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Abstract
In Human–Machine Teaming environments, it is important to identify potential performance drops due to cognitive

overload. If identified correctly, they can help improve the performance of the human–machine system by offloading some

tasks to less cognitively overloaded users. This can help prevent user error that can result in critical failures. Also, it can

improve productivity by keeping the human operators at an optimal performance state. This paper explores a new method

for identifying user cognitive load by a three-class classification using brain activity data and by applying a convolutional

neural network and long short-term memory model. The data collected from a set of cognitive benchmark experiments

were used to train the model, which was then tested on two separate datasets consisting of more ecologically valid task

environments. We experimented with various models built with different benchmark tasks to explore which benchmark

tasks were better suited for the prediction of task shedding events in these compound tasks that are more representative of

real-world scenarios. We also show that this method can be extended across-tasks and across-subject pools.

Keywords Human–Machine Teaming � fNIRS � Brain data � Task shedding � Convolutional neural networks �
LSTM � Classification

Introduction

As computing devices become more ubiquitous, the need

for greater human–machine symbiosis becomes an impor-

tant factor. This concept, of human and computer agents

working together to accomplish a goal, or a set of goals, is

referred to as Human–Machine Teaming (HMT). In any

teaming environment, whether it is a team of all human

agents, a team of all machines, or a combination of the two,

it is important that resources within the team are allocated

as efficiently as possible such that the team may achieve its

goal while simultaneously putting the least amount of

strain possible on any of the team members. The finite

resources of an HMT, such as the processing power of a

machine, or the limited cognitive capacity of a human

agent, could be viewed as potential bottlenecks within an

HMT system, where the team’s ability to accomplish a task

may falter. Although the processing power of a machine

may have been the primary factor that stopped HMTs from

achieving optimal performance in the past, processing

power is now an easily obtainable resource. As such, recent

efforts to improve the performance of HMTs have shifted

focus to improving the communication modalities between

humans and machine agents. As human agents have limited

cognitive capacity within a time-sensitive task environ-

ment, ideal task performance is dependent on optimizing

humans’ information processing capabilities, which are

affected by the complex interplay between their perceptual

processing load, mental workload, and emotional state.

Task performance within an HMT is also dependent on the

ability of machine agents to detect and interpret the signs

of potential overload on the part of the human agent, and to
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have the ability to take meaningful action to assuage, or at

the very least reduce, the load placed on the human agent.

For a machine agent within an HMT to properly make

predictions about the current state of the system, the

machine must not only possess knowledge relevant to the

task that needs to be completed, but also the amount and

type of mental workload that is currently being placed on

the human agent(s) within the HMT. The machine must

also be able to discern if this amount of workload is sig-

nificant enough to induce degradation in the human agent’s

or team’s performance that might limit the HMT’s ability

to complete the current task. Mental workload, in this

context, is the brain’s finite amount of processing capacity

to allocate to a given task. As theoretical and experimental

work by Wickens’ Multiple Resource Theory (MRT) [45]

has shown, there are different types of cognitive resources

that the brain can allocate simultaneously, and the overload

of one type of cognitive resource does not necessarily lead

to the overload of another [45]. When a person is required

to perform multiple tasks that require the same type of

mental resource, resource may become overloaded, and as

a result, person’s performance at the given task will

degrade. If the overload is adequately high, the individual

may eschew the task altogether, an event known as ‘task

shedding’ [48]. A common area where this concept

expressed is in the field of piloted aircraft and unmanned

air vehicles (UAVs). In those cases, the autonomous sys-

tem and pilot cooperate to achieve objectives [38]. For this

type of cooperation to work, the machine needs to be able

to sense and intervene when the human’s performance

starts dropping due to increases in task load. [5, 37].

Parasuraman and Hancock have shown that task shedding

can be triggered by high workload and low certainty [29].

Although researchers have previously attempted to model

this task shedding behavior using simple and basic tasks

[26, 27, 30, 33] as well as more complex real-world sce-

narios [6, 23], more accurate predictions about when task

shedding events are likely to occur are needed if these

models are to be implemented in real time.

In this paper, we introduce a novel method by which one

can use information about task performance and taskload

metrics to tabulate a measure that we call the ‘Task

Shedding Index (TSX),’ which is a combination of taskload

and performance. The TSX can be used as an indicator of

the potential of the user for task shedding. Further, we use

this new proposed measure to predict task shedding

instances using across-task, across-subject machine learn-

ing methods. The goal is to introduce an agnostic frame-

work, not tied to any specific task that a particular HMT

would try to complete. To achieve this goal, we created a

model, using psychophysiological data recorded from a

functional near-infrared spectroscopy (fNIRS) device, to

detect when task load on a human participant was high, and

task shedding instances were therefore likely to occur. To

isolate specific types of mental workload (working mem-

ory, visuospatial attention), we trained models on multiple

cognitive benchmark tasks used widely in the fields of

cognitive psychology and cognitive neuroscience and tes-

ted those models on more ecologically valid tasks. We

show that such a system can provide a reliable prediction of

such events such that an autonomous agent with access to

this type of physiological data would be able to predict

when moments of mental overload might lead to perfor-

mance decrements or task shedding events, and as a result

would be able to take over for, or provide assistance to, the

human agent within the HMT.

