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Abstract—There has been significant amount of research work
on human activity classification relying either on Inertial Mea-
surement Unit (IMU) data or data from static cameras providing
a third-person view. There has been relatively less work using
wearable cameras, providing first-person or egocentric view, and
even fewer approaches combining egocentric video with IMU
data. Using only IMU data limits the variety and complexity
of the activities that can be detected. For instance, the sitting
activity can be detected by IMU data, but it cannot be determined
whether the subject has sat on a chair or a sofa, or where the
subject is. To perform fine-grained activity classification, and
to distinguish between activities that cannot be differentiated
by only IMU data, we present an autonomous and robust
method using data from both wearable cameras and IMUs. In
contrast to convolutional neural network-based approaches, we
propose to employ capsule networks to obtain features from
egocentric video data. Moreover, Convolutional Long Short Term
Memory framework is employed both on egocentric videos and
IMU data to capture the temporal aspect of actions. We also
propose a genetic algorithm-based approach to autonomously and
systematically set various network parameters, rather than using
manual settings. Experiments have been conducted to perform
9- and 26-label activity classification, and the proposed method,
using autonomously set network parameters, has provided very
promising results, achieving overall accuracies of 86.6% and
77.2%, respectively. The proposed approach, combining both
modalities, also provides increased accuracy compared to using
only egovision data and only IMU data.

Index Terms—Activity classification, genetic algorithm, capsule
network, egocentric, egovision, IMU data

I. INTRODUCTION

Many approaches have been proposed to perform hu-
man activity classification from different sensors. Most
of the existing methods rely either on Inertial Measure-
ment Unit (IMU) data [1][2][3][4][5][6][7][8] or data from
static cameras in the environment providing a third-person
view [9][10][11][12][13].

Mannini and Sabatini [1] [2] use IMU data to classify
activities of sitting, standing, lying down, walking, running,
climbing stairs and cycling. Bayat et al. [7] also employ
IMU data to classify activities, such as dancing, going up
and down the stairs, slow and fast walking and running, and
compare different classifiers. Ordéfiez and Roggen [8] use
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accelerometer and gyroscope data, and employ convolutional
and Long Short Term Memory (LSTM) recurrent units for
activity recognition. Even though the systems using only IMU
data are computationally efficient, they are limited in terms
of the variety and complexity of the activities that they can
detect. They also cannot provide enough context. For example,
IMU data can help to detect a sitting activity, but cannot
help determine the type of furniture the subject sits on or
the environment the subject is in. Having data from a camera
sensor fills in these blanks by providing abundant information
about surroundings and the objects with which the subject is
interacting.

On the other hand, most of the camera-based activity
detection works use static cameras watching the subjects, and
thus providing a third-person view. Karpathy et al. [9] merge
different convolutional neural networks (CNN) for large-scale
video classification, and present results on the UCF-101 Action
Recognition Dataset [14]. Donahue et al. [10] use long-term
recurrent network together with CNNs, and also evaluate
on UCF-101 dataset. Instead of using 2D CNN and LSTM,
different approaches have been presented using 3D CNNs for
learning spatiotemporal features [11]. Montes et al. [12] use
a 3D CNN together with LSTM to achieve temporal activity
detection in untrimmed videos. Instead of using LSTM, Buch
et al. [13] use 3D CNN together with GRUs (Gated Recurrent
Unit) on videos from a third-person view. Heilbron et al. [15]
present ActivityNet, which is a large-scale video benchmark
for human activity understanding, and propose a method based
on 3D CNNs. In this video set, the majority of videos are not
egocentric.

Wearable sensors are becoming more and more ubiquitous
in our lives. Potential applications of activity recognition from
egocentric videos include life logging, video diaries and video
summarization, health care, elderly care, personal assistance to
users or caregivers, navigation and assistance for the visually
impaired, robotics, human-human and human-robot interaction
and law enforcement. Several surveys [16][17] have been
published describing various techniques for activity classifi-
cation, and heart rate and sleep sensing by wearable sensors.
Compared to static cameras, there have been relatively less
work as well as much fewer datasets focusing on wearable
cameras, egovision and combination of wearable camera data
with other sensor modalities.

