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Abstract
This paper studies theCoxmodelwith time-varying coefficients for cause-specific haz-
ard functions when the causes of failure are subject to missingness. Inverse probability
weighted and augmented inverse probability weighted estimators are investigated. The
latter is considered as a two-stage estimator by directly utilizing the inverse probability
weighted estimator and throughmodeling available auxiliary variables to improve effi-
ciency. The asymptotic properties of the two estimators are investigated. Hypothesis
testing procedures are developed to test the null hypotheses that the covariate effects
are zero and that the covariate effects are constant. We conduct simulation studies to
examine the finite sample properties of the proposed estimation and hypothesis test-
ing procedures under various settings of the auxiliary variables and the percentages
of the failure causes that are missing. These simulation results demonstrate that the
augmented inverse probability weighted estimators are more efficient than the inverse
probability weighted estimators and that the proposed testing procedures have the
expected satisfactory results in sizes and powers. The proposed methods are illus-
trated using the Mashi clinical trial data for investigating the effect of randomization
to formula-feeding versus breastfeeding plus extended infant zidovudine prophylaxis
on death due to mother-to-child HIV transmission in Botswana.
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1 Introduction

In the analysis of competing risks data, the cause of failure is often missing. For
example, the cause of death of a patient cannot be determined due to the lack of
necessary medical diagnostic information. Several methods have been proposed to
deal with the problem of missing causes of failure. Under the cause-specific Cox
proportional hazards model framework, Goetghebeur and Ryan (1995) presented an
approach based on partial likelihood, an approach also studied by Lu and Tsiatis
(2005). Lu and Tsiatis (2001) used multiple imputation of missing causes of failure
in the Cox model. Gao and Tsiatis (2005) developed inverse probability weighting
(IPW) and augmented IPW (AIPW) approaches under linear transformation models,
while Lu and Liang (2008) applied these techniques for the additive hazards model.
Hyun et al. (2012) developed the IPW and AIPW estimators for the Cox model,
while Liu et al. (2018) applied IPW in the Cox model to investigate conditional risks
of colorectal cancer subtypes by incorporating a biomarker associated with disease
subtype in the weight to reduce selection bias. Nevo et al. (2018) investigated an
informative likelihood approach in the Cox model, which includes modeling of the
conditional distribution of auxiliary variables that are observed for all cases. The
literature, including citations here, has focused on modeling time-constant covariate
effects.

While time-varying effects are common in failure time data analysis in practice, few
have investigated the problemwithmissing causes of failure. Thiswork ismotivated by
theMashi study in Botswana (Thior et al. 2006), for investigating the effect of random-
ization to formula-feeding (FF) versus breastfeeding plus extended infant zidovudine
prophylaxis (BF+AZT) on death due to mother-to-child HIV transmission. TheMashi
study shows that formula-feeding increases the risk of death before 7months of age
comparedwith the breastfeeding plus AZT strategy, and this effect diminishes later on.
However, the effect of randomized feeding strategy on death related to HIV infection
has not been thoroughly studied. In addition, the causes of death are missing for 61
infants of the 111 live-born infants who died in the Mashi study. In this article we
study the Cox model with time-varying coefficients for cause-specific hazard func-
tions, allowing some failure events to be missing the cause of failure. This model
assuming complete data on failure causes was investigated by Sun et al. (2008), with
application to an oral cholera vaccine efficacy trial in Bangladesh (Clemens et al.
1990), where the cause of failure was the type of infecting cholera strain. Extending
these methods to account for missing causes of failure requires solving additional the-
oretical and computational challenges. Our developed methods are applied to assess
the cause-specific treatment effects on HIV-related death and on HIV-unrelated death
in the Mashi study.

In situations where only a single cause of failure is of interest, several studies, for
example Zucker and Karr (1990), Murphy and Sen (1991), Martinussen et al. (2002),
Cai and Sun (2003), Tian et al. (2005), and Sun et al. (2009), have been carried
out on the Cox model with time-varying regression coefficients. Cai and Sun (2003)
applied a local partial likelihood estimation technique to estimate the time-dependent
coefficients. Tian et al. (2005) further studied the local constant partial likelihood
estimator and constructed pointwise and simultaneous confidence intervals for the
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regression parameters. Sun et al. (2009) investigated empirical likelihood inferences
for the model.

Modifying the score function of the local linear partial maximum likelihood esti-
mator of Cai and Sun (2003), we propose a two-stage procedure to estimate the
cause-specific time-varying Cox model with missing causes. In the first stage, an
inverse probability weighted (IPW) complete-case estimator is developed. The aug-
mented inverse probability weighted (AIPW) estimator is constructed by directly
utilizing the IPW estimator (termed the first-stage estimator) in the augmentation
term of the IPW estimating equation. The proposed two-stage AIPW estimating equa-
tion has the same structure as the AIPW approaches proposed in Robins et al. (1994).
Normative/regular AIPWapproaches such asGao and Tsiatis (2005) and Lu and Liang
(2008) model both the probability of a complete case and the conditional distribution
of the cause of failure (depending on auxiliary variables) through parametric models
such as logistic regressions. We show that the conditional distribution of the cause of
failure depends on the failure time data and the auxiliary variables through the condi-
tional cause-specific hazard functions and the conditional distribution of the auxiliary
variables, a connection that is used to derive the proposed two-stage AIPW estimator,
a key difference from the previously developed AIPW estimators. The proposed two-
stage AIPWmethod can utilize the auxiliary variables to improve efficiency compared
to the IPW estimator. In addition, the AIPWmethod allows for missingness to depend
on auxiliary variables that are associated with the cause of failure. Hypothesis testing
procedures are developed to examine whether covariate effects are zero and whether
the effects are constant over time. Critical values of the test statistics are approximated
using the Gaussian multipliers resampling approach advocated by Lin et al. (1993).
This technique has been shown to work well in many papers, among them, Sun and
Wu (2005) and Gilbert and Sun (2015). We justify the validity of our proposed tests
numerically through simulation studies.

The paper is organized as follows. Notation and assumptions are introduced in
Sect. 2.1. In Sects. 2.2 to 2.4, we develop our AIPW estimator in two stages: the first
stage involves IPW estimation, and the second stage involves AIPW estimation utiliz-
ing auxiliary information and the IPW estimators from the first stage. The asymptotic
results for both the IPW and AIPW estimators are presented in Sect. 3. In Sect. 4, we
propose two hypothesis testing procedures for covariate effects. A simulation study
is conducted to examine the performances of the proposed estimation and hypothesis
testing procedures in Sect. 5. The proposed methods are applied to analyze the Mashi
clinical trial data in Sect. 6 and concluding remarks are given in Sect. 7.

2 Two-stage estimation via local linear partial likelihood

2.1 Notation and assumptions

Let T be the failure time and Z(t) a possibly time-dependent p-dimensional covariate
over the follow-up time period [0, τ ]. Let Z̄(τ ) = {Z(t), 0 ≤ t ≤ τ } be the covariate
history. For a typical right-censored competing risks data set, the observable random
variables are (X , δ, δV , Z̄(τ )), where X = min{T , C}, δ = I (T ≤ C), the cause of
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failure V is a categorical variable taking L categories, and C is the censoring time that
is assumed to be independent of T and V conditional on Z̄(τ ). The cause of failure
V is only observable when δ = 1, whereas if T is censored, the cause is unknown.
Suppose that the conditional cause-specific hazard function for cause V = k at time
t , given the covariate history Z̄(τ ), only depends on the current value Z(t), which is
defined as λk(t |z) = lim�t↓0 1

�t P{t ≤ T ≤ t +�t, V = k | T ≥ t, Z(t) = z},with
t ranging over the interval [0, τ ].

We study the following Cox model of conditional cause-specific hazard functions
with time-varying coefficients:

λk(t |Z(t)) = λk0(t) exp
(
βk(t)

TZ(t)
)
, k = 1, 2, . . . , L, (1)

where for each k λk0(t) is an unspecified baseline hazard function, and βk(t) =(
βk1(t), . . . , βkp(t)

)T is a p-dimensional vector of unspecified time-dependent regres-
sion coefficients.

Let R be the indicator of observing the cause V , where, for observed failure events,
R = 1 (R = 0) if the failure cause is observed (not observed). Moreover, R = 1
if the failure time is censored. In addition to the covariate Z(t) considered in model
(1), our procedures allow for the use of auxiliary variables A measured at the failure
time T for subjects with observed failure. These auxiliaries can justify more plausible
missing data assumptions and improve efficiency. In particular, our methods rely on
the following missing at random (Rubin 1976) assumption:

MART,Z,A : P(R = 1|δ = 1, T , Z(T ), A, V ) = P(R = 1|δ = 1, T , Z(T ), A).

(2)

MART,Z,A assumes that the missingness probability is independent of the cause of
failure when conditioning on T , Z(T ) and A. MART,Z,A also implies that V is
independent of R given (T , Z(T ), A): P(V = k|R = 1, δ = 1, T , Z(T ), A) =
P(V = k|δ = 1, T , Z(T ), A).

The assumption MART,Z,A is similar to the missing at random assumption in Lu
and Tsiatis (2001), Gao and Tsiatis (2005), Lu and Liang (2008), Liu et al. (2018),
and Nevo et al. (2018). Other commonly used missing at random assumptions include
MART,Z: P(R = 1|δ = 1, T , Z(T ), V ) = P(R = 1|δ = 1, T , Z(T )), and MART :
P(R = 1|δ = 1, T , V ) = P(R = 1|δ = 1, T ). In many applications certain causes
of failure are more likely to be missing than others even after controlling for T and
Z (Nevo et al. 2018), such that the missingness probability depends on information
related to V conditional on T and Z , which means that MART,Z is not expected
to hold. Goetghebeur and Ryan (1995) studied the cause-specific Cox model with
missing causes under the assumption MART . Under MART,Z,A, P(R = 1|δ =
1, T , Z(T ), V ) = E A{P(R = 1|δ = 1, T , Z(T ), A, V )}, which is likely to depend
on V , where E A stands for the conditional expectation with respect to A conditional
on (δ = 1, T , Z(T ), V ). MART,Z,A can be considered to be a weaker assumption
than MART,Z or MART , because it allows the missingness probability to depend on
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A, which captures some information in V . These assumptions are a priori specified
based on the data collection process, and cannot be tested based on the data.

