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Abstract

In Human—Machine Teaming environments, it is important to identify potential performance drops due to cognitive
overload. If identified correctly, they can help improve the performance of the human—machine system by offloading some
tasks to less cognitively overloaded users. This can help prevent user error that can result in critical failures. Also, it can
improve productivity by keeping the human operators at an optimal performance state. This paper explores a new method
for identifying user cognitive load by a three-class classification using brain activity data and by applying a convolutional
neural network and long short-term memory model. The data collected from a set of cognitive benchmark experiments
were used to train the model, which was then tested on two separate datasets consisting of more ecologically valid task
environments. We experimented with various models built with different benchmark tasks to explore which benchmark
tasks were better suited for the prediction of task shedding events in these compound tasks that are more representative of
real-world scenarios. We also show that this method can be extended across-tasks and across-subject pools.

Keywords Human—Machine Teaming - fNIRS - Brain data - Task shedding - Convolutional neural networks -
LSTM - Classification

Introduction

As computing devices become more ubiquitous, the need
for greater human—machine symbiosis becomes an impor-
tant factor. This concept, of human and computer agents
working together to accomplish a goal, or a set of goals, is
referred to as Human—Machine Teaming (HMT). In any
teaming environment, whether it is a team of all human
agents, a team of all machines, or a combination of the two,
it is important that resources within the team are allocated
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as efficiently as possible such that the team may achieve its
goal while simultaneously putting the least amount of
strain possible on any of the team members. The finite
resources of an HMT, such as the processing power of a
machine, or the limited cognitive capacity of a human
agent, could be viewed as potential bottlenecks within an
HMT system, where the team’s ability to accomplish a task
may falter. Although the processing power of a machine
may have been the primary factor that stopped HMTs from
achieving optimal performance in the past, processing
power is now an easily obtainable resource. As such, recent
efforts to improve the performance of HMTs have shifted
focus to improving the communication modalities between
humans and machine agents. As human agents have limited
cognitive capacity within a time-sensitive task environ-
ment, ideal task performance is dependent on optimizing
humans’ information processing capabilities, which are
affected by the complex interplay between their perceptual
processing load, mental workload, and emotional state.
Task performance within an HMT is also dependent on the
ability of machine agents to detect and interpret the signs
of potential overload on the part of the human agent, and to
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have the ability to take meaningful action to assuage, or at
the very least reduce, the load placed on the human agent.

For a machine agent within an HMT to properly make
predictions about the current state of the system, the
machine must not only possess knowledge relevant to the
task that needs to be completed, but also the amount and
type of mental workload that is currently being placed on
the human agent(s) within the HMT. The machine must
also be able to discern if this amount of workload is sig-
nificant enough to induce degradation in the human agent’s
or team’s performance that might limit the HMT’s ability
to complete the current task. Mental workload, in this
context, is the brain’s finite amount of processing capacity
to allocate to a given task. As theoretical and experimental
work by Wickens’ Multiple Resource Theory (MRT) [45]
has shown, there are different types of cognitive resources
that the brain can allocate simultaneously, and the overload
of one type of cognitive resource does not necessarily lead
to the overload of another [45]. When a person is required
to perform multiple tasks that require the same type of
mental resource, resource may become overloaded, and as
a result, person’s performance at the given task will
degrade. If the overload is adequately high, the individual
may eschew the task altogether, an event known as ‘task
shedding’ [48]. A common area where this concept
expressed is in the field of piloted aircraft and unmanned
air vehicles (UAVs). In those cases, the autonomous sys-
tem and pilot cooperate to achieve objectives [38]. For this
type of cooperation to work, the machine needs to be able
to sense and intervene when the human’s performance
starts dropping due to increases in task load. [5, 37].
Parasuraman and Hancock have shown that task shedding
can be triggered by high workload and low certainty [29].
Although researchers have previously attempted to model
this task shedding behavior using simple and basic tasks
[26, 27, 30, 33] as well as more complex real-world sce-
narios [6, 23], more accurate predictions about when task
shedding events are likely to occur are needed if these
models are to be implemented in real time.

In this paper, we introduce a novel method by which one
can use information about task performance and taskload
metrics to tabulate a measure that we call the ‘Task
Shedding Index (TSX),” which is a combination of taskload
and performance. The TSX can be used as an indicator of
the potential of the user for task shedding. Further, we use
this new proposed measure to predict task shedding
instances using across-task, across-subject machine learn-
ing methods. The goal is to introduce an agnostic frame-
work, not tied to any specific task that a particular HMT
would try to complete. To achieve this goal, we created a
model, using psychophysiological data recorded from a
functional near-infrared spectroscopy (fNIRS) device, to
detect when task load on a human participant was high, and

@ Springer

task shedding instances were therefore likely to occur. To
isolate specific types of mental workload (working mem-
ory, visuospatial attention), we trained models on multiple
cognitive benchmark tasks used widely in the fields of
cognitive psychology and cognitive neuroscience and tes-
ted those models on more ecologically valid tasks. We
show that such a system can provide a reliable prediction of
such events such that an autonomous agent with access to
this type of physiological data would be able to predict
when moments of mental overload might lead to perfor-
mance decrements or task shedding events, and as a result
would be able to take over for, or provide assistance to, the
human agent within the HMT.