Background

Human–Machine Teaming and Task Shedding

The importance of finding a way for an autonomous agent

in an HMT to detect when the human agent may be sub-

jected to events of higher cognitive workload, and thus task

shedding events, has been shown in past systems design

research [34]. Past work in the fields of human factors and

cognitive engineering has provided evidence that when a

human agent’s performance is supplemented with a

machine agent’s ability to assist on tasks, the reported

workload of the human agent decreases. This decrease in

perceived workload coincides with an increase in the

human agent’s self-confidence and trust in the HMT as

well as an increase in the overall performance of the HMT

[14]. Despite these advances, there are still many issues

that need to be addressed to ensure HMTs can be optimized

to task performance [8]. With these issues, highlighted by

past research, in mind we use predictive modeling on

multiple cognitive resources to detect when increases in

mental workload are likely to lead to performance

decrements.

Using Psychophysiological Sensors to Measure
Workload

Task shedding detection through brain activity requires

sensors that are robust to noise, portable and noninvasive.

The fNIRS device works well for this application since the

device can be set up quickly and can target specific areas of

the brain that are implicated in cognitive resources that are

prone to becoming overloaded when engaged in cogni-

tively demanding tasks [15, 42]. The fNIRS device works

by using multiple pairs of optodes that are placed on the

scalp and pulse infrared light (690 nm and 830 nm)

through the skull and into the brain. The reflected light

intensity that is received by the detector is dependent on
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the amount of oxygenated and deoxygenated hemoglobin

in the incident area over which the optodes are placed [11].

Since oxygen is consumed during the metabolic processes

involved in brain activity, the concentration of hemoglobin

is correlated with increased brain activity. fNIRS has in the

past been used for classification of workload levels [20].

More specifically, the fNIRS’ ability to measure brain

activity in the frontal cortex of the brain gives it a unique

ability to predict workload levels, as greater activation in

the frontal cortex is associated with higher levels of mental

workload [19, 36].

The ability to measure mental states, and thus workload,

has already been well documented in the human factors

literature [35]. Other work has found great success in being

able to predict mental workload in real-world computer

environments using fNIRS [31, 41]. As advances in both

fNIRS technology and portability increase, fields such as

brain–computer interfacing (BCI) have argued that the

fNIRS’ increased spatial resolution would make fNIRS an

invaluable tool for collecting real-time psychophysiologi-

cal data and building systems that incorporate and adapt to

that data in real time [10]. The portability of the fNIRS

system, combined with its ability to measure workload and

communicate those measurements to a machine agent,

could provide a solution to make strides toward correcting

documented issues in intelligent system designs [24].

Machine Learning Classifiers on fNIRS Data

Researchers have used traditional machine learning clas-

sifiers such as support vector machines [12], artificial

neural networks [7], hidden Markov models [49] as well as

other statistical methods [4, 39] to preprocess and classify

fNIRS data. However, more recent work has demonstrated

the ability to use deep learning algorithms [18] to capture

the characteristics of the fNIRS signal. One category of

deep learning algorithms, convolutional neural networks

(CNNs) [25], is typically used in the image processing

domain because of their ability to capture the spatial

structure of image data. They are well suited for fNIRS

analysis due to the same reasons. Our previous work [3]

showed that the oxygenated and deoxygenated data pro-

vided by fNIRS can be used similar to the RGB channels of

an image when fed into a CNN-based classifier. We also

used a long short-term memory (LSTM) network, to cap-

ture the time-series behavior of the fNIRS data. LSTMs are

a version of recurrent neural networks, which can capture

long- and short-term dependencies in the data [21]. LSTMs

have become popular for machine learning on electroen-

cephalography data [1, 13]. They have also recently been

used in fNIRS analysis [40]. In [3], the above-described

model was used in across-subject classification by dividing

the subject pool into folds. In this paper, we use the same

LSTM model on across-subject, across-task, three-label

classification tasks.

Methods

Experimental Protocol

fNIRS data were collected from 45 participants (14

females, 31 males, mean age = 26, min age = 21, max age

= 36) who were selected from the undergraduate and

graduate student population at a university in the Northeast

United States. The data were collected using a Hitachi

ETG-4000 fNIRS device at a sampling rate of 10 Hz. The

optodes were arranged into an fNIRS cap with a 3 � 11

probe configuration and were placed on the participant’s

forehead area in a symmetrical manner (Fig.1). Using this

configuration, the fNIRS device can capture information

about the oxygenated and deoxygenated hemoglobin levels

in the frontal cortex of the participants. The fNIRS was

calibrated to ensure that all probes were recording proper

readings and adjusted to account for ambient light. After

setting up the fNIRS device on the participant’s head, a

Patriot Polhemus 3D digitizer device was used to measure

the location of each source/detector to account for vari-

ances in head size and shape. All participants gave

informed consent under the restrictions and guidelines of

the University’s Institutional Review Board.

From the set of 45 participants, a subset of these par-

ticipants (n = 25, 7 females, 18 males) completed the

cognitive benchmark tasks described in Sect. 3.2, as well

as the triage cyber analyst task described in Sect. 3.3.1.

