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Abstract

We use analytic estimates and numerical simulations to explore the stochastic approach to vac-

uum decay. According to this approach, the time derivative of a scalar field, which is in a local

vacuum state, develops a large fluctuation and the field “flies over” a potential barrier to another

vacuum. The probability distribution for the initial fluctuation is found quantum mechanically,

while the subsequent nonlinear evolution is determined by classical dynamics. We find in a variety

of cases that the rate of such flyover transitions has the same parametric form as that of tunneling

transitions calculated using the instanton method, differing only by a numerical factor O(1) in

the exponent. An important exception is an ”upward” transition from a de Sitter vacuum to a

higher-energy de Sitter vacuum state. The rate of flyover transitions in this case is parametrically

different and can be many orders of magnitude higher than tunneling. This result is in conflict with

the conventional picture of quantum de Sitter space as a thermal state. Our numerical simulations

indicate that the dynamics of bubble nucleation in flyover transitions is rather different from the

standard picture. The difference is especially strong for thin-wall bubbles in flat space, where the

transition region oscillates between true and false vacuum until a true vacuum shell is formed which

expands both inwards and outwards, and for upward de Sitter transitions, where the inflating new

vacuum region is contained inside of a black hole.
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I. INTRODUCTION

The stochastic approach to vacuum decay is based on a heuristic picture, first suggested

by Linde et al [1, 2] and further developed in Refs. [3–6]. According to this picture, the

field φ, which is initially in the false vacuum state, develops a large quantum fluctuation

which then takes it over the barrier to the true vacuum. The probability distribution for

the initial fluctuations is found quantum mechanically, with the field φ treated as a free

quantum field in the false vacuum, but the subsequent nonlinear evolution of the fluctuation

is determined using the classical field equations. This approach was applied to several

examples and reproduced by order of magnitude the exponent in the tunneling rate obtained

by the standard Coleman’s instanton method [7]. Braden et al [4] used the stochastic

approach to study vacuum decay numerically in (1 + 1) dimensions and found the decay

rate in a quantitative agreement with the standard calculation. This raises the question

of whether this approach describes a different channel of vacuum decay or just gives an

approximate method of calculating the decay rate.

This question is particularly interesting in the multiverse context, where quantum transi-

tions between different vacua can be significantly affected by gravity. An elegant instanton

formalism to describe vacuum decay in the presence of gravity was developed by Coleman

and De Luccia (CdL) [8]. According to this formalism, the decay rate of a metastable de

Sitter (dS) vacuum is given by1

κCdL ∼ e−I−Sp . (1)

Here, I < 0 is the instanton action, Sp = π/H2
p is the dS entropy and Hp is the expansion rate

of the parent (decaying) vacuum2. Lee and Weinberg [9] have pointed out that this formula

should apply not only to downward but also to upward transitions, where the daughter

vacuum has a higher energy density than the parent vacuum. Analytic continuation of the

instanton to the Lorentzian regime indicates that the initial bubble size in this case is greater

than the parent vacuum horizon H−1
p .

CdL instantons may not exist when the potential barrier between the two vacua is very

flat. The tunneling in such cases can be described by the Hawking-Moss instanton, which

is an Euclideanized dS space with the field at the top of the barrier. The corresponding

1 Here and below we disregard prefactors in the expressions for the tunneling rate.
2 Throughout this paper we will take Mp = 1.
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transition rate is [10]

κHM ∼ eSb−Sp , (2)

where Sb is the entropy of the unstable dS vacuum at the top of the barrier. This rate can

also be derived [2] using the quantum diffusion formalism of eternal inflation. Our focus in

this paper will be on relatively steep potentials, such that the classical dynamics dominates

and quantum diffusion can be neglected.

For upward and downward transitions between two dS vacua, the instanton solution is

the same and the transition rates are related by

κ↑
κ↓

= e−∆S, (3)

where ∆S is the entropy difference between the lower and higher dS vacua. This relation can

be interpreted as an expression of detailed balance between dS transitions in the multiverse.

It fits very well with the widely accepted picture of quantum dS space as a thermal state

[11]. It should be noted, however, that while Coleman’s flat space calculation was solidly

based on first principles, the CdL formula (1) was proposed in [8] essentially by analogy

with the flat space case, so its validity is open to question.

In this paper we shall use the stochastic approach to estimate vacuum decay rate in

various settings, both with and without gravity. We shall adopt the version of this approach

introduced by Brown and Dahlen in Ref. [3]. Instead of an initial fluctuation of the field φ,

they considered a fluctuation of the field velocity φ̇ with φ remaining at its parent vacuum

value. We find this preferable, since representing the fluctuations by a free quantum field

is better justified in this case, but we have verified that using initial field fluctuation with

φ̇ = 0 would yield similar results. If the fluctuation is large enough and occurs in a large

enough region, the field will ”fly over” the barrier and form an expanding bubble of the

daughter vacuum. We shall refer to such vacuum transitions as flyover transitions.

In the next section we estimate the rate of flyover transitions in flat space, considering

the limits of thin-wall and thick-wall bubbles. In both cases we find agreement with the

instanton approach, up to O(1) factors in the exponent. We also performed numerical

simulations of flyover transitions. They suggest that bubble formation and early evolution

in these transitions can be rather different from the standard picture.

Flyover decay of dS vacua is discussed in Section III. For the downward transition rate,

once again we find agreement with the instanton formalism. For upward transitions, however,
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FIG. 1: Potential with a true vacuum Vd and a false vacuum Vp.

the flyover rate is parametrically different and can be many orders of magnitude higher than

suggested by the instanton calculation. In contrast to the instanton approach, the bubble

size in this case can be much smaller than the parent horizon. The inflating false vacuum

bubble is then contained inside of a black hole.

