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a b s t r a c t 

A semiparametric varying-coefficient mixed regressive spatial autoregressive model is used 

to study covariate effects on spatially dependent responses, where the effects of some 

covariates are allowed to vary with other variables. A semiparametric series-based least 

squares estimating procedure is proposed with the introduction of instrumental variables 

and series approximations of the conditional expectations. The estimators for both the 

nonparametric and parametric components of the model are shown to be consistent and 

their asymptotic distributions are derived. The proposed estimators perform well in sim- 

ulations. The proposed method is applied to analyze a data set on teen pregnancy to in- 

vestigate effects of neighborhood as well as other social and economic factors on the teen 

pregnancy rate. 
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1. Introduction 

It has become increasingly clear that in many practical situations parametric modelling is not capable of capturing the

relationship between the response variable and covariates of interest. Varying-coefficient models have been developed to

model such associations nonparametrically, where the effects of covariates vary with other variables (e.g., see Hastie and

Tibshirani (1993) ). An important advantage of varying-coefficient models is that they partially ameliorate the curse of di-

mensionality problem by restricting the nonparametric functions to a subset of variables. The varying-coefficient partially

linear models are extensions of the varying-coefficient models by allowing some covariate effects to be constant which

further increases modeling flexibility; see Zhang et al. (2002) , Li et al. (2002) and Fan and Huang (2005) . 

Spatial models have been extensively studied in the econometrics and geography literature. In recent years issues con-

cerning spatial dependence among cross sectional units have received increased attention. Kelejian and Prucha (1999) in-

troduced a method of moments (MOM) estimator for the autoregressive parameter in a spatial autoregressive (SAR) model.

Lee (2001) developed a generalized MOM (GMM) estimator for spatial autoregressive processes to improve efficiency. Lee

(2007) proposed a mixed regressive spatial autoregressive (MRSAR) model, which assumes constant covariate effects and

accounts for spatially dependent responses. Approaches accounting for spatial dependence via spatial random effects have

also been studied. Gelfand et al. (2003) modelled spatially correlated responses by introducing a second-order stationary
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process as spatial random effects. Schliep et al. (2015) proposed a hierarchical autoregressive spatially varying coefficients

model to predict particulate matter in the atmosphere using satellite AOT data. Schliep et al. (2015) modeled both time and

space, where for each given space location, the model is autoregressive in time. In this paper, we adopt the approach of Lee

(2007) by modelling covariate effects on spatially dependent responses through spatial weights that are known constants.

We extend the MRSAR model to allow the effects of some covariates to vary nonparametrically with another covariate. This

extension allows for more flexible modelling of covariate effects. The nonlinear nature of the effects can only be discovered

with a model that allows for varying coefficients. To the best of our knowledge, varying-coefficient mixed regressive spatial

autoregressive models have not been considered in the existing literature. 

By accounting for spatial dependence among responses in addition to the influence of covariates, spatial models have

applications in economics and the social sciences. For example, a nation’s per capita GDP growth rate is affected not only by

the value of its indexes, such as savings, income tax rate, and population growth rate, but also by its neighboring nations’

per capita GDP growth rates and the values of these indexes. In a social science example that we analyze in Section 5 ,

a county’s teenage pregnancy rate is affected not only by its own social and economic variables, but also by the teenage

pregnancy rates of its neighboring counties. 

Let y i be the response variable and (u i , x 
T 
i 
, z T 

i 
) be covariates for subject i , where x i and z i are exogenous covariates of

dimensions p and q , respectively, and u i is a scalar covariate. The semiparametric varying-coefficient mixed regressive spatial

autoregressive (SVMRSAR) model assumes that 

y i = λ
n ∑ 

j=1 

w i j y j + z T i β + x T i α(u i ) + ε i , i = 1 , . . . , n, (1)

where β is a q -dimensional coefficient vector, α( u ) is a p -dimensional vector of functions of u with support on a one-

dimensional set U , and λ is a spacial effect parameter. The error term εi is a random variable satisfying E[ ε i | x i , z i , u i ] = 0

and E[ ε 2 
i 
| x i , z i , u i ] = σ 2 

i 
. In addition, in model (1) w i j are spatial weights of known constants with the diagonal elements

w ii = 0 . The term 

∑ n 
j=1 w i j y j represents weighted spatial lag variables and the coefficient λ reflects the spatial influence on

y i by its neighbors’ responses. 

In many applications, it is common practice to choose the row-normalized weight matrix W = (w i j ) such that the sum

of elements in each row of W is unity. For example, the i th row of W may be constructed as w i = (d i 1 , d i 2 , . . . , d in ) / 
∑ n 

j=1 d i j ,

where d ij > 0, for i � = j , represents a function of the spatial distance of the i th and j th units such as the inverse of the

distance of the i and j th units in some (characteristic) space. The weighting operation may be interpreted as an average

of neighboring values. The spatial effect coefficient λ measures the average influence of neighboring observations on the

responses that usually lies between (−1 , 1) when W is row-normalized. For a general W which is not row-normalized, λ is

assumed to be in a parameter space which guarantees that the determinant of I n − λW is positive, where I n is the n × n

identity matrix. 

We assume that (u i , x 
T 
i 
, z T 

i 
) , i = 1 , . . . , n, are exogenous regressors. The response y i depends on (u i , x 

T 
i 
, z T 

i 
) and is corre-

lated with other responses y j for j � = i through the known weights w i j and unknown parameter λ. Model (1) permits the

interaction between the covariates u i and x i such that different levels of the covariate u i are associated with different linear

models. This allows examination of the extent to which the effects of covariates x i vary over different levels of the covariate

u i . Setting x i = 0 , model (1) becomes the MRSAR model, which has been widely studied in the literature; see, for exam-

ple, the work of Kelejian and Prucha (1999) , 2001 ), Lee (20 01) , 20 07 ) and Lin and Lee (2010) , among others. When x i = 1 ,

model (1) is a partially linear MRSAR model, see the work of Su and Jin (2010) for details. When λ = 0 , that is, there exists

no spatial dependency impact, model (1) becomes a semiparametric varying-coefficient partially linear model. We refer to

Zhang et al. (2002) , Li et al. (2002) and Fan and Huang (2005) for related work. 

This article investigates the semiparametric varying-coefficient mixed regressive spatial autoregressive model (1) . We

generalize the result of Newey (1997) from the independent case to the spatially dependent case. We propose a semipara-

metric series-based least squares estimation procedure that makes use of the newly introduced techniques of instrumental

variables and series approximations of conditional expectations. We show that our estimators of the parametric and non-

parametric components are consistent and asymptotically normal. Our simulation study demonstrates that the proposed

estimators perform well. The proposed method is applied to investigate whether neighborhoods and other social economic

factors affect the teen pregnancy rate based on data from the study “Health and Healthcare in the United States-County and

Metro Area Data” ( Thomas, 20 0 0 ) and the 1990 US census ( US Census Bureau, 1992 ). 

The rest of the paper is organized as follows. The estimation procedure for model (1) is presented in Section 2 .

Section 3 derives the asymptotic properties of the proposed estimators and provides estimators for the asymptotic covari-

ance matrix of the estimators. Section 4 presents a Monte Carlo simulation study evaluating the finite-sample performance

of the proposed estimators. In Section 5 , the proposed method is applied to analyze the factors that affect the teen preg-

nancy rate. Some concluding remarks are given in Section 6 . All the proofs are collected in the Appendix. 

2. Semiparametric series-based least squares estimation 

In this section, we develop an estimation procedure for model (1) . The estimation of the parametric part is obtained using

the two-stage least squares estimation method with the introduction of appropriate instrumental variables. The two-stage
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least squares estimation involves some unknown conditional expectations which in turn are estimated by nonparametric

series regression estimation. The estimation of the varying-coefficient part is also accomplished using a series approximation.

2.1. Series-based two-stage least squares estimation of parametric model components 

In this section, we derive the estimators for the parametric components of model (1) . Let w i = (w i 1 , . . . , w in ) 
T , Y =

(y 1 , ..., y n ) 
T , X = (x 1 , . . . , x n ) 

T and Z = (z 1 , . . . , z n ) 
T . Multiplying x i on both sides of Eq. (1) yields 

x i y i = λx i w 
T 
i Y + x i z 

T 
i β + x i x 

T 
i α(u i ) + x i ε i . (2)

Taking the conditional expectation on both sides yields 

E(x i y i | u i ) = λE(x i w 
T 
i Y | u i ) + E(x i z 

T 
i | u i ) β + E(x i x 

T 
i | u i ) α(u i ) + E(x i ε i | u i ) . 

Since E(x i ε i | u i ) = E{ x i E(ε i | x i , z i , u i ) | u i } = 0 , we have 

α(u i ) = { E(x i x 
T 
i | u i ) } −1 { E(x i y i | u i ) − λE(x i w 

T 
i Y | u i ) − E(x i z 

T 
i | u i ) β} . (3)

Let ˜ y i = y i − x T 
i 
[ E(x i x 

T 
i 
| u i )] −1 E (x i y i | u i ) , ˜ z i = z i − E (z i x 

T 
i 
| u i )[ E (x i x T i | u i )] −1 x i , and ˜ Y w,i = w 

T 
i 
Y − x T 

i 
[ E(x i x 

T 
i 
| u i )] −1 E(x i w 

T 
i 
Y | u i ) .

Plugging in the expression (3) for α( u i ) into (1) , we get 

˜ y i = 
˜ b T i ϑ + ε i , (4) 

where ˜ b i = ( ̃  Y T 
w,i 

, ̃  z T 
i 
) T and ϑ = (λ, βT ) T . 

Since ˜ Y w,i is correlated with εi , (4) is a linear model with endogenous regressor ˜ b i . It is well known that the ordinary

least squares estimators for (4) are biased, cf. Cameron and Trivedi (2008) . A general approach to estimating ϑ is to find a

set of instruments that are orthogonal to εi and then apply a method of moments procedure. Following Kelejian and Prucha

(1999) , we derive a consistent estimator of ϑ by introducing appropriate instrumental variables and adopting two-stage least

squares estimation. 