Let ζ = (T , Z(T )), r(ζ, A) = P(R = 1|δ = 1, ζ, A), and ρk(ζ, A) = P(V =
k|δ = 1, ζ, A). In practice, the conditional probability of missingness r(ζ, A) and the
conditional distribution of the cause of failure ρk(ζ, A)may be influenced by different
sets of auxiliary variables. Let A1 and A2 be subsets of the auxiliary variables A,
where A1 is relevant in predicting whether V is observed, and A2 is informative about
the conditional distribution of V . That is, P(R = 1|δ = 1, ζ, A) = P(R = 1|δ =
1, ζ, A1) and P(V = k|δ = 1, ζ, A) = P(V = k|δ = 1, ζ, A2), which leads to
r(ζ, A) = r(ζ, A1) and ρk(ζ, A) = ρk(ζ, A2), respectively. In some situations, the
two subsets may be the same and equal to A, i.e., A1 = A2 = A.

The observed data consist of independent identically distributed (i.i.d.) replicates

Oi = {Xi , δi , Z̄i (τ ), Ri , Riδi Vi , δi Ai }, i = 1, . . . , n,

of O = {X , δ, Z̄(τ ), R, RδV , δA}. We define the counting processes Nik(t) =
I (Xi ≤ t, δi = 1, Vi = k), Ni (t) = I (Xi ≤ t, δi = 1) and the at-risk process
Yi (t) = I (Xi ≥ t).

2.2 Full data local linear partial likelihood estimator

For the competing risks failure time data under consideration, we refer to the full data
as the data with no missing failure causes, but right-censoring may still be present.
For full data, the local linear partial likelihood method of Cai and Sun (2003) can be
used to estimate the regression coefficients model (1). For cause V = k, by the Taylor
expansion for u in a neighborhood of t , we have

βkl(u) ≈ βkl(t) + β ′
kl(t)(u − t), l = 1, 2, . . . , p.

Let ξk(t) = (
βk1(t), . . . , βkp(t), β ′

k1(t), . . . , β
′
kp(t)

)T and Z̃i (u, u − t) = Zi (u) �
(1, u−t)T, where� is theKronecker product. Let S( j)

f (u, t, ξk) = n−1 ∑n
i=1 Yi (u) exp

(
ξk(t)T Z̃i (u, u − t)

)(
Z̃i (u, u − t)

)⊗ j for j = 0, 1 and 2. Here, a⊗0 = 1, a⊗1 = a,
and a⊗2 = aaT for a column vector a. Following Cai and Sun (2003), at each time
t ∈ (0, τ ), the score function for ξk(t) is

U f (t, ξk) =
n∑

i=1

∫ τ

0
Kh(u − t)

(
Z̃i (u, u − t) − S f (u, t, ξk)

)
d Nik(u), (3)

where S f (u, t, ξk) = S(1)
f (u, t, ξk)/S(0)

f (u, t, ξk), Kh(·) = K (·/h)/h, K (·) is a sym-
metric kernel function with support [−1, 1], and h is the bandwidth. The local linear
partial maximum likelihood estimator of βk(t) is the vector consisting of the first p
components of ξ̂ f ,k(t) that solves (3) with respect to ξk .
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2.3 Inverse probability weighted estimator

When the cause of failure is subject to missingness, a straightforward estimation
method for ξk(t) is to fit the complete data, where the cases with missing failure causes
are excluded/ignored, using the local linear partial likelihood score Eq. (3). Such a
complete-case estimator is inefficient and may lead to bias when the complete cases
are not a random sample of all cases. Following the idea of Horvitz and Thompson
(1952), the method of inversely weighting the probability of complete-case has been
commonly used in missing data problems under the missing at random assumption
MART,Z,A given in (2). To estimate the probability of complete-case, a parametric
model r(ζi , Ai , ψ) is often used for r(ζi , Ai ), where ζi = (Ti , Zi (Ti )) and ψ is a
q-dimensional vector of parameters. Suppose that r(ζi , Ai , ψ) is a parametric model
for r(ζi , Ai ), where ζi = (Ti , Zi (Ti )) and ψ is a q-dimensional vector of parameters.
The maximum likelihood estimator ψ̂ of ψ is obtained by maximizing the observed
data likelihood,

n∏

i=1

(
r(ζi , Ai , ψ)

)Ri δi
(
1 − r(ζi , Ai , ψ)

)(1−Ri )δi
. (4)

Let Qi = (ζi , δi Ai , δi ). The probability of a complete case π(Qi ) = P(Ri =
1|Qi ) = δi r(ζi , Ai )+(1−δi ) is thenmodeled byπ(Qi , ψ) = δi r(ζi , Ai , ψ)+(1−δi ).
Define

S( j)
I (u, t, ξk, ψ) = n−1

n∑

i=1

qi Yi (u) exp
(
ξk(t)

T Z̃i (u, u − t)
) (

Z̃i (u, u − t)
)⊗ j

,

for j = 0, 1, 2, where qi = Ri/π(Qi , ψ). Denote SI (u, t, ξk, ψ) = S(1)
I (u, t, ξk, ψ)/

S(0)
I (u, t, ξk, ψ).
The inverse probabilityweighted (IPW) complete-case estimating function for ξk(t)

is given by

UI (t, ξk, ψ̂) =
n∑

i=1

∫ τ

0
Kh(u − t)

(
Z̃i (u, u − t) − SI (u, t, ξk, ψ̂)

)
q̂i d Nik(u),

where q̂i = Ri/π(Qi , ψ̂). The IPW estimator ξ̂I ,k(t) of ξk(t) is the solution of the
estimating equationUI (t, ξk, ψ̂) = 0. Then β̂I ,k(t) is the first p components of ξ̂I ,k(t).

The baseline function λk0(t) can be estimated by kernel smoothing λ̂I ,k0(t) =∫ τ

0 Kh(u − t) d�̂I ,k0(u), where

�̂I ,k0(t) =
n∑

i=1

∫ t

0

1

nS∗(0)
I (u, β̂I ,k, ψ̂)

q̂i d Nik(u)
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is the estimator of the cumulative baseline function �k0(t) = ∫ t
0 λk0(u) du, and

S∗(0)
I (t, β̂I ,k, ψ̂) = n−1 ∑n

i=1 q̂i Yi (t) exp
(
β̂I ,k(t)TZi (t)

)
.

2.4 Two-stage augmented inverse probability weighted estimator

Studies have shown that the IPW estimator is inefficient and relies on the correct
modeling of the probability r(ζi , Ai ), cf. Scharfstein et al. (1999), Gao and Tsiatis
(2005), and Lu and Liang (2008). To increase estimation efficiency, we propose the
augmented inverse probability weighted complete-case (AIPW) estimating function
obtained by including a projection term of the full data estimating function onto the
space of the observed data (Robins et al. 1994). Suppose that the full data estimat-
ing function is the sum of independent identically distributed (iid) terms of the form∑n

i=1 gi . Robins et al. (1994) introduced a class of estimatorswith the estimating equa-
tions

∑n
i=1 qi gi + (1−qi )hi , where qi = Ri/φ(Qi ) and hi is an arbitrary function of

observed data, and showed that the optimal estimator in this class is obtained by taking
hi = E(gi |observed data), which is termed the AIPW estimator. AIPW estimators
have been shown to be more efficient than IPW estimators in many situations, cf. Gao
and Tsiatis (2005), Lu and Liang (2008), and Sun et al. (2017), among others. In this
section, we develop the AIPW estimator for the Cox model with time-varying coef-
ficients for cause-specific hazard functions as in (1). The proposed AIPW estimating
equation utilizes available information for individuals with missing causes through
a consistent estimator of the conditional distribution of the failure cause. The IPW
estimators λ̂I ,k0(t) and ξ̂I ,k(t) are used in the construction of this consistent estimator.

Note that Nik(t) = Ni (t)I (Vi = k), and, using the AIPW formulation above,
gi = ∫ τ

0 Kh(u − t)
(
Z̃i (u, u − t) − S f (u, t, ξk)

)
d Ni (u)I (Vi = k) for the full data

estimating function (3). The implementation of the AIPW procedure requires evalu-

ation of E(gi |observed data) for each k, which equals
∫ τ

0 Kh(u − t)
(

Z̃i (u, u − t) −
S f (u, t, ξk)

)
d Ni (u)ρk(ζi , Ai ), where ζi = (Ti , Zi (Ti )) and ρk(t, z, a) = P(Vi =

k|δi = 1, ζi = (t, z), Ai = a) is the conditional distribution of the failure cause. By
Lemma 1 given in Appendix A in the Web-based Supplementary Material, we have

ρk(t, z, a) = λk(t |z) f (a|k, t, z)
∑L

l=1 λl(t |z) f (a|l, t, z)
, (5)

where f (a|k, t, z) = P(Ai = a|δi = 1, Ti = t, Zi = z, Vi = k) is a conditional den-
sity if Ai is continuous, and is a conditional probability mass function if Ai is discrete.
If Ai is independent of Vi conditional on (δi = 1, Ti , Zi ), then f (a|k, t, z) does not
depend on k, and in this caseρk(t, z, a) = λk(t |z)/∑L

l=1 λl(t |z). This relationship also
holds when no auxiliary variable Ai is used in the data analysis. In the situation that
the auxiliary variable Ai correlates with Vi conditional on (δi = 1, Ti , Zi ), ρk(t, z, a)

depends on f (a|k, t, z) as well as on {λl(t |z), l = 1, 2, . . . , L}. Although nonpara-
metric/semiparametric density estimation methods are available, developments for
conditional density estimation is limited, in particular, if the dimension is high (Hall
et al. 2004; Efromovich 2010; Izbicki and Lee 2016). To estimate f (a|k, t, z), we

123

Author's personal copy



F. Heng et al.

assume the following consistent association condition that the conditional distribution
of Ai given (δi = 1, Ti , Zi , Vi ) is the same whether Vi is missing or not, that is,

ASSOCA: P(Ai = a|δi = 1, Ti , Zi , Vi , Ri = 1) = P(Ai = a|δi = 1, Ti , Zi , Vi ).