Our conclusions are summarized and discussed in Section IV. Some technical details are

given in the Appendices.

II. FLAT SPACETIME

We first consider flyover vacuum decay in flat spacetime, ignoring the effects of gravity.

In this case upward transitions are forbidden by energy conservation, so we only consider

downward transitions.

A. Analytic estimates

Consider a scalar field φ with a double well potential of the form illustrated in Fig. 1.

Initially φ is in the parent vacuum, φp = 0. Suppose that at some time t0 the field φ

developed a velocity fluctuation with a spherically symmetric Gaussian profile,

φ̇(t0, r) = φ̇0e
− r2

2l2 , (4)

with φ(t0, r) = φp. In order for the field to fly over the barrier, we need φ̇2 >∼ 2Vb, where

Vb = Vm−Vp is the height of the barrier, Vm is the potential at the top of the barrier and Vp
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is the potential in the parent vacuum. In order for this condition to be satisfied for r <∼ l,

we need φ̇2
0
>∼ 2eVb.

For φ near φp the potential has the form V (φ) ≈ m2φ2/2, where m2 = V ′′(φp) is the mass

parameter of the field in the parent vacuum. For a generic potential we expect Vb ∼ m2∆φ2,

where ∆φ is the width of the barrier. The bubble wall thickness δ is determined by the

balance between the gradient and potential energies; it can be estimated by minimizing

[(∆φ/δ)2 + Vb]δ. This gives δ ∼ ∆φ/
√
Vb ∼ 1/m. The wall tension is then σ ∼ Vbδ ∼ Vb/m.

The force of tension acting per unit area of the bubble wall is σ/R, and the force due

to the difference of vacuum energy densities is Vp − Vd ≡ ε, where R is the bubble radius

and Vp and Vd are the energy densities of the parent and daughter vacua, respectively. For

a bubble to expand, its radius should exceed 2σ/ε ≡ R0.3 A thin-wall bubble with R0 � δ

corresponds to Vb � ε. The opposite limit, where Vb � ε and R0 � δ will be referred to as

a thick-wall bubble.

For a free scalar field the fluctuations are Gaussian and the probability of a velocity

fluctuation of magnitude φ̇0 on scale l is [5]

P ∼ exp

(
− φ̇2

0

2〈φ̇2
l 〉

)
, (5)

where φ̇l is the field velocity operator smoothed with a Gaussian window of radius l and the

angular brackets indicate a vacuum expectation value. Note that this is true due to the fact

that the smoothing process preserves the Gaussian nature of the smeared fluctuations. This

expectation value is calculated in Appendix A, with the result

〈φ̇2
l 〉 ≈

1

8π2l4
(6)

for ml� 1, and

〈φ̇2
l 〉 ≈

m

16π3/2l3
(7)

for ml � 1. In our case φ can be accurately approximated as a free field only for φ� ∆φ,

but we shall assume that the above estimates are also correct by order of magnitude for

φ ∼ ∆φ.

3 The initial bubble radius given by analytic continuation of the Coleman’s instanton is 3σ/ε, but the

smallest bubble that can expand has radius 2σ/ε.
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In the thin-wall case, the minimal length scale of a fluctuation that can result in an

expanding bubble is l ∼ σ/ε. Then ml ∼ Vb/ε� 1 and we obtain the following estimate for

the transition rate:

κ ∼ exp

(
−16eπ3/2Vbl

3

m

)
. (8)

Using Vb/m ∼ σ and l ∼ σ/ε, this can be rewritten as

κ ∼ exp

(
−16eπ3/2σ

4

ε3

)
. (9)

In the following subsection we will show a numerical example in this thin-wall limit, where

this flyover transition will happen if we take l ∼ 4σ/ε. Apart from the numerical coefficient

in the exponent, this agrees with Coleman’s result

κColeman ∼ exp

(
−27π2

2

σ4

ε3

)
. (10)

In the thick-wall case, the potential in the vicinity of the barrier can be approximated as

V (φ) ≈ 1

2
m2φ2 − γφ3 (11)

and the tunneling action is [12, 13]

S ≈ 24
m2

γ2
. (12)

The height of the barrier in this case is Vb = m6/54γ2 and the minimal fluctuation size is

l ∼ δ ∼ 1/m. More accurately, numerical simulations described in the following subsection

indicate that l ∼ 3/m. Substituting this in the exponent of Eq. (8) gives

lnκ ∼ 102m
2

γ2
. (13)

This has the same dependence on the parameters as in (12), but the numerical coefficient is

several times larger.

The difference in the numerical coefficient is not surprising if we note that (i) we estimated

the length scale l only by order of magnitude and that (ii) we used a free field estimate for the

rms velocity fluctuation. Furthermore, we assumed a specific form of the initial fluctuation

(with velocity fluctuating and the field value remaining fixed), which is not necessarily the

optimal fluctuation resulting in a bubble.

In the above analysis we assumed that the fluctuation keeps its coherence during the

transition and obeys the classical field equation.4 The fluctuation is localized in a region of

4 See also Ref. [6] for a recent discussion of this issue.
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size ∼ l and is composed of the field modes of wavelength ∼ l and momentum k ∼ 1/l. These

modes will disperse on a time scale τ ∼ l/v ∼ ml2, where v ∼ k/m is the characteristic

velocity. For the fluctuation to remain coherent it is necessary that τ >∼ ∆t, where ∆t ∼

∆φ/φ̇ ∼ 1/m is the flyover time.5 This requires that ml >∼ 1, which is satisfied with a

great margin for a thin-wall bubble and is marginally satisfied for a thick-wall bubble. The

fluctuation could also disintegrate due to the fact that its constituent modes would oscillate

out of phase. But the oscillation frequency is ∼ m and once again the dispersion time is

τ ∼ 1/m.

