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Summary. Deployment of the recently licensed tetravalent dengue vaccine based on a chimeric
yellow fever virus, CYD-TDV, requires understanding of how the risk of dengue disease in vac-
cine recipients depends jointly on a host biomarker measured after vaccination (neutralization
titre—neutralizing antibodies) and on a ‘mark’ feature of the dengue disease failure event (the
amino acid sequence distance of the dengue virus to the dengue sequence represented in the
vaccine). The CYD14 phase 3 trial of CYD-TDV measured neutralizing antibodies via case–
cohort sampling and the mark in dengue disease failure events, with about a third missing
marks. We addressed the question of interest by developing inferential procedures for the strat-
ified mark-specific proportional hazards model with missing covariates and missing marks.Two
hybrid approaches are investigated that leverage both augmented inverse probability weighting
and nearest neighbourhood hot deck multiple imputation. The two approaches differ in how the
imputed marks are pooled in estimation. Our investigation shows that nearest neighbourhood
hot deck imputation can lead to biased estimation without properly selected neighbourhoods.
Simulations show that the hybrid methods developed perform well with unbiased nearest neigh-
bourhood hot deck imputations from proper neighbourhood selection.The new methods applied
to CYD14 show that neutralizing antibody level is strongly inversely associated with the risk of
dengue disease in vaccine recipients, more strongly against dengue viruses with shorter dis-
tances.
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1. Introduction

The CYD14 phase 3 trial randomized 2–14-year-old children within five countries of south-east
Asia in 2:1 allocation to receive the dengue vaccine based on a chimeric yellow fever virus,
CYD-TDV, or placebo in three injections at months 0, 6 and 12, where the CYD-TDV vaccine
(Sanofi Pasteur) is a recombinant, live-attenuated, tetravalent vaccine containing one represen-
tative dengue strain from each of the four dengue serotypes (Capeding et al., 2014). Participants
underwent active surveillance for the primary study end point symptomatic virologically con-
firmed dengue (henceforth ‘dengue disease’) between month 13 and month 25 post first vaccina-
tion. Partly based on this trial that showed that the rate of dengue disease was an estimated 56%
lower in the vaccine group than the placebo group (p < 0.001), this vaccine has been licensed
in more than a dozen countries. The vaccine has been thought to work by inducing antidengue
neutralizing antibodies (NAs).

We develop statistical methods to analyse the CYD14 efficacy trial data that are appropriate
for interrogating how the association of antidengue NAs with dengue disease risk may differ de-
pending on the amino acid sequence of the dengue virus causing the study end point, accounting
for the fact that the expensive covariate of interest (NA titre) was measured through a classic
case–cohort sampling design (measured from a Bernoulli simple random sample of 19.5% of
participants at enrolment and from all disease cases) and that there is a substantial percentage
(about a third) of missing dengue sequences among cases. This integrated assessment of how a
host biomarker and a ‘mark’ feature of the failure event relate to failure risk has many applica-
tions, including general prospective studies that follow a cohort for acquisition of a genetically
diverse infectious disease, encompassing many pathogens including human immunodeficiency
virus (HIV) type 1, influenza and malaria.

To define the general statistical problem, let T be the time to a failure event of interest, and
Z be a time-independent p-dimensional covariate. Under the competing risks model, a cause-
of-failure mark V is observed when a failure event occurs. Let V be a continuous mark variable
with bounded support [0, 1]. The mark-specific failure time data follow a competing risks model
where the mark variable V plays the role of the cause of failure that is only observable on failure.
In the motivating dengue vaccine study, the mark V measures the amino acid sequence distance
of a dengue-disease-causing dengue sequence to the nearest dengue sequence inside the vaccine,
which can only be observed in subjects experiencing the dengue disease end point and is not
available or meaningfully defined in subjects without the end point.

The mark-specific hazard function, defined as

λ.t, v/= lim
Δ1→0,Δ2→0

P{T ∈ [t, t +Δ1/, V ∈ [v, v+Δ2/|T � t}=.Δ1Δ2/,

was studied by Gilbert et al. (2004). It measures the instantaneous risk of failure by a mark in the
presence of all marks, e.g. dengue sequences circulating in the efficacy trial region exposing trial
participants through mosquito bites, and can be considered as an extension of the cause-specific
hazard function to a continuous mark. Subsequent statistical methods have been developed to
model the conditional mark-specific hazard function with applications to HIV vaccine efficacy
studies; see Sun et al. (2009), Sun and Gilbert (2012), Juraska and Gilbert (2013, 2016) and
Yang et al. (2017).

Suppose that the population of interest includes K subpopulations or strata, each with dif-
ferent baseline mark-specific hazard functions. Let λk.t, v|z/ be the conditional mark-specific
hazard function at .T , V/= .t, v/ given covariate Z= z for an individual in the kth stratum. The
stratified mark-specific proportional hazards model postulates that
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λk.t, v|z/=λ0k.t, v/ exp{β.v/Tz}, k =1, : : : , K, .1/

where λ0k.·, v/ =λk.t, v|z = 0/ is the unspecified baseline hazard function for the kth stratum,
and β.v/ is the p-dimensional unknown regression coefficient function of v. Model (1) allows
different baseline functions for different strata.

The mark-specific proportional hazards model (1) was first studied by Sun et al. (2009) under
K = 1 with the objective of evaluating mark-specific HIV vaccine efficacy, where the mark
is an amino acid sequence distance of an infecting HIV strain to an HIV strain inside the
vaccine. Model (1) was further studied by Sun and Gilbert (2012), Gilbert and Sun (2015) and
Juraska and Gilbert (2016) for the situation where the marks are subject to missingness in
subjects with observed failure times. Yang et al. (2017) investigated model (1) under two-phase
sampling of components of Z allowing some participants to have missing covariates. However,
the methods accounting for missing marks assumed complete measurements of all covariates,
and the methods accounting for missing covariates assumed complete data on the marks of
failures. Therefore, new methods are needed to account for both types of missing data.

In the motivating CYD14 efficacy trial, there are two types of missing data. The covariate
NA titre is missing through a case–cohort sampling design and the mark V (dengue sequence
distance) is missing for some cases. Multiple imputation has been widely used for handling
missing data; see Rubin (1987). Two-phase sampling or case–cohort designs are common forms
of studies with missing covariates, where covariates are divided into phase 1 or phase 2, with
the former measured in all enrolled subjects and the latter measured only in a subset, typically
because of expense of measurement. A ‘case–cohort’ design typically refers to randomly sam-
pling subjects at enrolment into a subcohort for measuring the phase 2 covariates, which are also
measured in all subjects outside the subcohort who experience the failure event and have the
requisite samples available (White, 1982; Prentice, 1986; Breslow and Lumley, 2013). ‘Two-phase
sampling’ typically refers to the generalization of outcome-dependent case–control sampling,
where, within each cell of a 2 × K table defined by outcome status cross-classified with the K

levels of a discrete phase 1 covariate, subjects are randomly sampled for measuring the phase 2
covariates (Breslow et al., 2009). These designs can be implemented with Bernoulli or without
replacement sampling, and our methods apply to any of the Bernoulli sampling versions. As is
the usual case, application of the methods to the without-replacement sampling versions pro-
vides approximately correct results, with inferences tending to be slightly conservative. There is
extensive literature on statistical methods for two-phase sampling or case–cohort designs, e.g.
Prentice (1986), Robins et al. (1994), Borgan et al. (2000), Scheike and Martinussen (2004),
Kulich and Lin (2004), Nan (2004), Breslow et al. (2009) and Breslow and Lumley (2013).

Nearest neighbourhood imputation is one of the hot deck imputation methods that are com-
monly used in survey sampling (Sedransk, 1985; Kovar et al., 1988; Jonsson and Wohlin, 2004;
Andridge and Little, 2010). The idea of nearest neighbourhood hot deck (NNHD) imputation
is to replace each missing value with an observed response from a matching subject from the
same data set. The hybrid approach proposed leverages both augmented inverse-probability-
weighting (AIPW) complete-case estimation (Robins et al., 1994) to handle the two-phase sam-
pled covariates and NNHD imputation to fill in missing marks in failure cases (Chen and Shao,
2000; Beretta and Santaniello, 2016). AIPW estimation has a double-robust property, yielding
consistent estimates if either the model for whether phase-2 covariates are missing or the model
for the conditional expectations of phase 2 covariates is correctly specified (Robins et al., 1994;
Gao and Tsiatis, 2005). Most imputation methods assume a parametric model for the variable
to be imputed. In contrast, as a non-parametric technique, NNHD imputation does not rely
on model fitting for the variable to be imputed, and thus is potentially less sensitive to model
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misspecification than a parametric-model-based imputation method. However, our investiga-
tion shows that NNHD imputation can lead to biased estimation without proper neighbourhood
selection.

We develop hybrid estimation and hypothesis testing procedures for model (1) that use both
AIPW estimation and NNHD imputation. We investigate the neighbourhood selection for
NNHD imputation for unbiased estimation. NNHD imputation is employed to impute the
values of missing marks, followed by completed-marks two-phase sampling data analysis with
an AIPW method similar to that of Yang et al. (2017) that did not account for missing marks.
We investigate two hybrid estimation methods using the completed-marks two-phase sampling
data that differ in the way in which the imputed marks are pooled in estimation. We develop
hypothesis testing procedures to evaluate whether the mark-specific hazard ratios are unity and
whether they change with the mark. The main contribution of this paper is the development
of hybrid estimation and hypothesis testing methods for model (1) that relates the hazard of
an outcome to both covariates and marks, accounting for missingness in both, including the
investigation of neighbourhood selection for the NNHD imputation of marks to achieve valid
inference on the association parameters. The procedures developed enable assessment of whether
and how the hazard rate of an infectious disease with a pathogen genetically close to or far from a
reference genetic sequence is modified by participant covariates. This application is exemplified
by the dengue vaccine efficacy trial, with reference sequence the closest dengue strain in the
vaccine construct and covariates age and immune response to the dengue vaccine strains.