Background
Human-Machine Teaming and Task Shedding

The importance of finding a way for an autonomous agent
in an HMT to detect when the human agent may be sub-
jected to events of higher cognitive workload, and thus task
shedding events, has been shown in past systems design
research [34]. Past work in the fields of human factors and
cognitive engineering has provided evidence that when a
human agent’s performance is supplemented with a
machine agent’s ability to assist on tasks, the reported
workload of the human agent decreases. This decrease in
perceived workload coincides with an increase in the
human agent’s self-confidence and trust in the HMT as
well as an increase in the overall performance of the HMT
[14]. Despite these advances, there are still many issues
that need to be addressed to ensure HMTs can be optimized
to task performance [8]. With these issues, highlighted by
past research, in mind we use predictive modeling on
multiple cognitive resources to detect when increases in
mental workload are likely to lead to performance
decrements.

Using Psychophysiological Sensors to Measure
Workload

Task shedding detection through brain activity requires
sensors that are robust to noise, portable and noninvasive.
The fNIRS device works well for this application since the
device can be set up quickly and can target specific areas of
the brain that are implicated in cognitive resources that are
prone to becoming overloaded when engaged in cogni-
tively demanding tasks [15, 42]. The fNIRS device works
by using multiple pairs of optodes that are placed on the
scalp and pulse infrared light (690 nm and 830 nm)
through the skull and into the brain. The reflected light
intensity that is received by the detector is dependent on
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the amount of oxygenated and deoxygenated hemoglobin
in the incident area over which the optodes are placed [11].
Since oxygen is consumed during the metabolic processes
involved in brain activity, the concentration of hemoglobin
is correlated with increased brain activity. fNIRS has in the
past been used for classification of workload levels [20].
More specifically, the fNIRS’ ability to measure brain
activity in the frontal cortex of the brain gives it a unique
ability to predict workload levels, as greater activation in
the frontal cortex is associated with higher levels of mental
workload [19, 36].

The ability to measure mental states, and thus workload,
has already been well documented in the human factors
literature [35]. Other work has found great success in being
able to predict mental workload in real-world computer
environments using fNIRS [31, 41]. As advances in both
fNIRS technology and portability increase, fields such as
brain—computer interfacing (BCI) have argued that the
fNIRS’ increased spatial resolution would make fNIRS an
invaluable tool for collecting real-time psychophysiologi-
cal data and building systems that incorporate and adapt to
that data in real time [10]. The portability of the fNIRS
system, combined with its ability to measure workload and
communicate those measurements to a machine agent,
could provide a solution to make strides toward correcting
documented issues in intelligent system designs [24].

Machine Learning Classifiers on fNIRS Data

Researchers have used traditional machine learning clas-
sifiers such as support vector machines [12], artificial
neural networks [7], hidden Markov models [49] as well as
other statistical methods [4, 39] to preprocess and classify
fNIRS data. However, more recent work has demonstrated
the ability to use deep learning algorithms [18] to capture
the characteristics of the fNIRS signal. One category of
deep learning algorithms, convolutional neural networks
(CNNs) [25], is typically used in the image processing
domain because of their ability to capture the spatial
structure of image data. They are well suited for fNIRS
analysis due to the same reasons. Our previous work [3]
showed that the oxygenated and deoxygenated data pro-
vided by fNIRS can be used similar to the RGB channels of
an image when fed into a CNN-based classifier. We also
used a long short-term memory (LSTM) network, to cap-
ture the time-series behavior of the fNIRS data. LSTMs are
a version of recurrent neural networks, which can capture
long- and short-term dependencies in the data [21]. LSTMs
have become popular for machine learning on electroen-
cephalography data [1, 13]. They have also recently been
used in fNIRS analysis [40]. In [3], the above-described
model was used in across-subject classification by dividing
the subject pool into folds. In this paper, we use the same

LSTM model on across-subject, across-task, three-label
classification tasks.

Methods
Experimental Protocol

fNIRS data were collected from 45 participants (14
females, 31 males, mean age = 26, min age = 21, max age
=36) who were selected from the undergraduate and
graduate student population at a university in the Northeast
United States. The data were collected using a Hitachi
ETG-4000 fNIRS device at a sampling rate of 10 Hz. The
optodes were arranged into an fNIRS cap with a 3 x 11
probe configuration and were placed on the participant’s
forehead area in a symmetrical manner (Fig.1). Using this
configuration, the fNIRS device can capture information
about the oxygenated and deoxygenated hemoglobin levels
in the frontal cortex of the participants. The fNIRS was
calibrated to ensure that all probes were recording proper
readings and adjusted to account for ambient light. After
setting up the fNIRS device on the participant’s head, a
Patriot Polhemus 3D digitizer device was used to measure
the location of each source/detector to account for vari-
ances in head size and shape. All participants gave
informed consent under the restrictions and guidelines of
the University’s Institutional Review Board.