Both the cognitive benchmark tasks and the triage task

used a variable interstimulus interval (ISI) between the

offset of a trial and the onset of a new trial, during which a

cross-fixation point in the center of the screen was dis-

played on the screen. The length of the ISI was an expo-

nential distribution (mean = 4 s, min = 2 s, max = 8 s).

The order of tasks was as follows,

1. Consent

2. fNIRS sensor set up

3. Session 1 (cognitive benchmark tasks, a-d order

randomized)

(a) N-back, NASA-TLX

(b) Visual search, NASA-TLX

(c) Posner cueing paradigm, NASA-TLX

(d) Words task, NASA-TLX

(e) Simple reaction time task, NASA-TLX

(f) Reverse Go/No-Go, NASA-TLX

4. 15-min break

5. Session 2
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(a) Triage task training

(b) Triage task

(c) NASA-TLX

The remaining 20 participants performed the Multi-At-

tribute Task Battery (MATB) testbed described in

Sect. 3.3.2. The order of MATB tasks was as follows,

1. Consent

2. fNIRS sensor set up

3. Session 1

(a) 1-min MATB low difficulty, NASA-TLX

(b) 1-min MATB medium difficulty, NASA-TLX

(c) 1-min MATB high difficulty, NASA-TLX

4. 1-min break

5. Session 2

(a) 1-min MATB high difficulty, NASA-TLX

(b) 1-min MATB low difficulty, NASA-TLX

(c) 1-min MATB medium difficulty, NASA-TLX

6. 1-min break

7. Session 3

(a) 1-min MATB medium difficulty, NASA-TLX

(b) 1-min MATB high difficulty, NASA-TLX

(c) 1-min MATB low difficulty, NASA-TLX

Since an adjustment in screen size is correlated with certain

physiological responses [32], all tasks were displayed to

the participants on a 22-inch monitor with a screen reso-

lution of 1280 � 1024 pixels. Participants were seated in a

stationary chair so that the distance between their eyes and

the monitor was 65cm. The participants used the computer

mouse as the only form of response to all tasks (by clicking

buttons or making selections). This was done to minimize

noise in the data due to subject movement during the

experiment. All participants would begin each fNIRS ses-

sion with a 30-s session of controlled rest during which the

participant fixated on a plain black plus symbol in the

center of a white display. Participants would then perform

ten trials of a reaction time task before they began the rest

of the cognitive benchmark tasks. To mitigate the fatigue

effects involved in cognitive testing [43], the benchmark

task order was randomized between subjects.

Stimulus Materials: Training Data

Visual-Lexical Processing, Adaptive Words

This adaptive words task was developed to induce work-

load on participant’s visual-lexical processing resources. In

this task, the words for the numerical values of the digits

one through eight were displayed vertically for a variable

amount of time in the center of the screen. The partici-

pant’s goal was to determine whether the word that was

displayed on the screen corresponded to either an odd or

even numerical value (Fig. 2).

Visual Search Task, Visual Search

The visual search task was designed to cause cognitive load

on people’s visual processing resources and was modeled

after the task design developed by Wang, Cavanagh and

Green [44]. A circular array of nine letters consisting of a

distractor (backward Ns) and a target (normal facing Ns)

was displayed to the participant for a variable amount of

time. The participant’s task was to determine whether or

not the target was displayed within the array (Fig. 3).

Response Inhibition, Go/No-Go

The response inhibition task was the Go/No-Go task, which

involved one target stimuli (a large blue circle) and one

distractor stimuli (a large blue square). The development of

stimulus materials was guided by Huettel, Mack, and

McCarthy [22]. The participant was tasked with responding

to the stimuli if the target was presented, and not

responding to the stimuli when the distractor was presented

(Fig. 4).

Working Memory, N-Back Task

The N-Back task (Fig. 5) was designed to cause cognitive

load on people’s working memory resources by requiring

Fig. 1 The 3 � 11 fNIRS probe

configuration
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participants to hold a stream of characters in their working

memory and responding when a new character that is

presented to them matches one of the characters they are

currently holding. The task development was based on

Harvey et al. [17]. The task presented participants with a

series of letters, a single letter at a time, for a duration of

500ms each. The letters would appear in the center of the

screen with a plain white background. Only the letters B,

D, G, T, V along with their lower-case variants, b, d, g, t, v,

were used. Before each block, participants were given an

‘n’ value of either one, two, three or four. The participant’s

goal was to determine whether the current letter presented

to them matched the letter that was ‘n’ presentations behind

the current letter that was displayed (case insensitive). For

example, in Fig. 5, if an ‘n’ of two had been given to the

participant, then the correct response would be ‘yes.’ If the

participant was given an ‘n’ value of one, however, the

correct response would be ‘no.’

