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8Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA
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SUMMARY

Ocean microbial communities strongly influence the
biogeochemistry, food webs, and climate of our
planet. Despite recent advances in understanding
their taxonomic and genomic compositions, little is
known about how their transcriptomes vary globally.
Here, we present a dataset of 187 metatranscrip-
tomes and 370 metagenomes from 126 globally
distributed sampling stations and establish a
resource of 47 million genes to study community-
level transcriptomes across depth layers from pole-
to-pole. We examine gene expression changes and
community turnover as the underlying mechanisms
shaping community transcriptomes along these
axes of environmental variation and show how their
individual contributions differ for multiple bio-
geochemically relevant processes. Furthermore, we
find the relative contribution of gene expression
changes to be significantly lower in polar than in
non-polar waters and hypothesize that in polar re-
gions, alterations in community activity in response
to ocean warming will be driven more strongly by
1068 Cell 179, 1068–1083, November 14, 2019 ª 2019 The Author(s)
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changes in organismal composition than by gene
regulatory mechanisms.

INTRODUCTION

Microorganisms perform ecological functions and drive biogeo-

chemical cycles that transform matter and energy on a global

scale (Falkowski et al., 2008). Recent advances in sequencing

technology and the analysis of DNA extracted from environ-

mental samples (metagenomics) have made it possible to

systematically characterize the taxonomic and genomic compo-

sition of microbial communities in diverse biomes (Fierer et al.,

2012; Human Microbiome Project Consortium, 2012; Sunagawa

et al., 2015). In the ocean, such biodiversity surveys have been

conducted on local (Karl and Church, 2014; Venter et al.,

2004), as well as regional and global scales (Biller et al., 2018;

Kent et al., 2016; Rusch et al., 2007; Sunagawa et al., 2015).

These and similar efforts (Delmont et al., 2018; Duarte, 2015;

Kopf et al., 2015; Tully et al., 2018) have provided valuable base-

line data that reveal the biodiversity of ocean microbial taxa, the

repertoire of genes and genomes in the ocean, and the ecolog-

ical factors that structure ocean microbial communities.

Despite the rich information that can be obtained about

the gene-encoded functional potential in an environment,
. Published by Elsevier Inc.
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metagenomics alone cannot predict which, and in what amount,

specific functions contribute to the molecular activity of microbi-

al communities in situ, because genes may be variably ex-

pressed or not expressed at all. In contrast, metatranscriptomics

enables the analysis of the pool of transcripts from genes that are

actually expressed in an environmental sample (Helbling et al.,

2012; Moran et al., 2013; Poretsky et al., 2005) and therefore

provides a more accurate depiction of ecologically relevant

processes that are occurring (e.g., in response to diurnal or

other variations in environmental conditions) (Ottesen et al.,

2014; Poretsky et al., 2009). In addition, the integration of meta-

genomic and metatranscriptomic data to quantify levels of

gene expression, that is, the relative amount of expressed tran-

scripts per gene, has revealed a number of important insights.

For example, the ecological importance of photosynthesis,

carbon fixation, and ammonium uptake has been highlighted in

Prochlorococcus, which is abundant in oligotrophic waters of

the tropical and subtropical ocean, because genes encoding

these functions were among the most highly expressed genes

in their genomes (Frias-Lopez et al., 2008). Picocyanobacteria,

in general, have been found to contribute more to the community

pool of transcripts than expected by abundances inferred from

metagenomics, whereas the opposite has been shown for

some heterotrophic bacteria, including those from the highly

abundant SAR11 clade (Dupont et al., 2015; Frias-Lopez et al.,

2008; Shi et al., 2011).

In contrast to studying differences between gene and tran-

script abundances within samples, understanding why a pool

of community transcripts (metatranscriptome) changes from

one sample to another has received much less attention.