From the set of 45 participants, a subset of these par-
ticipants (n = 25, 7 females, 18 males) completed the
cognitive benchmark tasks described in Sect. 3.2, as well
as the triage cyber analyst task described in Sect. 3.3.1.
Both the cognitive benchmark tasks and the triage task
used a variable interstimulus interval (ISI) between the
offset of a trial and the onset of a new trial, during which a
cross-fixation point in the center of the screen was dis-
played on the screen. The length of the ISI was an expo-
nential distribution (mean = 4 s, min = 2 s, max = 8 s).
The order of tasks was as follows,

1. Consent

2. fNIRS sensor set up

3. Session 1 (cognitive benchmark tasks, a-d order
randomized)

(a) N-back, NASA-TLX

(b) Visual search, NASA-TLX

(c) Posner cueing paradigm, NASA-TLX
(d) Words task, NASA-TLX

(e) Simple reaction time task, NASA-TLX
() Reverse Go/No-Go, NASA-TLX

4. 15-min break
5. Session 2

@ Springer
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Fig. 1 The 3 x 11 fNIRS probe
configuration

(a) Triage task training
(b) Triage task
(¢) NASA-TLX

The remaining 20 participants performed the Multi-At-
tribute Task Battery (MATB) testbed described in
Sect. 3.3.2. The order of MATB tasks was as follows,

1. Consent
2. {NIRS sensor set up
3. Session 1

(a) 1-min MATB low difficulty, NASA-TLX
(b) 1-min MATB medium difficulty, NASA-TLX
(¢) 1-min MATB high difficulty, NASA-TLX

4. 1-min break
5. Session 2

(a) 1-min MATB high difficulty, NASA-TLX
(b) 1-min MATB low difficulty, NASA-TLX
(¢) 1-min MATB medium difficulty, NASA-TLX

6. 1-min break
7. Session 3

(@) 1-min MATB medium difficulty, NASA-TLX
(b) 1-min MATB high difficulty, NASA-TLX
(¢) 1-min MATB low difficulty, NASA-TLX

Since an adjustment in screen size is correlated with certain
physiological responses [32], all tasks were displayed to
the participants on a 22-inch monitor with a screen reso-
lution of 1280 x 1024 pixels. Participants were seated in a
stationary chair so that the distance between their eyes and
the monitor was 65cm. The participants used the computer
mouse as the only form of response to all tasks (by clicking
buttons or making selections). This was done to minimize
noise in the data due to subject movement during the
experiment. All participants would begin each fNIRS ses-
sion with a 30-s session of controlled rest during which the
participant fixated on a plain black plus symbol in the
center of a white display. Participants would then perform
ten trials of a reaction time task before they began the rest
of the cognitive benchmark tasks. To mitigate the fatigue
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effects involved in cognitive testing [43], the benchmark
task order was randomized between subjects.

Stimulus Materials: Training Data
Visual-Lexical Processing, Adaptive Words

This adaptive words task was developed to induce work-
load on participant’s visual-lexical processing resources. In
this task, the words for the numerical values of the digits
one through eight were displayed vertically for a variable
amount of time in the center of the screen. The partici-
pant’s goal was to determine whether the word that was
displayed on the screen corresponded to either an odd or
even numerical value (Fig. 2).

Visual Search Task, Visual Search

The visual search task was designed to cause cognitive load
on people’s visual processing resources and was modeled
after the task design developed by Wang, Cavanagh and
Green [44]. A circular array of nine letters consisting of a
distractor (backward Ns) and a target (normal facing Ns)
was displayed to the participant for a variable amount of
time. The participant’s task was to determine whether or
not the target was displayed within the array (Fig. 3).

Response Inhibition, Go/No-Go

The response inhibition task was the Go/No-Go task, which
involved one target stimuli (a large blue circle) and one
distractor stimuli (a large blue square). The development of
stimulus materials was guided by Huettel, Mack, and
McCarthy [22]. The participant was tasked with responding
to the stimuli if the target was presented, and not
responding to the stimuli when the distractor was presented
(Fig. 4).

Working Memory, N-Back Task

The N-Back task (Fig. 5) was designed to cause cognitive
load on people’s working memory resources by requiring
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Fig. 2 Adaptive Words Task

Presentation F #
(0] #
u # *
R #
50ms 50ms up to 2s 2-8s
Fig. 3 Visual search task target present
presentation
n oy
+
900ms up to 2s 2-8s
no target present
+
900ms up to 2s 2-8s

participants to hold a stream of characters in their working
memory and responding when a new character that is
presented to them matches one of the characters they are
currently holding. The task development was based on
Harvey et al. [17]. The task presented participants with a
series of letters, a single letter at a time, for a duration of
500ms each. The letters would appear in the center of the
screen with a plain white background. Only the letters B,
D, G, T, V along with their lower-case variants, b, d, g, t, v,
were used. Before each block, participants were given an
‘n’ value of either one, two, three or four. The participant’s
goal was to determine whether the current letter presented
to them matched the letter that was ‘n’ presentations behind
the current letter that was displayed (case insensitive). For
example, in Fig. 5, if an ‘n’ of two had been given to the
participant, then the correct response would be ‘yes.” If the
participant was given an ‘n’ value of one, however, the
correct response would be ‘no.’

