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their asymptotic distributions are derived. The proposed estimators perform well in sim-
ulations. The proposed method is applied to analyze a data set on teen pregnancy to in-
vestigate effects of neighborhood as well as other social and economic factors on the teen
pregnancy rate.
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1. Introduction

It has become increasingly clear that in many practical situations parametric modelling is not capable of capturing the
relationship between the response variable and covariates of interest. Varying-coefficient models have been developed to
model such associations nonparametrically, where the effects of covariates vary with other variables (e.g., see Hastie and
Tibshirani (1993)). An important advantage of varying-coefficient models is that they partially ameliorate the curse of di-
mensionality problem by restricting the nonparametric functions to a subset of variables. The varying-coefficient partially
linear models are extensions of the varying-coefficient models by allowing some covariate effects to be constant which
further increases modeling flexibility; see Zhang et al. (2002), Li et al. (2002) and Fan and Huang (2005).

Spatial models have been extensively studied in the econometrics and geography literature. In recent years issues con-
cerning spatial dependence among cross sectional units have received increased attention. Kelejian and Prucha (1999) in-
troduced a method of moments (MOM) estimator for the autoregressive parameter in a spatial autoregressive (SAR) model.
Lee (2001) developed a generalized MOM (GMM) estimator for spatial autoregressive processes to improve efficiency. Lee
(2007) proposed a mixed regressive spatial autoregressive (MRSAR) model, which assumes constant covariate effects and
accounts for spatially dependent responses. Approaches accounting for spatial dependence via spatial random effects have
also been studied. Gelfand et al. (2003) modelled spatially correlated responses by introducing a second-order stationary
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process as spatial random effects. Schliep et al. (2015) proposed a hierarchical autoregressive spatially varying coefficients
model to predict particulate matter in the atmosphere using satellite AOT data. Schliep et al. (2015) modeled both time and
space, where for each given space location, the model is autoregressive in time. In this paper, we adopt the approach of Lee
(2007) by modelling covariate effects on spatially dependent responses through spatial weights that are known constants.
We extend the MRSAR model to allow the effects of some covariates to vary nonparametrically with another covariate. This
extension allows for more flexible modelling of covariate effects. The nonlinear nature of the effects can only be discovered
with a model that allows for varying coefficients. To the best of our knowledge, varying-coefficient mixed regressive spatial
autoregressive models have not been considered in the existing literature.

By accounting for spatial dependence among responses in addition to the influence of covariates, spatial models have
applications in economics and the social sciences. For example, a nation’s per capita GDP growth rate is affected not only by
the value of its indexes, such as savings, income tax rate, and population growth rate, but also by its neighboring nations’
per capita GDP growth rates and the values of these indexes. In a social science example that we analyze in Section 5,
a county’s teenage pregnancy rate is affected not only by its own social and economic variables, but also by the teenage
pregnancy rates of its neighboring counties.

Let y; be the response variable and (u,-,xiT,ziT) be covariates for subject i, where x; and z; are exogenous covariates of
dimensions p and q, respectively, and u; is a scalar covariate. The semiparametric varying-coefficient mixed regressive spatial
autoregressive (SVMRSAR) model assumes that

n
yl-=A2wijyj+zfﬂ+x{a(u,-)+e,<, i=1,...,n, (1)
=1

where B is a g-dimensional coefficient vector, a(u) is a p-dimensional vector of functions of u with support on a one-
dimensional set ¢/, and X is a spacial effect parameter. The error term ¢; is a random variable satisfying E[&;|x;, z;, u;] = 0
and E[sizlxi,zi,ui] = ol.z. In addition, in model (1) w;; are spatial weights of known constants with the diagonal elements
w;j; = 0. The term Z?:l w;;y; represents weighted spatial lag variables and the coefficient A reflects the spatial influence on
y; by its neighbors’ responses.

In many applications, it is common practice to choose the row-normalized weight matrix W = (w;;) such that the sum
of elements in each row of W is unity. For example, the ith row of W may be constructed as w; = (d;;, dpp, - . -, d,-n)/zz-‘:1 djj,
where di > 0, for i # j, represents a function of the spatial distance of the ith and jth units such as the inverse of the
distance of the i and jth units in some (characteristic) space. The weighting operation may be interpreted as an average
of neighboring values. The spatial effect coefficient A measures the average influence of neighboring observations on the
responses that usually lies between (—1,1) when W is row-normalized. For a general W which is not row-normalized, A is
assumed to be in a parameter space which guarantees that the determinant of I, — AW is positive, where I, is the n x n
identity matrix.

We assume that (ui,x,.T,zl.T), i=1,...,n, are exogenous regressors. The response y; depends on (ui,xiT,zl.T) and is corre-
lated with other responses y; for j # i through the known weights w;; and unknown parameter A. Model (1) permits the
interaction between the covariates u; and x; such that different levels of the covariate u; are associated with different linear
models. This allows examination of the extent to which the effects of covariates x; vary over different levels of the covariate
u;. Setting x; = 0, model (1) becomes the MRSAR model, which has been widely studied in the literature; see, for exam-
ple, the work of Kelejian and Prucha (1999), 2001), Lee (2001), 2007) and Lin and Lee (2010), among others. When x; = 1,
model (1) is a partially linear MRSAR model, see the work of Su and Jin (2010) for details. When A = 0, that is, there exists
no spatial dependency impact, model (1) becomes a semiparametric varying-coefficient partially linear model. We refer to
Zhang et al. (2002), Li et al. (2002) and Fan and Huang (2005) for related work.

This article investigates the semiparametric varying-coefficient mixed regressive spatial autoregressive model (1). We
generalize the result of Newey (1997) from the independent case to the spatially dependent case. We propose a semipara-
metric series-based least squares estimation procedure that makes use of the newly introduced techniques of instrumental
variables and series approximations of conditional expectations. We show that our estimators of the parametric and non-
parametric components are consistent and asymptotically normal. Our simulation study demonstrates that the proposed
estimators perform well. The proposed method is applied to investigate whether neighborhoods and other social economic
factors affect the teen pregnancy rate based on data from the study “Health and Healthcare in the United States-County and
Metro Area Data” (Thomas, 2000) and the 1990 US census (US Census Bureau, 1992).

The rest of the paper is organized as follows. The estimation procedure for model (1) is presented in Section 2.
Section 3 derives the asymptotic properties of the proposed estimators and provides estimators for the asymptotic covari-
ance matrix of the estimators. Section 4 presents a Monte Carlo simulation study evaluating the finite-sample performance
of the proposed estimators. In Section 5, the proposed method is applied to analyze the factors that affect the teen preg-
nancy rate. Some concluding remarks are given in Section 6. All the proofs are collected in the Appendix.

2. Semiparametric series-based least squares estimation

In this section, we develop an estimation procedure for model (1). The estimation of the parametric part is obtained using
the two-stage least squares estimation method with the introduction of appropriate instrumental variables. The two-stage
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least squares estimation involves some unknown conditional expectations which in turn are estimated by nonparametric
series regression estimation. The estimation of the varying-coefficient part is also accomplished using a series approximation.

2.1. Series-based two-stage least squares estimation of parametric model components

In this section, we derive the estimators for the parametric components of model (1). Let w; = (Wj, ..., wi,)T, Y =
W1y X = (X9, ..., x)T and Z = (71, ..., zy)T. Multiplying x; on both sides of Eq. (1) yields

xyi = Mw!Y +x2] B+ xixT o (uy) + x;¢:. (2)
Taking the conditional expectation on both sides yields

E(xiyilui) = AE(w] Y |u) + E (xiz{ [u) B + E (xix] Jui)er (u;) + E (xieilu;).
Since E(x;e;|u;) = E{x;E(&i|x;, z;, uj) |u;} = 0, we have

o (up) = {E(ax] [u) ) {E(yilui) — AEw] Y [u) — E(xiz [u) B} (3)

Let y; = y; — xI[Exix] |up) |7 E(iyilup), Z; = zi — E(zix! Jup) [E(xix! [up)]71x;, and ¥, ; = wl'Y — xT[E (xix? [up) |7 TE(xyw! Y Juy).

Plugging in the expression (3) for «(u;) into (1), we get
Ji=blv +e, (4)
where b; = (¥ ,.2))" and & = (A, BT)T.

