < 3.35 GeV/c2 are shown in Fig. 1, right, in the full 
dimuon rapidity range −4.0 < y < −2.5 and in Fig. 3 in six ra-
pidity subranges. These distributions were fitted with Monte Carlo 
templates produced using STARlight, corresponding to different 
production mechanisms: coherent J/ψ , incoherent J/ψ , feed-down 
J/ψ from coherent ψ ′ decays, feed-down J/ψ from incoherent ψ ′
decays and continuum dimuons from the γ γ → μ+μ− process. In 

order to describe the high-pT tail, the incoherent J/ψ photopro-
duction accompanied by nucleon dissociation was also taken into 
account in the fits with the template based on the H1 parametriza-
tion of the dissociative J/ψ photoproduction [28] (denoted as dis-
sociative J/ψ in the following):

dN

dpT
∼ pT

(
1+ bpd

npd
p2
T

)−npd
. (1)

The H1 collaboration provided two sets of measurements corre-
sponding to different photon–proton center-of-mass energy ranges: 
25 GeV < Wγ p < 80 GeV (low-energy data set) and 40 GeV <

Wγ p < 110 GeV (high-energy data set). The fit parameters bpd =
1.79 ±0.12 (GeV/c)−2 and npd = 3.58 ±0.15 from the high-energy 
data set were used by default, while the corresponding uncer-
tainties and the low-energy values bpd = 1.6 ± 0.2 (GeV/c)−2 and 
npd = 3.58(fixed) were used for systematic checks.

The templates were fitted to the data leaving the normaliza-
tion free for coherent J/ψ , incoherent J/ψ and dissociative J/ψ
production. The normalization of the γ γ → μ+μ− spectrum was 
fixed to the one obtained from the invariant mass fits. The nor-
malization of the coherent and incoherent feed-down J/ψ tem-
plates was constrained to the normalization of primary coherent 
and incoherent J/ψ templates, according to the feed-down frac-
tions extracted from the measurement of raw inclusive J/ψ and 
ψ ′ yields, as described below. The extracted incoherent J/ψ frac-
tion f I = N(incoh J/ψ)

N(coh J/ψ)
for pT < 0.25 GeV/c ranges from (4.9 ± 0.6)% 

to (6.4 ± 0.8)% depending on the rapidity interval and is consis-
tent with being constant within the uncertainties of the fits. The 
contribution of incoherent J/ψ with nucleon dissociation was also 
taken into account in this fraction.

4. Results and discussion

4.1. Ratio of coherent ψ ′ and J/ψ cross sections

The obtained dimuon invariant mass spectra can be used to ex-
tract the ratio of coherent ψ ′ and J/ψ cross sections R = σ(ψ ′)

σ (J/ψ)

and the fraction of feed-down J/ψ from ψ ′ decays in the raw J/ψ
yields. The fits to the invariant mass distributions for dimuons with 
pair pT < 0.25 GeV/c in the full rapidity range −4.0 < y < −2.5
result in the following ratio of the measured raw inclusive ψ ′ and 
J/ψ yields:
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Fig. 2. Invariant mass distributions in six rapidity bins for muon pairs satisfying the event selection described in the text.
RN = N(ψ ′)
N(J/ψ)

= 0.0250± 0.0030 (stat.), (2)

The raw ψ ′ and J/ψ yields in this ratio contain contributions 
both from coherent and incoherent ψ ′ and J/ψ photoproduction. 
However, according to the dimuon pT fits, the fraction f I of in-
coherent J/ψ in the raw J/ψ yields does not exceed 6% and, ac-
cording to STARlight [23] and calculations within the color dipole 
approach [29], the fraction of incoherent ψ ′ in the raw ψ ′ yields is 
expected to be similar. The RN ratio can therefore be considered as 
a good estimate of the ratio of coherent J/ψ and ψ ′ yields, since 
the incoherent fractions of ψ ′ and J/ψ yields largely cancel in the 

ratio. Besides, the raw J/ψ yields contain significant feed-down 
contribution coming from ψ ′ → J/ψ + anything decays. Taking into 
account this feed-down contribution, one can express the RN ra-
tio in terms of primary coherent ψ ′ and J/ψ photoproduction cross 
sections σ(ψ ′) and σ(J/ψ) integrated over all transverse momenta 
in the rapidity range −4.0 < y < −2.5:

RN

= σ (ψ ′)BR(ψ ′→μμ)ε(ψ ′)
σ (J/ψ)BR(J/ψ→μμ)ε(J/ψ)+σ (ψ ′)BR(ψ ′→J/ψ)ε(ψ ′→J/ψ)BR(J/ψ→μμ)