Stimulus Materials: Test Data
Triage Task

The triage analyst task acts as an ecologically valid rep-
resentation of a cyber-security network analyst’s position
and is based on the work of Greenlee et al. [16]. The task
involved the participant viewing what is at first an empty
table in the center of the screen. The table headings were
‘Source IP,” ‘Source Port,” ‘Destination IP,” ‘Destination
Port.” Participants were informed before the task beginning
that they did not require working knowledge of the ter-
minology involved to complete the task. The table would
then be populated with incoming ‘transmissions’ on the
‘network’ the participant was monitoring. Starting from the
top of the table, new ‘transmissions’ would fill the
table until a maximum of five ‘transmissions’ was on the
screen. After five ‘transmissions’ were shown on the
screen, the bottom transmission would be removed from
the screen to make room for a new incoming transmission

@ Springer
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Fig. 4 The Go/No-Go task distractor
presentation
J |
target
J |
250ms up to 2s 2-8s
Fig. 5 N-back task presentation oS 500ms 235 Current Slide
B D
N=2, ‘Yes'

at the top, bumping the rest of the table down one slot. The  intrusion. The triage testbed tracked participant response
participant was tasked with detecting ‘intrusions’ on the  times as well as their performance (logging correct,
network. These ‘intrusions’ were defined as either two  incorrect, or no response events) throughout the task.
different ‘transmissions’ on the table having the same

destination information (both ‘Destination IP’ and ‘Desti-  Multi-Attribute Task Battery

nation Port’) or two different ‘transmissions’ on the

table having the same source information (both ‘Source IP>  The Multi-Attribute Task Battery (MATB) condition used
and ‘Source Port’). The participant was only asked to  in our stimulus materials was closely based on the version
identify whether the newest (topmost) ‘transmission’” was  of the task implemented by Comstock and Arnegard [9].
or was not an ‘intrusion.” Figure 6 shows an example of = This implementation of the task used in our experimental

Fig. 6 Source intrusion Source IP Source Port Destination IP | Destination Port |
103.17.22.62 82 198.176.21.9 14
56.254.13.15 11 33.98.47.72 12
226.12.22.132 63 108.71.226.62 77
[103.17.22.62 82 251.102.18.3 65
42.113.56.5 44 56.225.11.89 43
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scenario as a task which involved a high level of multi-
tasking was needed in order to produce a situation in which
task shedding would be likely. The difficultly of the task
necessitated the need for high achieving users to not
become overloaded or overly stressed, which forced the
user to prioritize their actions based on the most time-
sensitive or important needs of the task at the time. The
procedure’s final implementation used the air force’s
updated version of the Multi-Attribute Task Battery
(AF_MATB) [28], and a level of difficulty that required a
high amount of multi-tasking and mental effort was chosen
for the recorded experimental trials.

As a result of the selected difficulty level, the task was
nearly impossible to complete perfectly. Piloting the task
revealed that in order to maintain an adequate performance
score participants needed to remain engaged during the
entire duration of the task. Similar to the original MATB,
AF_MATB variation of the task contains six different
windows, all of which provide the information needed for
the participant to complete four different subtasks (see
Fig. 7). The tasks, System Monitoring, Communications,
Resource Management and Tracking, which all require
different inputs from the user in order to perform suc-
cessfully on the task. The ‘tracking’ subtask was disabled
during this experiment to reduce the physical motion of the
participant activating the motor cortex in the brain as well
as reducing motion artifacts from the fNIRS data. The
other two windows, which contain Scheduling and Pump
Status information, are resources that the user can use to
improve performance during the task. The first requirement
in the system monitoring subtask (top-left pane) is to keep
track of the two lights at the top of the window and keep

them at their original status by toggling them on/off using
the buttons below them. The second requirement in the
system monitoring subtask requires the user to be aware of
the four scales and press the corresponding button if any of
the scales deviates from the center by more than one tick
mark. The communication subtask (bottom left pane)
involves the subject listening for verbal requests to change
the frequency of specific radio calls. The verbal requests
include a call-sign, and if the call-sign is not the call-sign
of the subject, the request is to be ignored. The resource
management subtask (bottom center pane) requires the
subject to keep the fuel levels in tanks A and B within 500
units of the initial level of 2500 units each. The pumps
connected to the tanks can be used to pump fuel from the
lower supply tanks to tanks A and B. The pumps can be
turned on/off by clicking on the particular pump. However,
these pumps can malfunction for periods of time during the
experiment. If a pump is malfunctioning, it cannot be
turned on. The AF_MATB maintains of record of partici-
pant performance throughout the whole task, and after the
task is completed a report of each subject’s performance
data on the subtasks within the MATB is exported. In our
pilot studies, we used a set of five pilot subjects to com-
plete the MATB task with varying number of task fre-
quencies (10 configurations). Then, we chose three of the
10 MATB difficulty levels as low/high/medium based on
the average scores obtained by the pilot study participants
for each task configuration. The three configurations were
chosen by dividing the 10 configurations based on average
score obtained by participants and breaking the 10 con-
figurations into three clusters of low/medium/high diffi-
culty levels. Then the three configurations, which have the

Fig. 7 The Multi-Attribute Task
Battery

SYSTEM MONITORITI

COMMUNICATIONS

NGT504

108.9 (==

108.9

118.1

118.1
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lowest standard deviation among the clusters, were chosen
as MATB low/medium/high configurations for the
experiment.