Since Y,,; is correlated with &;, (4) is a linear model with endogenous regressor b;. 1t is well known that the ordinary
least squares estimators for (4) are biased, cf. Cameron and Trivedi (2008). A general approach to estimating $ is to find a
set of instruments that are orthogonal to ¢; and then apply a method of moments procedure. Following Kelejian and Prucha
(1999), we derive a consistent estimator of § by introducing appropriate instrumental variables and adopting two-stage least
squares estimation.

Suppose for the moment that we have observed the conditional expectations E(xixiT|ui), E(xizl.T|u,»), E(x;yilu;), E(xiwiTZ|u,~),
and E(qw]'Y [up). Let Z1, =wlZ — xT[E(x] | up) ' E(w] Z|u;) and by = (Z[ .. Z")T. It is easy to check that ; is orthogonal
to &; with E(h;e;) =0 and h; is orthogonal to x;. Let A= (hy.hy.....hy)T be the matrix of instrumental variables. Let ¥ =
1. V25 -+ -» y)T and B = (by, b, ..., bn)T. The two-stage least squares (2SLS) infeasible estimator of 9 for model (4) is given

Ginp = [BTHATA)TATBI'BTHATA)'ATY. (5)

The 2SLS infeasible estimator z§,~n 7 is obtained using the two-stage ordinary least squares (OLS) method. In the first stage,
a OLS regression of B on the instruments H is used to obtain fitted values B* = PyB, where Py = H(HTH)"'A" is an idem-
potent projection matrix. The two-stage least squares (2SLS) infeasible estimator can be expressed as 5,-,1 = (E*Tﬁ*)*lﬁ*T?,
which is obtained from a OLS regression of ¥ on the resulting fit B* from the first stage OLS. The condition E(Eisi) =0is
necessary for asymptotic unbiasedness of z?,-n ¢ for 9 while the orthogonality E (flix,.T) = 0 ensures the asymptotic normality
in Theorem 2 (b) in Section 3.

The estimator is infeasible because the conditional expectations involved in the right-hand side of (5) are unknown.
To obtain a feasible estimator of 9, we need to estimate the conditional expectations E (x,-xiTlui), E (xiziTIui), E(x;yilu;), and
E (xiwiTYIui), and plug the estimates into the right-hand side of (5). Following Newey (1997), we adopt nonparametric series
regression estimation of these conditional expectations using the basis functions approach. Sieve methods such as B-splines,
polynomial splines, wavelets and Fourier series are often used for nonparametric estimation. In particular, Ai and Chen
(2003) considered sieve minimum distance estimation under conditional moment restrictions containing unknown func-
tions. Chen and Pouzo (2009) investigated penalized sieve minimum distance estimation for conditional moment models
with unknown parametric components and unknown functions of endogenous variables. Zhang and Sun (2015) employed
the sieve approach for spatial dynamic panel data regression with fixed effects. In practice, a variety of polynomial basis
functions such as Hermite polynomials, polynomial splines, and B-splines can be used for the nonparametric approximation.

Let pX(u) = (p1x(u). ..., px(u)))" be a sequence of K known basis functions. Let P(u) = I, ® (pX(u))T, where ® is the
Kronecker product and P(u) is a p x pK matrix. The series approximation of E (x,»xiTIu,-) is given by

E (xix] u;) ~ P(u;)01. (6)
where 61 = (0].....6])T. and each 6, = (6);.....6)" is a K-dimensional vector of parameters for I =1,.... p. A series

estimate of E (xixiT|u,-) is obtained by linearly regressing x,-xl.T on P(u;), yielding the closed-form expression

E(xix] [u;) = P(up) (PTP) ™" 3" P(uy) xix! . 7)
i=1
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where P = (BT (uy), ..., PT(un))T is a pn x pK matrix. Similarly, the series estimates of E(x;z! |u;), E(x;y;|u;), and E(x;w!Y|u;)
can be obtained as
n
E(xiz] |u) = P(u)(PTP)~" Y " P(uy)"xiz], (8)
i=1
A ~ n ~
E(ayilu) = P(uy) (PTP)™1 Y~ P(up)xiyi, 9)
i=1
A ~ n ~
EGaw]Y|u;) = P(u) (P"P)™1 Y P(up) xw]Y, (10)
i=1
respectively.

Lemma 1 in Section 3 shows that the estimates E(x,-xﬂui), E(xizl.T|ul»), and E(xiwiTY|ui) are consistent and also pro-
vides the rates of convergence. We replace the conditional expectations E(xiij|u,-), E(xizl.T|u,»), E(x;yilu;) and E(xiwl.TY|u,-)
with Ex! [u), Exiz! [up), Exyilup). Ew!Z|u;) and E(xw!Y|u;), in the definitions of §;, 2. b; and k; to obtain ;, Z, b;
and le,-, respectively. Let B = (by, by, ..., bn)T, A= (1, hy, ..., hn)T and ¥ = (1, Pa, ..., n)T. Replacing B, H and ¥ with B, A
and Y, respectively, in (5), we obtain the following feasible least squares estimator of 9:

O = [BTA@ATA)'ATBI'BTAATA)ATY. (11)

The estimators of A and B, denoted by % and B are the first component and the last ¢ components of 3, respectively.

2.2. Series-based least squares estimation of nonparametric model components

The expression of «(u;) given in (3) is only for the covariate values u;, i=1,...,n, not for an arbitrary u. Therefore
plugging in the estimates of the conditional expectations (7)-(10) and the first-stage estimates of 8 and A into (3) does not
yield an estimate of «(u) right away. In this section we derive the estimators for the nonparametric regression functions
a(u).

Consider the series approximation for each component «,(u), [ =1, ..., p,
K
ar(u) =) YD W) +vj(u), ueld (12)
k=1
where pi(u), ..., pxx(u) are K known basis functions, yq, ..., yxx are unknown coefficient parameters and v,(u) is the
approximation error term. Using this series approximation, model (1) can be written as
P K P
Vi— MY 2] B =" XaVuPuc (W) + Y xqvy(u;) + &;. (13)
1=1 k=1 I=1
Let Vi = (W1, - vi)t and y = (yf. ..., ¥4 )T. Consider the plug-in series-based least squares objective function
n R R p K 2
L(y)=Y 3yi—Aw]Y —z[ B =" " xqvubix (W) ¢ - (14)
i=1 I=1 k=1
Let 7 = (P{.....75)" be the minimizer of L(y), where 7 = (j1..... 7x)" for I=1,..., p. The estimator of a(u) is given

by &;(u) = foﬂ VP (), which is referred to as the least squares series estimator of «;(u).
Let D; = x!P(u;), and D = (DI, ..., DIT. The object function (14) is equivalent to

L(y) =Y {yi—aw]Y =2/ B - Diy}%. (15)
i=1

Suppose that 3", DiTDi is invertible. Then the plug-in least squares estimator § is given by

-1
7= (Z DID,-) > D (vi— Aw]Y —2[ B) = (D"D)~'D" (Y — 2wy - ZB). (16)
i=1 i=1

The least squares series estimator of «(u), for u € i, has expression

@u) =Pw)y = [, ® p*w)"|(D'D)'DT (Y — AWY — Zp). (17)
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We note that since model (1) includes the weighted spatial lag variables ZL] w;;yj. which are endogenous variables, es-
timating both the parametric and nonparametric components simultaneously through minimizing the least squares objective
function (15) may not yield consistent estimators, cf. Kelejian and Prucha (1999). We show in the next section that this in-
consistency problem can be avoided by first estimating A and § using the two-stage least squares estimator facilitated with
instrumental variables and then estimating «(u) through the profile least squares approach. The profile estimation method
is often used in semiparametric estimation to improve computational efficiency, whereby the estimators for the parametric
components converge at a faster rate.

3. Asymptotic results and variance estimation

In this section, we investigate the asymptotic properties of the proposed estimators for model (1). The estimators for the
asymptotic covariances of these estimators are also given to enable statistical inferences.

Let W = (Wjj)nxn be the n x n spatial weights matrix of known constants, & = (¢, ..., en)T,and U = (uy,...,up)T. Let X
be the n x np block diagonal matrix with xiT on the ith diagonal. The semiparametric varying-coefficient mixed regressive
spatial autoregressive (SVMRSAR) model (1) can be rewritten as

Y = AWY +XdU) +Z8 + ¢, (18)

where &(U) = (@ (uq),...,aT (uy))T is an np dimensional vector of unknown coefficient functions that depends on u.
Let & be the support of u;. The following regularity conditions are assumed for studying the asymptotic properties.
Condition A.