(3)
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Fig. 3. Transverse momentum distributions in six rapidity intervals for muon pairs satisfying the event selection described in the text.
where ε(J/ψ) = 12.0%, ε(ψ ′) = 15.8% and ε(ψ ′ → J/ψ) = 7.2%
are the efficiency corrections for primary coherent J/ψ , ψ ′ and 
feed-down J/ψ from coherent ψ ′ decays estimated with STARlight, 
while BR(J/ψ → μμ) = (5.961 ±0.033)%, BR(ψ ′ → μμ) = (0.80 ±
0.06)%, BR(ψ ′ → J/ψ + anything) = (61.4 ± 0.6)% are the corre-
sponding branching ratios [27]. Equation (3) can be used to express 
the ratio of primary coherent ψ ′ and J/ψ photoproduction cross 
sections, R , in terms of the measured yield ratio RN :

R = RN BR(J/ψ→μμ)ε(J/ψ)
BR(ψ ′→μμ)ε(ψ ′)−RN BR(ψ ′→J/ψ)ε(ψ ′→J/ψ)BR(J/ψ→μμ)

(4)

Substituting the measured RN value from Eq. (2) and the corre-
sponding efficiency values and branching ratios, one gets:

R = 0.150± 0.018 (stat.) ± 0.021 (syst.) ± 0.007 (BR), (5)

where the uncertainties on branching ratios BR(J/ψ → μμ) and 
BR(ψ ′ → μμ) were added in quadrature, while the main sources 
of systematic uncertainties are the variation of the fit range, of 
the signal and background shapes, and of the dimuon transverse 
momentum cut.

The measured ratio of the ψ ′ and J/ψ cross sections is com-
patible with the exclusive photoproduction cross section ratio R =
0.166 ± 0.007 (stat.) ± 0.008 (syst.) ± 0.007 (BR) measured by the 
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Table 1
J/ψ yields, efficiencies, f I and fD fractions and coherent J/ψ cross sections.
Rapidity range NJ/ψ ε fD f I dσ coh

J/ψ /dy (mb)

(−4.00,−2.50) 21747 ± 190 0.120 0.055 0.055± 0.001 2.549 ± 0.022 (stat.) +0.209
−0.237 (syst.)

(−4.00,−3.75) 974± 36 0.051 0.055 0.064± 0.008 1.615 ± 0.060 (stat.) +0.135
−0.147 (syst.)

(−3.75,−3.50) 3217 ± 70 0.140 0.055 0.058± 0.004 1.938 ± 0.042 (stat.) +0.166
−0.190 (syst.)

(−3.50,−3.25) 5769 ± 98 0.204 0.055 0.060± 0.003 2.377 ± 0.040 (stat.) +0.212
−0.229 (syst.)

(−3.25,−3.00) 6387 ± 105 0.191 0.055 0.052± 0.002 2.831 ± 0.047 (stat.) +0.253
−0.280 (syst.)

(−3.00,−2.75) 4229 ± 85 0.119 0.055 0.049± 0.003 3.018± 0.061 (stat.) +0.259
−0.294 (syst.)

(−2.75,−2.50) 1190 ± 47 0.029 0.054 0.049± 0.006 3.531 ± 0.139 (stat.) +0.294
−0.362 (syst.)
H1 collaboration in ep collisions [30] and with the ratio R ≈ 0.19
measured by the LHCb collaboration in pp collisions [31]. The 
measured ratio also agrees with predictions based on the Lead-
ing Twist Approximation [32] for Pb–Pb UPC ranging from 0.13 
to 0.18 depending on the model parameters. The ψ ′-to-J/ψ co-
herent cross section ratio is expected to have a mild dependence 
on the collision energy and vector meson rapidity [32] (at most a 
few percent). Therefore the measured ratio can be directly com-
pared to the unexpectedly large ψ ′-to-J/ψ coherent cross sec-
tion ratio 0.34+0.08

−0.07, measured by ALICE in the ψ ′ → l+l− and 
ψ ′ → l+l−π+π− channels at central rapidity in Pb–Pb UPC at √
sNN = 2.76 TeV [14]. The ratio at central rapidity is more than 

a factor two larger but still stays compatible within 2.5 standard 
deviations with the forward rapidity measurement, owing mainly 
to the large uncertainties of the central rapidity measurement that 
will be improved by the analysis of the much larger UPC data sam-
ple collected with the ALICE central barrel in Run 2.