In Section 2, we formulate the missing data problem, presenting notation and assumptions.
The NNHD imputation technique is introduced in Section 2.1. The two hybrid estimation pro-
cedures are developed in Section 2.2. Techniques for estimation of the mark-specific cumulative
incidence function rate (CIFR) are given in Section 2.3. Statistical procedures for hypothesis
testing of the mark-specific hazard ratios are developed in Section 3. An extensive simulation
study is conducted in Section 4 to examine the performances of the newly proposed methods,
which are applied to the CYD14 data in Section 5. Some concluding remarks are given in Sec-
tion 6. Additional discussions about the proposed hybrid methods along with more simulation
results, analysis of the simulated data based on the CYD14 efficacy trial and additional analysis
of the CYD14 efficacy trial are presented in the on-line supplementary materials.

2. Hybrid estimation using augmented inverse probability weighting and
nearest neighbourhood hot deck multiple imputations

The AIPW estimation method was proposed by Robins et al. (1994) for missing data to improve
robustness and efficiency over simple inverse probability weighted estimators. This important
methodology has been widely used and has shown efficiency and the double-robust property in
many studies; see Gao and Tsiatis (2005), Sun and Gilbert (2012), Yang et al. (2017) and Sun
et al. (2018), among others. We investigate two hybrid methods of estimation of the mark-specific
proportional hazards model that use both AIPW and NNHD imputation. We propose to employ
the NNHD method to impute the values of missing marks, followed by completed-marks two-
phase sampling data analysis with an AIPW method similar to that of Yang et al. (2017) that
did not account for missing marks. The first approach follows the standard multiple-imputation
scheme of Rubin (1987) whereas the second approach incorporates multiple imputations in
estimating equations (MIEEs).

Suppose that the failure time T is subject to right censoring and is partially observed through
observation of X = min{T , C} and δ = I.T � CÅ/, where I.·/ is the indicator function and
CÅ = min.C, τ / is the right censoring time with τ the end of follow-up and C the right cen-
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soring random variable. Let Z be a time-independent covariate vector. We assume independent
censoring—that C is independent of .T , V/ conditionally on Z. Suppose that Z= .ZT

1 , ZT
2 /T con-

sists of two parts—Z1 are observed in all subjects (phase 1) and Z2 are measured in only a subset
(phase 2 sample). In addition, the mark variable V is subject to missingness. Let ξ = .ξz, ξv/ be
the vector of missing data indicators, where ξz is the indicator for whether a subject has complete
covariate information, and ξv is the indicator for whether the mark variable V is observed. We
set ξv =1 if δ =0 since the mark V is inherently not available and is not considered as missing.
We also set ξv = 1 if δ = 1 and V is observed; otherwise ξv = 0. Let A = .Az, Av/ be auxiliary
variables, with Az the auxiliary variable predictive of phase 2 covariates and Av the auxiliary
variable predictive of missing marks. For convenience, we denote Ω= .X, Z1, A/ and represent
the observed data by Ω̃o = .Ω, ξzZ2, ξvδV , δ/.

We assume that Z2 and V are missing at random (Rubin, 1976), satisfying missingness at
random (MAR):

(a) P.ξz =1|X, Z1, Z2, A, δV , δ/=P.ξz =1|X, Z1, Az, δ/,
(b) P.ξv =1|X, Z1, Z2, A, δV , δ =1/=P.ξv =1|X, Z1, Z2, Av, δ =1/ and
(c) P.ξz =0, ξv =0|X, Z1, Z2, A, δV , δ/=0.

MAR (a) assumes that the missingness of Z2 does not depend on the value of Z2 and δV ,
MAR (b) assumes that the missingness of V does not depend on the value of V and MAR
(c) implies that Z2 and V do not have missing values on the same subjects, which is always
satisfied under Prentice’s (1986) original case–cohort sampling design for which no cases have
missing Z2-values. It is approximately satisfied for implemented case–cohort sampling designs
(including our example) that intend to measure Z2 in all cases but end up with a small number
of happenstance missing values.

Suppose that there are K strata. Let nk be the number of subjects in the kth stratum and
n=ΣK

k=1nk. We label the ith subject in the kth stratum with a pair of subscripts {ki}. Let Z1,ki

and Z2,ki be copies of covariates Z1 and Z2 for subject i in stratum k respectively. Similarly, ξz,ki

and ξv,ki are copies of ξz and ξv respectively. Let Zki = .ZT
1,ki, ZT

2,ki/
T, ξki = .ξz,ki, ξv,ki/ and Ωki =

.Xki, Z1,ki, Aki/. The observed data are Ω̃o,ki = .Ωki, ξz,kiZ2,ki, ξv,kiδkiVki, δki/, for i = 1, : : : , nk,
k =1, : : : , K. We assume that {Tki, Cki, Vki, Zki, ξki, Aki; i=1, : : : , nk} are independent identically
distributed replicates of .T , C, V , Z, ξ, A/ from stratum k, k =1, : : : , K.

2.1. Nearest neighbourhood hot deck imputation of missing marks
In the competing risks setting, Vki is observable if a failure is observed, i.e. δki =1. If the mark
value Vki is not available for δki = 1, then we have a missing mark indicated by ξv,ki = 0. The
standard imputation approach involves first drawing the parameters of the posterior distribution
of the missing variables given the observed data, and then drawing M sets of imputed values
for the missing data from their posterior distribution given the observed data; see Rubin (1987).
However, parametric multiple imputation can be sensitive to misspecification of the imputation
model (Carroll et al., 1984).

NNHD imputation, as a hot deck imputation method, replaces each missing value with
an observed response from a matching subject from the same data set. Hot deck imputation
methods have been studied by Little (1988), Reilly (1993), Chen and Shao (2000) and Beretta
and Santaniello (2016), among others. Using the hot deck method, we impute a missing value V

of a subject by choosing at random from observed V -values among matching donors. Donors
are matched for their similarity in regard to some metric. This approach does not rely on
model fitting for the variable to be imputed and thus is potentially less sensitive to model
misspecification than an imputation method based on a parametric model.
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We describe the NNHD imputation procedure as follows. Suppose that Vki is missing, in
which case ξv,ki = 0. We impute missing values Vki by using hot deck imputation from donors
with similar Hki = .Tki, Zki/ or Hki = .Tki, Zki, Av,ki/ in the case that a relevant Av,ki is available.
Let d.Hki, Hkj/ be a measure of similarity between Hki and Hkj. Each hot deck imputation
of Vki is obtained by randomly selecting a donor’s mark from the L nearest neighbourhood
Lki matched on the basis of the similarity measure d.Hki, Hkj/, where L is a number less than
the number of non-missing marks for observed failures. Let Rki,L be the Lth order statistic of
d.Hki, Hkj/ for subjects with δkj =1, ξv,kj =1, j =1, : : : , nk. An L nearest neighbourhood of Vki is
defined as Lki ={Vkj : d.Hki, Hkj/�Rki,L, δkj =1, ξv,kj =1, j =1, : : : , nk}. The implementation
of the nearest neighbourhood hot deck depends on the choice of metric and the variables that
are included for the neighbourhood selection. If some components of Zki are discrete, then the L

nearest neighbourhood imputations are carried out on the basis of the remaining variables Hs
ki

in Hki stratified by the values of the discrete components of Zki. Further, the similarity measure
d.Hs

ki, Hs
kj/ can be calculated on the basis of the z-scores or the ranks of variables, which

eliminates the effects of scales or units of the variables on the nearest neighbour selections. Let
V

.m/
ki , m=1, : : : , M, be M random selections from Lki with replacement. If Vki is not missing, in

which case ξv,ki =1, then we let V
.m/
ki =Vki.

NNHD imputation is related to variable bandwidth L nearest neighbours kernel smoothing
that is widely used in non-parametric density estimation and regression; see Stone (1977), Li
(1984) and Altman (1992). Every case with missing V has the same number of marks imputed
from the L nearest neighbours. The NNHD approach with a fixed number L of neighbours is
similar to defining neighbourhoods by a metric with varying bandwidth such as Rki,L, whereas
an alternative approach with a fixed bandwidth B is similar to allowing variable L. A fixed B-
bandwidth neighbourhood of Vki is defined as Bki ={Vkj : d.Hki, Hkj/�B, δkj =1, ξv,kj =1, j =
1, : : : , nk}. In this case, the number L of neighbours belonging to Bki varies between subjects with
missing marks. An advantage of using fixed L is that the bandwidth is allowed to be larger when
data are sparse, which is a common non-parametric smoothing approach to guard against incor-
porating too few points that could occur by using a fixed bandwidth. Although we study NNHD
with a fixed L, the method could also be implemented with a fixed bandwidth or variable L.