Existing works focusing on egocentric videos differ in
terms of the types of objects and activities that they detect.
There have been methods focusing only on hand detection
from egocentric videos [18]. Other approaches employing
egocentric video data either classify the activities observed
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by the camera [19][20] or the activities of the person wearing
the camera [21][22][23][24][25][26]. Ryoo and Matthies [20]
present a method to recognize what activities others are
performing to the observer or the person or robot wearing the
camera. Pirsiavash and Ramanan [23] presented a dataset of
egocentric videos covering Activities of Daily Living (ADL),
and reported 40.6% accuracy over 18 classes. McCandless and
Grauman [24] presented a method for activity recognition by
learning the spatio-temporal partitions. They used the same
ADL dataset, and reported 38.7% accuracy over 18 classes.
Lu and Grauman [27] presented a method for story-driven
video summarization and tested it on the ADL dataset [23].
Moghimi et al. [26] presented a method for activity detection
using RGB-D egocentric videos. Nguyen et al. [28] provided
a survey and review of the egocentric vision systems for the
recognition of activities of daily living. It was concluded that
the performance of current systems is far from satisfactory.

The aforementioned approaches, which focus on egocentric
videos, are based on only a single sensor modality, namely the
camera. There have been even fewer approaches that combine
egocentric video data with IMU data [29][30][31][32][33].
Zhan et al. [30] use a smartphone attached on top of safety
goggles to collect video and 3-axis acceleration data. They
use optical flow vectors from camera data and classify 12
activities, including walking, going upstairs/downstairs, sit-
ting, standing, drinking and writing. Windau and Itti [31] also
use both IMU and camera data from a prototype eyeglass
setup. They extract GIST features from camera data to perform
indoor/outdoor classification. They report 81.5% accuracy for
classifying 20 activities including lying down, walking, jog-
ging, biking, running, playing cello, playing piano, computer
work, folding laundry and driving car. However, both of
these methods still focus on activities that can be classified
by only accelerometer data. In other words, they do not
perform detection of objects in the scene, and do not focus
on activity types involving interactions with different types
of objects, which cannot be classified by only accelerometer
data. In earlier work, Spriggs et al. [32] used the CMU Multi-
Modal Activity (CMU-MMAC) database [34], and presented a
method for temporal segmentation and activity classification,
focusing on recipe preparation, by extracting the GIST features
from the egocentric video data. They reported 57.8% as the
highest performance.

Different from the eyeglass setup, Conti et al. [29] employed
the various sensors on a smartwatch to perform context clas-
sification over only 5 classes (morning preparation, walking
outdoors, public transportation, in the car and in the office).

It should be emphasized that many activities can be very
close to each other in the “activity space”, in other words, can
be very similar, such as using a spoon versus using a fork. In
this case, adding another sensor modality, namely the camera,
and detecting objects become even more important to identify
activities involving interactions with various-sized objects. The
problem gets much harder for fine-grained classification of
activities. As mentioned above, most of the existing work does
not focus on fine-grained activity classification. On the other
hand, the relatively small number of existing works on fine-
grained classification have reported lower accuracies.

In this paper, we present an autonomous and robust method
to perform fine-grained activity classification and distinguish
between activities, which cannot be differentiated by only
IMU data, by using data from multi-modal wearable sensors
including a camera. In order to analyze and extract features
from egocentric video data, we propose a new model ar-
chitecture, and employ a capsule network [35], in contrast
to many CNN-based approaches. In addition, Convolutional
LSTM framework is employed both on egocentric videos and
IMU data to capture the temporal aspect of actions, which
span a time window. In other words, we use multiple capsule
networks for consecutive images.

The choice of parameters, and the design of the network
architecture are important factors affecting the performance of
deep learning methods. Many researchers proposed different
CNN architectures [36], [37], [38], [39], [40], [41], [42] to
achieve higher accuracy. However, building the neural network
structure still heavily depends on manual trial and error, and
empirical results. Considering that there are many design and
parameter choices, it is not possible to cover every possibility,
and it is very hard to find the optimal structure. Moreover, the
hyper-parameters in the training phase also play an important
role on how well the model will perform. Likewise, these
parameters are also tuned manually in an empirical way most
of the time. Thus, rather than using trial and error for various
parameter combinations, we also propose a genetic algorithm
(GA)-based approach to autonomously and systematically set
the various parameters of our network architecture.