A.1 The diagonal element of the spatial weighting matrix W is zero. The matrix I — AW is nonsingular for |A| < 1. The
row and column sums of the matrices W and (I — AW)~! are bounded uniformly in n.

A.2 The elements of X, Z are uniformly bounded by some constants uniformly in n.

A3 The random errors g; are independently identically distributed with E[g;|x;,z;, u;] =0 and E[8i2|x,~,z,~,u,~] =ai2 is
bounded away from 0, and E(sf|x,—,z,v, u;) is bounded by a constant.

A4 Let pX(u) = (p1x (W), ..., pxx (W))T. The largest eigenvalue of E[pX(u;)pX(u;)T] is bounded uniformly in K. The smallest
eigenvalue of E[pX(u;)pX(u;)T] is bounded away from zero uniformly in K. There exists a sequence of constants ¢ y(K)
such that supyey||pX ()| < ¢o(K) and K = K(n) — oo such that ¢¢(K)2K/n — 0 as n — oo, where |-|| is the Euclidean
norm of a vector.

A.5 Let go(u) represent one of the components E(xixl.T|ui), E(xizl.T|ui), E(x;yilu;), E(x,-w,.TY |u;) and «(u), and let Oyx be the
corresponding vector of coefficients under the series approximation similar to (6) under the basis functions pX(u) =
(p1x (W), ... pxx (). There exist § > 0 and Ay such that sup,, ||go (@) — (PX () k|l = O(K~?) as K — .

A.6 The eigenvalues Aq, ..., Ap of E[x,-xl.T|ui] are bounded and bounded away from 0. The eigenvalues of E[exye)T(Y|U] are
bounded and bounded away from zero, where exy = XTY — E(XTY|U) and E(XTY] U) = (E(xTy;|uy), ..., E(XLynlun))T.
Moreover, the eigenvalues of E[eXWye)T(Wy|U] are bounded uniformly in n, where ex,y = XTWY —E(XTWY|U) and
EXTWY|U) = (ExywlY|uq), ..., E(aw] Yiup))T.

A7 The limits n-1ATBE -2 Qqrg.-n 'HTH LN Qurg-n 'HTAH LN Qirpn exist and are nonsingular, where A =
diag(c,....02).

Condition A.1 imposes restrictions on the spatial weighting matrix. These restrictions are commonly imposed in the
spatial regression literature (e.g., Lee (2003), 2007)). Condition A.2 is similar to an assumption in Kelejian and Prucha (1998).
Condition A.3 is needed for establishing the asymptotic distribution of the nonparametric estimator @(u) and was used in
Newey (1997).

Conditions A.4 and A.5 are imposed on the sieve approximations. Since the constant in the fixed-effects setting is not
identified, we must impose some normalization on gg(.) such as gg(zg) = 0 at some point zy so that gg(.) can be identified.
The basis functions pX(z) shall be constructed to satisfy this normalization. Condition A.4 imposes a normalization on the
basis functions, bounding the second moment matrix away from singularity, and restricting the magnitude of the series
terms. The bound ¢y(K) is different for different basis functions. Newey (1997) showed that ¢o(K) equals Cv/K for splines
and CK for power series where C is a constant. This implies a convergence rate at K/n — 0 and K3/n — 0 for splines and
power series, respectively. This condition is needed to ensure the convergence in probability of the sample second moment
matrix of the approximating functions to their expectations.

Condition A.5 assumes that several conditional expectations can be approximated well using series and it specifies that
the rate of uniform approximation error tends to zero at the rate K=%. The constant § is related to the smoothness of the
conditional expectation functions and the dimensionality of u;. If these objects have different degrees of smoothness, then
the rate of convergence is determined by the least smooth component. For splines and power series, this assumption is
satisfied with § = s/r, where s is the number of continuous derivatives of go(u) that exist and r is the dimensionality of u;;
see Newey (1997). Under Condition A.5, E(xixl.T|ui), E(x,-zl.T|u,-), E(x;yilu;), and a(u;) can be approximated well using the basis
functions pX(u). Since AE(x;w!Y|u;) = E(xy;lu;) — E(x;z! [u) B — E(xixT Jup)ee (), E(x;w!Y|u;) can also be approximated well
by the basis functions pX(u). Condition A.6 is needed to show that the series estimators of the conditional expectations are
consistent (Lemma 1). Condition A.7 is a stability condition. The quantities are used in the expression of asymptotic variance
of the estimator.
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3.1. Asymptotic results

This section presents the asymptotic results of the estimators. The proofs of these results are given in the Appendix.
Lemma 1 shows the consistency of the series estimators of the conditional expectations defined in (7)-(10). It also gives the
rates of convergence of these estimators.

Lemma 1. Under Conditions A.1-A.5, the following holds uniformly in u;, i=1,...,n and n:

(i) EQax] |uy) = E(x] [u;) + 0p (Lo (KO [VE/ /1 + K=8));
(ii) E(xiz] |u;) = E(iz |u;) + 0p (Lo () [VE/ /1 + K=8));
(iii) E(xyi|up) = E(xiyilu;) + 0p (Lo (K)[VK/ v+ K9]);
(iv) EGqw]Y |up) = ECaw] Y |u;) + Op (Lo (K)[VK/ /M + K=2]).

(v) E(qw] Z|u;) = E(yw! Z|uy) + 0p (5o (K)[VK/v/n + K~3]).

The result in Lemma 1 is similar to the uniform convergence result given in Theorem 1 of Newey (1997). Note that § is
related to the smoothness of the conditional expectations and the dimensionality of u;. According to Newey (1997), we can
take 6 = s/r, where s is the number of continuous derivatives that exist of the least smooth conditional expectation and r
is the dimensionality of u;. The coefficients ¢o(K) are different for different basis functions. The first term Op(&o (K)vK/v/1)
essentially corresponds to the standard error of estimation and the second term Op({O(K)K“S) corresponds to the bias of
estimation. By letting the two terms ¢,(K)~/K/v/n and ¢, (K)K=% go to zero at the same rate, we have K = O(n!/(1+20))
as n — oo, which achieves the best bias-variance trade-off in mean square error (Newey, 1997). Because £ (K) = Op(vK)
for splines and & (K) = Op(K) for power series, the estimation errors 0, (Zo(K)[vK/v/A +K=%]) equal Op(Kn=1/2 4 K1/2-8) =
0p(n~(-1/2)/(+28)y for splines and 0,(K3/2n~1/2 4 K1-8) = 0,(n~®-1/(1428)) for power series.

We next present the asymptotic results for the estimation of the parametric part of the model. The first result is about
the infeasible estimator and the second result is about the feasible estimator.

Theorem 1. Under Condition A, as n — oo,

(a ) inf is asymptotically consistent with 19,,1 f N v;
(b) & mf is asymptotically normal with f(t?mf 19)—>N(0 Ty). where

- - - - -1 -1
219 = (QFITEQF’TFIQFITE) QHTEQFITFIQFITAF’QHTFIQHTE(QFITEQHTF]QI:ITE)
By the definition of Qarz. Qary and Qur oz &iven in Condition A.7, if the errors are homoscedastic, i.e., al.z =02, then the
asymptotic covariance admits a simple form Xy = UZ(QHTB THQHTB) 1

Theorem 2. Assume that {o(K)[v/K/«/f+K=%] — 0. Under Condition A, as n — oo,

(a) J is asymptotically consistent with LN B,

(b) ¥ is asymptotically normal with /n(% — ﬁ)iN(O, ).

To study the asymptotic property of the estimator &(u), we introduce a distance measure to assess its performance. Let
&) —a@)]|? = (@) - oz(u)) (@(u) — a(u)). The asymptotic results about @(u) are given in the following theorem.

Theorem 3. Under Conditions A.1-A.7, as n — oo, we have

(@) supyey 1@ W) —a )] = 0p (G ()VK/V/+K]);
(b) o (u)"2{@(u) — a()}->N(0, 1) for u e U,
where Xy (1) = Cov{P(u)(D'D)~'DTe|U = u} equals P(u)(D'D)~'DT AD(DTD)~! B(u)T. If the errors are homoscedastic,
then Z¢ () = 02P(u)(DTD)~'P(u)T.
Theorems 2 and 3 allow us to conduct statistical inference on both 9 and «(u), provided that consistent estimators of the
asymptotic covariance matrices are available.