Notably, changes in metatranscriptomes can result from alter-

ations in the relative abundance of organisms and their associ-

ated genes (community turnover) and/or by changes in the
expression of genes encoded among the community members

(Satinsky et al., 2014) (Figure S1). For microbial communities in

the Amazon River Plume, it has been shown, for example, that

higher transcript levels for some functions (e.g., acquisition of

phosphorous) could be explained by increased gene abun-

dances in free-living communities whereas for other functions

(e.g., sulfur cycling, vitamin biosynthesis, and aromatic com-

pound degradation) higher transcript levels were attributed

to increased gene expression levels in particle-attached

communities (Satinsky et al., 2014). However, global-scale

biogeographic patterns of community turnover versus gene

expression-driven changes in metatranscriptomes, and the

ecological determinants of the relative contribution driving these

two mechanisms, have not yet been studied for marine or any

other environmental microbial communities.

Here, in order to better understand the basis of metatranscrip-

tomic differences across environmental gradients (e.g., latitude

and depth) in the ocean, we leveraged efforts from the Tara

Oceans (2009–2013) expeditions (Karsenti et al., 2011) and

analyzed an environmentally contextualized dataset (Pesant

et al., 2015) of metatranscriptomes andmetagenomes, which in-

cludes a circumpolar representation of the climate change-

impacted Arctic Ocean (Hoegh-Guldberg and Bruno, 2010;

Overland et al., 2018). To capture the abundances of genes

and transcripts from oceanmicrobial communities at the species

level, we established a reference catalog of non-redundant pro-

tein-coding sequences (hereafter, genes). Using this integrated

information, we determined for a number of biogeochemical pro-

cesses involved in photosynthesis, as well as in the cycling of

carbon, nitrogen, and sulfur, varying contributions of community

turnover, and gene expression changes to metatranscriptome

differences across latitude and depth. We further compared,

as a function of temperature, the relative contributions of these
Cell 179, 1068–1083, November 14, 2019 1069
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Figure 1. Geographic Coverage of the Meta-omics Dataset Analyzed in This Study

Geographic distribution of the sampling stations of the Tara Oceans (2009–2013) expeditions (Pesant et al., 2015). Several size-fractionated samples were

collected from different depth layers at each station for a total of 557 samples (370 metagenomes and 187 metatranscriptomes). Stations numbered 155 and

above represent the Tara Oceans Polar Circle campaign undertaken between June and October 2013. Colors indicate the type of samples collected for the

prokaryote-enriched fractions at each station: metagenome only (orange, 18 stations); metatranscriptome only (blue, 40 stations); metagenome and meta-

transcriptome for at least one of the depth layers (green, 68 stations).
mechanisms and hypothesize how they will differ between polar

and non-polar regions in response to ocean warming.

RESULTS AND DISCUSSION

A New Meta-omics Resource for Global Ocean
Microbiome Research
The dataset for this study consists of metatranscriptomic (n =

187) and metagenomic (n = 370) samples collected at 126 glob-

ally distributed sampling stations across a latitudinal range of

142� (Figure 1; https://doi.org/10.5281/zenodo.3473199). The

samples originate from the light-penetrated, epipelagic waters

from the surface (SRF), deep chlorophyll maximum (DCM), and

mixed water layer, and dark waters from the mesopelagic

(MES) layer, from 5 m to 1,000 m in depth (median depths of 5

m, 50 m, and 550 m for SRF, DCM, and MES, respectively).

The 187 prokaryote-enriched metatranscriptomic libraries

were generated and sequenced to an average depth of 28

Gbp per sample (https://doi.org/10.5281/zenodo.3473199), af-

ter protocol optimization for low-input RNA samples (Alberti

et al., 2014) (STAR Methods). These data were analyzed in

conjunction with a set of 131 virus-, 59 giant virus-, and 180

prokaryote-enriched metagenomes (https://doi.org/10.5281/

zenodo.3473199), which include prior sequencing efforts of

Tara Oceans (Sunagawa et al., 2015), virus-enriched metage-

nomes from polar (n = 44) and non-polar (n = 42) regions

(Gregory et al., 2019; Roux et al., 2016) (see STAR Methods for
1070 Cell 179, 1068–1083, November 14, 2019
definitions), and 41 prokaryote-enriched metagenomes from

the Arctic Ocean (new to this study).