Suppose for the moment that we have observed the conditional expectations E(x i x 
T 
i 
| u i ) , E(x i z 

T 
i 
| u i ) , E ( x i y i | u i ), E(x i w 

T 
i 
Z| u i ) ,

and E(x i w 
T 
i 
Y | u i ) . Let ˜ Z T w,i 

= w 
T 
i 
Z − x T 

i 
[ E(x i x 

T 
i 
| u i )] −1 E(x i w 

T 
i 
Z| u i ) and ˜ h i = ( ̃  Z T 

w,i 
, ̃  z i 

T ) T . It is easy to check that ˜ h i is orthogonal

to εi with E( ̃ h i ε i ) = 0 and ˜ h i is orthogonal to x i . Let ˜ H = ( ̃ h 1 , ̃  h 2 , . . . , ̃  h n ) 
T be the matrix of instrumental variables. Let ˜ Y =

( ̃  y 1 , ̃  y 2 , . . . , ̃  y n ) T and ˜ B = ( ̃ b 1 , ̃  b 2 , . . . , ̃  b n ) 
T . The two-stage least squares (2SLS) infeasible estimator of ϑ for model (4) is given

by 

ˆ ϑ in f = [ ̃  B T ˜ H ( ̃  H 
T ˜ H ) −1 ˜ H 

T ˜ B ] −1 ˜ B T ˜ H ( ̃  H 
T ˜ H ) −1 ˜ H 

T ˜ Y . (5) 

The 2SLS infeasible estimator ˆ ϑ in f is obtained using the two-stage ordinary least squares (OLS) method. In the first stage,

a OLS regression of ˜ B on the instruments ˜ H is used to obtain fitted values ˜ B ∗ = P ˜ H 
˜ B , where P ˜ H = ˜ H ( ̃  H 

T ˜ H ) −1 ̃  H 
T is an idem-

potent projection matrix. The two-stage least squares (2SLS) infeasible estimator can be expressed as ˆ ϑ in f = ( ̃  B ∗T ˜ B ∗) −1 ̃  B ∗T ˜ Y ,
which is obtained from a OLS regression of ˜ Y on the resulting fit ˜ B ∗ from the first stage OLS. The condition E( ̃ h i ε i ) = 0 is

necessary for asymptotic unbiasedness of ˆ ϑ in f for ϑ while the orthogonality E( ̃ h i x 
T 
i 
) = 0 ensures the asymptotic normality

in Theorem 2 (b) in Section 3 . 

The estimator is infeasible because the conditional expectations involved in the right-hand side of (5) are unknown.

To obtain a feasible estimator of ϑ, we need to estimate the conditional expectations E(x i x 
T 
i 
| u i ) , E(x i z 

T 
i 
| u i ) , E ( x i y i | u i ), and

E(x i w 
T 
i 
Y | u i ) , and plug the estimates into the right-hand side of (5) . Following Newey (1997) , we adopt nonparametric series

regression estimation of these conditional expectations using the basis functions approach. Sieve methods such as B-splines,

polynomial splines, wavelets and Fourier series are often used for nonparametric estimation. In particular, Ai and Chen

(2003) considered sieve minimum distance estimation under conditional moment restrictions containing unknown func- 

tions. Chen and Pouzo (2009) investigated penalized sieve minimum distance estimation for conditional moment models

with unknown parametric components and unknown functions of endogenous variables. Zhang and Sun (2015) employed

the sieve approach for spatial dynamic panel data regression with fixed effects. In practice, a variety of polynomial basis

functions such as Hermite polynomials, polynomial splines, and B-splines can be used for the nonparametric approximation.

Let p K (u ) = (p 1 K (u ) , . . . , p KK (u ))) 
T 
be a sequence of K known basis functions. Let ˜ P (u ) = I p � (p K (u )) T , where � is the

Kronecker product and ˜ P (u ) is a p × pK matrix. The series approximation of E(x i x 
T 
i 
| u i ) is given by 

E(x i x 
T 
i | u i ) ≈ ˜ P (u i ) θ1 K , (6) 

where θ1 K = (θ T 
1 ·, . . . , θ

T 
p·) T , and each θl· = (θl1 , . . . , θlK ) 

T is a K -dimensional vector of parameters for l = 1 , . . . , p. A series

estimate of E(x i x 
T 
i 
| u i ) is obtained by linearly regressing x i x T i on ˜ P (u i ) , yielding the closed-form expression 

ˆ E (x i x 
T 
i | u i ) = 

˜ P (u i )( � P 
T � P ) −1 

n ∑ 

i =1 

˜ P (u i ) 
T x i x 

T 
i , (7)
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where � P = ( ̃  P T (u 1 ) , . . . , ˜ P 
T (u n )) T is a pn × pK matrix. Similarly, the series estimates of E(x i z 

T 
i 
| u i ) , E ( x i y i | u i ), and E(x i w 

T 
i 
Y | u i )

can be obtained as 

ˆ E (x i z 
T 
i | u i ) = 

˜ P (u i )( � P 
T � P ) −1 

n ∑ 

i =1 

˜ P (u i ) 
T x i z 

T 
i , (8)

ˆ E (x i y i | u i ) = 
˜ P (u i )( � P 

T � P ) −1 
n ∑ 

i =1 

˜ P (u i ) 
T x i y i , (9)

ˆ E (x i w 
T 
i Y | u i ) = 

˜ P (u i )( � P 
T � P ) −1 

n ∑ 

i =1 

˜ P (u i ) 
T x i w 

T 
i Y, (10)

respectively. 

Lemma 1 in Section 3 shows that the estimates ˆ E (x i x 
T 
i 
| u i ) , ˆ E (x i z T i | u i ) , and ˆ E (x i w 

T 
i 
Y | u i ) are consistent and also pro-

vides the rates of convergence. We replace the conditional expectations E(x i x 
T 
i 
| u i ) , E(x i z 

T 
i 
| u i ) , E ( x i y i | u i ) and E(x i w 

T 
i 
Y | u i )

with ˆ E (x i x 
T 
i 
| u i ) , ˆ E (x i z T i | u i ) , ˆ E (x i y i | u i ) , ˆ E (x i w 

T 
i 
Z| u i ) and ˆ E (x i w 

T 
i 
Y | u i ) , in the definitions of ˜ y i , ˜ z i , ˜ b i and ˜ h i to obtain ˆ y i , ˆ z i , ˆ b i

and ˆ h i , respectively. Let ˆ B = ( ̂ b 1 , ̂  b 2 , . . . , ̂  b n ) 
T , ˆ H = ( ̂ h 1 , ̂  h 2 , . . . , ̂  h n ) 

T and ˆ Y = ( ̂  y 1 , ̂  y 2 , . . . , ̂  y n ) T . Replacing ˜ B , ˜ H and ˜ Y with ˆ B , Ĥ

and ˆ Y , respectively, in (5) , we obtain the following feasible least squares estimator of ϑ: 

ˆ ϑ = [ ̂  B T ˆ H ( ̂  H 
T ˆ H ) −1 ˆ H 

T ˆ B ] −1 ˆ B T ˆ H ( ̂  H 
T ˆ H ) −1 ˆ H 

T ˆ Y . (11)

The estimators of λ and β , denoted by ˆ λ and ˆ β, are the first component and the last q components of ˆ ϑ , respectively. 

2.2. Series-based least squares estimation of nonparametric model components 

The expression of α( u i ) given in (3) is only for the covariate values u i , i = 1 , . . . , n, not for an arbitrary u . Therefore

plugging in the estimates of the conditional expectations ( 7 )–( 10 ) and the first-stage estimates of β and λ into (3) does not

yield an estimate of α( u ) right away. In this section we derive the estimators for the nonparametric regression functions

α( u ). 

Consider the series approximation for each component αl ( u ), l = 1 , . . . , p, 

αl (u ) = 

K ∑ 

k =1 

γlk p kK (u ) + v l (u ) , u ∈ U (12)

where p 1 K (u ) , . . . , p KK (u ) are K known basis functions, γ1 K , . . . , γKK are unknown coefficient parameters and v l (u ) is the
approximation error term. Using this series approximation, model (1) can be written as 

y i − λw 
T 
i Y − z T i β = 

p ∑ 

l=1 

K ∑ 

k =1 

x il γlk p kK (u i ) + 

p ∑ 

l=1 

x il v l (u i ) + ε i . (13)

Let γl = (γl1 , . . . , γlK ) 
T and γ = (γ T 

1 
, . . . , γ T 

p ) 
T . Consider the plug-in series-based least squares objective function 

L (γ ) = 

n ∑ 

i =1 

{ 

y i − ˆ λw 
T 
i Y − z T i 

ˆ β −
p ∑ 

l=1 

K ∑ 

k =1 

x il γlk p kK (u i ) 

} 2 

. (14)

Let ˆ γ = ( ̂  γ T 
1 , . . . , ˆ γ

T 
p ) 

T be the minimizer of L ( γ ), where ˆ γl = ( ̂  γl1 , . . . , ˆ γlK ) 
T for l = 1 , . . . , p. The estimator of αl ( u ) is given

by ˆ αl (u ) = 

∑ K 
k =1 ˆ γlk p kK (u ) , which is referred to as the least squares series estimator of αl ( u ). 

Let D i = x T 
i 
˜ P (u i ) , and D = (D 

T 
1 
, . . . , D 

T 
n ) 

T . The object function (14) is equivalent to 

L (γ ) = 

n ∑ 

i =1 

{ y i − ˆ λw 
T 
i Y − z T i 

ˆ β − D i γ } 2 . (15)

Suppose that 
∑ n 

i =1 D 
T 
i 
D i is invertible. Then the plug-in least squares estimator ˆ γ is given by 

ˆ γ = 

( 

n ∑ 

i =1 

D 
T 
i D i 

) −1 
n ∑ 

i =1 

D 
T 
i (y i − ˆ λw 

T 
i Y − z T i 

ˆ β) = (D 
T D ) −1 D 

T (Y − ˆ λW Y − Z ̂  β) . (16)

The least squares series estimator of α( u ), for u ∈ U , has expression 

ˆ α(u ) = 
˜ P (u ) ̂  γ = [ I p � p K (u ) T ](D 

T D ) −1 D 
T (Y − ˆ λW Y − Z ̂  β) . (17)
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We note that since model (1) includes the weighted spatial lag variables 
∑ n 

j=1 w i j y j , which are endogenous variables, es-

timating both the parametric and nonparametric components simultaneously through minimizing the least squares objective 

function (15) may not yield consistent estimators, cf. Kelejian and Prucha (1999) . We show in the next section that this in-

consistency problem can be avoided by first estimating λ and β using the two-stage least squares estimator facilitated with

instrumental variables and then estimating α( u ) through the profile least squares approach. The profile estimation method

is often used in semiparametric estimation to improve computational efficiency, whereby the estimators for the parametric

components converge at a faster rate. 

3. Asymptotic results and variance estimation 

In this section, we investigate the asymptotic properties of the proposed estimators for model (1) . The estimators for the

asymptotic covariances of these estimators are also given to enable statistical inferences. 

Let W = (w i j ) n ×n be the n × n spatial weights matrix of known constants, ε = (ε 1 , . . . , ε n ) 
T , and U = (u 1 , . . . , u n ) 

T . Let X

be the n × np block diagonal matrix with x T 
i 
on the i th diagonal. The semiparametric varying-coefficient mixed regressive

spatial autoregressive (SVMRSAR) model (1) can be rewritten as 

Y = λW Y + X � α(U) + Zβ + ε, (18) 

where � α(U) = (αT (u 1 ) , . . . , α
T (u n )) T is an np dimensional vector of unknown coefficient functions that depends on u . 