Nevo et al. (2018) assumed ASSOCA in the construction of the informative partial
likelihood. Here, we posit a parametric model f (a|k, t, z, ϕk) for f (a|k, t, z), where
ϕk is a vector of unknown parameters. Maximum likelihood methods can be used to
obtain the estimator ϕ̂k of ϕk .

Let λ̂I ,k(t |z) = λ̂I ,k0(t) exp
(
β̂I ,k(t)Tz

)
be the IPW estimator of the conditional

cause-specific hazard function. Then, ρk(ζi , Ai ) can be estimated by

ρ̂k(ζi , Ai ) = λ̂I ,k(Ti |Zi ) f (Ai |k, Ti , Zi , ϕ̂k)
∑L

l=1 λ̂I ,l(Ti |Zi ) f (Ai |l, Ti , Zi , ϕ̂l)
. (6)

Because the estimator ρ̂k(ζi , Ai ) is based on the (first-stage) IPW estimator, we
term the following estimating function the two-stage AIPW estimating function for
ξk(t):

UA(t, ξk, ψ̂, ρ̂k) =
n∑

i=1

∫ τ

0
Kh(u − t)

(
Z̃i (u, u − t) − S f (u, t, ξk)

)[
q̂i d Nik(u)

+ (1 − q̂i )ρ̂k(ζi , Ai ) d Ni (u)
]
.

The two-stage AIPW estimator of ξk(t) is the solution to the estimating equation
UA(t, ξk, ψ̂, ρ̂k) = 0 and is denoted by ξ̂A,k(t). The AIPW estimator β̂A,k(t) of βk(t)
is the first p components of ξ̂A,k(t).

The baseline function λk0(t) can be estimated by λ̂A,k0(t) = ∫
Kh(u −

t) d�̂A,k0(u), where

�̂A,k0(t) =
n∑

i=1

∫ t

0

1

nS(0)(u, β̂A,k)

[
q̂i I (Vi = k) + (1 − q̂i )ρ̂k(ζi , Ai )

]
d Ni (u)

is the estimator of the cumulative baseline function of �k0(t). Here S(0)(t, β̂A,k)) =
n−1 ∑n

i=1 Yi (t) exp(β̂A,k(t)TZi (t)).
Studies show that the choice of kernel generally has little effect on the efficiency

of the estimator, cf. Fan and Gijbels (1996). However, the bandwidth plays an essen-
tial role on the performance of the kernel-based estimator, which can be selected
by a widely used M-fold cross-validation procedure, cf. Rice and Silverman (1991)
and Tian et al. (2005). Specifically, we randomly divide the sample into M roughly
equal-sized groups, say (G1, G2, · · · , G M ). The cross-validation procedure selects
the bandwidth that minimizes the total prediction error P E(h) = ∑M

m=1 P Em(h)

with respect to h, where
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P Em(h) = −
L∑

k=1

∑

i∈Gm

∫ τ

0

[
(β̂

(−m)
A,k (t))TZi (t)

− log
{ ∑

s∈Gm

Ys(t) exp
(
β̂

(−m)
A,k (t)TZs(t)

)}]
d Nik(t).

That is, hopt = argminh P E(h). Here, β̂(−m)
A,k (t) is the AIPW estimator based on the

data excluding subjects in Gm . And, P Em(h) is a cross-validation measure of the
prediction error based on the minus of the log-partial likelihood function, cf., Tian
et al. (2005). In practice, to increase stability one can take hopt to be the average of
multiple hopt values obtained from each of multiple divisions of the sample, e.g., 10
divisions.

Our proposed two-stage estimator β̂A,k(t) has the same structure as the AIPW
estimator of Robins et al. (1994), as well as those of Gao and Tsiatis (2005) and Lu
and Liang (2008), except that we model ρk(ζ, A) in a different way, incorporating
information in the auxiliary variables through estimation of f (Ai |k, Ti , Zi , ϕk). Even
if auxiliary variables are not available, the first-stage IPW estimator can be utilized
further to improve efficiency through ρ̂k(ζi , Ai ) = λ̂I ,k(Ti |Zi )/

∑L
l=1 λ̂I ,l(Ti |Zi ),

since theAIPWestimator has the smallest variance among a class of the estimators that
includes the IPW estimator (Robins et al. 1994). The informative likelihood approach
for the cause-specific Coxmodel developed by Nevo et al. (2018) is a related approach
that utilizes parametric models for ρk(ζ, A) and f (Ai |k, Ti , Zi ).

Although our proposed two-stage AIPW estimator improves the efficiency over
the IPW estimator, as shown in the simulation study, it does not possess the double
robustness property enjoyed by regular AIPW estimators that model both the prob-
ability of a complete case r(ζi , Ai ) and the conditional distribution of the cause of
failure ρk(ζi , Ai ); see Gao and Tsiatis (2005) and Lu and Liang (2008), among others.
An AIPW estimator would be considered to be doubly robust if it is consistent for
its target parameter if either r(ζi , Ai ) or ρk(ζi , Ai ) is correctly specified. However,
for the proposed two-stage AIPW estimator, if r(ζi , Ai ) is misspecified, then the esti-
mator of ρk(ζi , Ai ) is inconsistent as it is based on an inconsistent IPW estimator.
Thus the two-stage AIPW estimator is inconsistent if r(ζi , Ai ) is misspecified. On the
other hand, it is challenging to find the correct model for the conditional distribution
of the cause of failure for regular AIPW estimators. The estimator ρ̂k(ζi , Ai ) given in
(6) may provide a better or at least an alternative method, which instead models the
conditional cause-specific hazard function and the conditional density or mass func-
tion of the auxiliary variable. Our simulation studies show that the proposed two-stage
AIPWestimator has better finite-sample performance than the IPW and complete-case
estimators even when the models for r(ζi , Ai ) and ρk(ζi , Ai ) are both misspecified.

3 Asymptotic properties

We investigate the asymptotic properties of the IPW estimator β̂I ,k(t) and the AIPW
estimator β̂A,k(t). The regularity conditions for the asymptotic results are given in
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(C.1)–(C.5) placed in the “Appendix”. Conditions (C.1)–(C.4) are standard assump-
tions for the local linear method under the Cox model with time-varying coefficients
(Cai and Sun 2003). Condition (C.5) is a smoothness condition on the parametric
models for r(ζi , Ai ) and f (Ai |k, Ti , Zi ), comparable to the assumptions used in Gao
and Tsiatis (2005) and Lu and Liang (2008).

3.1 Asymptotic results of the IPW estimator

The consistency and asymptotic normality of β̂I ,k(t), k = 1, 2, . . . , L , are established
in the next two theorems. To avoid the problems at the boundaries t = 0 and t = τ , we
study the asymptotic properties of β̂k(t) for interior values of t ∈ [t1, t2] ⊂ (0, τ ). The
proofs of Theorems 1 and 2 are placed inAppendixA in theWeb-based Supplementary
Material.

Theorem 1 Assume MART,Z,A. Under conditions (C.1)–(C.5) given in the

“Appendix”, if the model for r(ζi , Ai ) is correctly specified, then β̂I ,k(t)
P−→βk(t)

uniformly in t ∈ [t1, t2] ⊂ (0, τ ) as n → ∞.

Theorem 2 Assume MART,Z,A. Under conditions (C.1)–(C.5) given in the
“Appendix”, if the model for r(ζi , Ai ) is correctly specified, then

√
nh

(
β̂I ,k(t) − βk(t) − 1

2
μ2h2β ′′

k (t)
) D−→N

(
0, ν0�

−1
k (t)�∗

k (t)�−1
k (t)

)
,

for t ∈ [t1, t2] ⊂ (0, τ ) as n → ∞, where μ2 = ∫ 1
−1 x2K (x)dx, ν0 = ∫ 1

−1 K 2(x)dx,
and �k(t) and �∗

k (t) are defined in the “Appendix”.

Let II ,k(t) be the upper left p× p matrix of n−1 ∑n
i=1

∫ τ

0 Kh(u−t)JI (u, t, ξ̂I ,k(t),
ψ̂ )̂qi d Nik(u), and �̃I ,k(t) be the upper left p × p matrix of

h

n

n∑

i=1

∫ τ

0

(
Kh(u − t)

)2(
Z̃i (u, u − t) − SI (u, t, ξ̂I ,k(t), ψ̂)

)⊗2
q̂2

i d Nik(u),

where JI (u, t, ξk, ψ) = S(2)
I (u, t, ξk, ψ)/S(0)

I (u, t, ξk, ψ)−(SI (u, t, ξk, ψ))⊗2. Then
the asymptotic covariance matrix ν0�

−1
k (t)�∗

k (t)�−1
k (t) of

√
nh(β̂I ,k(t)−βk(t)) can

be consistently estimated by I−1
I ,k(t)�̃I ,k(t)I−1

I ,k(t) as n → ∞.