Stimulus Materials: Test Data

Triage Task

The triage analyst task acts as an ecologically valid rep-

resentation of a cyber-security network analyst’s position

and is based on the work of Greenlee et al. [16]. The task

involved the participant viewing what is at first an empty

table in the center of the screen. The table headings were

‘Source IP,’ ‘Source Port,’ ‘Destination IP,’ ‘Destination

Port.’ Participants were informed before the task beginning

that they did not require working knowledge of the ter-

minology involved to complete the task. The table would

then be populated with incoming ‘transmissions’ on the

‘network’ the participant was monitoring. Starting from the

top of the table, new ‘transmissions’ would fill the

table until a maximum of five ‘transmissions’ was on the

screen. After five ‘transmissions’ were shown on the

screen, the bottom transmission would be removed from

the screen to make room for a new incoming transmission

Fig. 2 Adaptive Words Task

Presentation

Fig. 3 Visual search task

presentation
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at the top, bumping the rest of the table down one slot. The

participant was tasked with detecting ‘intrusions’ on the

network. These ‘intrusions’ were defined as either two

different ‘transmissions’ on the table having the same

destination information (both ‘Destination IP’ and ‘Desti-

nation Port’) or two different ‘transmissions’ on the

table having the same source information (both ‘Source IP’

and ‘Source Port’). The participant was only asked to

identify whether the newest (topmost) ‘transmission’ was

or was not an ‘intrusion.’ Figure 6 shows an example of

intrusion. The triage testbed tracked participant response

times as well as their performance (logging correct,

incorrect, or no response events) throughout the task.

Multi-Attribute Task Battery

The Multi-Attribute Task Battery (MATB) condition used

in our stimulus materials was closely based on the version

of the task implemented by Comstock and Arnegard [9].

This implementation of the task used in our experimental

Fig. 4 The Go/No-Go task

presentation

Fig. 5 N-back task presentation

Fig. 6 Source intrusion
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scenario as a task which involved a high level of multi-

tasking was needed in order to produce a situation in which

task shedding would be likely. The difficultly of the task

necessitated the need for high achieving users to not

become overloaded or overly stressed, which forced the

user to prioritize their actions based on the most time-

sensitive or important needs of the task at the time. The

procedure’s final implementation used the air force’s

updated version of the Multi-Attribute Task Battery

(AF_MATB) [28], and a level of difficulty that required a

high amount of multi-tasking and mental effort was chosen

for the recorded experimental trials.

As a result of the selected difficulty level, the task was

nearly impossible to complete perfectly. Piloting the task

revealed that in order to maintain an adequate performance

score participants needed to remain engaged during the

entire duration of the task. Similar to the original MATB,

AF_MATB variation of the task contains six different

windows, all of which provide the information needed for

the participant to complete four different subtasks (see

Fig. 7). The tasks, System Monitoring, Communications,

Resource Management and Tracking, which all require

different inputs from the user in order to perform suc-

cessfully on the task. The ‘tracking’ subtask was disabled

during this experiment to reduce the physical motion of the

participant activating the motor cortex in the brain as well

as reducing motion artifacts from the fNIRS data. The

other two windows, which contain Scheduling and Pump

Status information, are resources that the user can use to

improve performance during the task. The first requirement

in the system monitoring subtask (top-left pane) is to keep

track of the two lights at the top of the window and keep

them at their original status by toggling them on/off using

the buttons below them. The second requirement in the

system monitoring subtask requires the user to be aware of

the four scales and press the corresponding button if any of

the scales deviates from the center by more than one tick

mark. The communication subtask (bottom left pane)

involves the subject listening for verbal requests to change

the frequency of specific radio calls. The verbal requests

include a call-sign, and if the call-sign is not the call-sign

of the subject, the request is to be ignored. The resource

management subtask (bottom center pane) requires the

subject to keep the fuel levels in tanks A and B within 500

units of the initial level of 2500 units each. The pumps

connected to the tanks can be used to pump fuel from the

lower supply tanks to tanks A and B. The pumps can be

turned on/off by clicking on the particular pump. However,

these pumps can malfunction for periods of time during the

experiment. If a pump is malfunctioning, it cannot be

turned on. The AF_MATB maintains of record of partici-

pant performance throughout the whole task, and after the

task is completed a report of each subject’s performance

data on the subtasks within the MATB is exported. In our

pilot studies, we used a set of five pilot subjects to com-

plete the MATB task with varying number of task fre-

quencies (10 configurations). Then, we chose three of the

10 MATB difficulty levels as low/high/medium based on

the average scores obtained by the pilot study participants

for each task configuration. The three configurations were

chosen by dividing the 10 configurations based on average

score obtained by participants and breaking the 10 con-

figurations into three clusters of low/medium/high diffi-

culty levels. Then the three configurations, which have the

Fig. 7 The Multi-Attribute Task

Battery
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lowest standard deviation among the clusters, were chosen

as MATB low/medium/high configurations for the

experiment.

Data Analysis

fNIRS Data

The fNIRS provides 104 channels (52 channels of oxy-

genated hemoglobin and 52 channels of deoxygenated

hemoglobin) of data at 10 Hz. These data were band-pass

filtered with a window of .01/.5Hz to remove cardiac,

respiratory and high-frequency unwanted noise [2]. The

time-series data from fNIRS were divided into 5-s blocks,

and the average value of the fNIRS data was obtained for

each of the 104 data channels for those 5-s blocks.

Label Calculation

In this experiment, we relied on objective performance data

to calculate our labels. The labels were calculated based on

data logged by the software that presented the task itself.