Let U be the support of u i . The following regularity conditions are assumed for studying the asymptotic properties. 

Condition A. 

A.1 The diagonal element of the spatial weighting matrix W is zero. The matrix I − λW is nonsingular for | λ| < 1. The

row and column sums of the matrices W and (I − λW ) −1 are bounded uniformly in n . 

A.2 The elements of X , Z are uniformly bounded by some constants uniformly in n . 

A.3 The random errors εi are independently identically distributed with E[ ε i | x i , z i , u i ] = 0 and E[ ε 2 
i 
| x i , z i , u i ] = σ 2 

i 
is

bounded away from 0, and E(ε 4 
i 
| x i , z i , u i ) is bounded by a constant. 

A.4 Let p K (u ) = (p 1 K (u ) , . . . , p KK (u )) 
T . The largest eigenvalue of E [ p K ( u i ) p 

K ( u i ) 
T ] is bounded uniformly in K . The smallest

eigenvalue of E [ p K ( u i ) p 
K ( u i ) 

T ] is bounded away from zero uniformly in K . There exists a sequence of constants ζ 0 ( K )

such that sup u ∈U ‖ p K (u ) ‖ ≤ ζ0 (K) and K = K(n ) → ∞ such that ζ 0 ( K ) 
2 K / n → 0 as n → ∞ , where ‖·‖ is the Euclidean

norm of a vector. 

A.5 Let g 0 ( u ) represent one of the components E(x i x 
T 
i 
| u i ) , E(x i z 

T 
i 
| u i ) , E ( x i y i | u i ), E(x i w 

T 
i 
Y | u i ) and α( u ), and let θ0 K be the

corresponding vector of coefficients under the series approximation similar to (6) under the basis functions p K (u ) =
(p 1 K (u ) , . . . , p KK (u )) 

T . There exist δ > 0 and θK such that sup u ∈U ‖ g 0 (u ) − (p K (u )) T θ0 K ‖ = O (K −δ ) as K → ∞ . 

A.6 The eigenvalues λ1 , . . . , λp of E[ x i x 
T 
i 
| u i ] are bounded and bounded away from 0. The eigenvalues of E[ e XY e 

T 
XY | U] are

bounded and bounded away from zero, where e XY = X T Y − E(X T Y | U) and E ( X T Y | U) = (E(x T 1 y 1 | u 1 ) , . . . , E(x T n y n | u n )) T .
Moreover, the eigenvalues of E[ e XwY e 

T 
XwY 

| U] are bounded uniformly in n , where e XwY = X T W Y − E(X T W Y | U) and

E(X T W Y | U) = (E(x 1 w 
T 
1 
Y | u 1 ) , . . . , E(x n w 

T 
n Y | u n )) 

T . 

A.7 The limits n −1 ̃  H 
T ˜ B 

P −→ Q ˜ H T ̃  B , n 
−1 ̃  H 

T ˜ H 

P −→ Q ˜ H T ˜ H , n 
−1 ̃  H 

T � ˜ H 

P −→ Q ˜ H T � ˜ H exist and are nonsingular, where � =
diag (σ 2 

1 
, . . . , σ 2 

n ) . 

Condition A.1 imposes restrictions on the spatial weighting matrix. These restrictions are commonly imposed in the

spatial regression literature (e.g., Lee (2003) , 2007 )). Condition A.2 is similar to an assumption in Kelejian and Prucha (1998) .

Condition A.3 is needed for establishing the asymptotic distribution of the nonparametric estimator ̂ α(u ) and was used in

Newey (1997) . 

Conditions A.4 and A.5 are imposed on the sieve approximations. Since the constant in the fixed-effects setting is not

identified, we must impose some normalization on g 0 (.) such as g 0 (z 0 ) = 0 at some point z 0 so that g 0 (.) can be identified.

The basis functions p K ( z ) shall be constructed to satisfy this normalization. Condition A.4 imposes a normalization on the

basis functions, bounding the second moment matrix away from singularity, and restricting the magnitude of the series

terms. The bound ζ 0 ( K ) is different for different basis functions. Newey (1997) showed that ζ 0 ( K ) equals C 
√ 

K for splines

and CK for power series where C is a constant. This implies a convergence rate at K 2 / n → 0 and K 3 / n → 0 for splines and

power series, respectively. This condition is needed to ensure the convergence in probability of the sample second moment

matrix of the approximating functions to their expectations. 

Condition A.5 assumes that several conditional expectations can be approximated well using series and it specifies that

the rate of uniform approximation error tends to zero at the rate K −δ . The constant δ is related to the smoothness of the

conditional expectation functions and the dimensionality of u i . If these objects have different degrees of smoothness, then

the rate of convergence is determined by the least smooth component. For splines and power series, this assumption is

satisfied with δ = s/r, where s is the number of continuous derivatives of g 0 ( u ) that exist and r is the dimensionality of u i ;

see Newey (1997) . Under Condition A.5, E(x i x 
T 
i 
| u i ) , E(x i z 

T 
i 
| u i ) , E ( x i y i | u i ), and α( u i ) can be approximated well using the basis

functions p K ( u ). Since λE(x i w 
T 
i 
Y | u i ) = E(x i y i | u i ) − E(x i z 

T 
i 
| u i ) β − E(x i x 

T 
i 
| u i ) α(u i ) , E(x i w 

T 
i 
Y | u i ) can also be approximated well

by the basis functions p K ( u ). Condition A.6 is needed to show that the series estimators of the conditional expectations are

consistent ( Lemma 1 ). Condition A.7 is a stability condition. The quantities are used in the expression of asymptotic variance

of the estimator. 
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3.1. Asymptotic results 

This section presents the asymptotic results of the estimators. The proofs of these results are given in the Appendix.

Lemma 1 shows the consistency of the series estimators of the conditional expectations defined in (7) –(10) . It also gives the

rates of convergence of these estimators. 

Lemma 1. Under Conditions A .1–A .5, the following holds uniformly in u i , i = 1 , . . . , n and n: 

(i) ˆ E (x i x 
T 
i 
| u i ) = E(x i x 

T 
i 
| u i ) + O p (ζ0 (K)[ 

√ 

K / 
√ 

n + K −δ]) ;
(ii) ˆ E (x i z 

T 
i 
| u i ) = E(x i z 

T 
i 
| u i ) + O p (ζ0 (K)[ 

√ 

K / 
√ 

n + K −δ]) ;
(iii) ˆ E (x i y i | u i ) = E(x i y i | u i ) + O p (ζ0 (K)[ 

√ 

K / 
√ 

n + K −δ]) ;
(iv) ˆ E (x i w 

T 
i 
Y | u i ) = E(x i w 

T 
i 
Y | u i ) + O p (ζ0 (K)[ 

√ 

K / 
√ 

n + K −δ]) . 

(v) ˆ E (x i w 
T 
i 
Z| u i ) = E(x i w 

T 
i 
Z| u i ) + O p (ζ0 (K)[ 

√ 

K / 
√ 

n + K −δ]) . 

The result in Lemma 1 is similar to the uniform convergence result given in Theorem 1 of Newey (1997) . Note that δ is

related to the smoothness of the conditional expectations and the dimensionality of u i . According to Newey (1997) , we can

take δ = s/r, where s is the number of continuous derivatives that exist of the least smooth conditional expectation and r

is the dimensionality of u i . The coefficients ζ 0 ( K ) are different for different basis functions. The first term O p (ζ0 (K) 
√ 

K / 
√ 

n )

essentially corresponds to the standard error of estimation and the second term O p (ζ0 (K ) K 
−δ ) corresponds to the bias of

estimation. By letting the two terms ζ0 (K) 
√ 

K / 
√ 

n and ζ0 (K ) K 
−δ go to zero at the same rate, we have K = O (n 1 / (1+2 δ) )

as n → ∞ , which achieves the best bias-variance trade-off in mean square error ( Newey, 1997 ). Because ζ0 (K) = O p ( 
√ 

K )

for splines and ζ0 (K) = O p (K) for power series, the estimation errors O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) equal O p (K n 
−1 / 2 + K 1 / 2 −δ ) =

O p (n −(δ−1 / 2) / (1+2 δ) ) for splines and O p (K 3 / 2 n −1 / 2 + K 1 −δ ) = O p (n −(δ−1) / (1+2 δ) ) for power series. 

We next present the asymptotic results for the estimation of the parametric part of the model. The first result is about

the infeasible estimator and the second result is about the feasible estimator. 

Theorem 1. Under Condition A, as n → ∞ , 

(a) ˆ ϑ in f is asymptotically consistent with ˆ ϑ in f 
P −→ ϑ ; 

(b) ˆ ϑ in f is asymptotically normal with 
√ 

n ( ̂  ϑ in f − ϑ) 
D −→ N 

(
0 , 
ϑ 

)
, where 


ϑ = (Q 
T 
˜ H T ̃  B 

Q 
−1 
˜ H T ̃  H 

Q ̃ H T ̃  B ) 
−1 Q 

T 
˜ H T ̃  B 

Q 
−1 
˜ H T ̃  H 

Q ̃ H T � ˜ H Q 
−1 
˜ H T ̃  H 

Q ̃ H T ̃  B (Q 
T 
˜ H T ̃  B 

Q 
−1 
˜ H T ̃  H 

Q ̃ H T ̃  B ) 
−1 . 

By the definition of Q ˜ H T ̃  B , Q ˜ H T ˜ H and Q ˜ H T � ˜ H given in Condition A.7, if the errors are homoscedastic, i.e., σ 2 
i 

= σ 2 , then the

asymptotic covariance admits a simple form 
ϑ = σ 2 (Q 
T 
˜ H T ̃  B 

Q 
−1 
˜ H T ˜ H 

Q ˜ H T ̃  B ) 
−1 . 

Theorem 2. Assume that ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ] → 0 . Under Condition A, as n → ∞ , 

(a) ˆ ϑ is asymptotically consistent with ˆ ϑ 

P −→ ϑ ; 

(b) ˆ ϑ is asymptotically normal with 
√ 

n ( ̂  ϑ − ϑ) 
D −→ N 

(
0 , 
ϑ 

)
. 

To study the asymptotic property of the estimator ˆ α(u ) , we introduce a distance measure to assess its performance. Let

‖ ̂  α(u ) − α(u ) ‖ 2 = 

(
ˆ α(u ) − α(u ) 

)T (
ˆ α(u ) − α(u ) 

)
. The asymptotic results about ˆ α(u ) are given in the following theorem. 