3.2. Estimation of asymptotic covariance matrices

Under the assumption that the errors are homoscedastic, E[sl?lxl-,zi,ul-] =02,

covariance matrices Xy and Xy (u) for ¥ and & (u), and show that these estimators are consistent.

Let b; = (w!'Y,zI)T and note that x7& (u;) = xTP(u;)7 = D;p. The error term &; can be estimated by & =y; — b} — D;7.
A consistent estimator for o2 is given by 62 =n~18T&, where & = (&;, ..., &,)7. The asymptotic covariance matrix g for ¢
can be estimated by

52067 _G-1 6. -1
=0 (QHTEQQTHQHTE) ’
where Qgrz =n""ATB=n""Y" bl , Qgry =n'ATA =n"' Y0, AT

we derive estimators of the asymptotic
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Table 1
Summary of Bias, SEE, ESE and CP for A = —0.5,0,0.5 and 8 =3 and RISE of @(u) with different 62 = 9,25 and K = 6 under model (19). Each entry is
based on 1000 repetitions.

n o? 62 A B a(u)
Avg Bias SEE ESE CcpP Bias SEE ESE cpP RISE
A=-05 8=3
200 9 9.45 0.0031 0.229 0.140 0.931 -0.0058 0.313 0.204 0.924 0.556
300 9.08 -0.0027 0.120 0.108 0.945 0.0031 0.173 0.162 0.959 0.453
500 9.01 0.0007 0.083 0.082 0.951 -0.0033 0.125 0.123 0.942 0.337
200 25 25.26 0.0003 0.342 0.236 0.933 -0.0223 0.447 0.339 0.921 0.921
300 24,75 -0.0066 0.190 0.180 0.944 0.0005 0.282 0.267 0.959 0.754
500 2481 -0.0005 0.140 0.137 0.949 -0.0075 0.207 0.205 0.943 0.560
A=0,8=3
200 9 9.39 0.0008 0.156 0.098 0.930 -0.005 0.316 0.214 0.925 0.554
300 9.08 -0.0023 0.085 0.077 0.943 0.0039 0.183 0.170 0.957 0.453
500 9.01 0.0003 0.059 0.058 0.951 -0.0031 0.131 0.129 0.942 0.336
200 25 2510 -0.0028 0.226 0.163 0.933 -0.0185 0.454 0.351 0.926 0.919
300 24.77 -0.0057 0.135 0.127 0.944 0.0023 0.297 0.281 0.957 0.754
500 2481 -0.0009 0.099 0.097 0.948 -0.0066 0.217 0.215 0.942 0.560
A=05 8=3
200 9 9.36 -0.0003 0.081 0.051 0.931 -0.0035 0.329 0.224 0.925 0.556
300 9.09 -0.0014 0.045 0.040 0.943 0.0050 0.194 0.179 0.953 0.453
500 9.01 0.0006 0.031 0.031 0.950 -0.0028 0.138 0.136 0.942 0.337
200 25 25.04 -0.0023 0.116 0.086 0.933 -0.0139 0.474 0.367 0.925 0.920
300 24.79 -0.0035 0.071 0.067 0.943 0.0048 0.313 0.295 0.955 0.755
500 24.82 -0.0008 0.053 0.051 0.946 -0.0056 0.228 0.226 0.944 0.561

The asymptotic covariance matrix Xy (u) for & (u) can be estimated by
. (u) = 62Bw){D'D} ' Bu)".
The following theorem establishes the consistency of these estimators.

Theorem 4. Assume that E[sl?lx,-,zi, u;] = o2, Under Condition A, as n — oo, we have
(a) 62 L o2;

(b) £y > Tp;

(€) Za(u) — Ta ) = 0p(Lo(K)?/n) = 0,(1) for any given value u e U.

4. Monte Carlo simulation

In this section, we conduct a simulation study to evaluate finite-sample performance of the proposed method. We con-
sider the following SVMRSAR model

n
Vi=AY wyyi+z B+xa)+e, i=1,....n (19)
j=1

where u; follows the uniform distribution on [0, 1], x; follows the standard normal distribution, z; has the exponential
distribution with rate parameter 1, and the error term &; is normally distributed with mean zero and variance o2. For the
sample size n that is a multiple of 10, we take the spatial weights matrix W = I;;/10 ® (119 — I19)/9, where 149 is a 10 x 10
matrix with all elements equal to 1 and I; is a r x r identity matrix for r = 10 and n/10. We consider «(u) = 6sin(2mwu),
A =-05,0, or 0.5, and B8 = —3 or 3. In the simulations, we take K = 6 and pX(u) = (1, u, u?,u3, ..., uk~1)T, We conducted
an additional simulation study using K =4 and K =5 to examine how the estimation accuracy is influenced by the choice
of K. The simulation results using K =4 and K =5 presented in the Web-based Supplementary material show that the
estimation accuracy is not very sensitive to the choices.

Tables 1 and 2 summarize the simulation results for estimating A, 8 and «(u) under different settings of the true pa-
rameters for n = 200, 300, and 500 using K = 6. Table 1 is for 8 = 3 and Table 2 is for 8 = —3. Each entry is based on 1000
repetitions.

For each estimator, Bias is the average of estimation biases from 1000 repetitions, SSE is the sample standard error of
the estimates, ESE is the average of the estimated standard errors, CP is the coverage probability of a 95 percent confidence
interval, and RISE is the average of the square root integrated square error of &(u), where for each repetition
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Table 2
Summary of Bias, SEE, ESE and CP for A = —0.5,0,0.5 and B = —3 and RISE of @(u) with 62 =9, 25, and K = 6 under model (19). Each entry is based on
1000 repetitions.

n o2 62 X B a(u)
Avg Bias SEE ESE cpP Bias SEE ESE cP RISE
A=-05 B=-3
200 9 9.24 -0.0102 0.193 0.135 0.932 0.0028 0.265 0.201 0.925 0.556
300 9.10 -0.0029 0.125 0.109 0.942 0.0090 0178 0.162 0.956 0.452
500 9.00 -0.0045 0.083 0.083 0.949 0.0001 0.125 0.123 0.941 0.337
200 25 24.79 -0.0225 0.284 0.224 0.932 0.0048 0.390 0.330 0.928 0.920
300 2478 -0.0089 0.199 0.181 0.945 0.0160 0.284 0.267 0.958 0.752
500 24.78 -0.0093 0.138 0.139 0.947 0.0017 0.208 0.204 0.940 0.561
A=0B=-3
200 9 9.27 -0.0082 0.137 0.096 0.929 0.0007 0.277 0.212 0.923 0.554
300 9.10 -0.0024 0.088 0.077 0.943 0.0080 0.186 0.170 0.956 0.452
500 9.00 -0.0034 0.058 0.058 0.950 -0.0007 0.131 0.129 0.943 0.337
200 25 24.86 -0.0182 0.203 0.159 0.932 -0.0001 0.408 0.347 0.927 0.919
300 24.79 -0.0074 0.140 0.128 0.945 0.0130 0.297 0.281 0.955 0.752
500 2479 -0.0071 0.097 0.097 0.948 -0.0001 0.218 0.215 0.941 0.560
1=05 =-3
200 9 9.30 -0.0049 0.074 0.051 0.930 -0.0015 0.291 0.223 0.922 0.555
300 9.10 -0.0015 0.046 0.041 0.944 0.0069 0.195 0.179 0.954 0.452
500 9.01 -0.0019 0.031 0.031 0.952 -0.0016 0.138 0.136 0.946 0.337
200 25 2497 -0.0110 0.110 0.085 0.933 -0.0060 0.430 0.365 0.921 0.921
300 24.80 -0.0045 0.074 0.068 0.945 0.0103 0311 0.296 0.954 0.753
500 24.81 -0.0040 0.051 0.051 0.951 -0.0022 0.229 0.226 0.946 0.561
1/2

p
RISE@() = | 3 [ (@) - a)PdF() |
1=1 ¢

and U is the support of u, with F(u) the distribution function of u.

The simulation results show that the biases for estimating A and B are small and decrease when n increases. The variance
estimation works well, with 62 close to o2 and the difference becoming small when n becomes larger. The SEE and ESE for
% and B are close and the differences decrease with the sample size. The RISE of «(u) becomes very small as n becomes
larger. Fig. 1 compares the true function a(u) with the estimated function & (u).