We note also that bubble nucleation in flat spacetime should conserve energy. On the

other hand, the velocity fluctuation (4) has a positive energy E = (2π)3/2φ̇2
0l

3. This energy

should be compensated by a negative energy fluctuation of the vacuum. The mechanism of

this energy compensation and its effect on bubble formation require further analysis.

A similar approach can be applied to bubble nucleation at a finite temperature T . It is

shown in the Appendix that the rms field velocity fluctuation in this case can be represented

as a sum of vacuum and thermal contributions,

〈φ̇2
l 〉 = 〈φ̇2

l 〉v + 〈φ̇2
l 〉T , (14)

where the vacuum contribution is the same as that at T = 0. At T � m the thermal

contribution is exponentially suppressed and the nucleation rate is nearly the same as in

vacuum. On the other hand, at T � m, 1/l thermal fluctuations dominate and we find

〈φ̇2
l 〉T ≈

T

8π3/2l3
. (15)

The nucleation rate is then

κ ∼ exp

(
−8eπ3/2Vbl

3

T

)
. (16)

Note that E ∼ Vbl
3 is the energy needed to create a bubble of size l at the top of the barrier,

so the right-hand side of (16) can be interpreted as the Boltzmann suppression factor. Once

again, the exponent in (16) is parametrically the same as given by the instanton method

[14].

We note finally that the exponents in our estimates of flyover decay rates are consistently

greater than those in the tunneling rates calculated by the instanton method, suggesting

5 We are grateful to Ken Olum for suggesting this estimate.
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that flyover is a subdominant decay channel. This conclusion, however, should be taken

with caution, since the numerical coefficients in the flyover exponents are not expected to

be accurate, for the reasons given above.

B. Numerical simulations

In this section, we will numerically investigate the possibility of obtaining an expanding

region of true vacuum by the ”flyover” process we discussed earlier. In order to do this we

will consider a scalar field with a potential of the form

V (φ) =
1

2
m2φ2 − γφ3 + λφ4, (17)

where we will vary the parameters in such a way that we will always enforce the presence of

two non-degenerate vacua separated by a potential barrier. We will not be concerned with

the value of the cosmological constant in each vacuum since in this case we will consider

this process in flat space.

As we mentioned earlier we will consider the situation where the initial fluctuation is of

the form

φ̇(t0, r) = φ̇0e
− r2

2l2 , (18)

where l describes the typical scale of the initial fluctuation and φ̇0 denotes the maximum

fluctuation amplitude of this initial state. Assuming spherical symmetry we can evolve this

initial state by solving the equation

φ̈− φ′′ − 2

r
φ′ +

∂V (φ)

∂φ
= 0 . (19)

where we impose the boundary condition at the center of the fluctuation to be such that

φ′(r = 0) = 0 (20)

and we take the outer boundary of the simulation box to be fixed at the false vacuum value

of the field.

Following Ref. [12] we can always rescale the field and the coordinates by the following

redefinitions, φ̃ = (2γ/m2)φ, x̃µ = (m/
√

2)xµ to obtain a potential that depends only on

the dimensionless quantity, ι = 1− 2λm2/γ2, namely,

Ṽ (φ̃) = φ̃2 − φ̃3 +
1

4
(1− ι)φ̃4, (21)
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FIG. 2: Plot of the potential in Eq. (21) with ι = 0.01.

where Ṽ = (8γ2/m6)V . In the following we will investigate two scenarios with different

values of ι.

1. Thin-wall case

Taking the limit of ι → 0 the two minima of the potential become degenerate. This

corresponds to the thin-wall limit of the usual instanton calculation. The top of the potential

is in this case Ṽb ≈ 1/4, the potential difference in dimensionless units is given by ε̃ ≈ 4ι

and the interpolating wall has a tension6 σ̃ ≈ 2
√

2/3.

As we described in the previous section, we are interested in studying a fluctuation with

a central amplitude given ˙̃φ0 ≈
(

2eṼb

)1/2

≈
√
e/2 and whose scale is of the order of

l̃ ≈ Cσ̃/ε̃ ≈ C
√

2/(6ι), where C is a numerical coefficient of the order one that we will find

from our simulations.

We show in Fig. 3 an example of the evolution of this kind of initial configuration with

ι = 0.01 (the potential is shown in Fig. 2) and l̃ = 4σ̃/ε̃. We can see in the figure that the

central region of the fluctuation quickly evolves over the barrier. However, this region is too

small to create an expanding bubble. This leads to an oscillating pattern between the false

and the true vacuum near the center of the fluctuation.

6 This tension can be easily calculated using the kink solution interpolating between the two degenerate

vacua obtained by setting ι = 0, namely φ̃K(x̃) = tanh(x̃/
√

2). The tension in this case can be found to

be σ̃ ≈
∫ (

1
2 φ̃
′2 + Ṽ (φ̃)

)
dx̃ ≈ 2

√
2/3.
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FIG. 3: Evolution of the scalar field under the potential with ι = 0.01 (φ̃d ≈ 2). The initial

fluctuation size is l̃ = 4σ̃/ε̃ ≈ 90. A shell is formed at r̃ ≈ 90, with the outer boundary propagating

outwards and the inner inwards. Both boundaries propagate at a speed close to that of light.