3.2 Asymptotic results of the AIPW estimator

Next, we present the asymptotic properties of the AIPW estimators β̂A,k(t), k =
1, 2, . . . , L . Theorem 3 shows that the AIPW estimators are consistent if r(ζi , Ai )

is correctly specified. Theorem 4 shows the asymptotic normality of β̂A,k(t), k =
1, 2, . . . , L . The proofs of Theorems 3 and 4 are placed in Appendix A in the Web-
based Supplementary Material.
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Theorem 3 Assume MART,Z,A and ASSOCA. Under conditions (C.1)–(C.5) given

in the “Appendix”, β̂A,k(t)
P−→βk(t) uniformly in t ∈ [t1, t2] ⊂ (0, τ ) as n → ∞.

This consistency holds if r(ζi , Ai ) is correctly specified.

Theorem 4 Assume MART,Z,A and ASSOCA. Under conditions (C.1)–(C.5) given
in the “Appendix”, if both r(ζi , Ai ) and f (Ai |k, Ti , Zi ) are correctly specified, then

√
nh

(
β̂A,k(t) − βk(t) − 1

2
μ2h2β ′′

k (t)
) D−→N

(
0, ν0�

−1
k (t)�∗

k (t)�−1
k (t)

)

for t ∈ [t1, t2] ⊂ (0, τ ) as n → ∞, where �k(t) and �∗
k (t) are defined in the

“Appendix”. The estimator β̂A,k(t) is more efficient than β̂I ,k(t) at the order of h,
which is shown in the equation below:

Cov
{√

nh
(
β̂I ,k(t) − βk(t) − 1

2
μ2h2β ′′

k (t)
)}

= Cov
{√

nh
(
β̂A,k(t) − βk(t) − 1

2
μ2h2β ′′

k (t)
)}

+ h�−1
k (t)Cov{B1(t, βk) − O1(t, βk)}�−1

k (t) + op(h),

where Bi (t, βk) and Oi (t, βk) are defined in the “Appendix”.

Let IA,k(t) be the upper left p × p matrix of

1

n

n∑

i=1

∫ τ

0
Kh(u − t)J f (u, t, ξ̂A,k(t))

[
q̂i I (Vi = k) + (1 − q̂i )ρ̂k(ζi , Ai )

]
d Ni (u),

and �̃A,k(t) be the upper left p × p matrix of

h

n

n∑

i=1

∫ τ

0

(
Kh(u − t)

)2(
Z̃i (u, u − t) − S f (u, t, ξ̂A,k(t))

)⊗2

[
q̂i I (Vi = k) + (1 − q̂i )ρ̂k(ζi , Ai )

]2
d Ni (u),

where J f (u, t, ξk) = S(2)
f (u, t, ξk)/S(0)

f (u, t, ξk) − (S f (u, t, ξk))
⊗2. The asymptotic

covariancematrix ν0�
−1
k (t)�∗

k (t)�−1
k (t) of

√
nh(β̂A,k(t)−βk(t)) can be consistently

estimated by I−1
A,k(t)�̃A,k(t)I−1

A,k(t) as n → ∞.

Let Bk(t) = ∫ t
t1

βk(s)ds and B̂A,k(t) = ∫ t
t1

β̂A,k(s)ds. The following theorem

presents a weak convergence result for Gn(t) = n1/2(B̂A,k(t) − Bk(t)) over t ∈
[t1, t2] ⊂ [0, τ ]. The result provides a justification for using the Gaussian multipliers
resampling method to estimate the critical values of the hypothesis tests developed
next, cf. Lin et al. (1993).
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Theorem 5 Assume MART,Z,A and ASSOCA. Under conditions (C.1)–(C.5) given
in the “Appendix”, Gn(t) = n−1/2 ∑n

i=1 Hi (t) + op(1) uniformly for t ∈ [t1, t2] if
both r(ζi , Ai ) and f (Ai |k, Ti , Zi ) are correctly specified, where

Hi (t) =
∫ t

t1
�−1

k (u)

[
Zi (u) − s(1)(u, βk)

s(0)(u, βk)

]{
Ri

π(Qi )
d Mik(u)

+
[
1 − Ri

π(Qi )

]
E(d Mik(u)|Qi )

}
,

and s( j)(u, βk), j = 1, 2, are defined in the “Appendix”. The process Gn(t) converges
weakly to a zero-mean Gaussian process on [t1, t2].

4 Hypothesis testing forˇk(t)

For assessing time-varying covariate effects on a specific cause of failure, we develop
hypothesis testing procedures to test two null hypotheses – H10: βk(t) = 0 for t ∈
[t1, t2] and H20: βk(t) does not depend on t for t ∈ [t1, t2]. Without loss of generality,
we assume βk(t) is a one-dimensional function. Accordingly, this procedure applies
for testing a certain component of the p-dimensional function vector.

First, we develop tests of H10: βk(t) = 0 for t ∈ [t1, t2] against two alternative
hypotheses – H1a : βk(t) �= 0 for some t ∈ [t1, t2] and H1m : βk(t) ≤ 0 with strict
inequality for some t ∈ [t1, t2]. Based on the test process D1(t) = n1/2 B̂A,k(t),
t ∈ [t1, t2], we propose the following test statistics for testing H10:

T (1)
a1 = sup

t∈[t1,t2]
|D1(t)|, T (1)

a2 =
∫ t2

t1
(D1(t))

2 du,

T (1)
m1 = inf

t∈[t1,t2]
D1(t), T (1)

m2 =
∫ t2

t1
D1(t) du.

General departures under H1a are captured by T (1)
a1 and T (1)

a2 , whereas T (1)
m1 and

T (1)
m2 are sensitive to monotone departures under H1m . From Theorem 5, the dis-

tribution of D1(t) can be approximated using the Gaussian multipliers resampling
method on t ∈ [t1, t2] under H10. Let S( j)(t, βk) = n−1 ∑n

i=1 Yi (t) exp
(
βk(t)TZi (t)

)

Zi (t)⊗ j , for j = 0, 1, 2, and let S(t, βk) = S(1)(t, βk)/S(0)(t, βk). Let φ1, · · · , φn

be independent standard normal random variables. By Theorem 5 and the Gaussian
multipliers resampling method, cf. Lin et al. (1993), the distribution of the process
D1(t) under H10 can be approximated by the conditional distribution of the process
D∗
1(t) = n−1/2 ∑n

i=1 Ĥi (u)φi given the observed data, where

Ĥi (t) =
∫ t

t1
I−1

A,k(s)
{ ∫ τ

0
Kh(u − s)

(
Zi (u) − S(u, β̂A,k)

)[
q̂i I (Vi = k)

+ (1 − q̂i )ρ̂k(ζi , Ai )
]
d Ni (u)

}
ds.
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It can be shown that by Lemma 1 of Sun and Wu (2005), D1(t) and D∗
1(t) have the

same asymptotic distribution under H10. Thus, the distributions of T (1)
a1 , T (1)

a2 , T (1)
m1 and

T (1)
m2 can be approximated by the empirical distributions of

T (1)∗
a1 = sup

t∈[t1,t2]
|D∗

1(t)|, T (1)∗
a2 =

∫ t2

t1
(D∗

1(t))
2 du,

T (1)∗
m1 = inf

t∈[t1,t2]
D∗
1(t), T (1)∗

m2 =
∫ t2

t1
D∗
1(t) du, (7)

respectively, obtained through sampling a large number of, say 1000, variable sets
(φ1, · · · , φn). The p-values of the test statistics T (1)

a1 and T (1)
a2 for testing H10 against

H1a are the conditional probabilities that T (1)∗
a1 > T (1)

a1 and T (1)∗
a2 > T (1)

a2 given the

observed data, respectively. Similarly, the p-values of the test statistics T (1)
m1 and T (1)

m2

for testing H10 against H1m are the conditional probabilities that T (1)∗
m1 < T (1)

m1 and

T (1)∗
m2 < T (1)

m2 given the observed data, respectively.
To test the null hypothesis H20 that the covariate effect is a constant, we also

consider two alternative hypotheses – H2a : βk(t) changes over t ∈ [t1, t2] and H2m :
βk(t) increases with t ∈ [t1, t2]. Let

D2(t) = n1/2
{ B̂A,k(t) − B̂A,k(t1)

t − t1
− B̂A,k(t2) − B̂A,k(t1)

t2 − t1

}
.

Based on the test process D2(t), we propose the following test statistics for H20:

T (2)
a1 = sup

t∈[t∗1 ,t2]
|D2(t)|, T (2)

a2 =
∫ t2

t∗1
(D2(t))

2 du,

T (2)
m1 = inf

t∈[t∗1 ,t2]
D2(t), T (2)

m2 =
∫ t2

t∗1
D2(t) du,

where t∗1 is a number between t1 and t2 to ensure the value of the denominator in D2(t)
is not zero. We can choose t∗1 close to t1 to make use of more data, and to make the

tests more stable. The test statistics T (2)
a1 and T (2)

a2 can capture variation of βk(t) over

time, whereas T (2)
m1 and T (2)

m2 can capture an increasing trend in βk(t) over time.
For testing H20, we compute

D∗
2(t) = n−1/2

n∑

i=1

{ Ĥi (t) − Ĥi (t1)

t − t1
− Ĥi (t2) − Ĥi (t1)

t2 − t1

}
φi

to approximate the null distribution of D2(t) by the Gaussian multipliers technique.
The distributions of T (2)

a1 , T (2)
a2 , T (2)

m1 and T (2)
m2 can be approximated by the empirical

distributions of
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T (2)∗
a1 = sup

t∈[t∗1 ,t2]
|D∗

2(t)|, T (2)∗
a2 =

∫ t2

t∗1
(D∗

2(t))
2 du,

T (2)∗
m1 = inf

t∈[t∗1 ,t2]
D∗
2(t), T (2)∗

m2 =
∫ t2

t∗1
D∗
2(t) du, (8)

respectively, obtained through sampling a large number of, say 1000, variable sets
(φ1, · · · , φn). The p-values of the test statistics T (2)

a1 and T (2)
a2 for testing H20 against

H2a are the conditional probabilities that T (2)∗
a1 > T (2)

a1 and T (2)∗
a2 > T (2)

a2 given the

observed data, respectively. Similarly, the p-values of the test statistics T (1)
m1 and T (1)

m2

for testing H20 against H2m are the conditional probabilities that T (2)∗
m1 < T (2)

m1 and

T (2)∗
m2 < T (2)

m2 given the observed data, respectively.