Choosing the set Hki of variables for neighbourhood selection is very important. Our inves-
tigation shows that NNHD imputation can lead to biased estimation without proper selection
of the neighbourhood. Let W = .T , Z, Av/ and ρk.v, W/=P.V � v|δ = 1, W/ be the conditional
distribution of V given W for cases. For an observed value w = .t, z, a/ of W of an individual
in the kth stratum, ρk.v, w/=P.V � v|δ = 1, W = w/. Let gk.a|t, v, z/=P.Av,ki = a|Tki = t, Vki =
v, Zki = z, δki = 1/ be the probability density of a possible auxiliary variable for V . By Sun and
Gilbert (2012),

ρk.v, w/=
∫ v

0
λk.t, u|z/gk.a|t, u, z/ du

/∫ 1

0
λk.t, u|z/gk.a|t, u, z/ du: .2/

If Av,ki is not available or independent of Vki given .Tki, Zki, δki/, then

ρk.v, w/=
∫ v

0
λk.t, u|z/ du

/∫ 1

0
λk.t, u|z/ du:

Equation (2) shows that the conditional distribution of Vki depends on .Tki, Zki, Av,ki/ in general.
Unbiased imputation of Vki should be selected from a neighbourhood defined on the basis of
Hki = .Tki, Zki, Av,ki/ except for certain special situations where β.v/ in model (1) does not change
with v and Av,ki is conditionally independent of Zki given .Tki, Vki, δki/. In this case, z cancels out
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from equation (2) under model (1). A simulation example in Section 4 shows that the NNHD
imputation leads to biased estimation without including Z2,ki in Hki

2.2. Hybrid estimation procedures
We propose two hybrid approaches for estimation of model (1). The first approach follows
the standard multiple-imputation scheme of Rubin (1987) such that the NNHD estimator is
the average of the AIPW estimates of Yang et al. (2017) for two-phase sampling of covariates
for completed marks under each imputation and the variance estimator is adjusted by using
Rubin’s formula. The second approach utilizes multiple imputations in a single AIPW estimating
equation.

Let Yki.t/ = I.Xki � t/ be the at-risk process. The sampling probabilities of the phase 2 co-
variates are given by πz,ki.t/ = Pk{ξz,ki = 1|Ωki, δki, Yki.t/ = 1}. Suppose that π̂z,ki.t/ is an esti-
mator of πz,ki.t/ based on parametric models as discussed in Yang et al. (2017). Let Wki.t/ =
ξz,ki{πz,ki.t/}−1 and Ŵki.t/= ξz,ki{π̂z,ki.t/}−1. We define the marked counting processes for the
completed marks by N

.m/
ki .t, v/= I.Xki � t, δki =1, V

.m/
ki �v/ for m=1, : : : , M. If Vki is not miss-

ing, V
.m/
ki =Vki and N

.m/
ki .t, v/=Nki.t, v/≡ I.Xki � t, δki =1, Vki �v/.

2.2.1. Hybrid estimation using standard multiple imputation
Standard multiple-imputation estimation of β.v/ uses the average of estimates obtained for each
imputation. Following Yang et al. (2017), for the mth imputation, m= 1, : : : , M, let β̂

.m/

R .v/ be
the solution to the estimating equation for β =β.v/ for v∈ .0, 1/:

U.m/.v, β/=
K∑

k=1

nk∑
i=1

∫ 1

0

∫ τ

0
Kh.u−v/[Ŵki.t/{Zki − Ẑk.t, β/}

+{1− Ŵki.t/}{Êk.Zki|Ωki, δkiV
.m/
ki /− Ẑk.t, β/}]N.m/

ki .dt, du/, .3/

where Kh.x/=K.x=h/=h, K.·/ is a kernel function and h the bandwidth, and Êk.Zki|Ωki, δkiV
.m/
ki /

and Ẑk.t, β/= Ŝ
.1/
k .t, β/=Ŝ

.0/
k .t, β/ are the estimates that were described in Yang et al. (2017).

In particular, Êk.Zki|Ωki, δkiV
.m/
ki / is the estimate of Ek.Zki|Ωki, δkiV

.m/
ki /, and

Ŝ
.j/
k .t, β/=n−1

k

nk∑
i=1

[Ŵki.t/Yki.t/ exp.βTZki/Z
⊗j
ki

+{1− Ŵki.t/}Yki.t/Êk{exp.βTZki/Z
⊗j
ki |Ωki, δkiV

.m/
ki }], .4/

for j = 0, 1, 2, where Êk{exp.βTZki/Z
⊗j
ki |Ωki, δkiV

.m/
ki } is the estimate of the conditional expec-

tation Ek{exp.βTZki/Z
⊗j
ki |Ωki, δkiV

.m/
ki } for j =0, 1, 2. Write β = .βT

1 , βT
2 /T, where β1 and β2 are

the coefficients for Z1,ki.t/ and Z2,ki respectively. Note that Z1,ki.t/ is a part of Ωki. For given
β, the first part of Ek.Zki|Ωki, δkiV

.m/
ki / is Z1,ki.t/ and the second part is Ek.Z2,ki|Ωki, δkiV

.m/
ki /.

Similarly, Ek{exp.βTZki/Z
⊗j
ki |Ωki, δkiV

.m/
ki }, for j =0, 1, 2, depend on the observed data and are

functions of the conditional expectations Ek{exp.βT
2 Z2,ki/Z

⊗r
2,ki|Ωki, δkiV

.m/
ki }, r = 0, 1, 2. Yang

et al. (2017) considered using parametric models for Ek{g.Z2,ki/|Ωki, δkiV
.m/
ki } to obtain the

estimate Êk{g.Z2,ki/|Ωki, δkiV
.m/
ki }, where g.Z2,ki/ is a specified function of Z2,ki such as Z2,ki,

exp.β2Z2,ki/ or Z2,ki exp.β2Z2,ki/.
By the standard multiple-imputation scheme of Rubin (1987), the hybrid Rubin estimator
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is defined by β̂R.v/=M−1ΣM
m=1β̂

.m/

R .v/. The variance estimate of β̂R.v/ adjusting for multiple
imputation by using Rubin’s (Rubin (1987), page 76) rule equals

v̂ar{β̂R.v/}=M−1
M∑

m=1
v̂ar{β̂

.m/

R .v/}+ .1+M−1/.M −1/−1
M∑

m=1
{β̂

.m/

R .v/− β̂R.v/}2, .5/

where v̂ar{β̂
.m/

R .v/} is the variance estimator of Yang et al. (2017) based on the mth im-
putation. The first part accounts for within-imputation variability, and the second part
.M − 1/−1ΣM

m=1{β̂
.m/

R .v/− β̂R.v/}2 for between-imputation variability. The term 1 +M−1 cor-
rects for bias due to the finite number of multiply imputed data sets.

2.2.2. Hybrid estimation via the estimating equations approach
This subsection proposes another hybrid approach that incorporates multiple imputations into
a single estimating equation. A subject with a missing mark receives M imputed marks, which are
associated with a particular subject and are dependent. The M imputed marks can be considered
as a cluster. We consider the following hybrid estimating equation for β =β.v/ for v∈ .0, 1/:

U.v, β/=M−1
M∑

m=1
U.m/.v, β/=0, .6/

where U.m/.v, β/ is defined in equation (3). The estimating equation (6) for the hybrid MIEE
resembles the generalized estimation equation approach for repeated measures analysis that
assumes working independence (Liang and Zeger, 1986). A subject with observed mark, in
which case V

.m/
ki =Vki, receives weight 1, whereas the weight for a subject with missing mark is

1=M for each imputation. The estimator β̂.v/ that solves U.v, β/=0 is termed the hybrid MIEE
estimator.

The estimator β̂.v/ can be implemented by using the Newton–Raphson iterative algorithm.
Starting with an initial value β.0/.v/, let β.l/.v/ be the estimate of β.v/ at step l. The estimator
β̂.v/ is obtained by iterating steps (a) and (b) as follows until convergence:

(a) estimate the conditional expectations Ek[exp{.β
.l/
2 .v//TZ2,ki}Z

⊗j
2,ki|Ωki, δkiVki] for j = 0,

1, 2, and calculate Ẑk{t, β.l/.v/};
(b) update the estimate β.l+1/.v/ at step l+1 by β.l+1/.v/=β.l/.v/− [@U{v, β.l/.v/}=@β]−1 ×

U{v, β.l/.v/}.

Estimation of the stratified mark-specific proportional hazards model (1) also involves esti-
mation of the baseline mark-specific hazard function λ0k.t, v/. The MIEE approach treats the
multiple imputations for a given subject as a cluster. As such, the Nelson–Aalen-type estimator

Λ̂0k.t, v/=M−1
M∑

m=1

nk∑
i=1

∫ t

0

∫ v

0
[nkŜ

.0/
k {s, β̂.u/}]−1N

.m/
ki .ds, du/

is a natural estimator of the doubly cumulative baseline function Λ0k.t, v/=∫ t
0

∫ v
0 λ0k.s, u/dsdu.

The baseline function λ0k.t, v/ can be estimated by λ̂0k.t, v/ obtained by smoothing the incre-
ments of the estimator Λ̂0k.t, v/. For example, one can use kernel smoothing

λ̂0k.t, v/=
∫ τ

0

∫ 1

0
K

.1/
h1

.t − s/K
.2/
h2

.v−u/ Λ̂0k.ds, du/,

where K
.1/
h1

.x/ = K.1/.x=h1/=h1 and K
.2/
h2

.x/ = K.2/.x=h2/=h2, with K.1/.·/ and K.2/.·/ kernel
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functions and h1 and h2 bandwidths. Other model parameters of interest that are discussed in
Section 2.3 such as the overall conditional survival function, the conditional cumulative inci-
dence function (CIF) and the mark-specific CIFR can be estimated under the same framework.