Further away from the center, the true vacuum is reached later on in the simulation

when the interior has already bounced back to the false vacuum. We found that, when the

initial size of the fluctuation is large enough, a shell of radius ∼ l̃ will form that interpolates

between oscillating interior and the parent vacuum outside. The subsequent evolution of this

shell is such that its inner boundary propagates inwards and the outer boundary outwards.

Both boundaries propagate at a speed close to that of light. For ι = 0.01 the smallest l̃ that

is able to produce such a shell was found to be l̃ ≈ 4σ̃/ε̃.

The field in the expanding shell oscillates around the true vacuum, while in the central

region inside of the inner boundary of the shell, it oscillates between the true and the false

vacuum.

2. Thick-wall case

We now study the other end of the spectrum of the possible values of the parameters

where the instanton calculation would lead to the formation of a thick bubble. In our

parametrization this is achieved by taking the limit of ι→ 1.

Taking the form of the potential with ι = 0.96 (see Fig. 4) we have found that with

˙̃φ0 =
√

2eṼb, the smallest fluctuation size that is able to produce a bubble is l̃ ≈ 2.2. This

10
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FIG. 4: Potential with ι = 0.96.

FIG. 5: Evolution of the scalar field under the potential with ι = 0.96 (φ̃d ≈ 74). The initial

fluctuation size is l̃ = 2.2.

gives ml ≈ 3, which leads to our estimate in Eq. (13).

We see in Fig. 5 how, in this case, the initial fluctuation brings a large enough region of

space over the barrier, so the resulting bubble of true vacuum is able to expand similarly to

what happens in the usual instanton decay.

Since the time it takes for the field at the center to reach the true vacuum is of the order

∆φ/φ̇0 ∼ 1/m which in this case is ∼ l, almost the whole fluctuation region gets to the true

vacuum simultaneously. As we can see from Fig. 5, the shell structure in the thin-wall case

completely disappears, and the field inside the bubble oscillates around the true vacuum.
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As a final remark, let us note that rescaling things back we can get a family of solutions

with the same kind of behavior as the one given in any of the scenarios presented here but

written in terms of the original physical parameters, m, γ and λ.

III. INFLATING UNIVERSE

We now turn to flyover transitions in an inflating universe. The potential we consider

still has the form shown in Fig. (1). We further assume the height of the barrier to be small

compared to the vacuum energy in the parent vacuum, Vb � Vp. This ensures that the

gravitational back-reaction of the velocity fluctuation is insignificant. Also, in the absence

of fine-tuning we expect the mass of the field in the parent vacuum to satisfy m � Hp.

Both parent and daughter vacua are de Sitter, so transitions can occur both upwards and

downwards.

A. Downward transitions

We first consider downward transitions in the case of a small bubble, when the bubble

size is small compared to the parent horizon H−1
p . For a thick-wall bubble this follows from

the condition m� Hp, while for a thin-wall bubble this requires l0 � H−1
p , where l0 ∼ σ/ε

is the flat space bubble size. The minimal velocity necessary to take the field over the barrier

is φ̇2
0 ∼ 2CVb, where the factor C > 1 accounts for the Hubble friction. The flyover time

is ∆t ∼ ∆φ/φ̇0 ∼ 1/m � 1/Hp. Since it is small compared to the Hubble time, we expect

Hubble friction to be insignificant and C ∼ 1. The rms velocity fluctuation 〈φ̇2
l 〉 in dS

space is estimated in Appendix A. Somewhat surprisingly, it is given by the same limiting

expressions (6), (7) as in flat space, independent of the expansion rate Hp. Also, for a small

bubble, the minimal length scale of the fluctuation needs to be the same as in flat space,

that is, l ∼ l0 and l ∼ 1/m for thin-wall and thick-wall bubbles, respectively. The bottom

line is that our estimates for the rate of downward transitions are still given by Eqs. (8) and

(13), the same as in flat space.

Let us now consider a downward transition with a large bubble, whose size is not small

compared to the horizon. This has to be a thin-wall bubble, since the wall thickness is

δ ∼ 1/m � H−1
p . Hence we must have ε � Vb � Vp, so the energy densities of the parent

12
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and daughter vacua should be very close to one another: Vp ≈ Vd. The minimal size of an

inflating bubble in this case is l ∼ H−1
p . Substituting this in Eq. (8) we find

κ ∼ exp

(
−16eπ3/2 Vb

mH3
p

)
∼ exp

(
−16eπ3/2σH−3

p

)
. (22)

This can be compared with the instanton calculation of the nucleation rate of domain walls

in dS space [15]

κwall ∼ exp
(
−2π2σH−3

p

)
. (23)

(Our process is similar to domain wall nucleation, since Vp ≈ Vd.). Once again the two

expressions agree, up to a numerical factor in the exponent.

B. Upward transitions

For an upward transition (Fig. 6), we have ε <∼ Vb � Vp; hence we should have Vp ≈ Vd

and Hp ≈ Hd. With either relation between l0 and H−1
p , the bubble will inflate only if its

size is greater than the horizon, l >∼ H−1
p . The transition rate is then given by Eq. (22).

This has some interesting implications.