Theorem 3. Under Conditions A .1–A .7, as n → ∞ , we have 

(a) sup u ∈U ‖ ̂  α(u ) − α(u ) ‖ = O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) ; 

(b) 
α(u ) −
1 
2 { ̂  α(u ) − α(u ) } D −→ N(0 , I p ) for u ∈ U , 

where 
α(u ) = Cov { ̃  P (u )(D 
T D ) −1 D 

T ε| U = u } equals ˜ P (u )(D 
T D ) −1 D 

T �D (D 
T D ) −1 ˜ P (u ) T . If the errors are homoscedastic,

then 
α(u ) = σ 2 ̃  P (u )(D 
T D ) −1 ̃  P (u ) T . 

Theorems 2 and 3 allow us to conduct statistical inference on both ϑ and α( u ), provided that consistent estimators of the

asymptotic covariance matrices are available. 

3.2. Estimation of asymptotic covariance matrices 

Under the assumption that the errors are homoscedastic, E[ ε 2 
i 
| x i , z i , u i ] = σ 2 , we derive estimators of the asymptotic

covariance matrices 
ϑ and 
α( u ) for ˆ ϑ and ˆ α(u ) , and show that these estimators are consistent. 

Let b i = (w 
T 
i 
Y, z T 

i 
) T and note that x T 

i 
ˆ α(u i ) = x T 

i 
˜ P (u i ) ̂  γ = D i ̂  γ . The error term εi can be estimated by ˆ ε i = y i − b i ˆ ϑ − D i ̂  γ .

A consistent estimator for σ 2 is given by ˆ σ 2 = n −1 ˆ ε T ˆ ε , where ˆ ε = ( ̂  ε 1 , . . . , ̂  ε n ) T . The asymptotic covariance matrix 
ϑ for ˆ ϑ
can be estimated by 

ˆ 
ϑ = ˆ σ 2 ( ̂  Q 
T 
˜ H T ̃  B 

ˆ Q 
−1 
˜ H T ̃  H 

ˆ Q ̃ H T ̃  B ) 
−1 , 

where ˆ Q ˜ H T ̃  B = n −1 ̂  H 
T ˆ B = n −1 

∑ n 
i =1 

ˆ h i ̂ b 
T 
i 
, ˆ Q ˜ H T ˜ H = n −1 ̂  H 

T ˆ H = n −1 
∑ n 

i =1 
ˆ h i ̂ h 

T 
i 
. 
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Table 1 

Summary of Bias, SEE, ESE and CP for λ = −0 . 5 , 0 , 0 . 5 and β = 3 and RISE of ˆ α(u ) with different σ 2 = 9 , 25 and K = 6 under model (19) . Each entry is 

based on 10 0 0 repetitions. 

n σ 2 ˆ σ 2 ˆ λ ˆ β ˆ α(u ) 

Avg Bias SEE ESE CP Bias SEE ESE CP RISE 

λ = −0 . 5 , β = 3 

200 9 9.45 0.0031 0.229 0.140 0.931 –0.0058 0.313 0.204 0.924 0.556 

300 9.08 –0.0027 0.120 0.108 0.945 0.0031 0.173 0.162 0.959 0.453 

500 9.01 0.0 0 07 0.083 0.082 0.951 –0.0033 0.125 0.123 0.942 0.337 

200 25 25.26 0.0 0 03 0.342 0.236 0.933 –0.0223 0.447 0.339 0.921 0.921 

300 24.75 –0.0066 0.190 0.180 0.944 0.0 0 05 0.282 0.267 0.959 0.754 

500 24.81 –0.0 0 05 0.140 0.137 0.949 –0.0075 0.207 0.205 0.943 0.560 

λ = 0 , β = 3 

200 9 9.39 0.0 0 08 0.156 0.098 0.930 –0.005 0.316 0.214 0.925 0.554 

300 9.08 –0.0023 0.085 0.077 0.943 0.0039 0.183 0.170 0.957 0.453 

500 9.01 0.0 0 03 0.059 0.058 0.951 –0.0031 0.131 0.129 0.942 0.336 

200 25 25.10 –0.0028 0.226 0.163 0.933 –0.0185 0.454 0.351 0.926 0.919 

300 24.77 –0.0057 0.135 0.127 0.944 0.0023 0.297 0.281 0.957 0.754 

500 24.81 –0.0 0 09 0.099 0.097 0.948 –0.0066 0.217 0.215 0.942 0.560 

λ = 0 . 5 , β = 3 

200 9 9.36 –0.0 0 03 0.081 0.051 0.931 –0.0035 0.329 0.224 0.925 0.556 

300 9.09 –0.0014 0.045 0.040 0.943 0.0050 0.194 0.179 0.953 0.453 

500 9.01 0.0 0 06 0.031 0.031 0.950 –0.0028 0.138 0.136 0.942 0.337 

200 25 25.04 –0.0023 0.116 0.086 0.933 –0.0139 0.474 0.367 0.925 0.920 

300 24.79 –0.0035 0.071 0.067 0.943 0.0048 0.313 0.295 0.955 0.755 

500 24.82 –0.0 0 08 0.053 0.051 0.946 –0.0056 0.228 0.226 0.944 0.561 

 

 

 

 

 

 

 

 

 

 

 

 

 

The asymptotic covariance matrix 
α( u ) for ˆ α(u ) can be estimated by 

ˆ 
α(u ) = ˆ σ 2 ˜ P (u ) 
{
D 
T D 

}−1 
˜ P (u ) T . 

The following theorem establishes the consistency of these estimators. 

Theorem 4. Assume that E[ ε 2 
i 
| x i , z i , u i ] = σ 2 . Under Condition A, as n → ∞ , we have 

(a) ˆ σ 2 P −→ σ 2 ; 

(b) ˆ 
ϑ 
P −→ 
ϑ ; 

(c) ˆ 
α(u ) − 
α(u ) = o p 
(
ζ0 (K) 2 /n 

)
= o p (1) for any given value u ∈ U . 

4. Monte Carlo simulation 

In this section, we conduct a simulation study to evaluate finite-sample performance of the proposed method. We con-

sider the following SVMRSAR model 

y i = λ
n ∑ 

j=1 

w i j y j + z T i β + x T i α(u i ) + ε i , i = 1 , . . . , n, (19)

where u i follows the uniform distribution on [0, 1], x i follows the standard normal distribution, z i has the exponential

distribution with rate parameter 1, and the error term εi is normally distributed with mean zero and variance σ 2 . For the

sample size n that is a multiple of 10, we take the spatial weights matrix W = I n/ 10 � (1 10 − I 10 ) / 9 , where 1 10 is a 10 × 10

matrix with all elements equal to 1 and I r is a r × r identity matrix for r = 10 and n /10. We consider α(u ) = 6 sin (2 πu ) ,

λ = −0 . 5 , 0 , or 0.5, and β = −3 or 3. In the simulations, we take K = 6 and p K (u ) = (1 , u, u 2 , u 3 , . . . , u K−1 ) T . We conducted

an additional simulation study using K = 4 and K = 5 to examine how the estimation accuracy is influenced by the choice

of K . The simulation results using K = 4 and K = 5 presented in the Web-based Supplementary material show that the

estimation accuracy is not very sensitive to the choices. 

Tables 1 and 2 summarize the simulation results for estimating λ, β and α( u ) under different settings of the true pa-

rameters for n = 20 0 , 30 0 , and 500 using K = 6 . Table 1 is for β = 3 and Table 2 is for β = −3 . Each entry is based on 10 0 0

repetitions. 

For each estimator, Bias is the average of estimation biases from 10 0 0 repetitions, SSE is the sample standard error of

the estimates, ESE is the average of the estimated standard errors, CP is the coverage probability of a 95 percent confidence

interval, and RISE is the average of the square root integrated square error of ˆ α(u ) , where for each repetition 
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Table 2 

Summary of Bias, SEE, ESE and CP for λ = −0 . 5 , 0 , 0 . 5 and β = −3 and RISE of ˆ α(u ) with σ 2 = 9 , 25 , and K = 6 under model (19) . Each entry is based on 

10 0 0 repetitions. 

n σ 2 ˆ σ 2 ˆ λ ˆ β ˆ α(u ) 

Avg Bias SEE ESE CP Bias SEE ESE CP RISE 

λ = −0 . 5 , β = −3 

200 9 9.24 –0.0102 0.193 0.135 0.932 0.0028 0.265 0.201 0.925 0.556 

300 9.10 –0.0029 0.125 0.109 0.942 0.0090 0.178 0.162 0.956 0.452 

500 9.00 –0.0045 0.083 0.083 0.949 0.0 0 01 0.125 0.123 0.941 0.337 

200 25 24.79 –0.0225 0.284 0.224 0.932 0.0048 0.390 0.330 0.928 0.920 

300 24.78 –0.0089 0.199 0.181 0.945 0.0160 0.284 0.267 0.958 0.752 

500 24.78 –0.0093 0.138 0.139 0.947 0.0017 0.208 0.204 0.940 0.561 

λ = 0 , β = −3 

200 9 9.27 –0.0082 0.137 0.096 0.929 0.0 0 07 0.277 0.212 0.923 0.554 

300 9.10 –0.0024 0.088 0.077 0.943 0.0080 0.186 0.170 0.956 0.452 

500 9.00 –0.0034 0.058 0.058 0.950 –0.0 0 07 0.131 0.129 0.943 0.337 

200 25 24.86 –0.0182 0.203 0.159 0.932 –0.0 0 01 0.408 0.347 0.927 0.919 

300 24.79 –0.0074 0.140 0.128 0.945 0.0130 0.297 0.281 0.955 0.752 

500 24.79 –0.0071 0.097 0.097 0.948 –0.0 0 01 0.218 0.215 0.941 0.560 

λ = 0 . 5 , β = −3 

200 9 9.30 –0.0049 0.074 0.051 0.930 –0.0015 0.291 0.223 0.922 0.555 

300 9.10 –0.0015 0.046 0.041 0.944 0.0069 0.195 0.179 0.954 0.452 

500 9.01 –0.0019 0.031 0.031 0.952 –0.0016 0.138 0.136 0.946 0.337 

200 25 24.97 –0.0110 0.110 0.085 0.933 –0.0060 0.430 0.365 0.921 0.921 

300 24.80 –0.0045 0.074 0.068 0.945 0.0103 0.311 0.296 0.954 0.753 

500 24.81 –0.0040 0.051 0.051 0.951 –0.0022 0.229 0.226 0.946 0.561 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RISE ( ̂  α(u )) = 

[ 

p ∑ 

l=1 

∫ 
U 
{ ̂  αl (u ) − αl (u ) } 2 dF (u ) 

] 1 / 2 

, 

and U is the support of u , with F ( u ) the distribution function of u . 