5 Numerical results

We present a simulation study conducted to evaluate the performance of the proposed
estimation and hypothesis testing procedures. We compare the two-stage AIPW esti-
mator to the IPW estimator and to the complete-case data estimator (CC) that deletes
the observations with missing causes from the analysis. These estimators are also
compared to the full data likelihood estimator (FULL), which analyzes the simulated
dataset without missing causes.

We consider a competing risksmodelwith two failure causeswith the cause-specific
hazard functions equal to

λ1(t |Z) = 0.2 exp((θ1t + θ2)Z), λ2(t |Z) = 0.1(t + 0.1)−1/2 exp((t + 0.1)1/2Z),

(9)

where Z has a uniform distribution on [0, 1]. Different values of the parameters
(θ1, θ2) are chosen to examine the sizes and powers of proposed tests, as well as
the performances of the proposed estimation procedures. All failure times are cen-
sored at the administration time τ = 2. The random-censoring time C is generated
from a uniform distribution on [0, 10] which yields about 50% censoring. We sim-
ulate the missing causes under two missing at random assumption scenarios. First,
we consider a logistic regression model logit{r(Zi , Ai , ψ)} = ψ0 + ψ1Zi + ψ2Ai

for r(Ti , Zi (Ti ), Ai ) under MART,Z,A, whereψ = (ψ0, ψ1, ψ2). The percentages of
missing causes are approximately 30%, 40% and 50% for ψ = (1.4,−0.5,−0.5),
ψ = (1,−0.5,−0.5) and ψ = (0.5,−0.5,−0.5), respectively. Then, a logis-
tic regression model logit{r(Zi , ψ)} = ψ0 + ψ1Zi is considered under MART,Z ,
where ψ = (ψ0, ψ1). We set the parameters to ψ = (1.4,−1), ψ = (1,−1) and
ψ = (0.5,−1), which yield 30%, 40% and 50% missing causes, respectively. We use
(r30), (r40) and (r50) to denote the percentages of missing causes, 30%, 40% and
50%, respectively.
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We also generate a binary auxiliary covariate Ai for the failure cause Vi from the
following models for f (a|k, t, z):

P(Ai = 1|Vi = k) = eak

1 + eak
, k = 1, 2. (10)

The models allow Ai to depend on Vi , but not Ti and Zi conditional on Vi ;
thus f (a|k, t, z) = f (a|k). We examine the performance of the estimators under
four different levels of association between Ai and Vi , by considering the settings
(a1, a2) = (1, 1), (a1, a2) = (−1, 1), (a1, a2) = (−2, 2), and (a1, a2) = (−3, 3),
which result in approximate Kendall’s tau values of 0, 0.45, 0.75 and 0.90, respec-
tively. We denote these four auxiliary association level settings by (A0), (A1), (A2),
and (A3), respectively. We note that Ai is independent of Vi for the setting (A0), and
the association between Ai and Vi increases from (A1) to (A3). Let f̂ (a|k) be the
estimator of the conditional mass function f (a|k) of Ai given Vi = k. If follows from
(5) that ρk(t, z, a) is estimated by

ρ̂k(t, z, a) = λ̂I ,k(t |z) f̂ (a|k)

λ̂I ,1(t |z) f̂ (a|1) + λ̂I ,2(t |z) f̂ (a|2) , for k = 1, 2,

where λ̂I ,k(t |z), k = 1, 2, are the first stage IPW estimators.
To study the performance of the proposed IPW and AIPW estimators under mis-

specifications of the models r(t, z, a, ψ) and/or f (a|k), the simulations are conducted
by positing a misspecified constant model r0 ∈ (0, 1) for r(t, z, a, ψ) and/or by posit-
ing (A0) while the true setting is (A2). The estimators based on the correctly specified
models of r(t, z, a, ψ) and f (a|k) are compared to those obtained when at least one
of the two models is misspecified. We use IPW-c to denote the IPW estimator with the
correctly specifiedmodel r(t, z, a, ψ) formissing causes, and IPW-m for the IPWesti-
mator with misspecified model for missing causes. AIPW-A2-c stands for the AIPW
estimator under the setting (A2) with the correctly specified model for r(t, z, a, ψ),
and AIPW-A2-m stands for the AIPW estimator under the setting (A2) for the mis-
specified model for missing causes. AIPW-mA2-c stands for the AIPW estimator
with misspecified f (a|k) by assuming (A0) while the true setting is (A2) but correctly
specified model r(t, z, a, ψ), while AIPW-mA2-m is the AIPW estimator where both
f (a|k) and r(t, z, a, ψ) are misspecified.
The finite sample performances of the proposed test procedures are evaluated

through simulations under model (9) with the following parameter settings:

(1) For testing H10, M1: (θ1, θ2) = (0, 0), M2: (θ1, θ2) = (0,−0.6), M3: (θ1, θ2) =
(0,−0.9), and M4: (θ1, θ2) = (0,−1.2);

(2) For testing H20, N1: (θ1, θ2) = (0,−0.5), N2: (θ1, θ2) = (0.9, 0), N3: (θ1, θ2) =
(1.2, 0), and N4: (θ1, θ2) = (1.5, 0).

The estimation procedures are examined under the setting N1 of model (9). The
observed sizes and powers of the tests for testing β1(t) are examined under model
(9) under the settings M1 to M4 for testing H10, and N1 to N4 for testing H20, where
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Fig. 1 Bias, mean of the estimated standard errors (ESE), relative efficiency (RE) and 95% coverage
probability (CP) of the IPW and AIPW estimators for the setting N1 : β1(t) = −0.5 and β2(t) = (t +
0.1)1/2, with 30% of causes missing under MART,Z,A based on 1000 simulations for n = 1200 and
h = 0.3. The legends AIPW-A2 and AIPW-mA2 refer to the AIPW estimators using the correctly specified
(A2) andmisspecified (A2), respectively,while -c and -m indicate the estimators using the correctly specified
and misspecified model for r(t, z, a), respectively. FULL is for the estimator based on the full data and CC
is for the estimator based on the complete data only

M1 and N1 are the null hypotheses under H10 and H20, respectively, M2 to M4 are the
alternatives to H10, and N2 to N4 are the alternatives to H20.

Throughout the simulations, we use the Epanechnikov kernel K (x) = 3/4(1 −
x2)I {|x | ≤ 1}. The simulation study uses 1000 iterations.

Under setting N1 of model (9), with sample size n = 1200 under various cor-
rectly specified and misspecified models with 30% of causes missing for each of
the two missing at random scenarios MART,Z,A and MART,Z , simulation results
for β̂I ,k(t), β̂A,k(t), and the CC and the FULL estimators are reported in Figs. 1
to 4. The 5-fold cross-validation bandwidth selection procedure of Sect. 2.4 indicates
h = 0.3 as a reasonable bandwidth, based on the average of total prediction error
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Fig. 2 Bias, mean of the estimated standard errors (ESE), relative efficiency (RE) and 95% coverage
probability (CP) of the IPW and AIPW estimators for the setting N1 : β1(t) = −0.5 and β2(t) = (t +
0.1)1/2, with 30% of causes missing underMART,Z based on 1000 simulations for n = 1200 and h = 0.3.
The legends AIPW-A2 and AIPW-mA2 refer to the AIPW estimators using the correctly specified (A2) and
misspecified (A2), respectively, while -c and -m indicate the estimators using the correctly specified and
misspecified model for r(t, z, a), respectively. FULL is for the estimator based on the full data and CC is
for the estimator based on the complete data only

P E(h) = ∑5
l=1 P El(h) across 10 simulations for h ∈ [0.1, 0.5] decreasing as h

declines from 0.1 to 0.3 and stabilizing for h ≥ 0.3 (Web Figs. 5 and 6). The finite
sample performances of the estimators are assessed through the bias (Bias), the sam-
ple standard error (SSE) of the estimator and mean of the estimated standard errors
(ESE) in 1000 simulations. The standard errors of the IPW estimators are estimated
using the formula following Theorem 2 in Sect. 3.1, the standard errors of the AIPW
estimators are estimated using the formula following Theorem 4 in Sect. 3.2, and the
standard errors of the CC and the FULL estimators are obtained by letting q̂i = 1
in the estimated standard errors for the IPW estimators. The 95% confidence interval
of β(v) at each v is constructed using the estimated β(v) plus/minus 1.96 times the
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Fig. 3 Bias, mean of the estimated standard errors (ESE), relative efficiency (RE) and 95% coverage
probability (CP) of the AIPW estimators for the setting N1 : β1(t) = −0.5 and β2(t) = (t + 0.1)1/2,
with 30% of causes missing under MART,Z,A and the settings (A0), (A1), (A2) and (A3), based on 1000
simulations for n = 1200 and h = 0.3. The legends AIPW-A0-r30, AIPW-A1-r30, AIPW-A2-r30 and
AIPW-A3-r30 stand for the AIPW estimators under the settings (A0), (A1), (A2) and (A3), respectively,
with 30% of causes missing. FULL is for the estimator based on the full data and CC is for the estimator
based on the complete data only

estimated standard error of the estimator for each simulated data set, and its 95%
coverage probability is the percentage of the times of the 95% confidence intervals
include the true β(v) in 1000 simulations. The efficiency of each estimator is evalu-
ated through the relative efficiency to the FULL estimator, defined by SSE of FULL
estimator divided by SSE of the estimator under evaluation. Additional simulation
results for sample size n = 800 and different percentages of the missing causes and
bandwidths are reported in Appendix B of the Web-based Supplementary Material.