The upward and downward transition rates can generally be expressed as κ↑ ∼ e−B↑ and

κ↓ ∼ e−B↓ , with B↑ ∼ σH−3
p and B↓ ∼ σl3, where l = min{l0, H−1

p }. The ratio of these rates

is
κ↑
κ↓

= e−∆B, (24)
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where

∆B = B↑ −B↓ <∼ σH−3
p . (25)

According to the instanton calculation, this ratio must satisfy the detailed balance condition

(3), which requires that ∆B = ∆S, where

∆S = Sp − Sd ∼
ε

H4
p

(26)

is the difference of the de Sitter entropies of the two vacua. Now, from Eqs. (25) and (26)

we can write

∆B <∼
l0
H−1
p

∆S. (27)

This can be consistent with detailed balance if l0 >∼ H−1
p . However, for l0 � H−1

p we have

∆B � ∆S and the detailed balance is strongly violated. In this case the upward flyover

transition rate is much greater than predicted by the instanton formalism.

To be more specific, consider a model where

Vp − Vd ∼ Vb � Vp � Vb
1/2. (28)

Let us also assume that the barrier is characterized by a single mass scale m. Then the flat-

space version of this model describes a thick-wall bubble of initial size l0 ∼ m−1 ∼ V
−1/4
b ,

and the last inequality in (28) ensures that l0 � H−1
p , where Hp ∼ V

1/2
b . This implies that

the bubble size and the transition amplitude for downward transitions are unaffected by

gravity; in particular the bubble size l is close to the flat space value l0. The condition of

small gravitational back-reaction is also satisfied, and thus we have a well controlled model

where detailed balance is strongly violated.

As we already indicated, our analysis cannot be directly extended to large upward jumps

with Vd � Vp. In this case an inflating bubble can be formed by a fluctuation of size l ∼ H−1
d ,

which can be much smaller than the parent horizon H−1
p . This bubble will inflate at a rate

much higher than that of the parent vacuum, which is possible geometrically only if the

daughter bubble is connected to the parent vacuum by a wormhole. The situation here is

similar to baby universe formation from false vacuum bubbles produced during inflation, as

discussed in Refs. [16, 17]. It is also similar to the formation of an inflating baby universe in

a laboratory, as discussed by Farhi, Guth and Guven [18] (See also [19, 20]). The wormhole

14



must close off in about a light crossing time, resulting in an inflating daughter region con-

tained in a baby universe inside a black hole. The mass of the black hole can be estimated

as

M ∼ VdH
−3
d ∼ H−1

d . (29)

This scenario is confirmed by a numerical simulation described in the next subsection.

We cannot reliably estimate the rate of large upward transitions, since such transitions

would induce a large gravitational back-reaction. As a plausible guess, one can expect that

it is comparable to the nucleation rate of black holes of mass (29) in the parent dS space:

κ ∼ exp

(
−M
T

)
∼ exp

(
− C

HdHp

)
. (30)

Here T = Hp/2π is the Gibbons-Hawking temperature of the parent vacuum and C is a

numerical coefficient O(1). Once again, this rate is much higher than the estimate based on

the Lee-Weinberg instanton,

κLW ∼ exp

(
− π

H2
p

)
. (31)

C. Numerical simulations of upward transitions

We will now present some numerical results of the upward transitions discussed in the

last subsection, where the background is inflating and gravity can no longer be neglected.

We solve the scalar field equation together with Einstein’s equations for the spherically

symmetric initial fluctuation of the form given by Eq. (4).

The metric we consider is

ds2 = −dt2 +B2dr2 +R2dΩ2, (32)

where dΩ2 is the metric on a unit sphere and B and R (which is called the area radius)

are functions of the coordinates t and r. We give in Appendix B a detailed account of

the numerical implementation of this system of equations as well as the method we use to

impose the initial conditions.

Specifically, we will use several examples to illustrate the flyover upward transitions in

two cases: (i) Vd ∼ Vp � Vb, where the background can be regarded as fixed dS; and (ii)

Vd ∼ Vb � Vp, where strong gravitational back-reaction is expected.
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FIG. 7: Potential with Vd ∼ Vp � Vb

FIG. 8: Evolution of the scalar field under the potential Fig. 7, with l = H−1
d ≈ 490 and

φ̇0 = −1.8
√

2Vb. The horizontal axis is the area radius R and the vertical axis is time t. We can

clearly see the formation and growth of a false vacuum bubble.

1. Vd ∼ Vp � Vb

As before, we consider a scalar field with a potential in the form of Eq. (17),

V (φ) = 10−8[(100φ)2 − (100φ)3 + 0.2(100φ)4] + 5× 10−7, (33)
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FIG. 9: Evolution of the scalar field under the potential Fig. 7, with l = H−1
d ≈ 490 and

φ̇0 = −1.6
√

2Vb. The horizontal axis is the area radius R and the vertical axis is time t. A false

vacuum bubble forms and then collapses.

where the parameters have been chosen such that we fullfill the requirements given above

together with the condition m � Hp while still being in a sub-Planckian regime.7 In

particular we get m−1 ≈ 46, l0 ≈ 225, H−1
p ≈ 500 and H−1

d ≈ 490. We show the form of

this potential in Fig. 7 where we can see that the energy difference between the two vacua

is small compared to their absolute values.

We show in Fig. 8 an example of the field evolution obtained using the equations in the

Appendix. The field is initially in the true vacuum everywhere, φ(t0, r) ≈ 0.029, but the

velocity field has a spherically symmetric fluctuation with l = H−1
d and φ̇0 = −1.8

√
2Vb.

It can be seen that, as the field at the center of the fluctuation flies over the barrier and

reaches the false vacuum valley, a bubble is formed and starts to grow exponentially. This

confirms our theoretical expectations from the previous section.