In our preliminary work [43], we explored using egocen-
tric video, IMU data and recurrent Capsule Networks for
activity classification. The work proposed in this paper is
different and improved compared to our previous work [43]
in multiple ways including the following: (i) for the work
in [43], we used manually set values for all the network
parameters. In contrast, in this paper, we propose a GA-
based approach to autonomously and systematically set various
network parameters, rather than using manual and empirical
settings; (ii) the experiments in [43] were performed for only
6-label classification. In this paper, we provide a much more
comprehensive evaluation by performing classification for 9
as well as 26 activities; (iii) in this paper, we provide a more
detailed description of the proposed method and a comparison
between the performances obtained with the manually preset
network parameters, and the parameters determined by our
proposed GA-based approach.

Experiments have been performed on the CMU-MMAC
dataset to perform 9- and 26-label classification, and the
proposed method, using autonomously set network parame-
ters, has provided very promising results, achieving overall
accuracies of 86.6% and 77.2%, respectively. We also used
each sensor modality alone, and obtained their individual
accuracies, showing that the proposed approach, combining
both modalities, provides increased accuracy compared to
using only egovision data and only IMU data.

The rest of this paper is organized as follows: The proposed
approach is described in detail in Section II. Experimental
results are presented in Section III, and the paper is concluded
in Section IV.
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II. PROPOSED METHOD

We present a new model architecture to process first-person,
also known as egocentric, images and IMU data. The proposed
architecture can be seen in Fig. 1. It is composed of our
proposed recurrent CapsNet (for processing images), an LSTM
network (for processing IMU data), and fully connected layers.
In addition, we also propose and apply a GA-based approach
to autonomously and simultaneously optimize multiple pa-
rameters of our network architecture. These parameters are
shown in parentheses with red color in Fig. 1. For instance,
the parameters for the fully connected layers and the primary
capsules are examples of the parameters autonomously set by
our proposed approach. More details about these parameters
will be provided in Sec. II-A.

Sabour et al. [35] introduced the Capsule Networks (Cap-
sNets) to explore spatial relationships between features, and
reported state-of-the-art performance on the MNIST database.
CapsNets [35] were used for image classification on individual
images, whereas our goal is to perform fine-grained activity
classification from video data. Thus, in this paper, instead of
using a single image with the original CapsNet, we propose a
Recurrent CapsNet (RecCapsNet), which takes a sequence of
images as input. We implement a 2D Convolutional LSTM
(convLSTM) [44] layer to extract features and capture the
temporal aspect. For robustness, we use multiple digit/class
layers instead of using only a single digit layer as was done
in [35]. In order to prevent gradient vanishing, we remove the
squash function for digit layers and implement ReLu activation
function instead.

As seen in Fig. 1, 16 consecutive images are passed through
a 2D convolutional layer separately. The size of each input
image is 36x36. Then, the output for each image is sent to
multiple primary capsules, the number of which is determined
by our GA. When 16 consecutive images are formed, 50%
overlap is used throughout the video. The number of convolu-
tional units for each primary capsule is also determined by the
GA. The output from the primary capsule layer is then sent
through two digit/class layers, whose parameters are set by the
GA. We then apply a Convolutional LSTM layer, followed by
a fully connected (FC) layer, for the analysis of the egocentric
video data.

For the decoder part, we apply 16 sub-decoders to each
image frame. Each sub-decoder has the same structure with the
decoder of the original CapsNet except the sigmoid output is
1296 (36 x 36). In other words, the decoders are implemented
to generate the same size as the input images. Given the ground
truth label, the decoder regenerates a 16 frame image sequence
which has the same size as the image input.

As for the IMU data, similar to the images, data from 16
consecutive time frames are used. Each of the 16 IMU data
vectors has 36 components obtained by concatenating data
from the four IMU sensors. Each IMU sensor contributes
nine entries from accelerometer, gyroscope and magnetometer
measurements. The time stamps are provided for camera and
IMU data in the CMU-MMAC dataset. To align the camera
and IMU data, for a given camera image, the IMU time stamp
that is closest to the camera time stamp is found. The IMU

data is fed into an LSTM model to extract feature vectors,
which are then sent to the FC layer(s). The outputs of the
fully connected layer for video data and the fully connected
layer for the IMU data are concatenated, and the concatenated
features are then fed into another FC layer for classification.
The number of neurons for this FC layer is also set by the GA,
and it is denoted by Para_FC_merge and shown in red in
Fig. 1. This FC layer is followed by a softmax classifier. The
output of the model is the confidence scores for each class
proposal.