This way, we were able to match the exact times the stimuli

were presented and the duration of the stimuli using the log

files from the task software. The log files for the benchmark

and triage tasks were generated by capturing information

about when an event was triggered via the stimulus soft-

ware, as well as information about when the participant

responded to the event. Every event logged by the software

was tagged with a UNIX timestamp. The participant’s

reaction times were then calculated, in milliseconds, for

each trial included in the logfile. The logfile also indicated

whether or not the participant responded correctly to the

trial. The MATB logfile collected data at 10 Hz. The dat-

apoints collected include the number of accurate and

inaccurate user responses within each time segment and the

difference between the current tank levels from the target

tank level in the resource management task.

Using these performance and taskload metrics (further

discussed in Sect. 4.2.1), we introduce a measure called

‘Task Shedding Index (TSX),’ which is a combination of

taskload and performance. The TSX is used as an indicator

of the potential of the user for task shedding.

Task Shedding Index (TSX)

As described in Sect. 2.1, when users are put in a high-

workload scenario, and the workload of the task is over a

certain threshold, they tend to shed that task or switch to

another task on which they may be able to perform better

[46]. At this point, the performance on the prior task would

degrade, and therefore, be an apt point of intervention on

the part of the machine agent in the HMT [5]. To account

for this, a hybrid workload and performance model is

needed to predict task shedding tendencies. Using the

distance between normalized task load and normalized

performance (detailed next) as our ground truth in this

analysis, the taskload (T) and performance (P) of each

subject are normalized and the Task Shedding Index (TSX)

is defined as the subtraction of normalized P from nor-

malized T (Eq. 1).

Task Shedding Index ðTSXÞ
¼ NormalizeðTÞ � NormalizeðPÞ

ð1Þ

The ranges of the T, P and TSX for our dataset are shown

in Fig. 8.

Task load was obtained by adding together the number

of tasks that were presented to the user during those 5 s. If

certain tasks started or ended during each 5-s chunk of

time, they were apportioned according to the amount of

time they were present during the time frame.

In Fig. 9, Task A would contribute 50% to the current

period’s task load. Task B would contribute 100%, and task

C would contribute 25%. Therefore, the task load would be

calculated according to Eq. (2),

Apportioned TaskLoad ðTÞ ¼ 0:5 þ 1 þ 0:25 ¼ 1:75

ð2Þ

Performance is apportioned similarly as in Eq. (3),

Apportioned Perf. ðPÞ ¼ 0:5 � TaskAPerf

þ 1 � TaskBPerf þ 0:25 � TaskCPerf

ð3Þ

To calculate performance in the benchmark and triage

tasks, the onset, duration and accuracy of user response

were saved to a file during the experiment by the testbed.

Fig. 8 Data ranges for task load, performance and Task Shedding

Index
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Calculating user performance for benchmark and triage

tasks was done using Eq. (4) for each 5 s.

Triageperf:

¼ ðCorrect ResponsesÞ � ðIncorrect ResponsesÞ
TaskLoadðTÞ

ð4Þ

Since MATB is a multi-attribute task, the performance

calculation for MATB was done by taking the compound

performance of all the subtasks. The MATB contains the

following subtasks,

• Time point

• Number of accurate light toggle responses (L)

• Number of accurate gauge responses (G)

• Number of accurate communications responses (C)

• Number of inaccurate light toggle responses (l)

• Number of inaccurate gauge responses (g)

• Number of inaccurate communications responses(c)

• Difference of Tank A value from desired target value

(AD)

• Difference of Tank B value from desired target value

(BD)

Equation (5) was used to calculate the user performance for

the MATB task.

MATBperf :

¼ ðLþ Gþ CÞ � ðlþ gþ cÞ þ FuelTankAperf : þ FuelTankBperf :

TaskLoadðTÞ ;

ð5Þ

where Fuel Tank A performance is calculated by using the

following equation,

0 ABSðDADÞ[ 100

1 ABSðDADÞ� 100

�

The same method was used to calculate Fuel Tank B

performance.

Discretization of Ground Truth Labels

The TSX labels follow a positively skewed distribution.

We are interested in breaking down the distribution into

three levels of TSX, namely ‘low,’ ‘moderate’ and ‘high.’

This categorization has been chosen since it allows us to

look at the ‘moderate’ level of TSX as the desired level, the

low level of TSX as when the user is ‘idling’ and the ‘high’

level of TSX as when the user is overloaded. This enables

different strategies for dealing with each of these cases.

The TSX labels were discretized using Equal Frequency

Discretization over all the datasets. The Equal Frequency

Discretization algorithm sorts all values of continuous

variable in ascending order and divides the range into three

intervals so that every interval contains the same number of

sorted values. The resulting ranges from Equal Frequency

Discretization for the TSX labels were:

• Low TSX: Less than 0.12

• Moderate TSX: 0.12 to 0.323

• High TSX: 0.323 upward

The resulting discretized label distribution for each of the

datasets is given in Table 1.