5. Analysis of teenage pregnancy rates

Teenage pregnancy is one of the subject areas where social interaction effects are believed to be most important. Jencks
and Mayer (1990) conclude that neighborhoods have a stronger effect on sexual behavior than on cognitive skills, school
enrollment decisions, or even criminal activity. Many studies including Hogan and Kitagawa (1985), Crane (1991), Case and
Katz (1991) and Evans et al. (1992) analyzed neighborhood effects in teenage pregnancy.

Based on the data from the study “Health and Healthcare in the United States-County and Metro Area Data” (Thomas,
2000), and the 1990 US Census (US Census Bureau, 1992), Lin and Lee (2010) studied the spatial effects at more aggregated
levels using the MRSAR model and examined how county teenage pregnancy rates are affected by each other. The proposed
model (1) is a semiparametric model that includes a nonparametric component for more flexible modeling. Applying the
proposed method, we relate a county’s teenage pregnancy rate, which is defined as the percentage of pregnancies occurring
for females of 12-17 years old, to those of its neighbors and its own characteristics. Following Kelejian and Robinson (1993),
we focus on counties in the 10 Upper Great Plains States, including Colorado, lowa, Kansas, Minnesota, Missouri, Montana,
Nebraska, North Dakota, South Dakota, and Wyoming, which consist of 761 counties. A county’s neighbors are referred to as
its geographically neighboring counties.

For each county i, i =1,...,761, we define Teen; as the teenage pregnancy rate, Edy; as the education service expenditure
(divided by 100), Inco; as median household income (divided by 1000), FHH; as the percentage of female-headed households,
Black; as the proportion of the population that is black, and Phy; as the number of physicians per 1000 population, all in
county i. Lin and Lee (2010) found that Phy;, Black;, FHH;, Inco;, and Edu; are five county level covariates that influence the
teen pregnancy rates by using the MASAR model where the covariate effects are assumed constant. In the following, we fit
the data using the SVMRSAR model with varying intercept «(u;). We demonstrate how this model can be used to discover
nonlinear effects, facilitate transformations and improve model fitting.

We consider the following SVMRSAR model:

761
Teen; = ).y " wijTeen; +z] B + a(u;) + &;. (20)
j=1
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Fig. 1. Plots of the estimates of «(u) = 6sin(2ru) under model (19) with K =6 for n =200 and o =5 and for different values of A and B. The black
dashed line is the true function. The dotted line is the average estimate over 1000 simulations. The grey lines are the estimates of «(u) in 20 simulations.

fori=1,...,761, where z; and u; are the county-level covariates and w;; are the entries in the spatial weights matrix. The
spatial weights w;; are set to zero if two counties are not neighboring counties, and all neighbors of the same county are
assigned equal weight in the row-normalized spatial weights matrix. The term Z;S] w;;Teen; is simply the average of the
teenage pregnancy rates of county i's neighbors.

The histograms of the these variables show that the data distributions for Phy, Black, FHH, and Edu are very skewed
with very sparse observations at the right tails. The data distribution of Inco is also slightly skewed. The sparsity of the
observations at the right tails makes the nonparametric estimation unstable. We use log transformations for the variables
Phy, Black, Inco, Edu and the square root transformation for FHH. The value one is added before the log transformation to
avoid —oco. The transformations reduce sparseness in the right tails.

The preliminary analysis indicates that log(1+Phy;), log(1+Black;), sqrt(FHH;) and log(1+ Inco;) have constant spatial
effects, while the effect of log(1+Edu;) demonstrates a nonlinear pattern. As a result, we take the final fitted model to be
(20), where u; is log(1+Edu;), and z; is a vector consisting of log(1+Phy;), log(1+Black;), sqrt(FHH;) and log(1+ Inco;). The
estimate of c(u) is given by @ (u) = 16.08 + 1.22u — 0.36u2. Fig. 2 shows @& (u) with 95% pointwise confidence bands.
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Fig. 2. Plots of the estimates &(u) = 16.44 + 1.22u — 0.36u? and pointwise 95% confidence intervals under model (20), where u; = log(1+Edy;), and z; is a
vector of log (1+Phy;), log (1+Black;), sqrt(FHH;) and log(1+ Inco;).

The estimation for A and the spatial effects 8 of log(1+Phy;), log(1+Black;), sqrt(FHH;) and log(1+ Inco;) are given
in the first row of the following table. The second row shows the corresponding Wald statistics, which are the estimated
effects divided by their respective estimated standard errors. The values of the test statistics show that all five county level
covariates Phy;, Black;, FHH;, Inco;, and Edu; have significant effects on teen pregnancy rate.

A log(1 + Phy) log(1 + Black) vFHH  log(1 + Inco)
Xor B 0273 -1.14 119 448 -6.15
Wald-statistic ~ 3163 —2.07 343 1076  —530

Our analysis shows that a higher rate of teen pregnancy is associated with a higher proportion of black population and a
higher percentage of female-headed households in the county. On the other hand, the counties with increased accessibility
to physicians, higher median household income and higher education service expenditure have lower teen pregnancy rates.
Finally, conditional on the above covariates, a county’s teen pregnancy rate is statistically significantly geographically affected
by the teen pregnancy rates of its neighbors. A county’s teen pregnancy rate increases by an estimated 0.273 percent for
each percent increase in the average of the teenage pregnancy rates of its neighbors.

6. Concluding remarks

We investigated a semiparametric varying-coefficient mixed regressive spatial autoregressive model that extends the MR-
SAR model. Our model can flexibly model covariate effects while allowing spatial dependence. The regression coefficients
under our model can be constant and/or vary nonparametrically with another covariate. We proposed a semiparametric
series-based least squares estimation procedure that utilizes instrumental variables and series approximations of the con-
ditional expectations. We showed that the proposed estimators of both the parametric and nonparametric components are
consistent and asymptotically normal. The estimators for the asymptotic covariances of these estimators are also derived to
enable statistical inferences via the model. We conducted a simulation study to investigate the finite-sample performance of
the proposed estimators. The simulation showed that the proposed estimators perform well with satisfactory finite-sample
performance.

We applied our method to analyze teen pregnancy rates based on data of 761 counties in the 10 Upper Great Plains
States from the study “Health and Healthcare in the United States-County and Metro Area Data” (Thomas, 2000), and the
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1990 US Census (US Census Bureau, 1992). The model considered counties’ geographic spatial dependence and possible non-
linear covariate effects of social and economic factors including a counties education service expenditure, median household
income, the percentage of female-headed households, the population proportion that is black, and the number of physicians
per 1000 population. Our analysis showed that a higher rate of teen pregnancy is associated with a higher proportion of
black population and a higher percentage of female-headed households in the county. On the other hand, counties with
increased accessibility to physicians, higher median household income and higher education service expenditure have lower
teen pregnancy rates. We also found that a county’s teen pregnancy rate is geographically affected by the teen pregnancy
rates of its neighbors.

The proposed model can be used to discover the nonlinear nature of covariate effects, via plotting of point and confidence
interval estimates for o(u). Formal analysis can be carried out through hypothesis testing of «(u) = constant versus o/(u)
# constant. This hypothesis testing analysis can be implemented by constructing the test statistics as functionals of the
integrated estimator A(u) = Jz @) dv for [a, u] c U; see Gilbert and Sun (2014). The rate of convergence of A(u) is expected
to be Op(n~1/2). This development requires establishing weak convergence results for the integrated estimator A@) for
[a, u] € 4. This is an interesting problem that merits further investigation.

The leave-one-subject-out cross-validation approach proposed in Rice and Silverman (1991) and its modification of the
leave-subjects-out approach have been very popular in choosing smoothing parameters. However, selecting K and basis
functions is particularly difficult for the SYMRSAR model under study. The cross-validation approach is not readily adaptable
to the SVMRSAR model because the response variables y;, i=1,...,n, are dependent. The problem is that leaving out an
observation, say y, is equivalent to setting the spacial weight w;, to zero, thus changing the structure of associations among
observations. The leave-one-subject-out cross-validation method can be adapted under some structural assumptions on the
spatial weights where by leaving-one-subject one also leaves out the neighbors of this subject. This problem needs further
investigation.
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Appendix A. Proofs

We denote tr(A) = trace(A) for a square matrix A.