Next, we propose an estimator of the variance of β̂.v/. Let Ĵ k.t, β/ = Ŝ
.2/
k .t, β/=Ŝ

.0/
k .t, β/ −

{Ẑk.t, β/}⊗2. The derivative of U.v, β/ with respect to β equals

U ′.v, β/=−M−1
M∑

m=1

K∑
k=1

nk∑
i=1

∫ 1

0

∫ τ

0
Kh.u−v/Ĵk.t, β/ N

.m/
ki .dt, du/:

Following the proof of theorem 2 of Yang et al. (2017), we have the approximation

.nh/1=2{β̂.v/−β.v/}≈ Σ̂.v/−1n−1=2h1=2M−1
M∑

m=1

K∑
k=1

nk∑
i=1

Q
.m/
ki .v/, .7/

where Σ̂.v/=−n−1U ′{v, β̂.v/}, and, similarly to Yang et al. (2017), Q
.m/
ki .v/ is approximated by

Q̂
.m/
ki .v/=

∫ 1

0

∫ τ

0
Kh.u−v/Ŵki.t/[Zki − Ẑk{t, β̂.u/}]M̂

.m/
ki .dt, du/

+
∫ 1

0

∫ τ

0
Kh.u−v/{1− Ŵki.t/}M̂

o .m/
ki,z̄ .dt, du/: .8/

Here M̂
.m/
ki .dt, du/ = N

.m/
ki .dt, du/ − Yki.t/ exp{β̂.u/TZki}Λ̂0k.dt, du/ and M̂

o .m/
ki,z̄ .dt, du/ is the

estimator of M
o .m/
ki,z̄ .dt, du/ given by

[E.Zki|Ωki/− z̄k{t, β0.u/}]N.m/
ki .dt, du/− .E[Zki exp{βT

0 .v/Zki}|Ωki, δkiV
.m/
ki ]

− z̄k{t, β0.u/}E[exp{βT
0 .v/Zki}|Ωki, δkiV

.m/
ki ]/Yki.t/λ0k.t, u/ dt du:

Hence, M̂
o .m/
ki,z̄ .dt, du/ is obtained by replacing z̄k{t, β0.u/} with Ẑk{t, β̂.u/} and λ0k.t, u/ dt du

with Λ̂0k.dt, du/, and by replacing E.Zki|Ωki, δkiV
.m/
ki /, E[exp{βT

0 .v/Zki}|Ωki, δkiV
.m/
ki ] and

E[Zki exp{βT
0 .v/Zki}|Ωki, δkiV

.m/
ki ] with their estimates.

Using Rubin’s idea to account for the between-imputation variability, we propose to estimate
the variance of β̂.v/ by Σ̂β̂.v/= Σ̂.v/−1Σ̂

Å
R.v/Σ̂.v/−1=.nh/, where

Σ̂
Å
R.v/= h

n

[
1
M

M∑
m=1

K∑
k=1

nk∑
i=1

{Q̂
.m/
ki .v/}⊗2 + M +1

M

1
M −1

M∑
m=1

{U.m/.v, β̂/−U.v, β̂/}⊗2
]
: .9/

In the web appendix A, we present heuristic arguments to show that the proposed hybrid
MIEE and hybrid Rubin estimators are unbiased for large samples by using NNHD imputation
and under the model assumptions that were given by Yang et al. (2017). The hybrid MIEE
and hybrid Rubin estimators also enjoy the double-robustness properties similarly to the AIPW
estimators of Yang et al. (2017).

Parametric multiple imputation often uses between two and 10 imputations (Rubin (1987),
page 15). Reilly (1993) recommended that hot deck estimation be performed with three, five and
10 imputations.

2.3. Estimation of the mark-specific cumulative incidence function rate
By definition of the conditional mark-specific hazard function, λk.t, v|z/ dv measures the in-
stantaneous rate of failure at time t with failure type or mark (e.g. dengue sequence distance)
V ∈ [v, v+ dv/ in the presence of all other possible failure types (dengue viruses with different
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sequence distances) for a very small dv. In this section, we introduce the mark-specific CIFR
that provides interpretable results (e.g. through visual display of estimates) and is useful for
prediction. The conditional CIF for stratum k is defined by Fk.t, v|z/=P.Tk � t, Vk �v|Zk =z/,
which has the interpretation of the classical CIF as the conditional probability of failure by time
t with failure cause Vk � v. The conditional mark-specific CIFR fk,v.t, v|z/ is the derivative of
Fk.t, v|z/ with respect to v. The quantity fk,v.t, v|z/ dv is the conditional probability that failure
with mark V ∈ [v, v + dv/ occurs by time t. The cumulative incidence of failure with mark V

in an interval .v1, v2] ⊂ .0, 1/ is given by P.Tk � t, v1 < Vk � v2|Zk = z/ = ∫ v2
v1

fk,v.t, v|z/ dv for
.v1, v2]⊂ .0, 1/.

Whereas λk.t, v|z/ is useful for measuring the instantaneous rate of failure occurrence at
time t for those at risk, the mark-specific CIFR fk,v.t, v|z/ is useful to estimate or predict the
probability of failure by time t with V ∈ [v, v+dv/. As with the classical competing risks model,
the mark-specific hazard function is related to the CIFR through the simple formula

fk,v.t, v|z/= exp{β.v/Tz}
∫ t

0
Sk.s|z/ A0k.ds, v/,

where A0k.t, v/ = ∫ t
0 λ0k.s, v/ ds and Sk.t|z/ is the conditional overall survival function of Tk

given Zk = z that is given by

Sk.t|z/= exp
{

−
∫ 1

0
A0k.t, v/ exp{β.v/Tz} dv

}
under model (1). The CIF and CIFR can be estimated by plugging in the estimates of β.v/ and
λ0k.t, v/. The details of estimation are given in the web appendix B. The relationships between
the estimated conditional mark-specific hazard function, CIF and CIFR are the same as for
their population quantities by using the hybrid MIEE approach with multiple imputations, but
this is not so for the hybrid Rubin approach.

3. Statistical inferences for β(v)

We develop procedures for testing two sets of hypotheses regarding β.v/. Let βr.v/ be the rth
component of β.v/, 1� r �p. We first test the null hypothesis H10 :βr.v/=0 for v∈ [a, b]⊂ .0, 1/

against the general alternative H1a :βr.v/ 	=0 for at least some v∈ [a, b], and against the monotone
alternative H1m : βr.v/� 0 with βr.v/ < 0 for some v∈ [a, b]. The testing procedure can be used
to test βr.v/�0 with simple modifications. The second hypothesis H20 concerns whether βr.v/

does not depend on v for v ∈ [a, b]. We test H20 against the general alternative H2a that βr.v/

depends on v for v∈ [a, b] and the monotone alternative H2m that βr.v/ is a monotone increasing
function. The test can be modified to test the monotone alternative that βr.v/ is a monotone
decreasing function. The tests of H10 are helpful for identifying covariates that are correlated
with risk for at least some failure types or marks. The tests of H20 evaluate whether the strength
of association of a covariate with risk varies with values of the failure type or mark V .

We construct the following test procedures based on the hybrid MIEE estimator of β.v/.
Let 0 < v1 < : : : < vG < 1 be a grid of G points in the range of the marks .0, 1/. By Aalen and
Johansen (1978) and Sun et al. (2009), it can be shown that β̂.v1/, : : : , β̂.vG/ are asymptotically
independent and approximately normal. The estimated variance of β̂r.v/, v̂ar{β̂r.v/}, is the
rth element on the diagonal of Σ̂β̂.v/. Let β̂r = .β̂r.v1/, β̂r.v2/, : : : , β̂r.vG//T. We propose the
following test statistic to test H10 : βr.v/=0 against H1a : βr.v/ 	=0:

T1a =
G∑

g=1
β̂r.vg/2/v̂ar{β.vg/}:
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The following test statistic is used to test H10 against H1m : βr.v/�0:

T1m =
G∑

g=1
β̂r.vg/

/
v̂ar{β.vg/

}1=2
:

Under the null hypothesis H10, T1a has an approximately χ2-distribution χ2
G with G degrees of

freedom, and T1m has an approximate normal distribution with mean 0 and variance G. A larger
value of T1a indicates departures from H10, rejecting H10 in favour of H1a at significance level
α if T1a is greater than the .1 −α/-percentile of χ2

G. A smaller value of T1m shows evidence in
favour of H1m, rejecting H10 at significance level α if T1m is less than the α-percentile of N.0, G/.

To test the null hypothesis H20 that the rth component βr.v/ does not depend on v, we let
Qβ̂ = .β̂.v2/− β̂.v1/, : : : , β̂.vG/− β̂.vG−1//T. Then Qβ̂ =Aβ̂r, where A is the .G−1/×G matrix
with −1 as the .i, i/th element, 1 as the .i, i+1/th element for i=1, : : : , G−1 and the rest of the
elements 0. Thus the covariance matrix of Qβ̂ is cov.Qβ̂/=A cov.β̂r/ AT, where cov.β̂r/ is the
diagonal matrix with var{β̂.vg/}, g =1, : : : , G, on the diagonals. The following expressions are
the two test statistics for testing H20:

T2a =QT
β̂

ĉov.Qβ̂/−1Qβ̂ ,

and

T2m =JTĉov.Qβ̂/−1=2Qβ̂ ,

where ĉov.Qβ̂/ is the diagonal matrix with v̂ar{β̂.vg/}, g =1, : : : , G, on the diagonals, and J is
a .G−1/-dimensional vector of 1s. Under H20, T2a has an approximately χ2-distribution χ2

G−1
with G− 1 degrees of freedom, and T2m has an approximate normal distribution with mean 0
and variance G − 1. We reject H20 in favour of H2a at level of significance α if T2a is greater
than the .1−α/-percentile of χ2

G−1 and we reject H20 in favour of H2m if T2m is greater than the
.1−α/-percentile of N.0, G−1/.