Fig. 9 Apportioning tasks to the time segments

Table 1 Ground truth label

distribution for each of the

datasets

Low TSX labels No./

Percentage (%)

Moderate TSX labels No./

Percentage(%)

High TSX labels No./

Percentage (%)

Adaptive

Words

130/36% 115/32% 120/33%

Visual

Search

298/45% 205/31% 157/24%

Go/No-Go 240/37% 253/39% 153/24%

nback 210/31% 277/42% 180/27%

Triage 2050/34% 1802/30% 2106/35%

MATB 402/23% 678/40% 614/36%
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Classification Model

We trained a classification model that we developed in our

earlier work to classify fNIRS data using a combination of

a convolutional neural network (CNN) and long short-term

memory (LSTM) as shown in Fig. 10. Since CNNs are well

suited for capturing the spatial nature of fNIRS data, and

LSTMs are good at capturing the temporal behavior of

fNIRS data, this model provided performance improve-

ment over traditional machine learning methods [3]. We

evaluated the accuracy of the classifier for different LSTM

time step sizes and found that the optimal time step size for

LSTM was 3 time steps (15 s).

Model Evaluation

Data from the benchmark tasks, detailed in Sect. 3.2, were

used to train four separate models. Each model was trained

using the respective benchmark task and was tested against

both the triage task and MATB task. It is notable that the

four models were trained on benchmark data of 25 subjects

and tested on triage data for the same subjects during a

separate triage session, whereas the MATB test data were

from a different subject pool of 20 subjects (e.g., model

transfer to new, previously unseen subjects with the MATB

classifications). Each benchmark task involves a different

cognitive resource, with each resource capable of being

independently overloaded. We hypothesize that the dif-

ferent models trained on these different benchmark tasks

will perform differently based on the type of task shedding

that it is predicting. For instance, a model trained on the n-

back task would perform better for a task that involved the

utilization of short-term memory, such as remembering a

string of digits for a variable period, whereas the visual

search might perform better on a task that involved finding

a salient stimulus in a cluttered visual environment. In

addition to the models trained on individual benchmark

tasks, a combined ensemble model was also trained on all

benchmark tasks using a voting classifier, which takes the

predicted probabilities for each class from each model and

averages them. The predicted labels are calculated as

follows:

Adaptive words class probabilities

¼ ½plow1; pmedium1; phigh1�
ð6Þ

Visual search class probabilities

¼ ½plow2; pmedium2; phigh2�
ð7Þ

Go no go class probabilities

¼ ½plow3; pmedium3; phigh3�
ð8Þ

Nback class probabilities

¼ ½plow4; pmedium4; phigh4�
ð9Þ

Ensemble class probabilities

¼ ½AvgðplowÞ; AvgðpmediumÞ; AvgðphighÞ�
ð10Þ

Ensemble voting prediction

¼ argmax½Ensemble class probabilities�
ð11Þ

We tested the models on both a sequential task (triage)

and a concurrent task (MATB) [47]. The report on our

model performance in these different tasks is detailed in

Sect. 5.

Fig. 10 CNN?LSTM

classification model
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Results

We were interested in the overall classification perfor-

mance of our models as well as the performance on each of

the label types because each of the ‘low,’ ‘moderate’ and

‘high’ TSX labels can be used to keep the system in an

optimally productive state (Fig. 13). Overall, the five

trained models had better accuracy on the MATB task than

the triage task based on a Students’ t test (p\0:007), where

accuracy is defined by,

Accuracy

¼ ðCorrectly Classified Instances=Total InstancesÞ

Accuracy results from the tests are described in Table 2.

As shown in Table 2, the overall accuracy of the models

was around 60%, with the best overall accuracy results

obtained by the ensemble model, with 61% accuracy for

triage data and 63% accuracy for MATB data. This is

promising considering that random guessing would result

in 33% accuracy on a balanced 3-class problem. Next, we

look at the confusion matrices and the precision, recall and

f1 scores of the models to better understand model

performance in the context of task shedding events. Below

we present the confusion matrices from the testing done on

triage data and MATB data using the ensemble model

(Figs. 11, 12). In these figures, ‘low’ TSX is represented by

1, ‘moderate’ TSX by 2 and ‘high’ TSX by 3.

The results indicated in the confusion matrices (Figs. 11,

12) show that the ensemble model performed well when

identifying instances of ‘low’ TSX for the triage task.

However, the model had difficulty in correctly identifying

the ‘moderate’ and ‘high’ TSX instances within the triage

task. On the MATB test, the ensemble model performed

evenly well when predicting TSX values. This difference in

model performance could be due to the sequential nature of

the triage task, which has the user performing one single

task multiple times in a row, constantly engaging one

subset of cognitive resources, not having to switch to any

other type of cognitive processing. As a result of this

sequential presentation of the stimulus, the same brain

region may have been continuously activated throughout

the completion of the entire task and the physiological

response may have been so gradual that the model was

unable to predict when sharp changes in TSX occurred.

This may account for differences seen between ‘moderate’

and ‘high’ TSX labels being not as easy to detect as the

difference between ‘low’ and ‘moderate’ labels. On the

contrary, the MATB, as a concurrent task, activates mul-

tiple brain regions due to task presentation happening all at

once, with the user having to switch between using mul-

tiple cognitive resources to complete each task within the

battery. Though it is a possibility that the differences in

accuracy between the model are due to the nature of the

tasks, more ecologically valid datasets would be required to
Fig. 11 Confusion matrix for ensemble model tested on triage task.