Next, in Sec. II-A, we will describe the details of the
algorithm that we propose to refine the various parameters
of this architecture by using a Genetic Algorithm.
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Fig. 1: Details of the proposed architecture.

A. Autonomously and Simultaneously Refining the Network
Parameters

The overall structure of the proposed method to refine the
network parameters is shown in Fig. 2. In this approach,
a GA is used to make a decision from a set of discrete
choices. The decisions by the GA include the choice of the
activation function and the optimizer; whether or not to use
batch normalization, dropout and max-pooling; the number
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TABLE I: Parameters Autonomously Chosen by the GA

optimizers
activation functions
batch normalization

{*adam”, “rmsprop”, “adagrad”, “adadelta”}
{“relu”, “leaky relu”, “sigmoid”, “tanh”}

{True, False}

dropout {True, False}
max pooling {True, False}
kernel size {3, 6,9}
kernel stride {1, 2,3}

number of conv filters
number of dense neurons
number of Istm units

{32, 64, 128 .. 512}
{32, 64, 128, 256}
{16, 32, 64 ... 256}

dimension of capsules {2, 4, 8, 16}
number of primary channels | {16, 32, 64}
number of conv layers {3,6}
number of dense layers {1,3}
number of LSTM layers {1,3}

of convolutional layers and dense layers; the kernel size and
stride, the number of LSTM units, etc. The complete set of
parameters together with the discrete set of values that they

can take are shown in Table I.
Trai;ing Output Ran;ing -
i models Selection

Fig. 2: The structure of the proposed Genetic Algorithm
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The parameter set of the network i for the GA has the
following form:

P

i

LST Mg
)
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C?ZVIU FCIl]\/IU
, PTrim; )

GA __ conv
pi =[prm$o™, prm

LSTMivu F
i » Primy;

FCherge o
prmg " prmy?]

i€{1,2,...,nn}
where PC' and F'C' denote primary capsule and fully con-
nected layer, respectively, n,, is the number of network models
in the population and

prm

(D

prm$°™ =[1/0 (conv. lyr exists or not), no. of filters,
kernel size, stride, activation func., )
1/0 (for batch norm.)],
i€{1,2,..,nn},
prmE© =[capsule dim., num of chan.,
kernel size, stride] 3)
ie{l,2,...,ny,},
prmiLSTM“”g =[1/0 (LSTM lyr exists or not), no. of units,
activation func.]
ie€{1,2,...,nm},
“)
prmfc”"g =[1/0 (dense lyr exists or not), no. of neurons,

activation func., 1/0(for dropout)]
ie{l,2,...,nn},
)

prmiLS TMiamu —11/0 (LSTM lyr exists or not), no. of units,
activation func.]
i€ {1,2,...,nm},

(6)
FC p0 .
prm, MU =[1/0 (dense lyr exists or not), no. of neurons,
activation func., 1/0(for dropout)]
i €{1,2,...,nm},
)
FCmerge .
prm, 9 =[1/0(dense lyr exists or not), no. of neurons,
activation func., 1/0(for dropout)]
i €{1,2, i nm},
3
o _ .
prm; =[type of optimizer] ©

i€{1,2,...,nm}.

1) Initial Population: The first generation of the net-
works, N!, is generated randomly such that N! =
{N1, Na,..., Ny, }, where n,, is the number of models. This
is done by choosing the values of parameters, in (2) through
(9), randomly, from the possible choices. The value of n,,, was
set to be 10 in our experiments.

2) Evaluation: Each generated network model N; (¢ €
{1,...,n,,}) is evaluated by the fitness function f(N;), which
is a measure of the accuracy of each model. Models with
better performance will return higher values. Thus, £ =
{E1, Es, ..., Ey, }, will hold the fitness scores E; = f(N;),
where i € {1,2,....,n,}.

3) Selection: In the selection part, {-many top-ranked mod-
els are selected from the sorted(E), and r-many models are
selected randomly from the rest of the network models. Then,
d-many models are dropped in order to prevent over-fitting
and getting stuck at a local optimum. The remaining selected
models are the parent models (P), which will be used to create
new models for the next generation.