The simulation results show that the biases for estimating λ and β are small and decrease when n increases. The variance

estimation works well, with ˆ σ 2 close to σ 2 and the difference becoming small when n becomes larger. The SEE and ESE for
ˆ λ and ˆ β are close and the differences decrease with the sample size. The RISE of α( u ) becomes very small as n becomes

larger. Fig. 1 compares the true function α( u ) with the estimated function ˆ α(u ) . 

5. Analysis of teenage pregnancy rates 

Teenage pregnancy is one of the subject areas where social interaction effects are believed to be most important. Jencks

and Mayer (1990) conclude that neighborhoods have a stronger effect on sexual behavior than on cognitive skills, school

enrollment decisions, or even criminal activity. Many studies including Hogan and Kitagawa (1985) , Crane (1991) , Case and

Katz (1991) and Evans et al. (1992) analyzed neighborhood effects in teenage pregnancy. 

Based on the data from the study “Health and Healthcare in the United States-County and Metro Area Data” ( Thomas,

20 0 0 ), and the 1990 US Census ( US Census Bureau, 1992 ), Lin and Lee (2010) studied the spatial effects at more aggregated

levels using the MRSAR model and examined how county teenage pregnancy rates are affected by each other. The proposed

model (1) is a semiparametric model that includes a nonparametric component for more flexible modeling. Applying the

proposed method, we relate a county’s teenage pregnancy rate, which is defined as the percentage of pregnancies occurring

for females of 12–17 years old, to those of its neighbors and its own characteristics. Following Kelejian and Robinson (1993) ,

we focus on counties in the 10 Upper Great Plains States, including Colorado, Iowa, Kansas, Minnesota, Missouri, Montana,

Nebraska, North Dakota, South Dakota, and Wyoming, which consist of 761 counties. A county’s neighbors are referred to as

its geographically neighboring counties. 

For each county i , i = 1 , . . . , 761 , we define Teen i as the teenage pregnancy rate, Edu i as the education service expenditure

(divided by 100), Inco i as median household income (divided by 10 0 0), FHH i as the percentage of female-headed households,

Black i as the proportion of the population that is black, and Phy i as the number of physicians per 10 0 0 population, all in

county i . Lin and Lee (2010) found that Phy i , Black i , FHH i , Inco i , and Edu i are five county level covariates that influence the

teen pregnancy rates by using the MASAR model where the covariate effects are assumed constant. In the following, we fit

the data using the SVMRSAR model with varying intercept α( u i ). We demonstrate how this model can be used to discover

nonlinear effects, facilitate transformations and improve model fitting. 

We consider the following SVMRSAR model: 

T een i = λ
761 ∑ 

j=1 

w i j T een j + z T i β + α(u i ) + ε i , (20)
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Fig. 1. Plots of the estimates of α(u ) = 6 sin (2 πu ) under model (19) with K = 6 for n = 200 and σ = 5 and for different values of λ and β . The black 

dashed line is the true function. The dotted line is the average estimate over 10 0 0 simulations. The grey lines are the estimates of α( u ) in 20 simulations. 

 

 

 

 

 

 

 

 

 

 

for i = 1 , . . . , 761 , where z i and u i are the county-level covariates and w i j are the entries in the spatial weights matrix. The

spatial weights w i j are set to zero if two counties are not neighboring counties, and all neighbors of the same county are

assigned equal weight in the row-normalized spatial weights matrix. The term 

∑ 761 
j=1 w i j T een j is simply the average of the

teenage pregnancy rates of county i ’s neighbors. 

The histograms of the these variables show that the data distributions for Phy, Black, FHH, and Edu are very skewed

with very sparse observations at the right tails. The data distribution of Inco is also slightly skewed. The sparsity of the

observations at the right tails makes the nonparametric estimation unstable. We use log transformations for the variables

Phy, Black, Inco, Edu and the square root transformation for FHH. The value one is added before the log transformation to

avoid −∞ . The transformations reduce sparseness in the right tails. 

The preliminary analysis indicates that log (1 + Phy i ), log (1 + Black i ), sqrt(FHH i ) and log (1 + Inco i ) have constant spatial

effects, while the effect of log (1 + Edu i ) demonstrates a nonlinear pattern. As a result, we take the final fitted model to be

(20) , where u i is log (1 + Edu i ), and z i is a vector consisting of log (1 + Phy i ), log (1 + Black i ), sqrt(FHH i ) and log (1 + Inco i ). The

estimate of α( u ) is given by ˆ α(u ) = 16 . 08 + 1 . 22 u − 0 . 36 u 2 . Fig. 2 shows ˆ α(u ) with 95% pointwise confidence bands. 
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Fig. 2. Plots of the estimates ˆ α(u ) = 16 . 44 + 1 . 22 u − 0 . 36 u 2 and pointwise 95% confidence intervals under model (20) , where u i = log (1 + Edu i ), and z i is a 

vector of log (1 + Phy i ), log (1 + Black i ), sqrt(FHH i ) and log (1 + Inco i ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimation for λ and the spatial effects β of log (1 + Phy i ), log (1 + Black i ), sqrt(FHH i ) and log (1 + Inco i ) are given

in the first row of the following table. The second row shows the corresponding Wald statistics, which are the estimated

effects divided by their respective estimated standard errors. The values of the test statistics show that all five county level

covariates Phy i , Black i , FHH i , Inco i , and Edu i have significant effects on teen pregnancy rate. 

λ log (1 + Phy ) log (1 + Black ) 
√ 

F HH log (1 + Inco) 

ˆ λ or ˆ β 0.273 −1 . 14 1.19 4.48 −6 . 15 

Wald-statistic 3.163 −2 . 07 3.43 10.76 −5 . 30 

Our analysis shows that a higher rate of teen pregnancy is associated with a higher proportion of black population and a

higher percentage of female-headed households in the county. On the other hand, the counties with increased accessibility

to physicians, higher median household income and higher education service expenditure have lower teen pregnancy rates.

Finally, conditional on the above covariates, a county’s teen pregnancy rate is statistically significantly geographically affected

by the teen pregnancy rates of its neighbors. A county’s teen pregnancy rate increases by an estimated 0.273 percent for

each percent increase in the average of the teenage pregnancy rates of its neighbors. 

6. Concluding remarks 

We investigated a semiparametric varying-coefficient mixed regressive spatial autoregressive model that extends the MR-

SAR model. Our model can flexibly model covariate effects while allowing spatial dependence. The regression coefficients

under our model can be constant and/or vary nonparametrically with another covariate. We proposed a semiparametric

series-based least squares estimation procedure that utilizes instrumental variables and series approximations of the con-

ditional expectations. We showed that the proposed estimators of both the parametric and nonparametric components are

consistent and asymptotically normal. The estimators for the asymptotic covariances of these estimators are also derived to

enable statistical inferences via the model. We conducted a simulation study to investigate the finite-sample performance of

the proposed estimators. The simulation showed that the proposed estimators perform well with satisfactory finite-sample

performance. 

We applied our method to analyze teen pregnancy rates based on data of 761 counties in the 10 Upper Great Plains

States from the study “Health and Healthcare in the United States-County and Metro Area Data” ( Thomas, 20 0 0 ), and the
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1990 US Census ( US Census Bureau, 1992 ). The model considered counties’ geographic spatial dependence and possible non-

linear covariate effects of social and economic factors including a counties education service expenditure, median household

income, the percentage of female-headed households, the population proportion that is black, and the number of physicians

per 10 0 0 population. Our analysis showed that a higher rate of teen pregnancy is associated with a higher proportion of

black population and a higher percentage of female-headed households in the county. On the other hand, counties with

increased accessibility to physicians, higher median household income and higher education service expenditure have lower

teen pregnancy rates. We also found that a county’s teen pregnancy rate is geographically affected by the teen pregnancy

rates of its neighbors. 

The proposed model can be used to discover the nonlinear nature of covariate effects, via plotting of point and confidence

interval estimates for α( u ). Formal analysis can be carried out through hypothesis testing of α( u ) ≡ constant versus α( u )

� = constant. This hypothesis testing analysis can be implemented by constructing the test statistics as functionals of the

integrated estimator ˆ A (u ) = 

∫ u 
a ˆ α(v ) dv for [ a, u ] ⊂ U; see Gilbert and Sun (2014) . The rate of convergence of ˆ A (u ) is expected

to be O p (n 
−1 / 2 ) . This development requires establishing weak convergence results for the integrated estimator ˆ A (u ) for

[ a, u ] ∈ U . This is an interesting problem that merits further investigation. 

The leave-one-subject-out cross-validation approach proposed in Rice and Silverman (1991) and its modification of the

leave-subjects-out approach have been very popular in choosing smoothing parameters. However, selecting K and basis

functions is particularly difficult for the SVMRSAR model under study. The cross-validation approach is not readily adaptable

to the SVMRSAR model because the response variables y i , i = 1 , . . . , n, are dependent. The problem is that leaving out an

observation, say y k , is equivalent to setting the spacial weight w ik to zero, thus changing the structure of associations among

observations. The leave-one-subject-out cross-validation method can be adapted under some structural assumptions on the 

spatial weights where by leaving-one-subject one also leaves out the neighbors of this subject. This problem needs further

investigation. 
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Appendix A. Proofs 

We denote tr(A ) = trace (A ) for a square matrix A . 

Proof of Lemma 1. Proofs of the assertions (i) and (ii) in Lemma 1 are similar to Newey (1997) and thus are omitted. Proof

of assertion (iii). Denote E 
{
p lk (u i ) × p mj (u i ) 

}
= ˜ E lkm j . By Condition A.4, we can get sup u ∈U ‖ p K (u ) ‖ ≤ ζ 0 ( K ) and ζ 0 ( K ) 

2 K / n →
0 as n → ∞ . Let ‖·‖ denote the Euclidean norm. Let ˜ E = E[ ̃  P (u i ) 

T ˜ P (u i )] and ˜ Q 1 = 
� P T � P /n . We have 

E 
[‖ ̃

 Q 1 − ˜ E ‖ 
2 
]

= 

p ∑ 

l=1 

K ∑ 

k =1 

p ∑ 

m =1 

K ∑ 

j=1 

E 

{ 

n ∑ 

i =1 

p lk (u i ) × p mj (u i ) /n − ˜ E lkm j 

} 2 

= 

p ∑ 

l=1 

K ∑ 

k =1 

p ∑ 

m =1 

K ∑ 

j=1 

1 

n 2 

n ∑ 

i =1 

E{ p lk (u i ) × p mj (u i ) − ˜ E lkm j } 2 . 