In practice, we recommend that G takes a value from 3 to 5 with approximately evenly spaced
grid points with spacing greater than the size of the bandwidth for better approximations of the
null distributions of the test statistics.

4. Simulation study

We conducted a simulation study to evaluate the finite sample performance of the estimation and
hypothesis testing procedures proposed. Let U1, U2 and U3 be independent uniformly distributed
random variables on .0, 1/. Let Z1 =U1 +2U3 be a phase 1 covariate, and Z2 =−U1 +2U2 a phase
2 covariate, with resulting correlation coefficient −0:2. We study the scenario of one stratum
K=1. The .T1i, V1i/ are generated from the following mark-specific proportional hazards model:

λ.t, v|Z/=λ0.t, v/ exp{β1.v/Z1 +β2.v/Z2}, t �0, 0�v�1, .10/

where the mark-specific baseline function is λ0.t, v/=exp.−0:3v/, β1.v/=−0:2v and β2.v/=α+
θv. We study the performance of the hypothesis tests of H10 and H20 for β2.v/. The parameters α
and θ are chosen to examine the sizes and powers of the tests proposed. All failure times that are
greater than τ =2:0 are right censored at τ . Censoring times are generated from an exponential
distribution, independent of .T , V/, with parameter adjusted so that the overall censoring rate
during follow-up is approximately 40%.

For two-phase sampling, we consider a simple Bernoulli random sample taken separately for
cases and controls, with selection probability πz,1i = 1 for cases (δ1i = 1) and 0.5 for controls
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Fig. 1. Bias, SEE, ESE and CP for β̂1.v/ and β̂2.v/ for nD800 under the setting P4 for model (10) with M D5
imputations from the five nearest neighbourhoods L1i of cases i with missing marks based on 1000 simula-
tions (the L1i are calculated by using Euclidean distance and z-scores of the H1j D .T1j , Z1j / for cases (with
δ1j D 1): , MIEE(h D 0.13); , MIEE(h D 0.17); , Rubin(h D 0.13); , Rubin(h D 0.17);

, CC(hD0.13); , CC(hD0.17)

(δ1i =0). Suppose that there is an auxiliary variable Az correlating with Z2, Az =Z2 + ε, where ε
is normally distributed with mean 0 and standard deviation 0.5, which corresponds to a Pearson
correlation coefficient between Z2 and Az of ρ= 0:75. The conditional expectations involving
the phase 2 covariate Z2 are estimated by using linear models with .1, δ, Z1, Az, δZ1, δAZ/ as
predictors based on the subjects with observed Z2. Covariates .1, Z1, Az/ are used for estimating
the logit linear model for πz,1i for subjects with δ1i =0.

The mark V1i is missing following the conditional probability logit.πv,1i/ = logit{P.ξv,1i =
1|Ω1i/}=0:3Z1,1i +0:8 for δ1i =1, yielding about 22% missing marks. The hot deck imputation
of a missing Vki is obtained from donors from the same stratum k with δki =1 and with similar
Hki defined by Euclidean distance and z-scores of .Tki, Zki/; for our simulations we study only
one stratum k = 1. The L nearest neighbourhood imputations are carried out on the basis of
H1i with the Euclidean metric. By considering the z-scores of variables, we eliminate the effects
of scales or units of the variables on the nearest neighbour selections. We consider M = 3 and
M =5 imputations from the M nearest neighbourhoods for the cases with missing marks.

The performances of the test procedures proposed are evaluated through simulations under
model (10) for the parameter settings P1–P5 that are defined as follows: P1, .α, θ/ = .0, 0/;
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P2, .α, θ/ = .−0:4, 0/; P3, .α, θ/ = .−0:5, 0/; P4, .α, θ/ = .−1, 1:5/; P5, .α, θ/ = .−1, 2/. P1 and
P3 are models under the null hypothesis H10 and H20 respectively; P2 and P3 are H1m alternatives
to H10, and P4 and P5 are H2m alternatives to H20.

The Epanechnikov kernel K.x/ = 0:75.1 − x2/I.|x| � 1/ is used for kernel smoothing. The
bandwidth is selected by using the formula h = Cσ̂vn−1=3, where σ̂v is the estimated standard
error of the observed marks for uncensored failure times and C is a constant ranging from 2 to
5. Sun et al. (2016) and Yang et al. (2017) showed that this formula works well in simulations.
A larger C can be used if the distribution of the observed marks is skewed or marks are sparse
in some areas. Alternatively, the formula h = Cσ̂vn

−1=3
o has also been used in situations with

a very large phase 1 sample and low event rate (Yang et al., 2017), where no is the observed
number of events. The values of σ̂v under model (10) for settings P1–P5 are approximately 0:29,
yielding h=4σ̂vn−1=3 =0:15 for n=500 and h=0:13 for n=800. We also studied the effect of
using larger bandwidths: h=0:20 for n=500 and h=0:17 for n=800.

We estimate β.v/ over 21 evenly spaced grid points in [0, 1] with spacing 0.05 such that
v1 =0, v2 =0:05, : : : , v21 =1. The initial value for estimating β.v1/ is set to 0. The estimate β̂.v1/

is used as the initial value for estimating β.v2/ such that β̂.vi−1/ is used as the initial value for
estimating β.vi/ for i= 2, : : : , N. The Newton–Raphson iterative algorithm that was proposed
in Section 2.2.2 is not overly sensitive to the choice of initial values.

Fig. 1 shows the simulation results for estimating β.v/= .β1.v/, β2.v//T under setting P4 for
model (10) without auxiliary Az with M = 5 imputations from five nearest neighbourhoods of
cases with missing marks based on 1000 simulations by using bandwidths h=0:13 and h=0:15
for five nearest neighbourhoods L1i calculated by using Euclidean distance and z-scores of the
H1j = .T1j, Z1j/ for cases (with δ1j =1), where Bias is the bias, SEE is the sample standard error
of the estimator, ESE is the sample mean of the estimated standard errors and CP is the 95%
empirical coverage probability. Fig. 2 compares the estimates by using different neighbourhood
selections under setting P4 for model (10).

Additional simulation studies are presented in the web appendix C, which includes simu-
lation results under setting P3 of model (10), and for a different mark-specific proportional
hazards model with K = 2 strata. Web appendix C also includes a real data simulation study
that applies the proposed methods to a data set generated on the basis of the CYD14 trial
data.

The simulation study shows that the biases of both the hybrid MIEE estimator and the
hybrid Rubin estimator are very small except in the left-hand and right-hand tails for β2.v/

(which are the expected boundary effects in non-parametric estimation) by using the five nearest
neighbourhoods L1i of cases with missing marks calculated by using Euclidean distance and
z-scores of the Hkj = .Tkj, Zkj/ for cases. The pointwise coverage probabilities are slightly below
but very close to 95% for v∈ .0, 1/ except in the left-hand and right-hand tails for β2.v/, indicating
adequate performance of the variance estimators proposed. For larger bandwidths, SEE and
ESE of the estimator are smaller. The study also shows that estimation based on the L nearest
neighbourhoods calculated by using only a subset of Hkj = .Tkj, Zkj/ can yield much larger
biases unless β.v/ does not depend on v. In particular, under setting P4 for model (10), Fig. 2(b)
shows that using Hkj = .Tkj/ yields much larger biases than using Hkj = .Tkj, Zkj/. We also note
from Fig. 3 in the web appendix C that the biases are small for both selections of Hkj under
setting P3 since β.v/ does not vary with v in this setting.

Using the five nearest neighbourhoods L1i calculated by using Euclidean distance and
z-scores of the H1j = .T1j, Z1j/ for all cases (with δ1j =1), Fig. 3 shows the simulation results for
estimating the conditional mark-specific CIFR f1,v.t, v|z/ at Z1 =1:5 and at the 10th, 50th and
90th percentiles of Z2 for t = 1 and n= 800 under setting P4 for model (10) with M = 5 based
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Fig. 2. Bias, SEE, ESE and CP for β̂1.v/ and β̂2.v/ for nD800 under the setting P4 for model (10) with M D5
imputations from the four nearest neighbourhoods of cases with missing marks based on 1000 simulations
(MIEE-NN(T , Z) is for the hybrid MIEE estimator with the five nearest neighbourhoods L1i calculated by using
Euclidean distance and z-scores of the H1j D .T1j , Z1j / for cases (with δ1j D 1), whereas MIEE-NN(T ) is the
same except z-scores of the H1j D .T1j / are used; Rubin-NN(T , Z) and Rubin-NN(T ) are defined similarly for
the hybrid Rubin estimator): , MIEE-NN(T , Z); , MIEE-NN(T ); , Rubin-NN(T , Z); ,
Rubin-NN(T ); , CC

on 1000 simulations using bandwidth h= 0:13. Fig. 3 shows that the average of the estimated
f1,v.t, v|z/ are close to the true values f1,v.t, v|z/.