4) Crossover and Mutation: Crossover is applied to gen-
erate n,,-many child network models from the parents. As
opposed to always choosing two parents randomly from the
parent pool, we associate a counter C'p with each parent P,
and initialize it to zero. This counter is incremented by one
each time a parent is used for crossover. First, two parents are
selected randomly from the ¢ + r — d many parents. A new
‘child’ network is generated from the parents via crossover,
and the counters of the parents are incremented by one. Then,
two parents, whose counter is still zero, are selected randomly
from the parent pool. Another network is generated from them
via crossover, and the counters of the parents are incremented.
If there is only one network model left with counter equal to
zero, and the number of children is still less than n,,, then
this model is chosen as one of the parents, and the other
parent is chosen randomly from the rest of the models who
have a counter value of one. If there are no more parents
left with counter equal to zero, and the number of children
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is still less than n,,, then two parents, whose counter is one,
are picked randomly, and their counter is incremented to two
after crossover. This process is repeated until the number of
children models reaches n,,.

The crossover between parent models a and b is performed,
as illustrated in Fig. 3, by using a single-point crossover. As
seen from equations (1) through (9), there are a total of 33
parameters in each parent vector. An index number ind is
picked randomly between 1 and 33. Parameters to the left of
ind from the parent a vector and to the right of ¢nd from the
parent b vector are selected to compose the child vector. In
other words, parameters 1 through ind, and ind 4 1 through
33 are selected from parents a and b, respectively, to form the
child vector.

After all the n,,-many child networks are obtained via
crossover, the mutation is performed. From each vector, k-
many indices are chosen randomly to perform mutation. The
values of the parameters corresponding to the chosen indices
are randomly changed to one of the possible choices shown in
Table I. For instance, if the random number corresponds to the
dimension of the capsules, then its value is chosen randomly
from {2,4,8,16}. The value of k& was chosen to be 3 in our
experiments.

Paraq

Paraz

v

AV

Paraghilg

Fig. 3: Crossover process for the GA

Then, the entire process is repeated by using this new
population. The pseudo code for GA-based parameter setting
is provided in Algorithm 1. After the parameters are set
autonomously by the GA-based approach, the network model
is generated as described in the pseudo code in Algorithm 2.

Algorithm 1: The Genetic Algorithm

Randomly initialize n,,, models for population N,

while i iteration do

Train and evaluate N{, N3, ..., N} by fitness
function f(N7}) and obtain scores F.

Select ¢ top scored networks
Niop = Ni(argmaz(E))

Randomly choose r networks N,.,q from the rest
of population N*

Merge Niop and Npqpnq and then drop d networks
(N drop)

Form Nparent = (Ntop U Nrand) - Ndrop

Choose parents from Npqren: for crossover and
generate n,, new networks and add them to N*+!

Perform mutation on k-many elements of vectors
in N+,

end

Algorithm 2: Network model generation from the GA-
set parameters

Input: Genetic representative vector £; vector

prototype pS4 = [prmuyideo, PrMIMU s PrMmerge)
shown in eq.(1);

PrimMyideo = LSTM Fo
conv PC im im
[prm§o™ prm; ©, prm; g prm; 7] )
LSTM FC FC
prmIMU — [p/rml I]VIU7p,,,.mZ_ IMU7meZ I]VIU]

FCmerge
Primmerge = [prmi ]

Input: video input shape S,,; IMU input shape S;pv;
Output: output model M
inputyideo < Placeholder(shape = S,)
for i = 0 to length(inputyige,) — 1 do
of fset < 0
M; + Sequential (inputyideo|i])
for idx = 0 to length(prmyigeo) do
Build layer L;q, from
Llof fset : of fset + len(prmyigeo|ide])]
M; <& Lig,
of fset+ = length(prmy;deo|idz])
end
output® = M;(input®,,_ )

video video

end
inputsyu + Placeholder(shape = Syu)
Miyu < Sequential(inputspu)
for idx = 0 to len(prmyy) do
Build layer L,y fset from