If the magnitude (or the size) of the field velocity fluctuation is not large enough, even if

the field near the center flies over the barrier and form a bubble, the bubble would eventually

shrink and disappear. Fig. 9 shows such a case with l = H−1
d and φ̇0 = −1.6

√
2Vb. The

initial fluctuation has the same size as the one that gives Fig. 8, but a smaller magnitude.

This case is nearly critical. As we can see from Fig. 9, the bubble reaches a size close to the

7 In this section all quantities are in Planck units.
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FIG. 10: Potential with Vd ∼ Vb � Vp

daughter horizon H−1
d ≈ 490, which means gravity almost defeats pressure and creates an

inflating region. But the bubble ends up collapsing.

2. Vd ∼ Vb � Vp

As discussed in the previous subsection, it would be interesting to numerically investigate

the case where the expansion rate of the daughter vacuum is much larger than that in the

parent vacuum. The potential we consider for this case is given by,

V (φ) = 10−8[(100φ)2 − (100φ)3 + 0.1(100φ)4] + 5.44× 10−7, (34)

which is shown in Fig. 10. In this potential m−1 ≈ 25, H−1
p ≈ 3.7 × 104 and H−1

d ≈ 470.

As before, the field is initially in the true vacuum, φ(t0, r) ≈ 0.068 and the fluctuation

parameters are l = 2.7H−1
d � H−1

p and φ̇0 = −1.3
√

2Vb.

We show in Fig. 11 the field evolution in this case where the fluctuation is strong enough

to bring the field over the barrier and create a bubble of the false vacuum. We note that

the size of this bubble is of the order of H−1
d and much smaller than H−1

p and once formed

it does not collapse. This example shows that upward transitions of this type indeed seem

to happen in a curved spacetime.

The exponentially growing stage is not shown in Fig. 11 due to the formation of a

wormhole geometry. Since the expansion rate of the false vacuum is much larger than that

in the background, the bubble inflates into a baby universe, which is connected to the parent

universe by a wormhole. After the wormhole is formed, the area radius R is no longer a
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FIG. 11: Evolution of the scalar field under the potential Fig. 10, with l = 2.7H−1
d and φ̇0 =

−1.3
√

2Vb. The horizontal axis is the area radius R and the vertical axis is time t. A false vacuum

bubble forms and expands.

monotonic function of the coordinate r (hence it can no longer serve as the horizontal axis

in Fig. 11) but has a local minimum, which is the wormhole throat. This throat would

eventually close off and the wormhole would turn into a Schwarzschild-de Sitter black hole

for an observer in the parent universe. In the above example, our simulation shows that the

resulting black hole has mass M ≈ 750. This is consistent with the estimate (29).8 In Fig.

12 we show the wormhole formation by its embedding diagrams at four different moments.

IV. CONCLUSIONS

We used analytic and numerical methods to investigate flyover vacuum transitions in flat

and dS space. Our numerical simulations indicate that the dynamics of bubble nucleation

and early evolution in these transitions can be rather different from the standard picture.

The difference is most pronounced for thin-wall bubbles, where the transition region under-

goes a number of oscillations between true and false vacuum, until a true vacuum shell is

formed which expands both inwards and outwards. This suggests that flyover transitions

8 We have checked examples with a considerable range of H−1d , all of which agree with Eq. (29) by order

of magnitude.
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FIG. 12: Embedding diagrams at different moments showing how the wormhole develops. The

flat-looking region at the top and the bottom area represent the daughter and parent regions

respectively. The ring that encircles the cap is the bubble wall. The arc length from the cap center

along longitude is the proper radius d(r) ≡
∫ r

0 B(r̃)dr̃, while the radius of a latitude circle is the

area radius R.

20



provide another channel of vacuum decay, different from quantum tunneling. Our analytic

estimates of flyover decay rates in flat space and of downward decays in dS space have the

same parametric dependence as given by the instanton method for tunneling transitions,

with a numerical coefficient in the exponent different by a factor O(1− 10). The estimates

suggest that the flyover rate is smaller than the tunneling rate, although their accuracy is

not sufficient to establish this with certainty. If the flyover decays are indeed subdominant,

the standard results for the vacuum decay rate would still apply.

On the other hand, for upward transitions in dS space the flyover decay rate is para-

metrically different from tunneling and can be higher by many orders of magnitude. This

is an interesting result, which implies in particular that the detailed balance condition (3)

is violated. If correct, this violation would be a significant deviation from the conventional

picture of quantum dS space as a thermal state [11].

Another important difference from the standard picture is that unlike Coleman’s or the

CdL bubbles, flyover vacuum transitions are not symmetric with respect to Lorentz or de

Sitter boosts. There is a preferred frame where the fluctuation is spherically symmetric,

which can be regarded as the rest frame of bubble nucleation. This is not necessarily a

problem, since a metastable vacuum always has a preferred frame, which is set by the

way the vacuum was created and which manifests itself for example by the ”persistence of

memory” effect [21].

In most of our analysis we assumed that the tunneling barrier height is small compared

to the parent vacuum energy density, Vb � Vp, to ensure that gravitational back-reaction of

the initial fluctuation is small. We also considered upward dS transitions where the daughter

vacuum has a much higher energy density than the parent vacuum, Vd � Vp. Then we must

also have Vb � Vp and the transition rate cannot be reliably estimated. We expect, however,

the rate to be nonzero and we performed numerical simulations of flyover transitions in this

case. We find that after the transition the rapidly inflating daughter region is connected to

the parent vacuum by a wormhole. The wormhole closes off in about a light crossing time,

resulting in an inflating daughter bubble contained in a baby universe inside of a black hole.