Data Analysis
fNIRS Data

The fNIRS provides 104 channels (52 channels of oxy-
genated hemoglobin and 52 channels of deoxygenated
hemoglobin) of data at 10 Hz. These data were band-pass
filtered with a window of .01/.5Hz to remove cardiac,
respiratory and high-frequency unwanted noise [2]. The
time-series data from fNIRS were divided into 5-s blocks,
and the average value of the fNIRS data was obtained for
each of the 104 data channels for those 5-s blocks.

Label Calculation

In this experiment, we relied on objective performance data
to calculate our labels. The labels were calculated based on
data logged by the software that presented the task itself.
This way, we were able to match the exact times the stimuli
were presented and the duration of the stimuli using the log
files from the task software. The log files for the benchmark
and triage tasks were generated by capturing information
about when an event was triggered via the stimulus soft-
ware, as well as information about when the participant
responded to the event. Every event logged by the software
was tagged with a UNIX timestamp. The participant’s
reaction times were then calculated, in milliseconds, for
each trial included in the logfile. The logfile also indicated
whether or not the participant responded correctly to the
trial. The MATB logfile collected data at 10 Hz. The dat-
apoints collected include the number of accurate and
inaccurate user responses within each time segment and the
difference between the current tank levels from the target
tank level in the resource management task.

Using these performance and taskload metrics (further
discussed in Sect. 4.2.1), we introduce a measure called
‘Task Shedding Index (TSX),” which is a combination of
taskload and performance. The TSX is used as an indicator
of the potential of the user for task shedding.

Task Shedding Index (TSX)

As described in Sect. 2.1, when users are put in a high-
workload scenario, and the workload of the task is over a
certain threshold, they tend to shed that task or switch to
another task on which they may be able to perform better
[46]. At this point, the performance on the prior task would
degrade, and therefore, be an apt point of intervention on

@ Springer

the part of the machine agent in the HMT [5]. To account
for this, a hybrid workload and performance model is
needed to predict task shedding tendencies. Using the
distance between normalized task load and normalized
performance (detailed next) as our ground truth in this
analysis, the taskload (T) and performance (P) of each
subject are normalized and the Task Shedding Index (TSX)
is defined as the subtraction of normalized P from nor-
malized T (Eq. 1).

Task Shedding Index (7SX)
= Normalize(7T) — Normalize(P)

(1)

The ranges of the T, P and TSX for our dataset are shown
in Fig. 8.

Task load was obtained by adding together the number
of tasks that were presented to the user during those 5 s. If
certain tasks started or ended during each 5-s chunk of
time, they were apportioned according to the amount of
time they were present during the time frame.

In Fig. 9, Task A would contribute 50% to the current
period’s task load. Task B would contribute 100%, and task
C would contribute 25%. Therefore, the task load would be
calculated according to Eq. (2),

Apportioned TaskLoad (T) = 0.5+ 14 0.25 =1.75
(2)
Performance is apportioned similarly as in Eq. (3),

Apportioned Perf. (P) = 0.5 * TaskApe

3
+ 1 % TaskBpes + 0.25 * TaskCpers (3)

To calculate performance in the benchmark and triage
tasks, the onset, duration and accuracy of user response
were saved to a file during the experiment by the testbed.

Task Load Performance  Potential for task shedding

Fig. 8 Data ranges for task load, performance and Task Shedding
Index



Augmented Human Research (2020)5:15

Page 9 of 15 15

Task A

50%

Task B

A
Y

100%

Task C

——
5 Second Period 25%

- »
<+ »

Fig. 9 Apportioning tasks to the time segments

Calculating user performance for benchmark and triage
tasks was done using Eq. (4) for each 5 s.

Triage,.
(Correct Responses) — (Incorrect Responses) (4)

TaskLoad(T)

Since MATB is a multi-attribute task, the performance
calculation for MATB was done by taking the compound
performance of all the subtasks. The MATB contains the
following subtasks,

Time point

Number of accurate light toggle responses (L)
Number of accurate gauge responses (G)

Number of accurate communications responses (C)
Number of inaccurate light toggle responses (1)
Number of inaccurate gauge responses (g)

Number of inaccurate communications responses(c)
Difference of Tank A value from desired target value
(AD)

e Difference of Tank B value from desired target value
(BD)

Equation (5) was used to calculate the user performance for
the MATB task.

MATB s
(L4+G+C)— (I +g+c)+ FuelTankApers. + FuelTankB ..
TaskLoad(T) ’

(5)
where Fuel Tank A performance is calculated by using the

following equation,

0 ABS(4AD) > 100
1 ABS(4AD) <100

The same method was used to calculate Fuel Tank B
performance.

Discretization of Ground Truth Labels

The TSX labels follow a positively skewed distribution.
We are interested in breaking down the distribution into
three levels of TSX, namely ‘low,” ‘moderate’ and ‘high.’
This categorization has been chosen since it allows us to
look at the ‘moderate’ level of TSX as the desired level, the
low level of TSX as when the user is ‘idling” and the ‘high’
level of TSX as when the user is overloaded. This enables
different strategies for dealing with each of these cases.
The TSX labels were discretized using Equal Frequency
Discretization over all the datasets. The Equal Frequency
Discretization algorithm sorts all values of continuous
variable in ascending order and divides the range into three
intervals so that every interval contains the same number of
sorted values. The resulting ranges from Equal Frequency
Discretization for the TSX labels were:

Low TSX: Less than 0.12
e Moderate TSX: 0.12 to 0.323
e High TSX: 0.323 upward

The resulting discretized label distribution for each of the
datasets is given in Table 1.