Llof fset : of fset + length(prm;pulide])]
Minu <= Ligs
of fset+ = length(prmyyulidz])
end
output;yu = Minu (inputiymu)
obtain concatenate layer L .oncqt from output,;ge, and
outputryru
Merge < Sequential(Lconcat)
for idx = 0 to length(prmumerqe) do
Build layer L;q4, from

Liof fset : of fset + len(prmmergelidz])]
Mmerge <_t Lid:c
of fset+ = len(prmmergelidz))
end
OUtPUtmerge = Mmerge;’(Lconcat)
return Model([inputyideo, inputiay], outputmerge)

III. EXPERIMENTAL RESULTS
A. Experimental Setup

We have used the CMU-MMAC dataset [34] for the exper-
iments. This dataset contains data from multi-modal sensors
monitoring human subjects preparing food. A kitchen was built
and 25 subjects were recorded cooking five different recipes,
namely brownies, pizza, sandwich, salad, and scrambled eggs.
The sensor modalities used for data collection include three
high-resolution static cameras, two low-resolution static cam-
eras, one wearable camera, five microphones, and IMUs. In
our experiments, we used the egocentric (egovision) camera
data (from the wearable camera) and the wired IMU data.
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We resized the image frames from the camera to 36 x 36
pixels, and processed 16 consecutive frames each time with
50% overlapping. We down-sampled the IMU data to make
the measuring frequency the same with the egocentric camera
(30 Hz). Then, we synchronized/aligned the IMU data with
camera data.

We performed two sets of experiments with different num-
ber of classes. More specifically, we performed 9-class la-
beling and 26-class labeling by using 9 and 26 different
activity classes, respectively. The activities used for the 9-label
classification are:

Ag= {‘fridge(open or close)’, ‘taking/beating eggs’, ‘pouring
into big bowl’, ‘pouring into cup’, ‘stirring in a bowl’, ‘taking
bowl’, ‘taking baking pan’, ‘taking measuring cup’, ‘twisting
cap (on or off)’}.

Example images for these nine classes can be seen in Fig. 9.

The activities used for the 26-label classification are:

Agg = {‘closing fridge’, ‘cracking egg’, ‘opening brownie
bag’, ‘opening fridge’, ‘pouring big bowl into a pan’, ‘pouring
brownie bag into a bowl’, ‘pouring oil into a cup’, ‘pouring
water into a bowl’, ‘pouring water into a cup’, ‘putting pan into
oven’, ‘putting cooking spray/pam into cupboard’, ‘spraying
cooking oil’, ‘stirring in a bowl’, ‘switching on’, ‘taking
baking pan’, ‘taking bowl’, ‘taking brownie box’, ‘taking
eggs’, ‘taking fork’, ‘taking big cup’, ‘taking small cup’,
‘taking cooking spray’, ‘twisting cap off’, ‘twisting cap on’,
‘walking to the counter’, ‘walking to the fridge’}.

As can be seen, especially for the 26-class case, the activ-
ities involved are very close in the ‘activity space’, and this
fine-grain classification is a very challenging problem.

A total of 10 videos from subjects 07, 08, 09, 12 and
13 (2 videos per subject) have been used for training and
testing. Videos from each subject were randomly divided so
that 70%, 20%, 10% of the samples were allocated for training,
validation and testing, respectively.

We also compared our results with two other
works [32][45], which also use the same CMU-MMAC
dataset. All the results are presented below in Section III-B.

B. Results and Discussion

As mentioned above, we performed 9-class and 26-class la-
beling in our experiments. In each scenario, we first performed
classification with manually preset network parameters, and
then with the parameters determined autonomously by our
GA-based approach described above. Preset parameters were
obtained by choosing the parameter configuration that resulted
in the best performance after multiple trials. For both 9-class
and 26-class labeling, the preset parameters (corresponding to
equations (1) through (9)) are:

[1,256,9,1,0,0,8,32,9,2,1,256,0,1,128,0,0,1,128,0, 1,
128,0,0,1,32,0,0,0,128,0,0,0]
(10

The parameters determined autonomously by our proposed
GA-based approach are:

[1,32,6,3,0,1,16,32,3,1,0,32,0,0,128,1,0,0,64, 1,1,

64,0,0,0,256,1,0,0,32,0,0,0]

1D

and
[1,64,9,3,0,1,8,64,6,2,0,256,1,0,64,1,0,0,64,1, 1,

256,0,0,0,128,1,0,0,64,0,0,0]
(12)

for 9-class and 26-class classification, respectively. For in-
stance, in both cases, the GA-based approach results in less
number of filters for the convolutional layers (32 and 64
instead of 256), and less number of neurons for the fully
connected merge layer. The overall accuracies from these
experiments are summarized in Table II, wherein the accuracy
is the ratio of all correctly classified instances to the total
number of instances. As can be seen, when we use our
proposed GA-based approach to autonomously set the various
parameters of the network, this provides higher accuracy for
both 9-class and 26-class labeling. Thus, the remainder of the
results are presented for when the parameters are set with our
GA-based approach.