In this paper we focused on flyover transitions for which an alternative CdL tunneling

transition is also possible. We note however that there are generic situations where CdL

instantons do not exist. For example, tunneling between two dS vacua may not be possible if

there is an Anti de Sitter (AdS) or Minkowski vacuum between them. This could actually be
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the case for most dS vacuum pairs in the Landscape [22]. In such cases a flyover transition

may be the only available vacuum decay channel. These types of transitions could also

be relevant in the calculation of the spectrum of primordial black holes produced during

inflation in scenarios previously discussed in Refs. [16, 17].

We finally emphasize that our approach to estimating the transition rates is heuristic in

nature. We used quantum field theory to estimate the probability of the initial fluctuation

and then evolved the fluctuation using the classical field equations. Justification of this

method from first principles and determining the limits of its applicability remain problems

for future research. Some steps in this direction, using the Wigner distribution functions,

were taken in Ref. [4, 6].
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Appendix A

Here we find the rms magnitude of field velocity fluctuations in Minkowski and de Sitter

space.

1. Minkowski space

A free scalar field of mass m in Minkowski space is represented by a field operator

φ̂(x, t) = (2π)−3/2

∫
d3k

[
âkψk(t)e

ikx + â†kψ
∗
k(t)e

−ikx
]
, (A1)

where the annihilation and creation operators â, â† satisfy the standard commutation rela-

tions, ψk(t) = (2Ek)
−1/2e−iEkt, Ek =

√
k2 +m2 and k = |k|. We define a velocity operator

smeared over distance scale l:

˙̂
φl(x, t) = (2πd2)−3/2

∫
d3x′

˙̂
φ(x, t) exp

(
−|x− x′|2

2l2

)
. (A2)

We are interested in the quantity

〈φ̇2
l 〉 ≡ 〈0|

˙̂
φ

2

l (x, t)|0〉 =
1

4π2

∫ ∞
0

e−k
2l2Ekk

2dk =
(ml)2e(ml)2

16π2l4
K1(ml/2) (A3)
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where we have introduced K1(x) which denotes a modified Bessel function. For ml� 1 we

can approximate Ek ≈ m; this gives in this limit,

〈φ̇2
l 〉 ≈

m

16π3/2l3
. (A4)

In the opposite limit, ml� 1, Ek ≈ k and we have

〈φ̇2
l 〉 ≈

1

8π2l4
. (A5)

2. Finite temperature

In a thermal state at temerature T we have 〈a†a〉 = nk and Eq. (A3) is replaced by

〈φ̇2
l 〉 =

1

4π2

∫ ∞
0

e−k
2l2(1 + 2nk)Ekk

2dk = 〈φ̇2
l 〉v + 〈φ̇2

l 〉T . (A6)

Here, angular brackets indicate averaging with a thermal density matrix, nk =
(
eEk/T − 1

)−1

is the Bose distribution function, and the two terms on the right-hand side represent vacuum

and thermal contributions. The vacuum contribution is the same as at T = 0 and the thermal

contribution is

〈φ̇2
l 〉T =

1

2π2

∫ ∞
0

e−k
2l2 Ekk

2dk

eEk/T − 1
. (A7)

For T � m the thermal contribution is exponentially suppressed, 〈φ̇2
l 〉T ∝ e−m/T . On

the other hand, at T � m, 1/l we have

〈φ̇2
l 〉T ≈

T

2π2

∫ ∞
0

e−k
2l2k2dk =

T

8π3/2l3
. (A8)

This is much larger than the vacuum contribution (A4); hence thermal fluctuations dominate

in this regime.

3. de Sitter space

We now consider a scalar field in dS space,

ds2 = a2(η)
(
dη2 − dx2

)
, (A9)

where a(η) = −(Hη)−1. The time variable η varies in the range −∞ < η < 0 and is related

to the proper time t by dt = −a(η)dη. A free scalar field operator in dS space can be

represented as

φ̂(x) = (2π)−3/2

∫
d3k

[
âkψk(η)eikx + â†kψ

∗
k(η)e−ikx

]
, (A10)
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Assuming that the field is in a Bunch-Davies vacuum state, the mode functions are given by

ψk(η) =

√
πH

2
e
iπµ
2 (−η)3/2H(1)

µ (−kη), (A11)

where H
(1)
µ (x) are the Hankel functions and

µ =

√
9

4
− m2

H2
. (A12)

The smeared velocity operator is given by

˙̂
φl(x, η) = (2πd2)−3/2

∫
d3x′

˙̂
φ(x, η) exp

(
−|x− x′|2

2H2η2l2

)
, (A13)

where dots stand for derivatives with respect to the proper time t and l is the physical smear-

ing length. The rms field velocity fluctuation is characterized by the vacuum expectation

value

φ̇2
l ≡ 〈0|

˙̂
φ

2

l (x, η)|0〉 =
H2η2

2π2

∫ ∞
0

dkk2

∣∣∣∣dψkdη
∣∣∣∣2 e−H2η2k2l2 . (A14)

We are interested in the case when m� H. Then µ ≈ im/H ≡ iν. The mode functions

in this regime can be found using the integral representation of the Hankel functions,

H
(1)
iν (x) =

1

iπ
e
πν
2

∫ ∞
−∞

dξei(x cosh ξ−νξ). (A15)