Table 1 Ground truth label
distribution for each of the

Low TSX labels No./

Moderate TSX labels No./ High TSX labels No./

Jatasets Percentage (%) Percentage(%) Percentage (%)

Adaptive 130/36% 115/32% 120/33%
Words

Visual 298/45% 205/31% 157/24%
Search

Go/No-Go  240/37% 253/39% 153/24%

nback 210/31% 277/42% 180/27%

Triage 2050/34% 1802/30% 2106/35%

MATB 402/23% 678/40% 614/36%
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Fig. 10 CNN+LSTM
classification model
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We trained a classification model that we developed in our
earlier work to classify fNIRS data using a combination of
a convolutional neural network (CNN) and long short-term
memory (LSTM) as shown in Fig. 10. Since CNNs are well
suited for capturing the spatial nature of fNIRS data, and
LSTMs are good at capturing the temporal behavior of
fNIRS data, this model provided performance improve-
ment over traditional machine learning methods [3]. We
evaluated the accuracy of the classifier for different LSTM
time step sizes and found that the optimal time step size for
LSTM was 3 time steps (15 s).

Model Evaluation

Data from the benchmark tasks, detailed in Sect. 3.2, were
used to train four separate models. Each model was trained
using the respective benchmark task and was tested against
both the triage task and MATB task. It is notable that the
four models were trained on benchmark data of 25 subjects
and tested on triage data for the same subjects during a
separate triage session, whereas the MATB test data were
from a different subject pool of 20 subjects (e.g., model
transfer to new, previously unseen subjects with the MATB
classifications). Each benchmark task involves a different
cognitive resource, with each resource capable of being
independently overloaded. We hypothesize that the dif-
ferent models trained on these different benchmark tasks
will perform differently based on the type of task shedding
that it is predicting. For instance, a model trained on the n-
back task would perform better for a task that involved the

@ Springer

utilization of short-term memory, such as remembering a
string of digits for a variable period, whereas the visual
search might perform better on a task that involved finding
a salient stimulus in a cluttered visual environment. In
addition to the models trained on individual benchmark
tasks, a combined ensemble model was also trained on all
benchmark tasks using a voting classifier, which takes the
predicted probabilities for each class from each model and
averages them. The predicted labels are calculated as
follows:

Adaptive words class probabilities ©)
= Lplowla Pmedium1 phighl]
Visual search class probabilities
= [Plow2s Pmedium2; Phigh2]

Go no go class probabilities
= Lpluw3a Pmedium3 Phigh3]
Nback class probabilities
= Lplowéla Pmedium4 , phigh4]
Ensemble class probabilities

= [AVg(pl()W)7 AVg (pmedium)a Avg(phigh)]

Ensemble voting prediction

(10)

11

= argmax|Ensemble class probabilities) ()
We tested the models on both a sequential task (triage)
and a concurrent task (MATB) [47]. The report on our
model performance in these different tasks is detailed in
Sect. 5.
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Results

We were interested in the overall classification perfor-
mance of our models as well as the performance on each of
the label types because each of the ‘low,” ‘moderate’ and
‘high’ TSX labels can be used to keep the system in an
optimally productive state (Fig. 13). Overall, the five
trained models had better accuracy on the MATB task than
the triage task based on a Students’ 7 test (p <0.007), where
accuracy is defined by,

Accuracy

= (Correctly Classified Instances/Total Instances)

Accuracy results from the tests are described in Table 2.
As shown in Table 2, the overall accuracy of the models
was around 60%, with the best overall accuracy results
obtained by the ensemble model, with 61% accuracy for
triage data and 63% accuracy for MATB data. This is
promising considering that random guessing would result
in 33% accuracy on a balanced 3-class problem. Next, we
look at the confusion matrices and the precision, recall and
fl scores of the models to better understand model

Table 2 Accuracy results of the models on the test sets

Triage accuracy (%) MATB accuracy (%)

Adaptive words 60 63
Visual search 60 60
Go/No-Go 59 60
nback 61 61
Ensemble 61 63

Accuracy: 61.71%

80

70

Output Class

130

120

1 2 3
Target Class

Fig. 11 Confusion matrix for ensemble model tested on triage task.
‘Low’ TSX is represented by 1, ‘moderate’ TSX by 2 and ‘high” TSX
by 3

Accuracy: 63.53%

13.4%
99

14.3%
49

20.1%
1

Output Class

Target Class

Fig. 12 Confusion matrix for ensemble model tested on MATB task.
‘Low’ TSX is represented by 1, ‘moderate’ TSX by 2 and ‘high” TSX
by 3

performance in the context of task shedding events. Below
we present the confusion matrices from the testing done on
triage data and MATB data using the ensemble model
(Figs. 11, 12). In these figures, ‘low’” TSX is represented by
1, ‘moderate’ TSX by 2 and ‘high’ TSX by 3.