‘Low’ TSX is represented by 1, ‘moderate’ TSX by 2 and ‘high’ TSX

by 3

Fig. 12 Confusion matrix for ensemble model tested on MATB task.

‘Low’ TSX is represented by 1, ‘moderate’ TSX by 2 and ‘high’ TSX

by 3

Table 2 Accuracy results of the models on the test sets

Triage accuracy (%) MATB accuracy (%)

Adaptive words 60 63

Visual search 60 60

Go/No-Go 59 60

nback 61 61

Ensemble 61 63
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test out whether or not the presentation of the task,

sequential or concurrent, shows a similar effect on the

model accuracy.

As mentioned above, we were also interested in the per-

label performance of the models. Precision and recall

values were calculated for each of the TSX labels. Preci-

sion is a measure of how many of the ‘true’ classifications

are relevant in each class. Recall or sensitivity refers to the

true prediction of each class when it is actually true. F1

score (harmonic mean of precision and recall) is a measure

of the accuracy of each of the tests. The F1 score is more

useful than accuracy when the cost of false positives and

false negatives is variable. Precision, recall and f1 score

values for each of the five separate models are presented in

Tables 3, 4 and 5. Each table is organized by its TSX value

category.

The precision for the ‘low’ TSX labels was higher for

the MATB task classification than the triage task (from

Students’ t test resulting in p\0:00001). Precision for

‘moderate’ TSX labels was also higher for the MATB task

than triage task (p\0:01). Precision for ‘high’ TSX labels

was higher for the triage task than MATB task

(p\0:0003). Recall for the ‘low’ TSX labels was higher

for the triage task compared to MATB (p\0:00005).

Recall for ‘moderate’ TSX labels was higher for MATB

task than triage task (p\0:00002), and recall for ‘high’

TSX labels was also higher for MATB task than triage task

(p\0:22). Interestingly, even though the MATB data were

collected from a different subject pool than the one that the

models were trained on, neither triage nor MATB test did

significantly better over all the labels. Precision and recall

values for the model could stand to be improved, perhaps

through the use of more training data. However, for a

general model such as the one proposed here, establishing

criteria for what the acceptable values are for both preci-

sion and recall scores may prove difficult as these two

values tend to be task-dependent. Recall, in the case of the

two ecologically valid examples that were trained on for

this experiment would be an important factor for ‘high’

TSX label as a result of the false-negative cost being too

high (Fig. 13). If the task shedding event is not detected,

and the human agent is currently overloaded, the machine

agent has no way of knowing that it should interfere and

assist the human agent within the HMT with accomplishing

Table 3 Precision, recall and f1

score of the ‘low’ label for

models on the test sets

Model Triage MATB

Precision Recall f1 score Precision Recall f1 score

Adaptive words 0.56 0.94 0.70 0.66 0.66 0.66

Visual search 0.6 0.85 0.70 0.71 0.59 0.64

Go/No-Go 0.60 0.89 0.71 0.69 0.55 0.61

nback 0.58 0.90 0.70 0.68 0.62 0.65

Ensemble 0.60 0.90 0.72 0.69 0.66 0.67

Table 4 Precision, recall and f1

score of the ‘Medium’ label for

models on the test sets

Model Triage MATB

Precision Recall f1 score Precision Recall f1 score

Adaptive words 0.66 0.53 0.59 0.70 0.68 0.69

Visual search 0.62 0.42 0.50 0.66 0.60 0.63

Go/No-Go 0.71 0.44 0.54 0.72 0.61 0.66

nback 0.64 0.43 0.51 0.70 0.59 0.64

Ensemble 0.68 0.45 0.54 0.73 0.60 0.66

Table 5 Precision, recall and f1

score of the ‘high’ label for

models on the test sets

Model Triage MATB

Precision Recall f1 score Precision Recall f1 score

Adaptive words 0.60 0.66 0.63 0.50 0.74 0.6

Visual search 0.58 0.60 0.59 0.43 0.61 0.5

Go/No-Go 0.50 0.67 0.57 0.37 0.74 0.49

nback 0.41 0.58 0.48 0.41 0.68 0.51

Ensemble 0.58 0.61 0.59 0.45 0.56 0.49
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the current goal. This is a moment in which task shedding

will become likely due to the high mental workload of the

human agent within the HMT. Precision, when considered

with the ecologically valid tasks that the model was tested

on, is also important to consider because a high false-

positive rate may lead to user behavior being interrupted

unnecessarily, increasing both the human agent’s frustra-

tion with the system and negative affect. Frequent and

unnecessary interventions by the machine agent might

carry a performance hit for the HMT both by interrupting

human agents in the HMT and the overhead involved in

task switching. Models using this type of data to provide

feedback for an autonomous system within an HMT

environment will need to, therefore, strike a good balance

of precision and recall when it comes to the predicting

‘high’ TSX values.