Employing the same line of proof as in Newey (1997 , pp. 161–162) and applying Condition A.3 and 4, we obtain 

E 
[‖ ̃

 Q 1 − ˜ E ‖ 
2 
]

≤
p ∑ 

l=1 

K ∑ 

k =1 

p ∑ 

m =1 

K ∑ 

j=1 

1 

n 2 

n ∑ 

i =1 

E[ { p lk (u i ) × p mj (u i ) } 2 ] 

≤
p ∑ 

l=1 

K ∑ 

k =1 

p ∑ 

m =1 

K ∑ 

j=1 

1 

n 
E[ p lk (u i ) × p mj (u i )] 

2 

≤ E 

[ 

2 C 2 ζ0 (K) 2 

n 
E 

{ 

p ∑ 

m =1 

K ∑ 

j=1 

(
p mj (u i ) 

)2 } ] 

≤ 2 C 2 ζ0 (K) 2 K 

n 
→ 0 . 
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http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/501100001809
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Hence 

‖ ̃
 Q 1 − ˜ E ‖ 

2 = O p (ζ0 (K) 
√ 

K / 
√ 

n ) = o p (1) . (21)

It follows that the smallest eigenvalue of ˜ Q 1 converges in probability to a positive value τ 1 . Let 1 n be the indicator function

for the smallest eigenvalue of ˜ Q 1 being greater than 0.5 τ 1 . Then lim N→∞ 
P (1 n = 1) = 1 . 

For the series-based approximation E(x i y i | u i ) ≈ ˜ P (u i ) θ1 K , the estimator of θ1 K is given by ˆ θ1 K = ( � P T � P ) −1 � P T η1 , where η1 =
X T Y . We have ˆ E (x i y i | u i ) = ˜ P (u i ) ̂  θ1 K . Denote g 1 = E(X T Y | U) = (E(x T 

1 
y 1 | u 1 ) , . . . , E(x T n y n | u n )) T and e XY = η1 − g 1 . By Condition

A.5, there exist θ1 K and δ > 0 such that n −1 (g 1 − � P θ1 K ) 
T (g 1 − � P θ1 K ) = n −1 

∑ n 
i =1 ‖ E(x T 

i 
y i | u i ) − ˜ P (u i ) θ1 K ‖ 2 = O p (K −2 δ ) . 

Let � Q = 
� P T � P . Consider the decomposition 

ˆ θ1 K − θ1 K = 
� Q 

−1 � P T (η1 − g 1 ) /n + 
� Q 

−1 � P T (g 1 − � P θ1 K ) /n. (22)

The largest eigenvalue of � Q 
−1 is bounded. Thus, by the triangle inequality, 

1 n ‖ ̂
 θ1 K − θ1 K ‖ ≤ 1 n ‖ 

� Q 
−1 � P T e XY /n ‖ + 1 n ‖ 

� Q 
−1 � P T (g 1 − � P θ1 K ) /n ‖ 

≤ 1 n ‖ 
� Q 

−1 / 2 � P T e XY /n ‖ + 1 n ‖ 
� Q 

−1 / 2 � P T (g 1 − � P θ1 K ) /n ‖ . 
(23)

By Condition A.6, the largest eigenvalue of E[ e XY e 
T 
XY 

| U] is bounded by a constant C uniformly in n . Note that 1 n � P ( � P T � P ) −1 � P T 

is idempotent. We have 

E[1 n ‖ 
� Q 

−1 / 2 � P T e XY /n ‖ 
2 | U] = 1 n E[ e 

T 
XY 

� P ( � P T � P ) −1 � P T e XY | U] /n = 1 n E[ tr{ � P ( � P T � P ) −1 � P T e XY e 
T 
XY }| U] /n 

= 1 n tr{ � P ( � P T � P ) −1 � P T E[ e XY e 
T 
XY | U] } /n ≤ C1 n tr{ � P ( � P T � P ) −1 � P T } ] /n 

≤ pCK/n. 

Hence, 1 n ‖ � Q 
−1 / 2 � P T e XY /n ‖ = O p ( 

√ 

K / 
√ 

n ) by the Markov inequality. 

Next, since � P ( � P T � P ) −1 � P T is a projection matrix, we have that 

1 n ‖ 
� Q 

−1 / 2 � P T (g 1 − � P θ1 K ) /n ‖ = 1 n [(g 1 − � P θ1 K ) 
T ] � P ( � P T � P ) −1 � P T (g 1 − � P θK ) /n ] 

1 / 2 

≤ O p (1)[(g 1 − � P θ1 K ) 
T (g 1 − � P θ1 K ) /n ] 

1 / 2 = O p (K 
−δ ) . 

Combining these results, we obtain that 1 n ‖ ̂  θ1 K − θ1 K ‖ = O p ( 
√ 

K / 
√ 

n + K −δ ) . 

Now, consider the decomposition 

ˆ E (x i y i | u i ) − E(x i y i | u i ) = 
˜ P (u i )( ̂  θ1 K − θ1 K ) − E(x i y i | u i ) + 

˜ P (u i ) θ1 K . 

By Conditions A.4 and A.5 and the triangle inequality, 

1 n ‖ ̂
 E (x i y i | u i ) − E(x i y i | u i ) ‖ ≤ ‖ ̃

 P (u i ) ‖‖ ̂
 θ1 K − θ1 K ‖ + ‖ E(x i y i | u i ) − ˜ P (u i ) θ1 K ‖ 

≤ ζ0 (K)1 n ‖ ̂
 θ1 K − θ1 K ‖ + O (K −δ ) 

= O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) , 

uniformly in u i and n . Since 1 n 
P −→ 1 as n → ∞ , the assertion (iii) is proved. 

Proofs of the assertions (iv) and (v) are similar to the proof of (iii) and thus are omitted. 

Proof of Theorem 1 . Proof of Part (a) . By (4) and (5) , 

ˆ ϑ in f − ϑ = { [ ̃  B T ˜ H ( ̃  H 
T ˜ H ) −1 ˜ H 

T ˜ B ] −1 ˜ B T ˜ H ( ̃  H 
T ˜ H ) −1 ˜ H 

T ˜ Y − ϑ} 
= { [ ̃  B T ˜ H ( ̃  H 

T ˜ H ) −1 ˜ H 
T ˜ B ] −1 ˜ B T ˜ H ( ̃  H 

T ˜ H ) −1 ˜ H 
T ( ̃  B ϑ + ε) − ϑ} 

= [ ̃  B T ˜ H ( ̃  H 
T ˜ H ) −1 ˜ H 

T ˜ B ] −1 ˜ B T ˜ H ( ̃  H 
T ˜ H ) −1 ˜ H 

T ε 

= 

[ 

˜ B T ˜ H 

n 

(
˜ H 
T ˜ H 

n 

)−1 
˜ H 
T ˜ B 

n 

] −1 

˜ B T ˜ H 

n 

(
˜ H 
T ˜ H 

n 

)−1 
˜ H 
T ε 

n 
. (24)

By Condition A.7, n −1 ̃  H 
T ˜ B 

P −→ Q ˜ H T ̃  B , n 
−1 ̃  H 

T ˜ H 

P −→ Q ˜ H T ˜ H . It follows by the nonsingularity conditions given in Condition A.7

that [ 

˜ B T ˜ H 

n 

(
˜ H 
T ˜ H 

n 

)−1 
˜ H 
T ˜ B 

n 

] −1 

˜ B T ˜ H 

n 

(
˜ H 
T ˜ H 

n 

)−1 
P −→ 

[
Q 

T 
˜ H T ̃  B 

Q 
−1 
˜ H T ̃  H 

Q ̃ H T ̃  B 

]−1 
Q 

T 
˜ H T ̃  B 

Q 
−1 
˜ H T ̃  H 

. 

Recall that ˜ h i is an instrumental variable for ˜ b i introduced for model (4) with E( ̃ h i ε i ) = 0 . Since { ̃ h i ε i , i = 1 , . . . , n }
is a sequence of uncorrelated random variables, Cov (n −1 

∑ n 
i =1 

˜ h i ε i ) = n −2 
∑ n 

i =1 Cov ( ̃
 h i ε i )= n −1 Cov ( ̃ h 1 ε 1 ) → 0 . We have

n −1 ̃  H 
T ε = n −1 

∑ n 
i =1 

˜ h i ε i 
P −→ 0 . Thus, ˆ ϑ in f 

P −→ ϑ . Proof of Part (b) . By (24) , 

√ 

n ( ̂  ϑ in f − ϑ) = 

[ 

˜ B T ˜ H 

n 

(
˜ H 
T ˜ H 

n 

)−1 
˜ H 
T ˜ B 

n 

] −1 

˜ B T ˜ H 

n 

(
˜ H 
T ˜ H 

n 

)−1 
˜ H 
T ε √ 

n 
. (25)
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Moreover, 

n −1 
n ∑ 

i =1 

Cov ( ̃ h i ε i | u i , x i , Z) = n −1 
n ∑ 

i =1 

E( ̃ h i ε i 
2 ̃  h T i | u i , x i , Z) = n −1 ˜ H 

T � ˜ H 

P −→ Q ̃ H T � ˜ H . 

Applying the central limit theorem (cf. Wooldridge (2010 , pp. 95–96) or Kelejian and Prucha (1998 , Theorem A.1)), we have

n −1 / 2 ̃  H 
T ε 

D −→ N(0 , Q ˜ H T � ˜ H ) . Hence, 
√ 

n ( ̂  ϑ in f − ϑ) 
D −→ N ( 0 , 
ϑ ) . 

Proof of Theorem 2 . Proof of Part (a). Note from (4) that ε = ˜ Y − ˜ B ϑ . Let ε̌ = ˆ Y − ˆ B ϑ . We have 

ˆ ϑ − ϑ = [ ̂  B T ˆ H ( ̂  H 
T ˆ H ) −1 ˆ H 

T ˆ B ] −1 ˆ B T ˆ H ( ̂  H 
T ˆ H ) −1 ˆ H 

T ˆ Y − ϑ 

= 

[ 

ˆ B T ˆ H 

n 

(
ˆ H 
T ˆ H 

n 

)−1 
ˆ H 
T ˆ B 

n 

] −1 

ˆ B T ˆ H 

n 

(
ˆ H 
T ˆ H 

n 

)−1 
ˆ H 
T ε̌ 

n 
(26) 

We shall show that this term is close to ˆ ϑ in f − ϑ given in (24) . 

By Lemma 1 , we have that 

ˆ E (x i x 
T 
i | u i ) = E(x i x 

T 
i | u i ) + O p (ζ0 (K)[ 

√ 

K / 
√ 

n + K −δ]) , 

ˆ E (x i z 
T 
i | u i ) = E(x i z 

T 
i | u i ) + O p (ζ0 (K)[ 

√ 

K / 
√ 

n + K −δ]) . 