The results indicated in the confusion matrices (Figs. 11,
12) show that the ensemble model performed well when
identifying instances of ‘low” TSX for the triage task.
However, the model had difficulty in correctly identifying
the ‘moderate’ and ‘high’ TSX instances within the triage
task. On the MATB test, the ensemble model performed
evenly well when predicting TSX values. This difference in
model performance could be due to the sequential nature of
the triage task, which has the user performing one single
task multiple times in a row, constantly engaging one
subset of cognitive resources, not having to switch to any
other type of cognitive processing. As a result of this
sequential presentation of the stimulus, the same brain
region may have been continuously activated throughout
the completion of the entire task and the physiological
response may have been so gradual that the model was
unable to predict when sharp changes in TSX occurred.
This may account for differences seen between ‘moderate’
and ‘high’ TSX labels being not as easy to detect as the
difference between ‘low’ and ‘moderate’ labels. On the
contrary, the MATB, as a concurrent task, activates mul-
tiple brain regions due to task presentation happening all at
once, with the user having to switch between using mul-
tiple cognitive resources to complete each task within the
battery. Though it is a possibility that the differences in
accuracy between the model are due to the nature of the
tasks, more ecologically valid datasets would be required to
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Table 3 Precision, recall and f1

score of the ‘low’ label for Model Triage MATB

models on the test sets Precision Recall f1 score Precision Recall f1 score
Adaptive words 0.56 0.94 0.70 0.66 0.66 0.66
Visual search 0.6 0.85 0.70 0.71 0.59 0.64
Go/No-Go 0.60 0.89 0.71 0.69 0.55 0.61
nback 0.58 0.90 0.70 0.68 0.62 0.65
Ensemble 0.60 0.90 0.72 0.69 0.66 0.67

Table 4 Precision, recall and f1 .

score of the ‘Medium’ label for Model Triage MATB

models on the test sets Precision Recall f1 score Precision Recall f1 score
Adaptive words 0.66 0.53 0.59 0.70 0.68 0.69
Visual search 0.62 0.42 0.50 0.66 0.60 0.63
Go/No-Go 0.71 0.44 0.54 0.72 0.61 0.66
nback 0.64 0.43 0.51 0.70 0.59 0.64
Ensemble 0.68 0.45 0.54 0.73 0.60 0.66

Table 5 Precision, recall and f1 K

score of the ‘high’ label for Model Triage MATB

models on the test sets Precision Recall f1 score Precision Recall f1 score
Adaptive words 0.60 0.66 0.63 0.50 0.74 0.6
Visual search 0.58 0.60 0.59 0.43 0.61 0.5
Go/No-Go 0.50 0.67 0.57 0.37 0.74 0.49
nback 0.41 0.58 0.48 0.41 0.68 0.51
Ensemble 0.58 0.61 0.59 0.45 0.56 0.49

test out whether or not the presentation of the task,
sequential or concurrent, shows a similar effect on the
model accuracy.

As mentioned above, we were also interested in the per-
label performance of the models. Precision and recall
values were calculated for each of the TSX labels. Preci-
sion is a measure of how many of the ‘true’ classifications
are relevant in each class. Recall or sensitivity refers to the
true prediction of each class when it is actually true. F1
score (harmonic mean of precision and recall) is a measure
of the accuracy of each of the tests. The F1 score is more
useful than accuracy when the cost of false positives and
false negatives is variable. Precision, recall and fl score
values for each of the five separate models are presented in
Tables 3, 4 and 5. Each table is organized by its TSX value
category.

The precision for the ‘low’ TSX labels was higher for
the MATB task classification than the triage task (from
Students’ t test resulting in p<0.00001). Precision for
‘moderate’ TSX labels was also higher for the MATB task
than triage task (p <0.01). Precision for ‘high’ TSX labels
was higher for the triage task than MATB task
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(p <0.0003). Recall for the ‘low’ TSX labels was higher
for the triage task compared to MATB (p <0.00005).
Recall for ‘moderate’ TSX labels was higher for MATB
task than triage task (p <0.00002), and recall for ‘high’
TSX labels was also higher for MATB task than triage task
(p <0.22). Interestingly, even though the MATB data were
collected from a different subject pool than the one that the
models were trained on, neither triage nor MATB test did
significantly better over all the labels. Precision and recall
values for the model could stand to be improved, perhaps
through the use of more training data. However, for a
general model such as the one proposed here, establishing
criteria for what the acceptable values are for both preci-
sion and recall scores may prove difficult as these two
values tend to be task-dependent. Recall, in the case of the
two ecologically valid examples that were trained on for
this experiment would be an important factor for ‘high’
TSX label as a result of the false-negative cost being too
high (Fig. 13). If the task shedding event is not detected,
and the human agent is currently overloaded, the machine
agent has no way of knowing that it should interfere and
assist the human agent within the HMT with accomplishing
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Fig. 13 An HMT system
swapping tasks from overloaded
(high TSX) users to
underloaded (low TSX) users

Task swapping
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Task swapping |
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the current goal. This is a moment in which task shedding
will become likely due to the high mental workload of the
human agent within the HMT. Precision, when considered
with the ecologically valid tasks that the model was tested
on, is also important to consider because a high false-
positive rate may lead to user behavior being interrupted
unnecessarily, increasing both the human agent’s frustra-
tion with the system and negative affect. Frequent and
unnecessary interventions by the machine agent might
carry a performance hit for the HMT both by interrupting
human agents in the HMT and the overhead involved in
task switching. Models using this type of data to provide
feedback for an autonomous system within an HMT
environment will need to, therefore, strike a good balance
of precision and recall when it comes to the predicting
‘high’ TSX values.