Figures 1 and 2 show the biases, relative efficiencies, ESE, and 95% empirical
coverage probabilities of the estimators of β1(t) and β2(t) based on 1000 simulations
under the MART,Z,A and MART,Z scenarios, respectively. The complete-case (CC)
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Fig. 4 Bias, mean of the estimated standard errors (ESE), relative efficiency (RE) and 95% coverage
probability (CP) of the AIPW estimators for the setting N1 : β1(t) = −0.5 and β2(t) = (t + 0.1)1/2,
with 30% of causes missing under MART,Z and the settings (A0), (A1), (A2) and (A3), based on 1000
simulations for n = 1200 and h = 0.3. The legends AIPW-A0-r30, AIPW-A1-r30, AIPW-A2-r30 and
AIPW-A3-r30 stand for the AIPW estimators under the settings (A0), (A1), (A2) and (A3), respectively,
30% of causes missing. FULL is for the estimator based on the full data and CC is for the estimator based
on the complete data only

estimator has large biases. The biases of the IPW estimator are small when the para-
metric model for r(t, z, a) is correctly specified but large when it is misspecified. The
biases of the AIPW estimators are smaller than those of the IPW estimators for all set-
tings, even in the case that the parametric models are both misspecified. Furthermore,
the AIPW estimators are more efficient than the IPW estimators even when the auxil-
iary variable Ai is independent of Vi . The 95% confidence intervals have reasonably
accurate empirical coverage probabilities, slightly lower than the expected 95%, with
greater deviation for the CC estimator and the IPW-m estimator.
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Table 1 Empirical sizes and powers of the test statistics T (1)
a1 , T (1)

a2 , T (1)
m1 and T (1)

m2 for testing H10:β1(t) = 0
for t ∈ [t1, t2] at the nominal level 0.05 formodels M1 to M4,with 30%of causesmissing under twodifferent
missing at random scenarios MART,Z,A and MART,Z and four auxiliary association level settings (A0),
(A1), (A2) and (A3), for sample size n = 1200 and bandwidth h = 0.3 based on 1000 Gaussian multiplier
samples and 1000 simulation iterations

Model (θ1, θ2) Test Under MART,Z,A Under MART,Z

T (1)
a1 T (1)

a2 T (1)
m1 T (1)

m2 T (1)
a1 T (1)

a2 T (1)
m1 T (1)

m2

Auxiliary association level setting (A0): Kendall’s tau= 0

M1 (0, 0) Size 0.051 0.054 0.060 0.052 0.055 0.059 0.058 0.053

M2 (0, −0.6) Power 0.565 0.534 0.673 0.650 0.575 0.539 0.681 0.658

M3 (0, −0.9) 0.820 0.794 0.890 0.869 0.827 0.806 0.891 0.875

M4 (0, −1.2) 0.936 0.936 0.964 0.961 0.940 0.939 0.965 0.964

Auxiliary association level setting (A1): Kendall’s tau = 0.45

M1 (0, 0) Size 0.058 0.054 0.058 0.055 0.065 0.059 0.053 0.053

M2 (0, −0.6) Power 0.582 0.562 0.691 0.663 0.585 0.562 0.705 0.672

M3 (0, −0.9) 0.842 0.818 0.909 0.882 0.838 0.817 0.899 0.877

M4 (0, −1.2) 0.947 0.947 0.974 0.970 0.949 0.946 0.975 0.967

Auxiliary association level setting (A2): Kendall’s tau = 0.75

M1 (0, 0) Size 0.053 0.051 0.058 0.057 0.057 0.055 0.059 0.052

M2 (0, −0.6) Power 0.608 0.585 0.720 0.693 0.618 0.582 0.725 0.700

M3 (0, −0.9) 0.876 0.859 0.926 0.906 0.873 0.862 0.920 0.902

M4 (0, −1.2) 0.969 0.960 0.984 0.978 0.966 0.964 0.984 0.978

Auxiliary association level setting (A3): Kendall’s tau = 0.9

M1 (0, 0) Size 0.048 0.052 0.055 0.052 0.050 0.054 0.055 0.048

M2 (0, −0.6) Power 0.620 0.597 0.735 0.710 0.623 0.598 0.731 0.710

M3 (0, −0.9) 0.885 0.873 0.938 0.918 0.891 0.869 0.936 0.922

M4 (0, −1.2) 0.969 0.970 0.990 0.988 0.972 0.970 0.988 0.986

To further investigate our proposed method, we assess the performance of the
AIPW estimators for four auxiliary association level settings under the MART,Z,A
and MART,Z scenarios, shown in Figs. 3 and 4, respectively. The simulation results
indicate that performance improves as the association strengthens.

We report the results for testing H10 : β1(t) = 0 and H20 : β1(t) does not depend
on t in Tables 1 and 2, respectively, where we take t1 = 0.3, t2 = 1.7, t∗1 = 0.35 for the
test statistics. The results confirm that the empirical sizes are all close to their nominal
level 0.05 for the four auxiliary association level settings under both MART,Z,A and
MART,Z scenarios. The powers of the tests increase with sample size and with the
strength of association between the auxiliary variable Ai and the cause Vi . The powers
of the supremum type tests are comparable to the powers of the integrated tests for
testing H10, whereas the powers of the integrated tests are slightly higher than those
of the supremum type tests for testing H20.
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Table 2 Empirical sizes and powers of the test statistics T (2)
a1 , T (2)

a2 , T (2)
m1 and T (2)

m2 for testing H20: β1(t)
does not depend on t for t ∈ [t1, t2] at the nominal level 0.05 for models N1 to N4, with 30% of causes
missing under two different missing at random scenarios MART,Z,A and MART,Z and four auxiliary
association level settings (A0), (A1), (A2) and (A3), for sample size n = 1200 and bandwidth h = 0.3
based on 1000 Gaussian multiplier samples and 1000 simulation iterations

Model (θ1, θ2) Test Under MART,Z,A Under MART,Z

T (2)
a1 T (2)

a2 T (2)
m1 T (2)

m2 T (2)
a1 T (2)

a2 T (2)
m1 T (2)

m2

Auxiliary association level setting (A0): Kendall’s tau = 0

N1 (0, −0.5) Size 0.049 0.051 0.057 0.053 0.049 0.047 0.054 0.048

N2 (0.9, 0) Power 0.436 0.504 0.560 0.655 0.435 0.501 0.560 0.655

N3 (1.2, 0) 0.670 0.758 0.767 0.874 0.666 0.764 0.779 0.879

N4 (1.5, 0) 0.866 0.930 0.928 0.967 0.876 0.938 0.935 0.973

Auxiliary association level setting (A1): Kendall’s tau = 0.45

N1 (0, −0.5) Size 0.052 0.053 0.053 0.054 0.052 0.054 0.049 0.054

N2 (0.9, 0) Power 0.443 0.514 0.574 0.674 0.449 0.527 0.574 0.673

N3 (1.2, 0) 0.690 0.776 0.783 0.886 0.685 0.778 0.789 0.887

N4 (1.5, 0) 0.882 0.936 0.942 0.980 0.883 0.936 0.940 0.978

Auxiliary association level setting (A2): Kendall’s tau = 0.75

N1 (0, −0.5) Size 0.047 0.051 0.052 0.051 0.050 0.049 0.051 0.050

N2 (0.9, 0) Power 0.469 0.537 0.581 0.693 0.465 0.548 0.588 0.697

N3 (1.2, 0) 0.726 0.801 0.804 0.900 0.718 0.799 0.808 0.897

N4 (1.5, 0) 0.900 0.948 0.958 0.981 0.904 0.947 0.954 0.978

Auxiliary association level setting (A3): Kendall’s tau = 0.9

N1 (0, −0.5) Size 0.051 0.057 0.049 0.055 0.055 0.056 0.058 0.058

N2 (0.9, 0) Power 0.472 0.546 0.587 0.698 0.471 0.548 0.594 0.698

N3 (1.2, 0) 0.724 0.811 0.830 0.906 0.732 0.807 0.823 0.908

N4 (1.5, 0) 0.919 0.961 0.962 0.985 0.918 0.964 0.962 0.982

6 Analysis of theMashi data

We apply the proposed methods to the Mashi clinical trial data. The Mashi trial was
conducted amongHIV-infectedwomen and their infants to compare the effect of infant
feeding strategy on twooutcomes in live-born infants:HIV infection (throughpostnatal
mother-to-child HIV transmission) and death (Thior et al. 2006). Twelve hundred HIV
positive pregnant mothers were randomized to two infant feeding strategies: 6months
of breastfeeding and zidovudine for the infant (BF+AZT, 588 live-born infants) versus
12months of formula feeding with zidovudine for the infant for the first month of life
(FF, 591 live-born infants). All mothers were instructed to wean their infants between
5 and 6months of age and were supplied free formula from 5 through 12months of
age to facilitate safe weaning. Infants were tested for HIV infection at birth, monthly
until age 7months, at age 9months, and then every 3months through age 18months.
We include in the analysis the subset of live-born infants with complete covariate
information at delivery, which totals 1123 live-born infants out of the 1179 total live-
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births. Of the 107 infants who died over the first 18months of life, 28 infants died
of an HIV-related cause, 21 infants died of an HIV-unrelated cause, and the cause of
death was missing for 58 infants. A death is considered to be HIV-related if either the
study clinicians deemed the death HIV-related, or the infant had at least one positive
test result from the PCR assay used to test for HIV infection prior to death. On the
other hand, a death is considered to be HIV-unrelated if the study clinician deemed
the death unrelated to HIV/AIDS.