Note that x i and z i are uniformly bounded by Condition A.2. Under Condition A.6 it follows that 

[ ̂  E (x i x 
T 
i | u i )] −1 ˆ E (x i z 

T 
i | u i ) = [ E(x i x 

T 
i | u i )] −1 E(x i z 

T 
i | u i ) + O p (ζ0 (K)[ 

√ 

K / 
√ 

n + K −δ]) . 

Therefore ˆ z i = ˜ z i + O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) , uniformly in i . Using the same argument we can show that ˆ y i = ˜ y i +
O p (ζ0 ((K )[ 

√ 

K / 
√ 

n + K −δ]) , ̂ b i = ̃
 b i + O p (ζ0 ((K )[ 

√ 

K / 
√ 

n + K −δ]) , and ˆ h i = ̃
 h i + O p (ζ0 ((K )[ 

√ 

K / 
√ 

n + K −δ]) , uniformly in i .

Moreover, 

ε̌ i = ˆ y i − ˆ b T i ϑ = ˜ y i − ˜ b T i ϑ + O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) = ε i + O p (ζ0 ((K )[ 
√ 

K / 
√ 

n + K −δ]) . 

The results in the previous paragraph together with Condition A.7 yields 

ˆ B T ˆ H 

n 
= 

1 

n 

n ∑ 

i =1 

ˆ b i ̂  h 
T 
i = 

1 

n 

n ∑ 

i =1 

˜ b i ̃  h 
T 
i + O p (ζ0 (K )[ 

√ 

K / 
√ 

n + K −δ]) 
P −→ Q 

T 
˜ H T ̃  B 

, 

ˆ H 
T ˆ H 

n 
= 

1 

n 

n ∑ 

i =1 

ˆ h i ̂  h 
T 
i = 

1 

n 

n ∑ 

i =1 

˜ h i ̃  h 
T 
i + O p (ζ0 (K )[ 

√ 

K / 
√ 

n + K −δ]) 
P −→ Q ̃ H T ̃  H , 

ˆ H 
T ε̌ 

n 
= 

1 

n 

n ∑ 

i =1 

ˆ h i ̌ε i = 

1 

n 

n ∑ 

i =1 

˜ h i ε i + O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) 
P −→ 0 . (27) 

It follows from ( 25 )–( 27 ) that 

ˆ ϑ − ϑ = 

[ 

˜ B T ˜ H 

n 

(
˜ H 
T ˜ H 

n 

)−1 
˜ H 
T ˜ B 

n 

] −1 

˜ B T ˜ H 

n 

(
˜ H 
T ˜ H 

n 

)−1 
˜ H 
T ε 

n 
+ O p (ζ0 (K )[ 

√ 

K / 
√ 

n + K −δ]) 

= 
ˆ ϑ in f − ϑ + O p (ζ0 (K )[ 

√ 

K / 
√ 

n + K −δ]) 
P −→ 0 . 

Proof of Part (b). As shown in Part (a), ˆ h i = ̃
 h i + O p (ζ0 (K )[ 

√ 

K / 
√ 

n + K −δ]) uniformly in i . We have 

n −1 / 2 ˆ H 
T ε̌ = n −1 / 2 ˆ H 

T ( ̂  Y − ˆ B ϑ) 

= n −1 / 2 ˆ H 
T { ̂  Y − Y − ( ̂  B − B ) ϑ} + n −1 / 2 ˆ H 

T (Y − Bϑ) 

= n −1 / 2 ˜ H 
T { ̂  Y − Y − ( ̂  B − B ) ϑ} + n −1 / 2 ˜ H 

T (Y − Bϑ) + o p (1) . (28) 

Let 

ˆ ξi (u i ) = [ ̂  E (x i x 
T 
i | u i )] −1 

[ 
ˆ E (x i y i | u i ) − λ ˆ E (x i w 

T 
i Y | u i ) − ˆ E (x i z 

T 
i | u i ) β

] 
− [ E(x i x 

T 
i | u i )] −1 

[ 
E(x i y i | u i ) − λE(x i w 

T 
i Y | u i ) − E(x i z 

T 
i | u i ) β

] 
. (29) 

Then ˆ y i − ˜ y i − ( ̂ b i − ˜ b i ) ϑ = x T 
i 
ˆ ξi (u i ) . Following the arguments used in proving part (b) of Theorem 1 , ˆ ξi (u i ) =

O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) = o p (1) uniformly in i . Because the instrumental variable ˜ h i is orthogonal to x i , E( ̃ h i x 
T 
i 
| u i ) = 0 .

We have that n −1 / 2 
∑ n 

i =1 
˜ h i x 

T 
i 
converges in distribution to a normal random vector. It then follows that 

n −1 / 2 ˜ H 
T { ̂  Y − Y − ( ̂  B − B ) ϑ} = n −1 / 2 

n ∑ 

i =1 

˜ h i x 
T 
i 
ˆ ξi (u i ) = o p (1) . (30) 
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By the proof of Part (b) of Theorem 1 , 

n −1 / 2 ˜ H 
T (Y − Bϑ) = n −1 / 2 ˜ H 

T ε 
D −→ N(0 , Q ̃ H T � ˜ H ) . (31)

By (27) , [
ˆ B T ̂  H 
n 

(
ˆ H T ̂  H 
n 

)−1 
ˆ H T ̂  B 
n 

]−1 

ˆ B T ̂  H 
n 

(
ˆ H T ̂  H 
n 

)−1 
P −→ { Q 

T 
˜ H T ̃  B 

Q 
−1 
˜ H T ̃  H 

Q ̃ H T ̃  B } −1 Q 
T 
˜ H T ̃  B 

Q 
−1 
˜ H T ̃  H 

. (32)

It follows from (26), (28), (30), (31), (32) and the Slutsky Theorem that 
√ 

n ( ̂  ϑ − ϑ) 
D −→ N 

(
0 , 
ϑ 

)
. This completes the proof

of Theorem 2 . 

Proof of Theorem 3 . Proof of Part (a) . Let b i = (w 
T 
i 
Y, z T 

i 
) T and B = (b 1 , . . . , b n ) = (W Y, Z) . By (16), 

̂ γ = (D 
T D ) −1 D 

T (Y − Bϑ) + (D 
T D ) −1 D 

T B ( ̂  ϑ − ϑ) . (33)

Note that D = (D 1 , . . . , D n ) 
T is an n × pK matrix. We denote E 

{
x il p lk (u i ) × x im 

p mj (u i ) 
}

= Ē lkm j . By Condition A.4,

sup u ∈U ‖ p K (u ) ‖ ≤ ζ0 (K) and ζ 0 ( K ) 
2 K / n → 0 as n → ∞ . Let ‖·‖ denote the Euclidean norm. Let Ē = E[ D (u i ) 

T D (u i )] and
˜ Q 2 = D 

T D /n . We have 

E[ ‖ ̃
 Q 2 − Ē ‖ 

2 ] = 

p ∑ 

l=1 

K ∑ 

k =1 

p ∑ 

m =1 

K ∑ 

j=1 

E{ 
n ∑ 

i =1 

x il p lk (u i ) × x im 
p mj (u i ) /n − Ē lkm j } 2 

= 

p ∑ 

l=1 

K ∑ 

k =1 

p ∑ 

m =1 

K ∑ 

j=1 

1 

n 2 

n ∑ 

i =1 

E{ x il p lk (u i ) × x im 
p mj (u i ) − Ē lkm j } 2 . 

Employing the same line of proof as in Newey (1997 , pp. 161–162) and applying Condition A.3 and A.4, we obtain 

E[ ‖ ̃
 Q 2 − Ē ‖ 

2 ] ≤
p ∑ 

l=1 

K ∑ 

k =1 

p ∑ 

m =1 

K ∑ 

j=1 

1 

n 2 

n ∑ 

i =1 

E{ x il p lk (u i ) × x im 
p mj (u i ) } 2 

≤
p ∑ 

l=1 

K ∑ 

k =1 

p ∑ 

m =1 

K ∑ 

j=1 

1 

n 
E{ x il p lk (u i ) × x im 

p mj (u i ) } 2 

≤ E 

[ 

2 C 2 ζ0 (K) 2 

n 
E 

{ 

p ∑ 

m =1 

K ∑ 

j=1 

(
x im 

p mj (u i ) 
)2 } ] 

≤ E 

[ 

2 C 4 ζ0 (K) 2 

n 
E 

{ 

p ∑ 

m =1 

K ∑ 

j=1 

(
p mj (u i ) 

)2 } ] 

≤ 2 C 4 ζ0 (K) 2 K 

n 
→ 0 . 

Hence 

‖ ̃
 Q 2 − Ē ‖ = O p (ζ0 (K) 

√ 

K / 
√ 

n ) = o p (1) . (34)

It follows from (34) that the largest eigenvalue of ( D 
T D /n ) −1 is bounded with probability going to one. We have 

‖ (D 
T D ) −1 D 

T B ( ̂  ϑ − ϑ) ‖ 
2 = O p (n 

−1 )( ̂  ϑ − ϑ) T B T D (D 
T D ) −1 D 

T B ( ̂  ϑ − ϑ) = O p (n 
−1 ) . (35)

Note that v l (u ) = αl (u ) −
∑ K 

k =1 γlk p kK (u ) , for l = 1 , . . . , p, is the error term in (12) . Let v (u ) = (v 1 (u ) , . . . , v p (u ) T . Then
α(u ) = ˜ P (u ) γ + v (u ) . Let V i = x T 

i 
v (u i ) and V = (V 1 , . . . , V n ) 

T . By (13) , y i − ϑ 
T b i = D i γ + V i + ε i and thus Y − Bϑ = D 

T γ + V +
ε. By (33) and (35) , we have 

ˆ γ = γ + (D 
T D ) −1 D 

T ε + (D 
T D ) −1 D 

T V + O p (n 
−1 / 2 ) . (36)

By (34) , the smallest eigenvalue of ˜ Q 2 converges in probability to a positive value τ 2 . Let 1 n be the indicator function

for the smallest eigenvalue of ˜ Q 2 being greater than 0.5 τ 2 . Then lim n →∞ P (1 n = 1) = 1 . Since E[1 n ‖ (n −1 D 
T D ) −

1 
2 D 

T ε /n ‖ 2 ] =
E[ 1 n ε T D (D 

T D ) −1 D 
T ε /n ] = E[1 n tr{ (D 

T D ) −1 / 2 D 
T E ( ε ε T | U ) D ( D 

T D ) −1 / 2 } /n ] , which is bounded by O (1) E [1 n tr { I pK }/ n ] = O ( K/n ) by

Condition A.3, we have (n −1 D 
T D ) −1 / 2 D 

T ε/n = O p ( 
√ 

K / 
√ 

n ) . Hence, 

(D 
T D ) −1 D 

T ε = [(n −1 D 
T D ) −1 / 2 ][(n −1 D 

T D ) −1 / 2 D 
T ε/n ] = O p ( 

√ 

K / 
√ 

n ) . (37)

Under conditions A.2 and A.5, we get v l (u i ) = O (K −δ ) and V i = O p (K 
−δ ) . Thus, V = O p (K 

−δ ) . Since 1 n D (D 
T D ) −1 D 

T is idem-

potent, we have 

1 n || (D 
T D ) −1 D 

T V || ≤ O p (1)1 n [ V 
T D (D 

T D ) −1 D 
T V /n ] 1 / 2 ≤ O p (1)[ V T V /n ] 1 / 2 = O p (K 

−δ ) . 
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Hence, 

(D 
T D ) −1 D 

T V = O p (K 
−δ ) . (38) 

It follows from (36) –(38) that ˆ γ = γ + O p ( 
√ 

K/n + K −δ ) . Since 

1 n || ̂  α(u ) − α(u ) || ≤ || ̃  P (u )( ̂  γ − γ ) || + || ̃  P (u ) γ − α(u ) || 
≤ O p (1) ζ0 (K)1 n || ̂  γ − γ || + O (K −δ ) 

= O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) , 

we obtain sup u ∈ U || ̂  α(u ) − α(u ) || = O p (ζ0 (K )[ 
√ 

K / 
√ 

n + K −δ]) . 