Proof of Lemma 1. Proofs of the assertions (i) and (ii) in Lemma 1 are similar to Newey (1997) and thus are omitted. Proof
of assertion (iii). Denote E{p,k(u,-) X pmj(u,»)} = Ejjj- By Condition A4, we can get supueu | X W) || < ¢o(K) and ¢ o(K)?K/n —
0 as n — oc. Let ||-|| denote the Euclidean norm. Let E = E[P(u;)TP(y;)] and Q; = PTP/n. We have
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Employing the same line of proof as in Newey (1997, pp. 161-162) and applying Condition A.3 and 4, we obtain
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Hence
1Q: = ElI* = 05 Co(K)VK/V1) = 0p(1). (21)
It follows that the smallest eige~r1value of Q; converges in probability to a positive value 7;. Let 1, be the indicator function
for the smallest eigenvalue of Q; being greater than 0.5t¢. Then limy_, ., P(1,=1) = 1. R
For the series-based approximation E (x;y;|u;) ~ P(u;)6, the estimator of 6 is given by 61x = (PTP)~'PT1;, where 1y =
XTY. We have E(x;y;|u;) = P(u;)1. Denote g1 = E(XXTY|U) = (E(x]y1|uy). ..., E(XLynlun))" and exy = ny — g;. By Condition
A5, there exist 61x and § > 0 such that n=1(g; — Po1x)T (g1 — Poix) = n=' Yiy |E(Tyilup) — P(up)bikl|? = 0p(K=2%).
Let Q = PTP. Consider the decomposition
ik — 01 = Q7P (191 — g1)/n + Q1PT (g1 — POy /n. (22)
The largest eigenvalue of Q~! is bounded. Thus, by the triangle inequality,
1l — Ol < 1a[Q " Prexy/nll + 1a|Q'PT (g1 — PBiic) /nll
< 1,[|Q"V2PTexy /n|| + 1,1|Q2P" (g1 — POix) /0]l
By Condition A.6, the largest eigenvalue of E[exye},|U] is bounded by a constant C uniformly in n. Note that 1,P(PTP)~1pPT
is idempotent. We have
E“n”Q_Ll/zﬁreXV/n”HU] = 1n15—[‘3)T(§(P‘(13Tﬁ)71ﬁrexv|U]/n = 1nE[tr{ﬁ(PTﬁ)71IST(‘r'XYe)T(y}|U]/n
= 1,tr{P(P"P)~1PTE[exyeky |U]}/n < Clntr{P(PTP)~'P"}]/n
< pCK/n.
Hence, 1,]|Q~12PTeyy /n|| = 0,(vK//1) by the Markov inequality.
Next, since P(PTP)~1PT is a projection matrix, we have that
1a1Q712P" (g1 — POix)/nll = 1a[ (g1 — PO1x)TIP(P"P)~'PT (g1 — P)/n]'
= 0,(D(g1 — PO1)" (g1 — Pori) /n]"? = 0, (K™).
Combining these results, we obtain that 1|6 — 61| = 0p(VK/ 1+ K%).
Now, consider the decomposition
E(xiyilur) — E(ayilug) = P(uy) Brx — O1i) — E(xpyilug) + P(uy) 1.
By Conditions A.4 and A.5 and the triangle inequality,
TnllEiyilup) — Eayilun | < 1P 101k — Okl + I1E xiyilus) — Puy)Oi |
< So(K) 15|61k — Oix |l + O(K?)
= 0p(L(K)[VK/vn+K)),

(23)

uniformly in u; and n. Since 1, LPotasn— oo, the assertion (iii) is proved.
Proofs of the assertions (iv) and (v) are similar to the proof of (iii) and thus are omitted.

Proof of Theorem 1. Proof of Part (a). By (4) and (5),
Bins — 0 = {(BTAATA)'ABI'BTAATA) 'ATY - 9}
= {[BTHATH)ATBI'BTAATA) AT (BY + &) — ¥}
— (BTAHTA) - ATBI BTAATA) ATe

-1
| BR(ATA\ATB | BTH(ATAY ATe (24)
| n n n n n n’

By Condition A.7, n~'ATE £ Qg n'HTH N Qjr- It follows by the nonsingularity conditions given in Condition A.7

that
-1
BA(ATA\ H'B| BH(ATAN" » (r on 1T oo
|:n<n) Tl ) T Qe aQua] Qs Qe

Recall that h; is an instrumental variable for b; introduced for model (4) with E(fe;) = 0. Since {hig;. i=1.....n}
is a sequence of uncorrelated random variables, Cov(n~! Y"1 ; hig;) =n=2Y 1, Cov(hg;)=n"! Cov(hi&;) — 0. We have

n /e =n ' Y1 higy £, 0. Thus, Dinf L. 9. Proof of Part (b). By (24),

-1
. BTAATH\ 'ATB| BTH (ATH\ 'ATe
Wl"i"f‘l’):[n(n) n] n(n) T (25)
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Moreover,
n - n - - ~ ~ p
n=' > " Cov(higilu;, x. Z) = n=' Y " E(hie*h] |u;. %, Z) = n" ' HT AH — Qpr 5.
i=1 i=1
Applying the central limit theorem (cf. Wooldridge (2010, pp. 95-96) or Kelejian and Prucha (1998, Theorem A.1)), we have
n=12HTe2-N(0, Qr ) Hence, vi(dy,; — 9)—>N(0, Ty).
Proof of Theorem 2. Proof of Part (a). Note from (4) that ¢ =¥ — B, Let & =Y — B¥. We have
B —9 = [BTAATA) 'ATBI'BTAATA) 'ATY — »

-1
| BA(ATA\THTB| BTA(ATA\ T ATE 26)
| n n n n n n

We shall show that this term is close to z§,~nf — ¢ given in (24).
By Lemma 1, we have that

E(xix up) = ECax] |ug) + 0p (5o () [VK/Vn + K],
E(xiz] lu) = E(xiz] |up) + 0p (G0 (K)[VK/ v/ + K~°)).
Note that x; and z; are uniformly bounded by Condition A.2. Under Condition A.6 it follows that
[Eax] |un] 7 E izl [ui) = [E(axt |u) 17 E(xiz] [u;) + 0 (Go (K [VK /v + K~°]).
Therefore 2; = Z; + 0, (5o (K)[VK//n+K=%]), uniformly in i. Using the same argument we can show that J;=7;+

0p (Lo ((K)[VK/v/+ K=81).b; = by + 0p (Lo (K)[VK/vA+K°]). and  h; = h; + 0p(Zo (K)[VK/v/+K~]). uniformly in i.
Moreover,

& =9i— b =3 — ' + 0,(co(K)[VK/vI + K°]) = & + 0,(&o (K)[VK/v/1 + K0)).
The results in the previous paragraph together with Condition A.7 yields

BH _1 iB-ﬁT _1 anBET + 0, (Lo (K)[VK/vn+ K9] L5 Qf
_nizlli_ni:1li re G
AA 1< 1R sy P
T T n ig]:hih,—T =4 ;hih,—T + Op(fO(K)[‘/R/x/ﬁ-I—K = Qirs
AT 1. 1, s P
o =7 > i = o Y higi + 0, (Lo (K)[VK/V/n + K~°]) — 0. (27)
i=1 i=1
It follows from (25)-(27) that
-1
. BTA(ATA\ 'ATB| BTA/ATA\ 'ATe s
19—192 |:n(n> n} n(n> T"'OP(Q‘O(K)[\/R/\/H‘FK ])
= Diny = 0 + 0p(Lo () VK/V/R+K]) = 0.
Proof of Part (b). As shown in Part (a), i; = b; + 0, (o (K)[vK/+/f + K=%]) uniformly in i. We have
n12ATE = n12(AT (Y — BY)
=n"12AT{Y —Y — (B-B)9} + n"12AT (Y — BY)
=n"12AT{Y —Y — (B—B)?} +n~"2HT(Y — BY) + 0,(1). (28)
Let
£i(up) = [ECeT1up]" [EGunlug)  AECaw] Y[ — Exiz] |u) B |
~ LG )] [ EGuyilu) = 2EGow] Y1) — EGee] B . (29)

Then y;—J;— (Bi —b)® = xl.Téi(ui). Following the arguments used in proving part (b) of Theorem 1, S}(ui) =
0p(&o K[VK//T+ K] = 0p(1) uniformly in i. Because the instrumental variable h; is orthogonal to X, E(flixﬂui) =0.
We have that n=12 31 E,-xiT converges in distribution to a normal random vector. It then follows that

nV2ANY —Y — (B—B)9} = n 12> hxl&(u;) = 0p(1). (30)
i=1
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By the proof of Part (b) of Theorem 1,
n~12AT(Y = BY) = n2ATe 2> N(0, Qr pp)- (31)
y (27),

TR U T LN |
(1) ] () 1005t e i 62)

It follows from (26), (28), (30), (31), (32) and the Slutsky Theorem that Jﬁ(ﬁ - 0)3>N(0, 219). This completes the proof
of Theorem 2.