The measured cross section ratio R was used to extract the frac-
tion of feed-down J/ψ from ψ ′ relative to the primary J/ψ yield:

fD = N(feed-down J/ψ)

N(primary J/ψ)
= R

ε(ψ ′ → J/ψ)

ε(J/ψ)
BR(ψ ′ → J/ψ) (6)

The fraction fD = 8.5% ± 1.5% was obtained for the full rapidity 
range without any pT cut, where statistical, systematic and branch-
ing ratio uncertainties were added in quadrature. The fraction re-
duces to fD = 5.5% ± 1.0% for pT < 0.25 GeV/c because feed-down 
J/ψ are characterized by wider transverse momentum distribu-
tions compared to primary J/ψ .

4.2. Coherent J/ψ cross section

The coherent J/ψ differential cross section is given by:

dσ coh
J/ψ

dy
= N(J/ψ)

(1+ f I + fD)ε(J/ψ)BR(J/ψ → μμ)εvetoLint	y
(7)

The raw J/ψ yield values, efficiencies, f I and fD fractions and co-
herent J/ψ cross sections with relevant statistical and systematic 
uncertainties are summarized in Table 1. The associated system-
atic uncertainties are briefly described in the following.

The first source of systematic uncertainty is related to the sep-
aration of peripheral and ultra-peripheral collisions. Coherent-like 
J/ψ photoproduction, observed in peripheral collisions of heavy 
ions [33], may contribute a few per cent to the raw J/ψ yields in 
case hadronic activity is not detected by the V0 and AD detectors. 
In order to reduce a possible contamination from J/ψ produced 
in peripheral hadronic events, the analysis was repeated with an 
additional requirement that there be no tracklets detected at mid-
rapidity in the SPD (where a tracklet is a segment formed by at 
least one hit in each of the two detector layers), resulting in 12.6% 
to 15.0% lower J/ψ yields depending on the rapidity range. The 
veto inefficiency associated with this additional SPD requirement 

was estimated with unbiased triggers similar to what was done for 
the V0 and AD veto inefficiencies. The average fraction of events 
with at least one SPD tracklet was found to be pSPD = 9.4 ± 0.2%. 
The yields corrected for the additional SPD veto inefficiency of 9.4% 
result in cross sections 3.6% to 6.0% lower than the ones obtained 
without the SPD veto. This cross section difference is taken into 
account in the systematic uncertainty.

The systematic uncertainties on the efficiencies obtained by 
variation of the generated rapidity shapes range from 0.1% to 0.8%, 
depending on the rapidity interval. The tracking efficiency uncer-
tainty of 3% was estimated by comparing the single-muon tracking 
efficiency values obtained in MC and data, with a procedure that 
exploits the redundancy of the tracking-chamber information [34]. 
The systematic uncertainty on the dimuon trigger efficiency has 
two origins: the intrinsic efficiencies of the muon trigger cham-
bers and the response of the trigger algorithm. The first one was 
determined by varying the trigger chamber efficiencies in the MC 
by an amount equal to the statistical uncertainty on their measure-
ment with a data-driven method and amounts to 1.5%. The second 
one was estimated by comparing the trigger response function be-
tween data and MC, resulting in efficiency differences ranging from 
5% to 6% depending on the rapidity interval. Finally, there is a 1% 
contribution related to the precision required to match track seg-
ments reconstructed in the tracking and trigger chambers.

Several tests were performed to estimate the uncertainty on the 
raw J/ψ signal extraction. These include the uncertainty on the 
J/ψ signal shape estimated by fitting the Crystal Ball slope param-
eters instead of fixing them from Monte-Carlo templates and by 
replacing the single-sided Crystal Ball with a double-sided Crys-
tal Ball function. The variation of the continuum background shape 
due to the uncertainty on the trigger response function, variation 
of the invariant mass intervals by ±0.1 GeV/c2 and of the dimuon 
pT selection by ±0.05 GeV/c were also considered. The systematic 
uncertainty on the raw J/ψ yield, estimated as root mean square 
of the results obtained from all tests, is about 2% with a slight ra-
pidity dependence.