Good prediction performance for the low TSX label is

also important because, when a user is in low TSX state,

the HMT system can load some tasks from overloaded

users to the ‘low’ TSX user (Fig. 13), thereby keeping the

overall productivity rate of the HMT high. However, false

positives, in this case, could be harmful because the system

might load more tasks to somebody who is not at ‘low’

value of TSX. False negatives, however, may not prove to

be as harmful as their counterpart because the system will

then simply ignore an idling user. Though this would cause

a productivity decline within the system, it would not cause

any catastrophic failures. Therefore, precision should be

prioritized over recall when it comes to ‘low’ TSX values.

The ‘moderate’ TSX is the ‘ideal’ state in HMT sys-

tems, and this is the state in which the human user is

productive without being at risk for being overloaded.

False positives for this label mean that no action will be

taken by the system. If the user is actually at a ‘low’ TSX,

then this would not cause any major issue, but if the user is

actually overloaded, or in the ‘high’ TSX category, this

may lead to task shedding by the user and is not desirable.

False negatives in case of ‘moderate’ TSX label depend on

the predicted state. If the user is actually at ‘moderate’ TSX

and the system predicts ‘low’ TSX, the system might

overload the user by assigning more tasks to him. On the

other hand, if the user is at ‘moderate’ TSX and system

predicts ‘high’ TSX, it might unload the user putting him

into idle state. Because of these aspects, precision and

recall values should be considered carefully depending on

both the nature of the task and the tolerance of potential

performance decrements within the HMT environment.

Also of note is that, as hypothesized, the different models

trained on different benchmark tasks performed differently.

And the ensemble model combining all models performed

better than any of the other models. This was expected

because each cognitive benchmark task on which the

models were trained elicits a distinct type of cognitive load,

with a signature neural correlate that is recorded up in the

fNIRS data. Though further analysis is needed, and better

labeled ecologically valid tasks could be used to generate

even more accurate models, this could be helpful for

training models used by autonomous agents within HMTs

designed to accomplish tasks that rely heavily on different

types of cognitive processing by the human agent. For

example, a model trained on the adaptive words task could

be more suitable to capture verbal working memory load

and therefore might perform better on a task in which a

human agent performs a task that requires the use of

working memory and visual-lexical processing, such as

remembering a set of instructions, than a model trained on

the Go/No-Go task, which measures one’s level of

response inhibition.

Conclusion

One of the major challenges today in fNIRS research is the

difficulty of obtaining large datasets to run analysis on. In

this work, we demonstrate that across-task machine

learning is possible on fNIRS data with promising perfor-

mance. This would indicate that researchers would be able

to combine data from multiple experiments to develop

models that generalize well. As mentioned above, we were

able to generalize not only across-tasks but also across-

subject pools. These have important implications for using

Fig. 13 An HMT system

swapping tasks from overloaded

(high TSX) users to

underloaded (low TSX) users

Augmented Human Research            (2020) 5:15 Page 13 of 15    15 

123



psychophysiological data from fNIRS in real-world appli-

cations and environments.

In a multi-tasking situation similar to MATB, which an

air force pilot faces, any operator performance dips can

cause catastrophic incidents. Therefore, our method would

be useful in such scenarios to prevent user error due to

cognitive overload. Other such scenarios can include air

traffic controller interfaces, or stock–broker interfaces,

where the cost of performance degradation due to cognitive

overload is very high. Also, once the operator TSX state is

detected, it can be used to improve the overall productivity

of the HMT, by loading tasks to users who are in idle state.

In this way, the same method we introduced here can be

used as a productivity tool in collaborative workplaces. For

example, if a group of users is doing some data entry task,

the HMT can monitor users who are overloaded and swap

the tasks to the underloaded users, thereby improving

overall productivity. Therefore, this method can be used in

both critical and noncritical systems to improve system

behavior.

In the above discussion, we focused on multi-user

environments as an application area for this work. How-

ever, this method could be adapted to a single user as well.

For example, a user doing multi-tasking could occasionally

have some parts of their visual cognitive faculties over-

loaded. In this scenario, the system can offload some of the

visual tasks from the user and present tasks that occupy

different cognitive faculties. Such a system could improve

the performance of a single user. This idea could also be

extended to multi-user, multi-tasking environments, where

during task swapping, the system could check for users

who are more suitable to accept the task type based on their

current cognitive faculties being used.

In this article, we have introduced a measure combining

both task load and performance to be able to detect task

shedding events within HMT environments. We have been

able to classify the Task Shedding Index into three levels:

‘low,’ ‘moderate’ and ‘high.’ We have considered two test

cases which are the triage (Cyber Analyst) task and the

MATB task in our testing. The spatial and temporal nature

of fNIRS enabled us to use a CNN?LSTM model designed

to capture both the spatial and temporal nature of brain

activity. As stated in previous sections, this method of

classification shows great promise in both the domains of

HCI and human factors, though it also has more direct

practical implications for Human–Machine Teaming and

multi-tasking environments where various cognitive

resources of a user are occupied at different times.

Specifically, our across-task performance shows promise

for training models on simpler tasks and being able to

generalize to compound tasks. In conclusion, our study

demonstrates that we can obtain a generalizable classifier

that performs well across multiple subject pools as well as

across multiple tasks, thus enabling adaptive Human–

Machine Teaming across diverse real-world settings.
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