The simulations are carried out to examine the performances of the proposed tests with
the nearest neighbourhoods L1i calculated by using Euclidean distance and z-scores of the
H1j = .T1i, Z1i/ for subjects with δ1j =1. Table 1 presents the empirical sizes and powers of tests
T1a and T1m for testing H10 and tests T2a and T2m for testing H20 at nominal level 0.05 by using
M =3 and M =5 imputations from the M nearest neighbourhoods based on 1000 simulations.
The test statistics are calculated by using bandwidth h=0:15 for n=500 and h=0:13 for n=800
and using G= 3 grid points with v1 = 0:2, v2 = 0:5 and v3 = 0:8. The empirical sizes for testing
H10 under setting P1 and for testing H20 under P3 are slightly higher but very close to the
nominal level 0.05, indicating adequate performance of the tests proposed. The powers of the
tests for testing H10 increase as the model moves from P1 to P3, whereas the powers of the tests
for testing H20 increase as the model moves from P3 to P5, representing increasing departures
from the null hypotheses H10 and H20. Powers of the tests with auxiliary variable Az are slightly
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Fig. 3. Estimation of the conditional mark-specific CIFR f1,v .τ , v jz/ at Z1 D1.5 and at the 10th, 50th and 90th
percentiles of Z2 for τ D 1 and n D 800 under the setting P4 for model (10) with M D 5 imputations from the
five nearest neighbours of the missing marks using bandwidth h D 0.13 based on 1000 simulations ( ,
true values); the five nearest neighbourhoods are calculated by using Euclidean distance and z-scores of the
H1j D .T1j , Z1j / for cases (with δ1j D1): (a) averages of the estimated f1,v .τ , v jz/ ( , MIEE; , true;

, 10th percentile Z2; , 50th percentile Z2; , 90th percentile Z2); (b) estimated ratios of the
f1,v .τ , v jz/ at the 10th ( ) and 50th ( ) percentiles of Z2 divided by f1,v .τ , v jz/ at the 90th percentiles
of Z2 respectively, for Z1 D 1.5 and τ D 1; (c) SSEs of the estimated f1,v .τ , v jz/ ( , 10th percentile Z2;

, 50th percentile Z2; , 90th percentile Z2)
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Table 1. Empirical sizes and powers of the test statistics T1a and T1m for testing H10
and the test statistics T2a and T2m for testing H20 under model (10) with M D3 and M D5
imputations from the M nearest neighbourhoods of the missing marks at nominal level
0.05 based on 1000 simulations†

Model n M Without Az With Az

BAND1 BAND2 BAND1 BAND2

T1a T1m T1a T1m T1a T1m T1a T1m

Testing H10
P1 500 3 0.064 0.062 0.067 0.065 0.070 0.051 0.063 0.054

5 0.067 0.066 0.071 0.072 0.079 0.061 0.081 0.061
800 3 0.069 0.060 0.062 0.058 0.072 0.051 0.070 0.045

5 0.073 0.060 0.060 0.058 0.066 0.045 0.063 0.043
P2 500 3 0.771 0.934 0.876 0.968 0.814 0.959 0.915 0.983

5 0.746 0.921 0.843 0.960 0.800 0.941 0.891 0.974
800 3 0.897 0.974 0.959 0.996 0.933 0.991 0.980 0.999

5 0.886 0.982 0.946 0.990 0.911 0.991 0.964 0.997
P3 500 3 0.912 0.982 0.966 0.995 0.945 0.992 0.984 0.999

5 0.907 0.977 0.955 0.989 0.943 0.990 0.976 0.997
800 3 0.974 0.998 0.992 1.000 0.986 0.998 0.999 1.000

5 0.983 0.999 0.998 1.000 0.994 0.999 1.000 1.000

Testing H20
P3 500 3 0.070 0.049 0.055 0.047 0.079 0.055 0.062 0.053

5 0.056 0.063 0.050 0.059 0.070 0.069 0.062 0.069
800 3 0.066 0.060 0.069 0.054 0.075 0.062 0.083 0.058

5 0.066 0.061 0.056 0.059 0.073 0.066 0.069 0.063
P4 500 3 0.757 0.883 0.839 0.942 0.779 0.891 0.867 0.953

5 0.755 0.909 0.868 0.964 0.772 0.918 0.896 0.970
800 3 0.894 0.973 0.959 0.990 0.904 0.980 0.967 0.993

5 0.871 0.970 0.955 0.991 0.891 0.975 0.966 0.992
P5 500 3 0.953 0.990 0.989 0.999 0.996 0.998 0.993 0.999

5 0.946 0.988 0.987 0.998 0.999 1.000 0.993 0.999
800 3 0.991 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.995 0.999 0.999 1.000 1.000 1.000 0.999 1.000

†The test statistics are constructed by using G = 3, v1 = 0:2, v2 = 0:5 and v3 = 0:8. ‘Without
Az’ refers to the scenario where there is no auxiliary Az, and ‘with Az’ refers to the scenario
where the auxiliary Az is used. BAND1 is the bandwidth setting of h= 0:15 for n= 500 and
h = 0:13 for n = 800 whereas BAND2 is the bandwidth setting of h = 0:20 for n = 500 and
h=0:17 for n=800.

higher than those without using Az. The powers of the tests are not overly sensitive to the number
of imputations M but seem to increase slightly for larger bandwidth.

5. Dengue vaccine efficacy trial analysis

The CYD14 cohort for data analysis is all participants attending the month 13 study visit with-
out previously experiencing the dengue disease primary end point, comprising 6639 vaccine
recipients and 3220 placebo recipients. Of these, 116 vaccine recipients and 129 placebo recip-
ients experienced the dengue end point by month 25, constituting an estimated 56.5% vaccine
reduction in the hazard of dengue disease between month 13 and 25 (Capeding et al., 2014).
The percentage of right censoring by month 25 was 98.3%. An important scientific question is
how does natural and vaccine immunity work in preventing dengue disease? NAs are generally
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believed to be important for both natural and vaccine-induced protection, which are present in
many placebo recipients (caused by prior dengue exposures and infections), and are boosted or
increased in many vaccine recipients (caused by dengue vaccination) (Moodie et al., 2018). In
this section, we apply the developed methods to analyse the CYD14 data with the objective of
understanding, for each of the placebo and vaccine groups, the association of month 13 NA
levels (‘NA titre’) with subsequent occurrence of the dengue disease primary end point through
month 25, and whether and how the associations depend on dengue amino acid sequence. The
NA titre marker is the average of an individual’s log-base-10 50% neutralization titre to each
of the four dengue strains in the vaccine (one strain for each dengue serotype), where the 50%
neutralization titre quantifies the ability of antibodies in an individual’s blood sample to kill a
given dengue strain (defined in detail in Moodie et al. (2018)). The analyses by treatment group
can be interpreted as assessing NA titre as a marker of different kinds of acquired protection
or disease resistance—for placebo recipients’ naturally acquired resistance and for vaccine re-
cipients a combination of naturally and vaccine-acquired resistance. This integrated analysis
of host and pathogen data types would increase knowledge of NA titre as a correlate of risk
of dengue disease, with many applications including aiding refinement of models for bridging
vaccine efficacy to new settings that were not studied in CYD14.

As summarized in Section 1, NA titre was measured from month 13 blood samples from a
subset of participants who were selected through a case–cohort sampling design. With controls
defined as participants reaching the month 25 visit never experiencing the dengue disease study
end point, the NA titre marker was measured from n=1879 controls (1275 vaccine; 604 placebo),
and from all n=245 cases (116 vaccine; 129 placebo).

From blood samples drawn at dengue disease failure event times, dengue virus nucleotide
sequences of the complete antigen coding region of the dengue genome represented in the
CYD-TDV vaccine (prM/E) were measured by using 454-sequencing (Rabaa et al., 2017). The
prM/E dengue genome (1985 base pairs for serotypes 1, 2 and 4 and 1979 base pairs for serotype
3) was sequenced and translated to 661 amino acid positions (659 for serotype 3). The amino
acid sequences were multiply aligned with the four vaccine strain sequences. A subset of 65
of the prM/E amino acid positions have been documented to be ‘NA contact sites’, defined as
positions on the outer surface of dengue that have been documented to interact with antidengue
NAs. Because sequence variation in these contact sites was hypothesized to be especially relevant
for potential protection against dengue disease, we studied the mark V defined as the Hamming
distance based on these NA contact sites. The distance V ‘Hamming distances: NA contact
sites’ was calculated, which is the percentage amino acid mismatch in the 65 NA contact sites
between the dengue sequence from a given disease case and the closest dengue sequence among
the four vaccine strain sequences. The mark V was measured from 76 (66%) of the 116 vaccine
recipient cases and from 84 (65%) of the 129 placebo recipient cases.

Vaccine recipients who were exposed to dengue sequences with short distances to the vaccine
may be more likely to be protected by antibodies than vaccine recipients who were exposed to
dengue sequences with large distances. Therefore, if NA titre is important for protection, its
inverse correlation with dengue disease risk would be expected to be strongest against dengue
viruses with small distances and to be weakest or non-existent against dengue sequences with
large distances. The results on these hypotheses may provide insights into how the vaccine
partially worked and thereby guide next steps of vaccine research. In addition, the same analysis
in placebo recipients aids understanding of how naturally acquired NA titres associate with
sequence-specific dengue risk.