Several sources of systematic uncertainties are associated with 
different contributions to the pT spectrum: the fraction of feed-
down J/ψ , the shape and contribution of the γ γ → μ+μ− tem-
plate, the shape for the coherent J/ψ and the shape for the in-
coherent J/ψ with nucleon dissociation. These contributions are 
shortly detailed in the following. First, the fraction fD of feed-
down J/ψ with pT below 0.25 GeV/c was varied in the range from 
4.4 to 6.4% corresponding to the total systematic uncertainty of the 
measured ψ ′-to-J/ψ cross section ratio. Second, the shape of the 
γ γ → μ+μ− pT template from STARlight does not include possi-
ble contributions from incoherent emission of photons, character-
ized by much wider transverse momentum distributions extending 
well above 1 GeV/c. In order to account for these contributions, 
the shape of the γ γ → μ+μ− pT template was changed from 
STARlight to that obtained from the side-bands surrounding the 
J/ψ peak in the invariant mass spectra, resulting in 1% systematic 
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Table 2
Summary of systematic uncertainties. The ranges of values corre-
spond to different rapidity bins.
Source Value

Lumi. normalization ±5.0%
Branching ratio ±0.6%
SPD, V0 and AD veto from −3.6% to −6.0%
MC rapidity shape from ±0.1% to ±0.8%
Tracking ±3.0%
Trigger from ±5.2% to ±6.2%
Matching ±1.0%
Signal extraction ±2.0%
fD fraction ±0.7%
γ γ yield ±1.2%
pT shape for coherent J/ψ ±0.1%
bpd parameter ±0.1%

Total from +8.3
−9.2% to +8.9

−10.3%

uncertainty on the measured coherent cross section. Third, a 0.2% 
systematic uncertainty was determined via the variation of the γ γ
contribution according to the statistical uncertainty in the back-
ground term calculated from the invariant mass fits. A modification 
of the transverse momentum spectra for the coherent J/ψ accord-
ing to the model [35], results in a 0.1% systematic uncertainty. 
Finally, the template shape for the incoherent J/ψ with nucleon 
dissociation was varied by exchanging the H1 high-energy run pa-
rameters for those determined from the low-energy run resulting 
in a 0.1% systematic uncertainty on the coherent cross section.

The systematic uncertainties are summarized in Table 2. The 
total systematic uncertainty is the quadratic sum of all the sources 
listed in the table. Luminosity normalization, veto efficiency and 
branching ratio uncertainties are fully correlated. The uncertainty 
on the signal extraction is considered as uncorrelated as a function 
of rapidity. Finally, all other sources of uncertainty are considered 
as partially correlated across different rapidity intervals.

4.3. Discussion

The measured differential cross section of coherent J/ψ pho-
toproduction in the rapidity range −4.0 < y < −2.5 is shown in 
Fig. 4 and compared with various models. The covered rapidity 
range corresponds to a Bjorken-x of gluons either in the range 
1.1 · 10−5 < x < 5.1 · 10−5 or 0.7 · 10−2 < x < 3.3 · 10−2 depending 
on which nucleus emitted the photon. According to models [32], 
the fraction of high Bjorken-x gluons (x ∼ 10−2) is dominant at 
forward rapidities and ranges from ∼60% at y = −2.5 to ∼95% at 
y = −4.

The Impulse Approximation, taken from STARlight [16], is based 
on the data from the exclusive J/ψ photoproduction off protons 
and neglects all nuclear effects except for coherence. The square 
root of the ratio of experimental points and the Impulse Approx-
imation cross section is about 0.8, reflecting the magnitude of 
the nuclear gluon shadowing factor at typical Bjorken-x values 
around 10−2, under the assumption that the contribution from low 
Bjorken-x ∼ 10−5 can be neglected [10].

STARlight is based on the Vector Meson Dominance model and 
a parametrization of the existing data on J/ψ photoproduction off 
protons [23]. A Glauber-like formalism is used to calculate the J/ψ
photoproduction cross section in Pb–Pb UPC accounting for mul-
tiple interactions within the nucleus but not accounting for gluon 
shadowing corrections. The STARlight model overpredicts the data, 
indicating the importance of gluon shadowing effects, but the dis-
crepancy is much lower than for the Impulse Approximation.

Guzey, Kryshen and Zhalov [32] provide two calculations (GKZ), 
one based on the EPS09 LO parametrization of the available nu-
clear shadowing data [42] and the other on the Leading Twist 

Fig. 4. Measured coherent differential cross section of J/ψ photoproduction in ultra-
peripheral Pb–Pb collisions at √sNN = 5.02 TeV. The error bars represent the sta-
tistical uncertainties, the boxes around the points the systematic uncertainties. The 
theoretical calculations [10,16,23,32,36–41] described in the text are also shown. 
The green band represents the uncertainties of the EPS09 LO calculation.

Approximation (LTA) of nuclear shadowing based on the combi-
nation of the Gribov-Glauber theory and the diffractive PDFs from 
HERA [43]. Both the LTA model and the EPS09 curve, correspond-
ing to the EPS09 LO central set, underpredict the data but remain 
compatible with it at the most forward rapidities. The data tends 
to follow the upper limit of uncertainties of the EPS09 calculation 
corresponding to the upper bound of uncertainties on the gluon 
shadowing factor in the EPS09 LO framework.