TheMashi study showed that the treatment effect of the randomized feeding strategy
BF+AZTvs. FF on the risk of all-cause death varies over time. It is our interest to assess
the treatment effect onHIV-related deathwithHIV-unrelated death as a competing risk.
We consider the following cause-specific Cox models with time-varying coefficients

λk(t |Z) = λk0(t) exp {βk(t)Z}, (11)

where Z is the feeding strategy (1 for BF+AZT and 0 for FF defined in the first section).
Here we use k = 1 for HIV-related death and k = 2 for HIV-unrelated death. The
Epanechnikov kernel is used in the analysis.

We use a model selection procedure to select the variables (A1) that are relevant in
predicting whether the cause of death (V ) is observed, and what auxiliary variables
(A2) are informative about the distribution of V . Considering 20 covariates collected
for babies or their mothers, we use logistic regression and all-subsets model selection
(with criterion Mallows C p) to select a model for predicting r(ζ, A1) as in Sun et al.
(2012). The chosenmodel includes the following covariates: the infant had birthweight
< 2.5kilograms, the second randomization assignments of mom/baby was switched
from Placebo/Placebo to Placebo/Nevirapine during the trial due to the DSMB rec-
ommendation, log 10 plasma viral load level of the mom at delivery, the infant had
AZT toxicity, and whether the baby was hospitalized with a severe adverse event. In
addition, we use the binary covariate of whether the infant received HAART (highly
active ART therapy) as an auxiliary variable A2 for the failure cause V and estimate
ρk(ζ, A2) using a logistic regression model for f (A2|V = k).

Figure 5a and b shows the IPW and AIPW estimates and 95% pointwise confidence
bands of βk(t) for k = 1 and 2. Figure 5c shows the AIPW estimates of the cumulative
baseline hazard functions, �̂A,k0(t), for k = 1 and 2. Figure 5d shows estimates of
the log hazard ratio for all-cause death using the method of Cai and Sun (2003).
The estimations are evaluated over 40 evenly distributed grid points between 0 and
365days, where the bandwidth h = 365 × 0.6 = 219 days is chosen using the 5-fold
cross-validation procedure. The IPW and the AIPW estimates of βk(t) are close to
one another but more different in the early and later times of follow-up, especially for
k = 1. The confidence bands around the IPW estimates are slightly wider as expected.

Figure 5 supports that BF+AZT had an effect on reducing HIV-related deaths com-
pared to FF until about 6months or 183days, and BF+AZT also had an effect, albeit
weaker, on reducing HIV-unrelated deaths compared to FF. However, after about
6months, the data suggest that the risk of HIV-related death may have been higher
for the BF+AZT arm compared to the FF arm, whereas this is not the case for HIV-
unrelated death. Figure 5d supports that BF+AZT reduces the risk of all-cause death
compared to FF before 6months. However, it appears to elevate the risk after 6months.
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Fig. 5 Estimation of β1(t) and β2(t) with 95% pointwise confidence bands, and the cumulative baseline
hazard functions �A,k0(t) (k = 1, 2) for the Mashi randomized clinical trial with bandwidth h = 219. The

estimates β̂1(t) and β̂2(t) of the log hazard ratio (BF+AZT / FF) are given in (a) for HIV-related death and
in (b) for HIV-unrelated death. The estimated cumulative baseline hazard functions �̂A,k0(t) are given in

(c) for k = 1 and 2. The estimator β̂(t) of the log hazard ratio for all-cause death is given in (d) using the
method of Cai and Sun (2003)

Figure 5a and d also indicate a lack of fit of the Cox model with constant coefficients
for the first year of follow-up. The results are consistent with the original study results
that showed that infants assigned to formula-feeding had a higher rate of all-cause
mortality by the age of 7months compared to those assigned to BF+AZT (Thior et al.
2006).

Next, we conduct formal hypothesis tests to examine the effects of the feeding
strategy on the risks of HIV-related death and HIV-unrelated death. We test the null
hypothesis H10: βk(t) = 0 for t ∈ [t1, t2] against H1a : βk(t) �= 0 for some t ∈
[t1, t2] and H1m : βk(t) ≤ 0 with strict inequality for some t ∈ [t1, t2]. We also test
the null hypothesis H20 that βk(t) does not depend on t within [t1, t2] against the
alternatives H2a that βk(t) changes over t ∈ [t1, t2] and H2m that βk(t) increases
with t ∈ [t1, t2], k = 1, 2. The tests are conducted for the time interval days since
birth [t1, t2] = [9, 365]. Because infants in the BF+AZT group were given 6 months
of breastfeeding and the mothers were instructed to wean their infants between 5
and 6months of age and were supplied formula from 5 to 12month of age, we also
conducted some hypothesis tests for early days [9, 183] before the feeding change and
for later days [183, 365] after the feeding change. The p-values given in Table 3 of
the test statistics T (1)

a1 , T (1)
a2 , T (1)

m1 and T (1)
m2 for testing H10 and the test statistics T (2)

a1 ,
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Table 3 Observed p-values of the test statistics T (1)
a1 , T (1)

a2 , T (1)
m1 , T (1)

m2 , T (2)
a1 , T (2)

a2 , T (2)
m1 and T (2)

m2 for testing
the log hazard ratio (BF+AZT/FF) for HIV-related death, β1(t), and for HIV-unrelated death, β2(t), over
the time interval t ∈ [t1, t2] under model (11) based on 1000 Gaussian multiplier samples with h = 219 and
t∗1 − t1 = 9 days. The tests are conducted for the time intervals [t1, t2] = [9, 365], [9, 183] and [183, 365]
(days since birth)

For HIV related death in t ∈ [9, 365] days since birth
H10 : β1(t) = 0 H20 : β1(t) does not depend on t

H1a : β1(t) �= 0 H1m : β1(t) ≤ 0 H2a : β1(t) changes in t H2m : β1(t) increases in t

T (1)
a1 T (1)

a2 T (1)
m1 T (1)

m2 T (2)
a1 T (2)

a2 T (2)
m1 T (2)

m2

0.160 0.113 0.081 0.050 < 0.001 < 0.001 < 0.001 < 0.001

For HIV unrelated death in t ∈ [9, 365] days since birth
H10 : β2(t) = 0 H20 : β2(t) does not depend on t

H1a : β2(t) �= 0 H1m : β2(t) ≤ 0 H2a : β2(t) changes in t H2m : β2(t) increases in t

T (1)
a1 T (1)

a2 T (1)
m1 T (1)

m2 T (2)
a1 T (2)

a2 T (2)
m1 T (2)

m2

0.211 0.211 0.106 0.085 0.554 0.621 0.261 0.391

For HIV related death in two different time intervals
H10 : β1(t) = 0, for t ∈ [9, 183] H10 : β1(t) = 0, for t ∈ [183, 365]
H1a : β1(t) �= 0 H1m : β1(t) ≤ 0 H1a : β1(t) �= 0 H1m : β1(t) ≥ 0

T (1)
a1 T (1)

a2 T (1)
m1 T (1)

m2 T (2)
a1 T (2)

a2 T (2)
m1 T (2)

m2

0.020 0.010 0.010 0.003 0.016 0.062 0.010 0.050

T (2)
a2 , T (2)

m1 and T (2)
m2 for testing H20 are calculated using h = 219, t∗1 − t1 = 9 days and

1000 Gaussian multiplier samples. The first block of Table 3 shows the p-values of
the tests for HIV-related death over the time interval [9, 365] days since birth. While
the evidence against H10: β1(t) = 0 is weak, the data strongly suggests that the log
hazard ratio (BF+AZT versus FF) for HIV-related death, β1(t), changes with time
and that it increases with time since birth. Further hypothesis tests for two different
time intervals shown in the third block of Table 3 support β1(t) < 0 at some t before
6months and β1(t) > 0 for some t after 6months. These conclusions from the testing
results are further supported by the estimated log hazard ratio (BF+AZT versus FF)
for HIV-related death, β1(t), given in Fig. 5a. The second block of Table 3 shows the
p-values of the tests for HIV-unrelated death over the time interval [9, 365] days since
birth. The data do not suggest that the log hazard ratio for HIV-unrelated death, β2(t),
differs from zero, nor does it support that β2(t) varies with time.

The diagnostic plots Fig. 6a and c indicate that the observed test processes D1(t) and
D2(t) for testing H10 and H20 for β1(t) deviate significantly from the 1000 random
realizations from D∗

1(t) and D∗
2(t), respectively. On the other hand, Fig. 6b and d

show that the deviations of the observed test processes for testing β2(t) from the
null models are not significant. These diagnostic plots are consistent with the p-value
results reported in Table 3.

The results of the analysis using the Gaussian kernel are similar, which are given in
Appendix C of theWeb-based SupplementaryMaterial.We use the timecox() function
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Fig. 6 Test processes D1(t) and D2(t) (black solid lines) for testing H10 and H20 for the log hazard ratio
(BF+AZT/FF) for HIV-related death and HIV-unrelated death are plotted against 1000 random realizations
from D∗

1 (t) and D∗
2 (t) (grey lines), respectively. a and c show the plots for testing H10 and H20 for β1(t),

respectively. b and d show the plots for testing H10 and H20 for β2(t), respectively

in the timereg package in R to test for the time-invariant effect of all-cause death, cf.
Martinussen and Scheike (2006). The p-values for the Kolmogorov-Smirnov test and
Cramer von Mises test are 0.004 and 0.010, respectively, which support that the effect
of feeding strategy on all-cause death varies with time.