Proof of Theorem 3. Proof of Part (a). Let b; = WY, zI)T and B = (b;.....by) = (WY, Z). By (16),
7 = (D'D)"'D'(Y — BY) + (D'D)"'D'B(H — ). (33)

Note that D= (Dq,...,Dy)T is an n x pK matrix. We denote E{xi,plk(ui)xximpmj(u,-)}zﬁlkmj. By Condition A.4,
supu€u||p’<(u)|| < oK) and ¢o(K)2K/n — 0 as n — oo. Let ||-| denote the Euclidean norm. Let E = E[D(u;)"D(y;)] and
@, = DTD/n. We have

n
E{inlplk(ui) X XimPmj (Ui) /1 — Ejjon i}
P

M=
M=

E[IQ: - EII*] =

J

=

M= T~
M= 11

1 & _
2 ZE{XuPlk(Ui) X XimPmj (Ui) — Ejgmj )2
14

Il
M=

Il
-
=~
Il
—_
3
Il
—_

J
proof as in Newey (1997, pp. 161-162) and applying Condition A.3 and A.4, we obtain

=

Employing the same line o

K K 4
E[11Q; — E|1?] 5ZZZZWZE{MPMU:’)XXiumj(Ui)}2
k

I=1 k=1 m=1 j=1 i=1
p K p K
= ZZ Z E{leplk(u) Xxlmpmj(u )}
I=1 k=1m=1 j=1
225 (K)? | & & 2
<E CO( k E{ >3 (XimPmj(ui))
m=1 j=1
20400(K)? | & & 2
< £ 50T 5 S ()
m=1 j=1
4 2
< 2C* ¢ (K)*K -0
n
Hence
Q2 — Ell = 0, (Lo (K)VK/v/n) = 0p(1). (34)
It follows from (34) that the largest eigenvalue of (DTD/n)~! is bounded with probability going to one. We have
[(DTD)~'D"B(H — 9)||> = 0p(n")(F — ¥)"B'D(D'D)~'D"B(H — ¥) = 0p(n"). (35)

NoteNthat v (u) = o (u) - Z’,f:l YuPrc(u), for [=1,...,p, is the error term in (12). Let v(u) = (v1(u), ..., vp(u)T. Then
a(u) =Pu)y +v(). Let V; = xIv(y;) and V = (Vy.....Vy)T. By (13), y; — 9Tb; = Djy +V; + & and thus Y —BY =Dy +V +
e. By (33) and (35), we have

7 =y +(D'D)"'DTe 4+ (D'D)~'D'V + 0,(n"172). (36)

By (34), the smallest eigenvalue of §, converges in probability to a positive value 7,. Let 1, be the indicator function
for the smallest eigenvalue of §, being greater than 0.575. Then lim,_ o, P(1, = 1) = 1. Since E[1,]| (n”DTD)*%DTa/nHz] =
E[1,6TD(DTD)~'DTe/n] = E[1,tr{(DTD)~1/2 DTE(¢T|U)D(DT D)~1/2}/n], which is bounded by O(1)E[1,tr{Ik}/n] = O(K/n) by
Condition A.3, we have (n~'D"D)~'/2 DTe/n = 0,(v/K/+/n). Hence,

(D'D)"'De = [(n~'D'D)~"2|[(n~'D'D)~12D"e/n] = 0,(VK/v/n). (37)

Under conditions A.2 and A.5, we get v;(1;) = O(K~?%) and V; = 0,(K=%). Thus, V = 0,(K~?). Since 1,D(DTD)~'DT is idem-
potent, we have

1,|[(D"D)"'DV|| < 0,(1)1,[VTD(D'D)'D"V/n]'? < 0,(1)[VTV/n]"/? = 0,(K?).
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Hence,
(D'D)~'DV = 0,(K~?). (38)
It follows from (36)-(38) that =y + 0p(\/K/n +K=%). Since

Tall@ @) —a@|| < [P (7 — )l + 1Py —a@)l]
< 0p(D5K) 1all7 — ¥ I| +OK?)
= 0p (SO VK/V/n+ K],
we obtain supycy||@(u) — o ()| = 0 (Lo (K)[VK/vi +K=°]).
Proof of Part (b). Note that at a fixed u, &(u) —a(u) = P(u)(y — y) + P(u)y — a(u). By Conditions A4 and A.5, (36) and
(38),
() — ) = P - y) + Py — o)
= P(u)(D'D)"'D"¢ + 0, (Lo (K)[n~ 12 + K?]).

Recall that ¥4 (u) = Cov[ﬁ(u)(DTD)“DTslu = u]. Let ¢ be a p-dimensional column vector whose components are not
all zero, and let &, = c"P(u)(D"D)~'Dle;/{c” So (u)c}!/2. We have E[&;,] =0, s2 = Y[ | E[£2] = 1. In the following we check
Lindeberg’s condition.

For every € > 0,

& S EN (&l > €582 = Y B/l > D(En/e)] = Y € EED). (39)
m =1 i=1 i=1

Note that
" L [l (07D
EE(S;,HX,Z,U) <n 2; e s, (W)

E{|ID] ;. ;. u;}. (40)

By Conditions A.2-A.4, the largest eigenvalue of n—1DTD is bounded and the smallest eigenvalue of n=1DTD is bounded
away from zero with probability one. Note that Xy (1) = P(u)(DTD)~1DT AD(DTD)~! P(u)T. We have ||cTP(u) (DTD/n)~1||% =
0p({ncT Z¢ (u)c}?). Hence,

n n
SCEGEAIX.Z.U) = 0,(Dn2 3 E(IDT il |xi, 20, ). (41)
i=1 i=1

Under Condition A.2 and A4, |[Di|?> < O(1)(¢o(K))>. By Condition A3, E[ef|x;. z;. u;] < O(1). We have E{||D!¢;[4} <
O(l)§0(1<)2E{||D,-||2E[el4|x,-, z;, u;]} < 0(1)¢o(K)?K. Hence, Y1 E(§;3) < 0(1)¢o(K)? K/n — 0. By the Lindeberg-Feller cen-
tral limit theorem, "' ; &, — N(0, 1) in distribution. The proof of the theorem is completed following an application of the
Crémer-Wald device. . .

Proof of Theorem 4. Proof of part (a). Observe that £ =Y — B —Dy =& —B(¢) — ) —D(y —y) —V, where B= (WY, Z2)
and V is defined just before (36). We have the following decomposition for 62:

62=n1eTe =n"eTe + AL+ A2+ A3+ AR+ A)+ AS+ A] + A3+ A, (42)
where Al = (@ —9)T[n~1BTB](§ —9), A2=-2(F —9)T[n"1BTe]l. A= —y)[n"'D'D] (J-y). Ab=-2(y-
YT 'DTel, A3 =@ - [nBDI( —y). A§=-200 —9)T[n"1BTV], Al =-2(7 —p)T[n"'DTV], Af=n"TeTV,
and A =n~1VTv,

Condition A.3 and Chebyshev's inequality imply n—'eTe 2> o2, The consistency 62 —*» o2 follows by showing that
A Looforj=1,....0.

By Theorem 2 and from the proof of Theorem 3, d=0+ Op(n*1/2), 7 =7 +0p(/K/m +K%) and V = O,,(K*‘S). Since
Y = AWY +Xa@@U) +ZB + ¢, we have

Y=>I-W)X&U)+ A - W) 1ZB + I - W) e, (43)
Note that

igrp _ (MY IWIWYRTYTWTZ

n1Z7wy n17'z
Plugging expression (43) for Y into n~'BTB and by Condition A.1 and A.2, we get n"1BTB = 0,(1). Thus A} =0p(n~1) =
0p(1). Because n~1BT¢ < v/n=1BTBVn—T¢Te, we have n='BTe = 0,(1). Hence A2 = 0,(n~12) = 0,(1).
From the proof of Theorem 3, we have n~'D'D=0p,(1). Hence A} =O0,(K/n+K2%) =0,(1). Since n~'DTe <
vn=1DTDVn=TeTe, n=1DTe = 0,(1), and A% = 0, (/K/n+K=3) = 0p(1).