TABLE II: Overall accuracies for the 9- and 26-class labeling with
and without using the proposed GA-based parameter setting

9-class 26-class
Preset GA-based Preset GA-based
parameters ~ parameters | parameters —parameters
Accuracy 84.2% 86.6% 75.7% 77.2%
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Fig. 5: The precision values for each of the 9 classes.

The recall and precision values for each class, for the 9-
class case, are shown in Figures 4 and 5, respectively. For the
26-class case, the recall and precision values for each class are
shown in Figures 6 and 7, respectively. The confusion matrices
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recall

Fig. 6: The recall values for each of the 26 classes.

precision

Fig. 7: The precision values for each of the 26 classes.

for the 9-class and 26-class activity classification are shown
in Figures 8(a) and 8(b), respectively. As can be seen from
the precision-recall graphs and the confusion matrices, when
subjects interact with larger objects, and subject movements
are faster, higher accuracy is achieved compared to the slower
movements and interacting with smaller objects. For instance,
it is harder to detect ‘twisting cap on’ and ‘twisting cap off’
actions, since the cap is always occluded by hand in the camera
view. As another example, actions such as ‘cracking egg’ are
also harder to classify, since the egg is much smaller than the
bowl.

In addition, as expected, higher overall precision and recall
rates are achieved for 9-class labeling, since activities are much
closer to each other and harder to differentiate for the 26-
class labeling case. In Fig. 10, we show example images for
the activities that are confused with each other in the 26-class
labeling case (based on the confusion matrix in Fig. 8(b)).
These images illustrate once more the difficulty of performing
very fine-grained activity classification. The first row shows
taking a small cup (on the left) vs. big cup (on the right).
The second row shows walking to the fridge (on the left)
vs. closing the fridge (on the right), and finally the third
row shows pouring into pan (on the left) vs. putting the
pan into the oven (on the right). As can be seen, these are
very similar looking activities, and the proposed approach still
provides very promising results for the 26-class labeling. More
discussion and comparison will be provided below.

After setting the various network parameters by our GA-

based approach, we then performed a comparison of our
proposed Rec-CapsNets method with using VGG16 features.
For this comparison, instead of employing the proposed Rec-
CapsNet, we extracted image features from 16 consecutive
image frames by using the convolutional layers of the CNN-
based VGG16 [46] without the top layers. We also used
CapsNet on individual frames. We used the same dataset
splitting, described above, for all compared methods. The
results are summarized in Table IIT for 9-label classification.
As can be seen, using our proposed RecCapsNet provides a
higher accuracy than using the VGG16 features. Moreover,
to show the improvement provided by using multiple sensor
modalities, we also obtained results by using each sensor
modality by itself, namely by using only IMU data and
only camera data. As can be seen in Table III, the proposed
approach provides 29.07%, 20.29% and 19.16% increase in
accuracy compared to using only IMU data, only egocentric
camera data with VGG16 features and only egocentric camera
data with CapsNet features, respectively.

The above comparison was performed for 26-label classi-
fication as well, and the results are summarized in Table IV.
Similar to the 9-class case, using our proposed RecCapsNet
together with LSTM on IMU data provides a higher accuracy
than using the VGG16 features. In addition, the proposed ap-
proach provides 28%, 19.5% and 25.2% increase in accuracy
compared to using only IMU data, only egocentric camera
data with VGG16 features and only egocentric camera data
with CapsNet features, respectively. For Tables III and IV, the
parameters used for each approach are as follows:

LSTM (for IMU data): LSTM (128) — LSTM(64) —
FC(128) — FC(64)
VGG16: parameters from [46]
CapsNet: parameters from [35]

For the proposed method (in Tables III and IV), we used
the parameters in equations (11) and (12), respectively, which
were autonomously set by our GA-based approach.