7 Concluding remarks

In this paper, we have developed IPWandAIPWestimationmethods for cause-specific
hazard regressionmodels withmissing failure causes, where the Coxmodel with time-
varying coefficients are utilized to examine cause-specific covariate effects. TheAIPW
estimator is a two-stage estimator by utilizing the IPWestimator and throughmodeling
available auxiliary variables to improve efficiency. Both the IPWandAIPWestimation
methods allow for themissingness of failure cause to depend on auxiliary variables that
correlatewith the cause of failure. Simulation studies demonstrate that the performance
of the AIPW estimators improves as the association between the auxiliary variable and
the cause of failure strengthens. Furthermore, the AIPW estimators are more efficient
than the IPW estimators even when the auxiliary variables are not available due to
the more efficient construction of the AIPW estimating equation. Most existing works
model the conditional distribution of the cause of failure ρk(ζi , Ai ) using a logistic
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regression model, cf. Gao and Tsiatis (2005) and Lu and Liang (2008). However,
correct modeling of ρk(ζi , Ai ) is intricate. The proposed AIPW estimators utilize the
expression (5) for ρk(ζi , Ai ), which describes how the distribution of the cause of
failure depends on the variables (Ti , Zi , Ai ) through the conditional cause-specific
hazard functions and the conditional density function of the auxiliary variables. The
proposed AIPW estimators do not possess the double robustness property because
they use the first stage IPW estimators in the implementation. Nevertheless, since it
is often dubious to model ρk(ζi , Ai ) accurately, such a property is also unachievable
for the regular AIPW estimators that model both the probability of a complete case
r(ζi , Ai ) and the conditional distribution of the cause of failure ρk(ζi , Ai ).

There would be loss of efficiency by fitting the Coxmodel with time-varying effects
when the Cox model with constant effects holds, as we show in the asymptotic results
that the rate of convergence for β̂A,k(t) is at the order of (nh)−1/2 while the rate of
convergence of the estimated β̂ under the Cox model is at the order of n−1/2. One
of the two hypothesis testing procedures developed in Sect. 4 for the two hypotheses
H10: βk(t) ≡ 0 and H20: βk(t) ≡ βk can be used to evaluate whether the Cox model
with constant effects is appropriate.

The proposed estimation and hypothesis testing procedures contribute to the anal-
ysis of the Mashi clinical trial data, for examining the randomized treatment effects
on HIV-related and HIV-unrelated infant death, where the cause of death is frequently
missing, and the treatment effects are demonstrated to vary over time. Thismanuscript,
however, does not provide a formal testing procedure for whether the treatment effect
is different against cause 1 failure than against cause 2 failure. The difference in the
effects of feeding strategy on HIV-related death and on HIV-unrelated death is shown
in Fig. 5a, b, where the fact that the estimated curves are quite different, and there are
time periods during which the two sets of pointwise confidence bands do not overlap,
suggests potential differences between the failure causes. However, as the reviewer
notes, this does not formally imply a difference; for that one would need simultaneous
confidence bands about the difference β1(t)−β2(t) excluding 0 for at least one t , and
this manuscript does not study such simultaneous confidence bands. Therefore, we
only have an informal suggestion of a potential difference, without a formal inference
backing it up. An alternative and complementary approach to assessing the effect of
feeding strategy on HIV infection and death would use an illness-death model, where
HIV infection, as the “illness”, is subject to interval censoring. It would be worthwhile
to study the illness-deathmodel using theCoxmodelwith time-varying coefficients for
this situation, which would provide a different approach to investigating the scientific
question in the Mashi study.
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Appendix

This Appendix introduces the notations and presents the conditions for the asymptotic
results presented in Theorems 1–5.

Let Ft be the right continuous filtration generated by the data processes
{Nik(s), Yi (s), Zi (s); i = 1, . . . , n, k = 1, 2, . . . , L, 0 ≤ s ≤ t}. Assume
E(d Nik(t) = 1|Ft−) = E(d Nik(t) = 1|Yi (t), Zi (t)) = Yi (t)λik(t |Zi (t))dt .
It follows that Mik(t) = Nik(t) − ∫ t

0 Yi (u)λk(u|Zi (u))du, i = 1, . . . , n, k =
1, 2, . . . , L , are multivariate orthogonal martingales with respect to Ft (Aalen and
Johansen 1978). To accommodate additional information introduced due to miss-
ing data, we define the augmented filtration F∗

t generated by the data processes
{Nik(s), Yi (s), Zi (s), Ri , δi Ai ; i = 1, . . . , n, k = 1, 2, . . . , L, 0 ≤ s ≤ t}. Let
λ∗

ik(t) dt = P{Ti ∈ [t, t + dt), Vi = k|Xi ≥ t, Zi (t), Ri , δi Ai }. Then Yi (t)λ∗
ik(t) is

the intensity of Nik(t) with respect to F∗
t , and M∗

ik(t) = Nik(t) − ∫ t
0 Yi (u)λ∗

ik(u)du,
i = 1, . . . , n, k = 1, 2, . . . , L , are multivariate orthgonal martingales with respect to
F∗

t .

Let S( j)(t, βk) = n−1 ∑n
i=1 Yi (t) exp

(
βk(t)TZi (t)

)
Zi (t)⊗ j , and S∗( j)

I (t, βk, ψ) =
n−1 ∑n

i=1 qi Yi (t) exp
(
βk(t)TZi (t)

)
Zi (t)⊗ j , for k = 1, . . . , L and j = 0, 1, 2.

Let s( j)(t, βk) = E S( j)(t, βk) and s∗( j)
I (t, βk, ψ) = E S∗( j)

I (t, βk, ψ). If the

model r(ζi , Ai , ψ) is correctly specified, then s( j)(t, βk) = s∗( j)
I (t, βk, ψ). Define

�k(t) = [
s(2)(t, βk) − (

s(1)(t, βk)
)⊗2

/ s(0)(t, βk)
]
λk0(t) and �∗

k (t) = E
[(

Zi (t)−
s(1)(t, βk)/s(0)(t, βk)

)⊗2
Riπ

−2(Qi )Yi (t)λ∗
ik(t)

]
.

Let Sψ
i and I ψ be the score vector and information matrix for ψ̂ under (4). Then,

Sψ
i = δi (Ri − r(ζi , Ai , ψ0))

r(ζi , Ai , ψ0)(1 − r(ζi , Ai , ψ0))

∂r(ζi , Ai , ψ0)

∂ψ
,

I ψ = E

{
δi

r(ζi , Ai , ψ0)(1 − r(ζi , Ai , ψ0))

∂r(ζi , Ai , ψ0)

∂ψ

(
∂r(ζi , Ai , ψ0)

∂ψ

)T}
,

and ψ̂ − ψ = n−1 ∑n
i=1(I ψ)−1Sψ

i + op(n−1/2), where ψ0 is the true value of ψ . We
also define the following notations:

Ai (t, βk) =
∫ τ

0
Kh(u − t)H−1

(
Zi (u) − s(1)(u, βk)

s(0)(u, βk)

)
qi0 d Mik(u),

Bi (t, βk) =
∫ τ

0
Kh(u − t)H−1

(
Zi (u) − s(1)(u, βk)

s(0)(u, βk)

)
(1 − qi0) E(d Mik(u)|Qi ),

Dn(t, βk) = n−1
n∑

i=1

∫ τ

0
Kh(u − t)

(
Zi (u) − s(1)(u, βk)

s(0)(u, βk)

) −Ri

(π(Qi , ψ0))2
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(
∂π(Qi , ψ0)

∂ψ

)T

d Mik(u),

Oi (t, βk) = Dn(t, βk)(I ψ)−1Sψ
i .

The following conditions are assumptions we use to prove the theorems:

(C.1) For k = 1, . . . , L , βk(t) has componentwise second derivatives on [0, τ ]. The
sample path of the covariate process Zi (t) is left continuous and of bounded
variation, and satisfies the moment condition E[||Zi (t)||4 exp(2M ||Zi (t)||)] <

∞, where M is a constant such that (t, βk(t)) ∈ [0, τ ] × [−M, M]p for all t
and ||A|| = maxk,l |akl | for a matrix A = (akl).

(C.2) The kernel function K (·) is bounded and symmetric with bounded support
[−1, 1]. The bandwidth h satisfies nh2 → ∞ and nh5 is bounded as n → ∞.

(C.3) The matrix �k(t) is positive definite for all t ∈ [0, τ ].
(C.4) For k = 1, . . . , L and for j = 0, 1, 2, the functions s( j)(t, βk) and

s∗( j)
I (t, βk, ψ) are componentwise continuous on t ∈ [0, τ ], βk ∈ [−M, M]p,

ψ ∈ Θψ , where Θψ is a compact set. supt∈[0,τ ],βk∈[−M,M]p ||S( j)(t, βk) −
s( j)(t, βk)|| = Op(n−1/2), and supt∈[0,τ ],βk∈[−M,M]p,ψ∈Θψ

||S∗( j)
I (t, βk, ψ)−

s∗( j)
I (t, βk, ψ)|| = Op(n−1/2).

(C.5) The function r(ζi , Ai , ψ) is twice differentiable with respect toψ on a compact
set Θψ , r ′(ζi , Ai , ψ) = ∂r(ζi , Ai , ψ)/∂ψ is uniformly bounded, and there is
an ε > 0 such that r(ζi , Ai , ψ) ≥ ε for all i . The function f (Ai |k, Ti , Zi , ϕk)

is also twice differentiable with respect to ϕk on a compact set Θϕk for k =
1, . . . , L .

Supplementarymaterials

The Web-based Supplementary Materials referenced in the manuscript are available
with this paper at the journal’s online website.
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