For ν � 1 the integral in (A15) can be evaluated using the stationary phase approximation;

this gives

H
(1)
iν (x) ≈

√
2

iπ
e
πν
2 (x2 + ν2)−1/4eif(x), (A16)

where

f(x) =
√
x2 + ν2 − ν ln

x+
√
x2 + ν2

ν
. (A17)

The integral over k in Eq. (A14) is dominated by the values k ∼ 1/Hηl. For ml� 1 this

corresponds to the argument of the Hankel function k|η| � ν. Then

ψk(η) ≈ H|η|√
2ik

e−ikη (A18)

and

〈φ̇2
l 〉 ≈

H4η4

4π2

∫ ∞
0

dkk3e−H
2η2k2l2 =

1

8π2l4
. (A19)

As one might expect, φ̇2
l is independent of time η. In the opposite regime, ml� 1, we have

ψk(η) ≈ H√
2iν

(−η)3/2eiν(1+ln
k|η|
2ν ) (A20)

25



and

〈φ̇2
l 〉 ≈

m

16π3/2l3
. (A21)

Somewhat surprisingly, these results are the same as in Minkowski space in both limiting

cases.

As an independent check of Eq. (A20) we note that it can be rewritten as

ψk(t) ≈
1√
2m

[a(t)]−3/2e−imt+iαk , (A22)

where a(t) = eHt = (H|η)−1 is the scale factor and αk is a constant phase. This form of the

mode functions can also be obtained by solving the field equation

ψ̈k + 3Hψ̇k + k2a−2(t)ψk +m2ψk = 0. (A23)

For ml � 1 the relevant mode functions are the ones with k/a � m, so the gradient term

in (A23) can be neglected and the solution is (for m� H)

ψk(t) ≈ Aka
−3/2e−imt. (A24)

The normalization constant Ak can be found from the condition

ψkψ̇
∗
k − ψ∗kψ̇k = ia−3. (A25)

This gives |Ak| ≈ (2m)−1/2, and thus we recover Eq. (A20).

We have also verified numerically that Eqs. (A16), (A17) give a good fit to Hankel func-

tions of large imaginary order.

Appendix B

In this appendix we outline the setup of our simulations used to illustrate the upward

transitions between dS vacua when gravity is taken into account.

Consider a general spherically symmetric metric

ds2 = −dt2 +B2dr2 +R2dΩ2, (B1)

where dΩ2 is the metric on a unit sphere and B and R are functions of the coordinates t

and r. For later convenience, we define

U = Ṙ, Γ =
R′

B
, K =

Ḃ

B
+

2Ṙ

R
. (B2)
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The Lagrangian density of a scalar field φ with potential V (φ) is

L =
1

2
(∂φ)2 − V (φ), (B3)

and the corresponding energy-momentum tensor is given by

− T 0
0 =

1

2
φ̇2 +

1

2

(
φ′
B

)2

+ V (φ), (B4)

T 1
1 =

1

2
φ̇2 +

1

2

(
φ′
B

)2

− V (φ), (B5)

T 2
2 =

1

2
φ̇2 − 1

2

(
φ′
B

)2

− V (φ), (B6)

T 0
1 = φ̇φ′. (B7)

Using Einstein’s equations and the scalar field equation we obtain,

K̇ = −
(
K − 2U

R

)2

− 2

(
U

R

)2

− 4π(T 1
1 + 2T 2

2 − T 0
0) (B8)

U̇ = −1− Γ2 + U2

2R
− 4πRT 1

1 (B9)

Γ̇ = −4πRT 0
1

B
(B10)

Ḃ = B

(
K − 2U

R

)
(B11)

Ṙ = U (B12)

φ̈ = −Kφ̇+
1

BR2

(
R2

B
φ′
)′
− ∂φV (B13)

which are the evolution equations for the functions K, U, Γ, B, R and φ.

To evolve this system we need initial and boundary conditions of the equations. The

initial profile of the scalar field and that of the field velocity are respectively set to be

φ(r) = φp, φ̇(r) = φ̇0e
− r2

2l2 , (B14)

where φp is the field value at true (parent) vaccum and l characterizes the width of the

velocity fluctuation. The initial energy density is given by ρ(r) ≡ −T 0
0 = φ̇2

0e
− r

2

l2 /2 +V (φp).

As for the metric functions at the initial time, we set B(r) = 1 and R(r) = r. Then by

definition we have Γ(r) = 1. The mass enclosed by a certain sphere is characterized by the

Misner-Sharp mass, which in our coordinates is

M(r) =
R

2

(
1− Γ2 + U2

)
. (B15)
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From G00 ∝ T00, we have M ′(r) = 4πρR2R′, which gives

M(r) = 4π

∫
ρr2dr. (B16)

This can be found by numerical integration. Then by the definition of the Misner-Sharp

mass, the initial profile of U is

U(r) =

√
2M

r
, (B17)

where we have used Γ = 1. From G01 ∝ T01, it can be shown that

Ḃ

B
=
U ′

R′
=

2πρr
3
2√

M/2
−
√
M/2

r
3
2

. (B18)

Therefore, by definition, the initial profile of K is given by

K(r) =
2πρr

3
2√

M/2
+

3
√
M/2

r
3
2

. (B19)

Following this procedure we can obtain all the initial conditions needed for our system of

equations.

The boundary conditions (at r → 0 and r → ∞) are easy to impose, and will not be

listed here.

The formation of a black hole can be indicated by the appearance of a black hole apparent

horizon, on which we have

U + Γ = 0, U − Γ < 0 (B20)

in our coordinates. Then the black hole mass can be read as the Misner-Sharp mass on the

horizon, M = R/2. More details can be found in Ref. [17] and references therein.
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