Since this is fine-grained classification, using multiple

modalities provides a significant increase in performance com-
pared to single-modality results.

TABLE III: Accuracy rates from different modalities and
approaches for 9-label classification

Sensor Modality | Method [ Accuracy
IMU only LSTM 57.57%
Camera only VGG16 66.35%
CapsNet 67.48%

Camera and TMU VGGI16 & LSTM 82.97%
RecCapsNet & LSTM (Proposed) 86.64%

We also compared our results with two other works
[32][45], which also use the same CMU-MMAC dataset. Soran
et al. [45] does not use IMU data, and either employ egocentric
camera data or combine egocentric camera data with static
camera data. From only the egocentric camera data, Soran et
al. [45] report an accuracy of 37.92% for 28 classes. With
our approach, when we exclude the IMU data, we obtain
an accuracy of 67.48% and 52% for 9-class and 26-class
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Fig. 8: Confusion matrices showing the correct versus predicted classes together with the number of instances of each activity for (a) 9-class

and (b) 26-class activity classification.

labeling, respectively. Thus, the proposed approach provides
much higher performance.

Spriggs et al. [32], on the other hand, report an accuracy of
57.8% over 29 classes when using IMU data and egocentric
camera data together. Our accuracy over 26 classes listed
in 8(b) is 77.2%. In order to make the comparison more
commensurate, we performed an additional experiment. More
specifically, we have trained and tested our proposed method
with the same 29 classes used in [32]. The accuracy we
obtained is 83.03% for the 29-class labeling. These results
are summarized in Table V.

Overall, our proposed method provides a significant im-
provement without relying on the static cameras watching
the targets, which could also be important to alleviate the
privacy concerns. In addition, using the proposed GA-based
approach not only provides a way to systematically set the
network parameters, but also improves the performance further
compared to using the manually set parameters.

IV. CONCLUSION

We have presented a robust and autonomous method to
perform fine-grain activity classification by leveraging data

TABLE IV: Accuracy rates from different modalities and
approaches for 26-label classification

from multiple sensor modalities, more specifically egocentric
video and IMU sensor data from wearable devices. In contrast
to many CNN-based approaches, we have proposed to use
a capsule network to obtain features from egocentric video
data. Instead of using a single CapsNet, multiple CapsNets are
employed for consecutive images, and then a convolutional
LSTM is used to build a recurrent CapsNet. The LSTM
framework is employed both on IMU data and egocentric
camera data to capture the temporal aspect of actions, which
span a time window. Moreover, we proposed a GA-based
approach to autonomously and systematically set the various
parameters of our network architecture. It has been shown
that using the proposed GA-based approach increases the
accuracy compared to using the manually set parameters.
Results have been presented for 9-label, 26-1abel and 29-label
classification. The proposed method has provided promising
results, achieving an overall accuracy of 86.6% 77.2%, and
83.03% for 9-label, 26-label and 29-label classification, re-
spectively. This approach can be readily extended to classify
more activity types. As future work, we will incorporate a
generative adversarial network-based approach to increase the
range of parameters that can be chosen autonomously.

TABLE V: Comparison of different approaches

Sensor Modality | Method [ Accuracy Method [ Sensor Modality [ No. of classes | Accuracy
IMU only LSTM 492% Soran et al. [45] €go. cam. 28 37.92%
VGGI16 57.7% Ours €go. cam 26 52%
Camera only CapsNet 52% Ours ego. cam & IMU 26 77.2%
Camera and IMU VGG16 & LSTM 74.6% Spriggs et al. [32] | ego. cam & IMU 29 57.8%
RecCapsNet & LSTM (Proposed) 77.2% Ours ego. cam & IMU 29 83.03%
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(©)

Fig. 9: Example images of the 9 activity classes from the CMU-
MMAC dataset. Rows: (1) using fridge, (2) taking eggs, (3) pouring
into big bowl, (4) pouring into a measuring cup, (5) stirring in a big
bowl, (6) taking bowl, (7) taking baking pan, (8) taking measuring
cup, (9) twisting cap (on or off). Columns (a), (b) and (c) show
images from the beginning, middle and end of each activity.
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