Several theoretical groups provided predictions within the color 
dipole approach coupled to the Color Glass Condensate (CGC) for-
malism with different assumptions on the dipole-proton scattering 
amplitude. Predictions by Gonçalves, Machado et al. (GM) based on 
IIM and b-CGC models for the scattering amplitude underpredict 
the data [36,37]. Predictions by Lappi and Mäntysaari (LM) based 
on the IPsat model [38,39] give reasonable agreement though the 
range of predictions does not span all the experimental points. Re-
cent predictions by Luszczak and Schafer (LS BGK-I) within the 
color-dipole formulation of the Glauber-Gribov theory [44] are 
in agreement with data at semi-forward rapidities, |y| < 3, but 
slightly underpredict the data at more forward rapidities.

Cepila, Contreras and Krelina (CCK) provided two predic-
tions based on the extension of the energy-dependent hot-spot 
model [40] to the nuclear case: using the standard Glauber-Gribov 
formalism (GG-HS) and using geometric scaling (GS-HS) to ob-
tain the nuclear saturation scale [41]. The GG-HS model agrees 
with data at most forward rapidities but underpredicts it at semi-
forward rapidities. The GS-HS model (not shown) strongly under-
predicts the data.

5. Conclusions

The first rapidity-differential measurement on the coherent 
photoproduction of J/ψ in the rapidity interval −4 < y < −2.5 in 
ultra-peripheral Pb–Pb collisions at 

√
sNN = 5.02 TeV has been 

presented and compared with model calculations. The Impulse Ap-
proximation and STARlight models overpredict the data, indicating 
the importance of gluon shadowing effects. The model based on 
the central set of the EPS09 gluon shadowing parametrization, the 
Leading Twist Approximation, and the hot-spot model coupled to 



8 ALICE Collaboration / Physics Letters B 798 (2019) 134926

the Glauber-Gribov formalism underpredict the data but remain 
compatible with it at most forward rapidities. The majority of color 
dipole models underpredict the data.

The nuclear gluon shadowing factor of about 0.8 at Bjorken-x
values around 10−2 and a hard scale around the charm quark 
mass was estimated from the comparison of the measured co-
herent J/ψ cross section with the Impulse Approximation under 
the assumption that the contribution from low Bjorken x ∼ 10−5

can be neglected. Future studies on coherent heavy vector me-
son photoproduction accompanied by neutron emission may help 
to decouple low-x and high-x contributions and provide valuable 
constraints on poorly known gluon shadowing effects at Bjorken 
x ∼ 10−5 [45].

The ratio of the ψ ′ and J/ψ cross sections is in reasonable 
agreement both with the ratio of photoproduction cross sections 
off protons measured by the H1 and LHCb collaborations and with 
LTA predictions for Pb–Pb UPC.
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F. Antinori 56, P. Antonioli 53, R. Anwar 126, N. Apadula 79, L. Aphecetche 114, H. Appelshäuser 69, 
S. Arcelli 27, R. Arnaldi 58, M. Arratia 79, I.C. Arsene 21, M. Arslandok 102, A. Augustinus 34, R. Averbeck 105, 
S. Aziz 61, M.D. Azmi 17, A. Badalà 55, Y.W. Baek 40, S. Bagnasco 58, X. Bai 105, R. Bailhache 69, R. Bala 99, 
A. Baldisseri 137, M. Ball 42, R.C. Baral 85, R. Barbera 28, L. Barioglio 26, G.G. Barnaföldi 145, L.S. Barnby 92, 
V. Barret 134, P. Bartalini 6, K. Barth 34, E. Bartsch 69, F. Baruffaldi 29, N. Bastid 134, S. Basu 143, 
G. Batigne 114, B. Batyunya 75, P.C. Batzing 21, D. Bauri 48, J.L. Bazo Alba 110, I.G. Bearden 88, C. Bedda 63, 
N.K. Behera 60, I. Belikov 136, F. Bellini 34, R. Bellwied 126, V. Belyaev 91, G. Bencedi 145, S. Beole 26, 
A. Bercuci 47, Y. Berdnikov 96, D. Berenyi 145, R.A. Bertens 130, D. Berzano 58, L. Betev 34, A. Bhasin 99, 
I.R. Bhat 99, H. Bhatt 48, B. Bhattacharjee 41, A. Bianchi 26, L. Bianchi 126,26, N. Bianchi 51, J. Bielčík 37, 
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