Good prediction performance for the low TSX label is
also important because, when a user is in low TSX state,
the HMT system can load some tasks from overloaded
users to the ‘low” TSX user (Fig. 13), thereby keeping the
overall productivity rate of the HMT high. However, false
positives, in this case, could be harmful because the system
might load more tasks to somebody who is not at ‘low’
value of TSX. False negatives, however, may not prove to
be as harmful as their counterpart because the system will
then simply ignore an idling user. Though this would cause
a productivity decline within the system, it would not cause
any catastrophic failures. Therefore, precision should be
prioritized over recall when it comes to ‘low’ TSX values.

The ‘moderate’ TSX is the ‘ideal’ state in HMT sys-
tems, and this is the state in which the human user is
productive without being at risk for being overloaded.
False positives for this label mean that no action will be
taken by the system. If the user is actually at a ‘low’ TSX,
then this would not cause any major issue, but if the user is
actually overloaded, or in the ‘high’ TSX category, this
may lead to task shedding by the user and is not desirable.
False negatives in case of ‘moderate’ TSX label depend on
the predicted state. If the user is actually at ‘moderate’ TSX
and the system predicts ‘low’ TSX, the system might
overload the user by assigning more tasks to him. On the

other hand, if the user is at ‘moderate’ TSX and system
predicts ‘high’ TSX, it might unload the user putting him
into idle state. Because of these aspects, precision and
recall values should be considered carefully depending on
both the nature of the task and the tolerance of potential
performance decrements within the HMT environment.
Also of note is that, as hypothesized, the different models
trained on different benchmark tasks performed differently.
And the ensemble model combining all models performed
better than any of the other models. This was expected
because each cognitive benchmark task on which the
models were trained elicits a distinct type of cognitive load,
with a signature neural correlate that is recorded up in the
fNIRS data. Though further analysis is needed, and better
labeled ecologically valid tasks could be used to generate
even more accurate models, this could be helpful for
training models used by autonomous agents within HMTs
designed to accomplish tasks that rely heavily on different
types of cognitive processing by the human agent. For
example, a model trained on the adaptive words task could
be more suitable to capture verbal working memory load
and therefore might perform better on a task in which a
human agent performs a task that requires the use of
working memory and visual-lexical processing, such as
remembering a set of instructions, than a model trained on
the Go/No-Go task, which measures one’s level of
response inhibition.

Conclusion

One of the major challenges today in fNIRS research is the
difficulty of obtaining large datasets to run analysis on. In
this work, we demonstrate that across-task machine
learning is possible on fNIRS data with promising perfor-
mance. This would indicate that researchers would be able
to combine data from multiple experiments to develop
models that generalize well. As mentioned above, we were
able to generalize not only across-tasks but also across-
subject pools. These have important implications for using
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psychophysiological data from fNIRS in real-world appli-
cations and environments.

In a multi-tasking situation similar to MATB, which an
air force pilot faces, any operator performance dips can
cause catastrophic incidents. Therefore, our method would
be useful in such scenarios to prevent user error due to
cognitive overload. Other such scenarios can include air
traffic controller interfaces, or stock—broker interfaces,
where the cost of performance degradation due to cognitive
overload is very high. Also, once the operator TSX state is
detected, it can be used to improve the overall productivity
of the HMT, by loading tasks to users who are in idle state.
In this way, the same method we introduced here can be
used as a productivity tool in collaborative workplaces. For
example, if a group of users is doing some data entry task,
the HMT can monitor users who are overloaded and swap
the tasks to the underloaded users, thereby improving
overall productivity. Therefore, this method can be used in
both critical and noncritical systems to improve system
behavior.

In the above discussion, we focused on multi-user
environments as an application area for this work. How-
ever, this method could be adapted to a single user as well.
For example, a user doing multi-tasking could occasionally
have some parts of their visual cognitive faculties over-
loaded. In this scenario, the system can offload some of the
visual tasks from the user and present tasks that occupy
different cognitive faculties. Such a system could improve
the performance of a single user. This idea could also be
extended to multi-user, multi-tasking environments, where
during task swapping, the system could check for users
who are more suitable to accept the task type based on their
current cognitive faculties being used.

In this article, we have introduced a measure combining
both task load and performance to be able to detect task
shedding events within HMT environments. We have been
able to classify the Task Shedding Index into three levels:
‘low,” ‘moderate’ and ‘high.” We have considered two test
cases which are the triage (Cyber Analyst) task and the
MATB task in our testing. The spatial and temporal nature
of fNIRS enabled us to use a CNN+4LSTM model designed
to capture both the spatial and temporal nature of brain
activity. As stated in previous sections, this method of
classification shows great promise in both the domains of
HCI and human factors, though it also has more direct
practical implications for Human—-Machine Teaming and
multi-tasking environments where various cognitive
resources of a user are occupied at different times.
Specifically, our across-task performance shows promise
for training models on simpler tasks and being able to
generalize to compound tasks. In conclusion, our study
demonstrates that we can obtain a generalizable classifier
that performs well across multiple subject pools as well as
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across multiple tasks, thus enabling adaptive Human-—
Machine Teaming across diverse real-world settings.
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