Let T be the time between the month 13 visit until diagnosis of dengue disease to month 25.
We consider the following mark-specific proportional hazards model:
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Fig. 4. Estimation of the associations of age and NA titre with the mark-specific hazard of the dengue disease end point with mark ‘Hamming distances: NA
contact sites’ using M D5 imputations from the five nearest neighbourhoods of missing marks, with bandwidth hD0.023 for the vaccine group and hD0.024
for the placebo group (the five nearest neighbourhoods L1i are calculated by using Euclidean distance and z-scores of the H1j D .T1j , Age1j , NAb1j /
values of cases (with δ1j D 1)): estimated log-mark-specific hazard ratios β1.v/ for Age and β2.v/ for NA titre are given for (a), (b) the vaccine group and
(c), (d) the placebo group
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Table 2. Results of hypothesis tests of H10 and H20 for the CYD14 trial

NA titre Age

Testing H10 Testing H20 Testing H10 Testing H20

T1a T1m T2a T2m T1a T1m T2a T2m

Vaccine < 0:001 < 0:001 0.069 0.005 < 0:001 < 0:001 0.857 0.762
Placebo 0.116 0.393 0.070 0.012 0.170 0.016 0.383 0.961

λk{t, v|z.t/}=λk0.t, v/ exp{β1.v/Age+β2.v/NAb}, .11/

with K =1 baseline stratum, where NAb is the month 13 NA titre and Age is age at enrolment.
Age is a phase 1 variable whereas NAb is a phase 2 variable. For both the vaccine and the
placebo groups, NA titre is observed for all the cases but missing for 80.5% of the non-cases.

We implement the proposed estimation and testing procedures that were described in Sections
2 and 3. We estimated the probability of observing the NA titre marker with a logistic regression
model, with logit{P.ξz = 1|Ω/} a linear function of .1, Age, Sex/. To implement the AIPW
method, we use linear models for E.NAb|Ω/ and E[exp{β2.v/NAb⊗j}|Ω] for j = 0, 1, 2, with
predictors .1, Age, Sex/. For each case i with missing mark Vi, we use M =5 imputed marks from
the five nearest neighbourhoods L1i calculated by using z-scores of H1j = .T1j, Age1j, NAb1j/

from all cases j (with δ1j =1).
Because of the very large phase 1 sample and the low event rate, we used the bandwidth

h = 5σ̂vn
−1=3
o , where σ̂v is the estimated standard error of the observed marks and no is the

number of cases. The standard deviation of the observed mark ‘Hamming distances: NA contact
sites’ is 0.0225 for the vaccine group and 0.0243 for the placebo group, resulting in bandwidth
h=0:023 and h=0:024 respectively.

Fig. 4 shows point and 95% confidence interval estimates of β1.v/ for Age and β2.v/ for NA
titre, by treatment arm. Greater age is associated with a lower risk of dengue disease for the
vaccine group and apparently not for the placebo group, and the associations do not appear
to depend on the mark. NA titre is strongly inversely associated with risk of dengue disease in
the vaccine group, with stronger association for dengue viruses that are closest to the vaccine
strains. In the placebo group the results suggest a weak inverse association of NA titre with
dengue disease, only for dengue viruses that are close to the vaccine strains.

Augmenting results from Fig. 4, Fig. 5 shows the estimated conditional mark-specific CIFR
fv.τ , v|z/ at month τ = 25 for the 10th, 50th and 90th percentiles of the NA titre marker and
at the average age 8.35 years old, by treatment arm. Fig. 5 shows that f̂ 1,v.τ =25, v|z/ is high-
est at the 10th percentile of NA titre and lowest at the 90th percentile. Fig. 5 also shows the
ratios of f̂ v.τ = 25, v|z/ for the 10th versus 90th percentiles and 50th versus 90th percentiles
of NA titre at the average age. For the vaccine group, this ratio for the 10th versus 90th
percentile is almost twice that of the ratio for the 50th versus 90th percentile for mark val-
ues v < 0:021. Such differences in estimated fv.τ = 25, v|z/ are not observed for the placebo
group.

Table 2 presents the results of the hypothesis testing for β1.v/ and β2.v/ under H10 and H20 for
the vaccine group and placebo group. The p-values are calculated by using G=4 grid points with
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v1 =0:01, v2 =0:03, v3 =0:05 and v4 =0:07. The results support that the risk of dengue disease
decreases as the NA titre increases for the vaccine group, but not for the placebo group. Older
children are at lower risk of dengue disease for both treatment groups but more significantly
for the vaccine group. There are statistically significant results that the magnitude of the mark-
specific association parameter β2.v/ for NA titre decreases with increasing mark values for both
treatment groups.

The analysis that is presented in this paper imputes missing dengue sequence distances from
subjects with similar event times, ages and NA titre in a neighbourhood. In the web appendix
C, we present the results of the data analysis using the alternative hot deck imputations that
were implemented by Juraska et al. (2018), which were obtained by using information on study
site and local clinic, as well as on dengue genotype and serotype. Similar results are obtained
but with slightly weaker evidence that the magnitude of β2.v/ decreases with increasing mark
values in the vaccine group.

Because the CYD-TDV vaccine is licensed for children 9 years of age or older, we repeated
the analyses restricting to 9–14-year-olds (web appendix D). For the vaccine group, the results
for inference on β2.v/ with covariate NA titre are similar to those for all ages 6–14 years (web
appendix D Table 3, Fig. 8 and Fig. 9). However, for the placebo group, the analysis restricting
to 9–14-year-olds supports an inverse correlation of NA titre with dengue disease for low dengue
mark values, whereas the analysis of 6–14-year-olds did not suggest a correlation for any mark
values.

6. Concluding remarks

Motivated by the CYD14 dengue vaccine efficacy trial, this paper has developed estimation and
hypothesis testing procedures for β.v/ in model (1) under two-phase sampling of some covariates
and with missing marks for some individuals with the failure event. We investigated two hybrid
approaches that utilize non-parametric NNHD multiple imputations to impute missing marks
of observed failures, followed by application of the AIPW technique to the completed-marks
case–cohort sampled data sets. The two hybrid methods differ in how the imputed marks are
pooled. Our simulations show that the hybrid Rubin and the hybrid MIEE estimators have
similar performances in estimation.

We consider hot deck imputations of missing marks from donors with similar characteristics
Hkj = .Tkj, Zkj, Av,kj/ among the observed failures. The implementation of the NNHD depends
on the choice of metric and the variables that are included for the neighbourhood selection.
The imputation based on a subset of .Tkj, Zkj/ can lead to biased estimation. Our L nearest
neighbourhoods imputations are carried out on the basis of the z-scores of the Hkj for cases and
with the Euclidean metric. By considering the z-scores of variables, we eliminate the effects of
scales or units of the variables on the nearest neighbour selections. Hsu and Yu (2019) recently
studied a Cox model with missing covariates by using the non-parametric multiple-imputation
approach with the neighbourhood selected on the basis of the predictive scores of two working
regression models. We conducted a limited simulation study and found no advantages of the
predictive score approach for neighbourhood selection.

Achieving consistent variance estimation in the presence of imputed data remains a challenge.
Rubin’s (1987) rule of adjusting for multiple imputation has been widely used in practice. Other
methods for estimating variances have been investigated, but few are rigorously justified; see,
for example, Kovar and Chen (1994), Lee et al. (1994, 1995), Rancourt et al. (1994) and Mon-
taquila and Jernigan (1997). Chen and Shao (2000) investigated the theoretical properties of
the NNHD imputation method and showed that the NNHD method provides asymptotically
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unbiased estimators for population means, quantiles and univariate distributions. They also
derived consistent variance estimators of the NNHD estimators. The proposed hybrid Rubin
and hybrid MIEE estimators for the mark-specific proportional hazards model (1) work very
well with small biases in the many different models that we examined. However, finding consis-
tent variance estimators is very challenging for the NNHD imputation of missing mark under
two-phase sampling of covariates. We adopted Rubin’s rule for the variance estimators, which
seems to underestimate the true variances slightly under some situations. The underestimated
variances also lead to slightly inflated observed sizes for the tests proposed. Further investigation
of variance estimation is needed.

For the analysis of the CYD14 efficacy trial, model (11) assumes that the mark-specific log-
hazard ratio for Age is the same for every unit increase in Age and similarly for the mark-specific
log-hazard ratio for NAs. However, the model assumptions may fail and thus model checking
is an important problem. Sun et al. (2016) proposed a goodness-of-fit test procedure for the
stratified mark-specific proportional hazards model (1) when covariates are observed and there
are no missing marks. Developing the goodness-of-fit test procedure for model (1) with missing
data is a project meriting future research.

The paper presents the analysis of model (11) for children of all ages. However, the mark-
specific effects β.v/ may be different for different age groups. In the web appendix D of the
supplementary material, we conducted separate analyses for children in two different age groups:
2–8- and 9–14-year-olds. The additional analyses provide some insights on whether the effects
of Age and NA titre on the mark-specific risk of the dengue disease are different for different
age groups.

The web appendix E of the supplementary material also includes the analyses using the hot
deck imputations that were implemented in Juraska et al. (2018) that defined the neighbourhood
on the basis of biological and geographic information, i.e. dengue genotype, serotype, study
site and local clinic, and Juraska et al. (2018) validated that these hot deck imputations were
highly accurate. These hot deck imputations are scientifically based and more robust to model
misspecifications, whereas the other hot deck imputations approach that we studied in this paper
exploits the link between the failure time data and observed marks specified by the mark-specific
proportional hazards model, which can improve power but at the expense of being less robust
to model misspecifications. Further research is warranted to investigate the neighbourhood
selections and their effects.

7. Supplementary materials

The web appendices A, B, C, D and E that are referenced in this paper are given in the supplemen-
tary material that is available from the journal’s website. The MATLAB code and instructions
for doing the analysis for a simulated data set that is presented in section 3.3 of the web-based
supplementary material is available also from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets.