Y. Sun et al./Econometrics and Statistics 9 (2019) 140-155 155

Similarly, A} = Op[(\/K/n+K=%)n"12] = 0,(1) is followed by $ =y + 0p(/K/n+K=%), n=1B"D < v/n-1DTDvn-1BTB,
n-1ID'TD=0,(1) and n'BTD=0,(1). A8=0,(n"12)=0,(1) follows from & =0 +0,(n"1/2), n 1BV <
Vn=WTVv/n-1BTB, and n~'BTV =0,(1). By n~'D'V <+/n-1VTVv/n-1DTD, which gives n~'DTV =0,(1), we have
A] = 0p(/K/n+K=%) = 0p(1). It is easy to see that A8 = n=1eTV = 0,(K~%) = 0p(1) and A) = n~ VTV = 0,(K=20) = 0, (1).
This completes the proof of part (a).

Proof of part (b). From the proof of Theorem 2, we have QHTAH LR Qaraf

Qf s =n"" Y bThi = n=" Y bR + 0p (Lo (OIVK/V+ K1) <> QF .

i=1 i=1

n n
Qf o =n" Y kTR = n' SRR + 0, (4o (OIVE/VA + K1) 2> Qe
i=1 i=1
Hence,

AT A1 A g P _ _
(QHITEQHT]F’QHTB) T (QIZ.;TE “TngFITB) '

It follows that £, > =;.

Proof of part (c). By Theorem 4 (a), 6% — 02 = 0,(1). We have

n(Sa ) - T W) = (6% - 02)Bu){D'D/n} " Pu)’
= 0,(1)P(W)0,(1)PW)" = ¢o(K)?0,(1).
Thus, n(Za (1) — Ze (u))/5o(K)? = 0p(1).
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Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ecosta.2017.05.005.
References

Ai, C., Chen, X., 2003. Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71 (6), 1795-1843.

Cameron, A.C., Trivedi, PK., 2008. Microeconometrics: Methods and Applications. Cambridge University Press, New York.

Case, A.C., Katz, L.F, 1991. The Company You Keep: The Effects of Family and Neighborhood on Disadvantaged Youths. Technical Report NBER working paper
no. w3705. National Bureau of Economic Research, Cambridge, MA.

Chen, X., Pouzo, D., 2009. Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals. J. Econom. 152 (1), 46-60.

Crane, J., 1991. The epidemic theory of ghettos and neighborhood effects on dropping out and teenage childbearing. Am. J. Sociol. 96 (5), 1226-1259.

Evans, W.N., Oates, W.E., Schwab, R.M., 1992. Measuring peer group effects: a study of teenage behavior. J. Polit. Econ. 100 (5), 966-991.

Fan, ]., Huang, T., 2005. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 11 (6), 1031-1057.

Gelfand, A.E., Kim, H.-],, Sirmans, C., Banerjee, S., 2003. Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc. 98 (462), 387-396.

Gilbert, P, Sun, Y., 2014. Testing for vaccine efficacy against a spectrum of pathogen sequences in stratified mark-specific proportional hazards models with
missing marks, with application to the RV144 HIV vaccine efficacy trial. J. R. Stat. Soc. Ser. C 64, 49-73.

Hastie, T., Tibshirani, R., 1993. Varying-coefficient models. J. R. Stat. Soc. Ser. B (Methodol.) 55, 757-796.

Hogan, D.P, Kitagawa, E.M., 1985. The impact of social status, family structure, and neighborhood on the fertility of black adolescents. Am. J. Sociol. 90 (4),
825-855.

Jencks, C., Mayer, S.E., 1990. Thesocial consequences of growing up in a poor neighborhood. Inner-City Poverty in the United States, 111, p. 186.

Kelejian, H.H., Prucha, L.R., 1998. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive
disturbances. J. Real Estate Finance Econ. 17 (1), 99-121.

Kelejian, H.H., Prucha, LR., 1999. A generalized moments estimator for the autoregressive parameter in a spatial model. Int. Econ. Rev. 40 (2), 509-533.

Kelejian, H.H., Prucha, LR., 2001. On the asymptotic distribution of the Moran I test statistic with applications. J. Econom. 104 (2), 219-257.

Kelejian, H.H., Robinson, D.P., 1993. A suggested method of estimation for spatial interdependent models with autocorrelated errors, and an application to
a county expenditure model. Pap. Reg. Sci. 72 (3), 297-312.

Lee, L.-F,, 2001. Generalized Methodof Moments Estimation of Spatial Autoregressive Processes. Manuscript. Department of Economics, Ohio State University.

Lee, L.-F.,, 2003. Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econom. Rev. 22 (4),
307-335.

Lee, L.-F., 2007. Gmm and 2SLS estimation of mixed regressive, spatial autoregressive models. J. Econom. 137 (2), 489-514.

Li, Q., Huang, CJ., Li, D., Fu, T.-T., 2002. Semiparametric smooth coefficient models. ]. Bus. Econ. Stat. 20 (3), 412-422.

Lin, X,, Lee, L.-f.,, 2010. GMM estimation of spatial autoregressive models with unknown heteroskedasticity. J. Econom. 157 (1), 34-52.

Newey, W.K., 1997. Convergence rates and asymptotic normality for series estimators. ]J. Econom. 79 (1), 147-168.

Rice, J.A., Silverman, B.W., 1991. Estimating the mean and covariance structure nonparametrically when the data are curves. J. R. Stat. Soc. Ser B (Methodol.)
10, 233-243.

Schliep, E., Gelfand, A., Holland, D., 2015. Autoregressive spatially varying coefficients model for predicting daily PM 2.5 using VIIRS satellite AOT. Adv. Stat.
Climatol. Meteorol. Oceanogr. 1 (1), 59.

Su, L, Jin, S., 2010. Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models. J. Econom. 157 (1), 18-33.

Thomas, R.K.,, 2000. Health and healthcare in the united states: county and metro area data.. J. Healthc. Qual. 22 (4), 47.

US Census Bureau, 1992. Census of Population and Housing 1990, Summary Tape File 3 on CD-ROM. The Bureau Producer and Distributor, Washington, DC.

Wooldridge, J.M., 2010. Econometric Analysis of Cross Section and Panel Data. The MIT Press, Cambridge, Massachusetts.

Zhang, W.,, Lee, S.-Y., Song, X., 2002. Local polynomial fitting in semivarying coefficient model. ]. Multivar. Anal. 82 (1), 166-188.

Zhang, Y., Sun, Y., 2015. Estimation of partially specified dynamic spatial panel data models with fixed-effects. Reg. Sci. Urban Econ. 51, 37-46.


http://dx.doi.org/10.1016/j.ecosta.2017.05.005
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0001
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0001
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0001
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0002
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0002
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0002
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0003
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0003
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0003
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0004
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0004
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0004
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0005
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0005
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0006
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0006
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0006
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0006
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0007
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0007
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0007
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0008
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0008
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0008
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0008
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0008
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0009
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0009
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0009
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0010
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0010
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0010
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0011
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0011
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0011
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0012
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0012
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0012
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0013
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0013
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0013
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0014
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0014
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0014
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0015
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0015
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0015
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0016
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0016
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0016
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0017
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0017
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0018
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0018
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0019
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0019
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0020
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0020
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0020
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0020
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0020
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0021
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0021
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0021
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0022
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0022
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0023
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0023
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0023
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0024
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0024
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0024
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0024
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0025
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0025
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0025
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0026
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0026
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0027
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0027
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0028
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0028
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0028
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0028
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0029
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0029
http://refhub.elsevier.com/S2452-3062(17)30042-4/sbref0029

	Estimation of a semiparametric varying-coefficient mixed regressive spatial autoregressive model
	1 Introduction
	2 Semiparametric series-based least squares estimation
	2.1 Series-based two-stage least squares estimation of parametric model components
	2.2 Series-based least squares estimation of nonparametric model components

	3 Asymptotic results and variance estimation
	3.1 Asymptotic results
	3.2 Estimation of asymptotic covariance matrices

	4 Monte Carlo simulation
	5 Analysis of teenage pregnancy rates
	6 Concluding remarks
	 Acknowledgments
	Appendix A Proofs
	 Supplementary material
	 References