Proof of Part (b) . Note that at a fixed u , ˆ α(u ) − α(u ) = ˜ P (u )( ̂  γ − γ ) + ˜ P (u ) γ − α(u ) . By Conditions A.4 and A.5, (36) and

(38) , 

ˆ α(u ) − α(u ) = 
˜ P (u )( ̂  γ − γ ) + 

˜ P (u ) γ − α(u ) 

= 
˜ P (u )(D 

T D ) −1 D 
T ε + O p 

(
ζ0 (K)[ n −1 / 2 + K −δ] 

)
. 

Recall that 
α(u ) = Cov 
[
˜ P (u )(D 

T D ) −1 D 
T ε| U = u 

]
. Let c be a p-dimensional column vector whose components are not

all zero, and let ξin = c T ˜ P (u )(D 
T D ) −1 D 

T 
i 
ε i / { c T 
α(u ) c} 1 / 2 . We have E[ ξin ] = 0 , s 2 n = 

∑ n 
i =1 E[ ξ

2 
in 
] = 1 . In the following we check

Lindeberg’s condition. 

For every ε > 0, 

1 

s 2 n 

n ∑ 

i =1 

E[1(| ξin | > εs n ) ξ
2 
in ] = 

n ∑ 

i =1 

ε2 E[1(| ξin /ε| > 1)(ξin /ε) 2 ] ≤
n ∑ 

i =1 

ε−2 E(ξ 4 
in ) . (39)

Note that 

n ∑ 

i =1 

E(ξ 4 
in | X, Z, U) ≤ n −2 

n ∑ 

i =1 

‖ c T ˜ P (u )(D 
T D/n ) −1 ‖ 

4 

{ nc T 
α(u ) c} 2 E{‖ D 
T 
i ε i ‖ 

4 | x i , z i , u i } . (40) 

By Conditions A .2–A .4, the largest eigenvalue of n −1 D 
T D is bounded and the smallest eigenvalue of n −1 D 

T D is bounded

away from zero with probability one. Note that 
α(u ) = ˜ P (u )(D 
T D ) −1 D 

T �D (D 
T D ) −1 ˜ P (u ) T . We have ‖ c T ˜ P (u ) (D 

T D/n ) −1 ‖ 4 =
O p ({ nc T 
α(u ) c} 2 ) . Hence, 

n ∑ 

i =1 

E(ξ 4 
in | X, Z, U) ≤ O p (1) n −2 

n ∑ 

i =1 

E{‖ D 
T 
i ε i ‖ 

4 | x i , z i , u i } . (41) 

Under Condition A.2 and A.4, ‖ D i ‖ 2 ≤ O (1)( ζ 0 ( K )) 
2 . By Condition A.3, E[ ε 4 

i 
| x i , z i , u i ] ≤ O (1). We have E{‖ D 

T 
i 
ε i ‖ 4 } ≤

O (1) ζ0 (K) 2 E { ‖ D i ‖ 2 E [ ε 4 i | x i , z i , u i ]} ≤ O (1) ζ 0 ( K ) 
2 K . Hence, 

∑ n 
i =1 E(ξ 4 

in 
) ≤ O (1) ζ0 (K) 2 K / n → 0. By the Lindeberg–Feller cen-

tral limit theorem, 
∑ n 

i =1 ξin → N(0 , 1) in distribution. The proof of the theorem is completed following an application of the

Cr ́e mer–Wald device. 

Proof of Theorem 4 . Proof of part (a). Observe that ˆ ε = Y − B ̂  ϑ − D ̂  γ = ε − B ( ̂  ϑ − ϑ) − D ( ̂  γ − γ ) −V, where B = (W Y, Z)

and V is defined just before (36) . We have the following decomposition for ˆ σ 2 : 

ˆ σ 2 = n −1 ˆ ε T ˆ ε = n −1 ε T ε + �1 
n + �2 

n + �3 
n + �4 

n + �5 
n + �6 

n + �7 
n + �8 

n + �9 
n , (42)

where �1 
n = ( ̂  ϑ − ϑ) T [ n −1 B T B ]( ̂  ϑ − ϑ) , �2 

n = −2( ̂  ϑ − ϑ) T [ n −1 B T ε] , �3 
n = ( ̂  γ − γ ) T [ n −1 D 

T D ] ( ̂  γ − γ ) , �4 
n = −2( ̂  γ −

γ ) T [ n −1 D 
T ε] , �5 

n = ( ̂  ϑ − ϑ) T [ n −1 B T D ]( ̂  γ − γ ) , �6 
n = −2( ̂  ϑ − ϑ) T [ n −1 B T V ] , �7 

n = −2( ̂  γ − γ ) T [ n −1 D 
T V ] , �8 

n = n −1 ε T V,

and �9 
n = n −1 V T V . 

Condition A.3 and Chebyshev’s inequality imply n −1 ε T ε 
P −→ σ 2 . The consistency ˆ σ 2 P −→ σ 2 follows by showing that

� j 
n 

P −→ 0 for j = 1 , . . . , 9 . 

By Theorem 2 and from the proof of Theorem 3 , ˆ ϑ = ϑ + O p (n −1 / 2 ) , ˆ γ = γ + O p ( 
√ 

K/n + K −δ ) and V = O p (K −δ ) . Since

Y = λW Y + X � α(U) + Zβ + ε, we have 

Y = (I − λW ) −1 X � α(U) + (I − λW ) −1 Zβ + (I − λW ) −1 ε. (43)

Note that 

n −1 B T B = 

(
n −1 Y T W 

T W Y n −1 Y T W 
T Z 

n −1 Z T W Y n −1 Z T Z 

)
Plugging expression (43) for Y into n −1 B T B and by Condition A.1 and A.2, we get n −1 B T B = O p (1) . Thus �1 

n = O p (n −1 ) =
o p (1) . Because n −1 B T ε ≤

√ 

n −1 B T B 
√ 

n −1 ε T ε , we have n −1 B T ε = O p (1) . Hence �2 
n = O p (n −1 / 2 ) = o p (1) . 

From the proof of Theorem 3 , we have n −1 D 
T D = O p (1) . Hence �3 

n = O p (K/n + K −2 δ ) = o p (1) . Since n −1 D 
T ε ≤√ 

n −1 D 
T D 

√ 

n −1 ε T ε , n −1 D 
T ε = O p (1) , and �4 

n = O p ( 
√ 

K/n + K −δ ) = o p (1) . 
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Similarly, �5 
n = O p [( 

√ 

K/n + K −δ ) n −1 / 2 ] = o p (1) is followed by ˆ γ = γ + O p ( 
√ 

K/n + K −δ ) , n −1 B T D ≤
√ 

n −1 D 
T D 

√ 

n −1 B T B ,

n −1 D 
T D = O p (1) and n −1 B T D = O p (1) . �6 

n = O p (n 
−1 / 2 ) = o p (1) follows from 

ˆ ϑ = ϑ + O p (n 
−1 / 2 ) , n −1 B T V ≤√ 

n −1 V T V 
√ 

n −1 B T B , and n −1 B T V = O p (1) . By n −1 D 
T V ≤

√ 

n −1 V T V 
√ 

n −1 D 
T D , which gives n −1 D 

T V = O p (1) , we have

�7 
n = O p ( 

√ 

K/n + K −δ ) = o p (1) . It is easy to see that �8 
n = n −1 ε T V = O p (K 

−δ ) = o p (1) and �9 
n = n −1 V T V = O p (K 

−2 δ ) = o p (1) .

This completes the proof of part (a). 

Proof of part (b). From the proof of Theorem 2 , we have ˆ Q ˜ H T � ˜ H 

P −→ Q ˜ H T � ˜ H , 

ˆ Q 
T 
˜ H T ̃  B 

= n −1 
n ∑ 

i =1 

ˆ b T i 
ˆ h i = n −1 

n ∑ 

i =1 

˜ b T i 
˜ h i + O p (ζ0 (K )[ 

√ 

K / 
√ 

n + K −δ]) 
P −→ Q 

T 
˜ H T ̃  B 

, 

ˆ Q 
T 
˜ H T ̃  H 

= n −1 
n ∑ 

i =1 

ˆ h T i 
ˆ h i = n −1 

n ∑ 

i =1 

˜ h T i 
˜ h i + O p (ζ0 (K )[ 

√ 

K / 
√ 

n + K −δ]) 
P −→ Q ̃ H T ̃  H . 

Hence, 

( ̂  Q 
T 
˜ H T ̃  B 

ˆ Q 
−1 
˜ H T ̃  H 

ˆ Q ̃ H T ̃  B ) 
−1 P −→ (Q 

T 
˜ H T ̃  B 

Q 
−1 
˜ H T ̃  H 

Q ̃ H T ̃  B ) 
−1 . 

It follows that ˆ 
ϑ 
P −→ 
ϑ . 

Proof of part (c). By Theorem 4 (a), ˆ σ 2 − σ 2 = o p (1) . We have 

n ( ̂  
α(u ) − 
α(u )) = ( ̂  σ 2 − σ 2 ) ̃  P (u ) 
{
D 
T D /n 

}−1 
˜ P (u ) T 

= o p (1) ̃  P (u ) O p (1) ̃  P (u ) T = ζ0 (K) 2 o p (1) . 

Thus, n ( ̂  
α(u ) − 
α(u )) / ζ0 (K) 2 = o p (1) . 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ecosta.2017.05.005. 
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