Acknowledgements

The authors thank the participants and investigators of the CYD14 trial. This research was
partially supported by National Institute of Allergy and Infectious Diseases National Institutes
of Health award R37AI054165, and by a contract from the CYD14 study sponsor Sanofi Pasteur.
Dr Sun’s research was partially supported by National Science Foundation grants DMS1513072



Stratified Mark-specific Proportional Hazards Model 23

and DMS1915829. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

References

Aalen, O. O. and Johansen, S. (1978) An empirical transition matrix for nonhomogeneous Markov chains based
on censored observations. Scand. J. Statist., 5, 141–150.

Altman, N. S. (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am. Statistn, 46,
175–185.

Andridge, R. R. and Little, R. J. A. (2010) A review of hot deck imputation for survey non-response. Int. Statist.
Rev., 78, 40–64.

Beretta, L. and Santaniello, A. (2016) Nearest neighbor imputation algorithms: a critical evaluation. BMC Med.
Informat. Decsn Makng, 16, 197–208.

Borgan, O., Langholz, B., Samuelsen, S. O., Goldstein, L. and Pogoda, J. (2000) Exposure stratified case-cohort
designs. Liftim. Data Anal., 6, 39–58.

Breslow, N. E. and Lumley, T. (2013) Semiparametric Models and Two-phase Samples: Applications to Cox Re-
gression, pp. 65–77. Beachwood: Institute of Mathematical Statistics.

Breslow, N. E., Lumley, T., Ballantyne, C. M., Chambless, L. and Kulich, M. (2009) Improved Horvitz-Thompson
estimation of model parameters from two-phase stratified samples: applications in epidemiology. Statist. Biosci.,
1, 32–49.

Capeding, M., Tran, N., Hadinegoro, S., Ismail, H., Chotpitayasunondh, T., Chua, M., Luong, C., Rusmil, K.,
Wirawan, D., Nallusamy, R., Pitisuttithum, P., Thisyakorn, U., Yoon, I., van der Vliet, D., Langevin, E., Laot,
T., Hutagalung, Y., Frago, C., Boaz, M., Wartel, T., Tornieporth, N., Saville, M., Bouckenooghe, A. and CYD14
Study Group (2014) Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia:
a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet, 384, 1358–1365.

Carroll, R. J., Spiegelman, C. H., Lan, K. K. G., Bailey, K. T. and Abbott, R. D. (1984) On errors-in-variables
for binary regression models. Biometrika, 71, 19–25.

Chen, J. and Shao, J. (2000) Nearest neighbor imputation for survey data. J. Off. Statist., 16, 113–141.
Gao, G. and Tsiatis, A. A. (2005) Semiparametric estimators for the regression coefficients in the linear transfor-

mation competing risks model with missing cause of failure. Biometrika, 92, 875–891.
Gilbert, P., McKeague, I. and Sun, Y. (2004) Tests for comparing mark-specific hazards and cumulative incidence

functions. Liftim. Data Anal., 10, 5–28.
Gilbert, P. B. and Sun, Y. (2015) Inferences on relative failure rates in stratified markspecific proportional hazards

models with missing marks, with application to human immunodeficiency virus vaccine efficacy trials. Appl.
Statist., 64, 49–73.

Hsu, C.-H. and Yu, M. (2019) Cox regression analysis with missing covariates via nonparametric multiple impu-
tation. Statist. Meth. Med. Res., 28, 1676–1688.

Jonsson, P. and Wohlin, C. (2004) An evaluation of k-nearest neighbour imputation using Likert data. In Proc.
10th Int. Symp. Software Metrics, pp. 108–118. New York: Institute of Electrical and Electronics Engineers.

Juraska, M. and Gilbert, P. (2013) Mark-specific hazard ratio model with multivariate continuous marks: an
application to vaccine efficacy. Biometrics, 69, 328–337.

Juraska, M. and Gilbert, P. (2016) Mark-specific hazard ratio model with missing multivariate marks. Liftim.
Data Anal., 22, 606–625.

Juraska, M., Magaret, C., Shao, J., Carpp, L., Fiore-Gartland, A., Benkeser, D., Girerd-Chambaz, Y., Langevin,
E., Frago, C., Guy, B., Jackson, N., Duong, T., Simmons, C., Edlefsen, P. and Gilbert, P. (2018) Viral genetic
diversity and protective efficacy of a tetravalent dengue vaccine in two phase 3 trials. Proc. Natn. Acad. Sci.
USA, 115, E8378–E8387.

Kovar, J., Whitridge, P. and MacMillan, J. (1988) Generalized edit and imputation system for economic surveys
at Statistics Canada. Proc. Surv. Res. Meth. Sect. Am. Statist. Ass., 627–630.

Kovar, J. G. and Chen, E. J. (1994) Jackknife variance estimation of imputed survey data. Surv. Methodol., 20,
45–52.

Kulich, M. and Lin, D. (2004) Improving the efficiency of relative-risk estimation in case-cohort studies. J. Am.
Statist. Ass., 99, 832–844.

Lee, H., Rancourt, E. and Särndal, C. (1995) Variance estimation in the presence of imputed data for the gener-
alized estimation system. Proc. Surv. Res. Meth. Sect. Am. Statist. Ass., 384–389.

Lee, H., Rancourt, E. and Särndal, C. E. (1994) Experiments with variance estimation from survey data with
imputed values. J. Off. Statist., 10, 231–243.

Li, K.-C. (1984) Consistency for cross-validated nearest neighbor estimates in nonparametric regression. Ann.
Statist., 12, 230–240.

Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73,
13–22.

Little, R. J. A. (1988) Missing-data adjustments in large surveys. J. Bus. Econ. Statist., 6, 287–296.



24 Y. Sun, L. Qi, F. Heng and P. B. Gilbert

Montaquila, J. and Jernigan, R. (1997) Variance estimation in the presence of imputed data. Proc. Surv. Res.
Meth. Sect. Am. Statist. Ass., 273–277.

Moodie, Z., Juraska, M., Huang, Y., Zhuang, Y., Fong, Y., Carpp, L., Self, S., Chambonneau, L., Small, R.,
Jackson, N., Noriega, F. and Gilbert, P. (2018) Neutralizing antibody correlates analysis of tetravalent dengue
vaccine efficacy trials in Asia and Latin America. J. Infect. Dis., 217, 742–753.

Nan, B. (2004) Efficient estimation for case-cohort studies. Can. J. Statist., 32, 403–419.
Prentice, R. L. (1986) A case-cohort design for epidemiologic cohort studies and disease prevention trials.

Biometrika, 73, 1–11.
Rabaa, M. A., Girerd-Chambaz, Y., Duong Thi Hue, K., Vu Tuan, T., Wills, B., Bonaparte, M., van der Vliet,

D., Langevin, E., Cortes, M., Zambrano, B., Dunod, C., Wartel-Tram, A., Jackson, N. and Simmons, C. P.
(2017) Genetic epidemiology of dengue viruses in phase iii trials of the CYD tetravalent dengue vaccine and
implications for efficacy. eLife, 6, article e24196.

Rancourt, E., Särndal, C. and Lee, H. (1994) Estimation of the variance in the presence of nearest neighbor
imputation. Proc. Surv. Res. Meth. Sect. Am. Statist. Ass., 888–893.

Reilly, M. (1993) Data analysis using hot deck multiple imputation. Statistician, 42, 307–313.
Robins, J., Rotnitzky, A. and Zhao, L. (1994) Estimation of regression-coefficients when some regressors are not

always observed. J. Am. Statist. Ass., 89, 846–866.
Rubin, D. B. (1976) Inference and missing data. Biometrika, 63, 581–592.
Rubin, D. B. (1987) Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Scheike, T. H. and Martinussen, T. (2004) Maximum likelihood estimation for Cox’s regression model under

case–cohort sampling. Scand. J. Statist., 31, 283–293.
Sedransk, J. (1985) The objective and practice of imputation. In Proc. 1st A. Res. Conf. US Bureau of the Census,

Washington DC, pp. 445–452.
Stone, C. J. (1977) Consistent nonparametric regression. Ann. Statist., 5, 595–620.
Sun, Y. and Gilbert, P. (2012) Estimation of stratified mark-specific proportional hazards models with missing

marks. Scand. J. Statist., 39, 34–52.
Sun, Y., Gilbert, P. and McKeague, I. (2009) Proportional hazards models with continuous marks. Ann. Statist.,

37, 394–426.
Sun, Y., Li, M. and Gilbert, P. (2016) Goodness-of-fit test of the stratified mark-specific proportional hazards

model with continuous mark. Computnl Statist. Data Anal., 93, 348–358.
Sun, Y., Qi, L., Yang, G. and Gilbert, P. (2018) Hypothesis tests for stratified mark-specific proportional hazards

models with missing covariates, with application to HIV vaccine efficacy trials. Biometr. J., 60, 516–536.
White, J. E. (1982) A two stage design for the study of the relationship between a rare exposure and a rare disease.

Am. J. Epidem., 115, 119–128.
Yang, G., Sun, Y., Qi, L. and Gilbert, P. (2017) Estimation of stratified mark-specific proportional hazards models

under two-phase sampling with application to HIV vaccine efficacy trials. Statist. Biosci., 9, 259–283.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Web-based supplementary materials for “A hybrid approach for the stratified mark-specific proportional hazards
model with missing covariates and missing marks, with application to vaccine efficacy trials”’.