We aimed to capture whole community-level variations in

community turnover and gene expression changes and to place

these data into the context of geographic and environmental

gradients at a global scale. Notably, the applicability of this

approach critically depends on the evolutionary distances be-

tween the organisms present in the environment and those rep-

resented in genomic sequence databases (Nayfach et al., 2016).

Ideally, genome sequences would be available for all organisms

that comprise the communities of interest, thus facilitating the

integration of gene abundance and gene expression data to

assess whole-community compositions. Such analyses appear

to be within reach for the human gut microbiome, for which

appropriate genomic resources have recently become available

(Almeida et al., 2019; Nayfach et al., 2019; Pasolli et al., 2019).

However, for ocean microbiome samples, less than 10% of

metatranscriptomic, and less than 5% of metagenomic data,

can currently be resolved at the species-level using available

marine genomic sequence databases (Figure 2A).

To overcome this limitation, we generated an updated version

of the Ocean Microbial Reference Gene Catalog (OM-RGC.v2;

original version in Sunagawa et al., 2015) based on 370 metage-

nomes with extended geographic coverage, particularly for the

Arctic Ocean (Figure 1). Among the 47 million non-redundant

genes, 24.5% were reconstructed, although partially detected

elsewhere (Figure 2), in the Arctic Ocean samples alone,

https://doi.org/10.5281/zenodo.3473199
https://doi.org/10.5281/zenodo.3473199
https://doi.org/10.5281/zenodo.3473199
https://doi.org/10.5281/zenodo.3473199
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Figure 2. Gene Detection Rates and Annotation of the OM-RGC.v2

(A) Percentage of reads from 180 prokaryote-enriched metagenomes (orange) and 187 prokaryote-enriched metatranscriptomes (blue) aligned with a 95%

identity cutoff to: theMarRef database v3, updated 2019/01/19 (Klemetsen et al., 2018), a collection of metagenome-assembled genomes (MAGs) reconstructed

from Tara Oceans samples (Delmont et al., 2018), and the OM-RGC.v2 (this study). To fairly compare the alignments to the MarRef database or MAGs and the

catalog, we corrected for the gene coding density in prokaryotic genomes (STAR Methods). Boxplots show the median values as horizontal lines, interquartile

ranges as boxes with whiskers that extend up to 1.5 times the interquartile range, and outliers as individual data points.

(B) The accumulation of OM-RGC.v2 genes detected in 180 prokaryote-enriched samples. The dashed line separates the prokaryote-enriched non-Arctic

metagenomes (n = 139) (Sunagawa et al., 2015) from the Arctic metagenomes (n = 41). The increase in slope reflects an increase in the rate of detection of new

genes in the Arctic Ocean. The non-prokaryote-enriched metagenomes (n = 190) and the metatranscriptomes (n = 187) are excluded from this analysis.

(C) The taxonomic annotation of genes at the domain level (and viruses; LUCA, last universal common ancestor) and the breakdown of gene functional anno-

tations into�9 k KEGG and�76 k eggNOG orthologous groups (KOs and OGs, respectively). The remaining fraction of unannotated genes was used to generate

de novo gene clusters (GCs) for further functional characterization of the catalog.
highlighting the added value of sampling genomically underex-

plored environments. Using this reference, nearly 70% of the

genes could be taxonomically annotated, and 61% showed ho-

mology to known (i.e., existing) orthologous groups (OGs) in the

database used for gene functional annotation (eggNOG version

4.5) (Huerta-Cepas et al., 2016) (STAR Methods). We further

grouped the remaining 39% of the genes in the OM-RGC.v2

that represent unknown genes (i.e., genes of unknown function

without detectable homology to known sequences), into

�250,000 gene clusters (GCs) based on shared sequence simi-

larity (Figure 2C; STARMethods). We identified significant differ-

ences when comparing transcript abundances between depth

layers (for 5,439 GCs) or between polar and non-polar regions

(for 31,339 GCs), or correlations with environmental parameters

(for 21,648 GCs) (Figure S2). These findings suggest ecologically

relevant yet unknown functions of these genes in response to

environmental variation. A benchmarked analysis of conserved

co-expression as a method for identifying functionally related

genes (Stuart et al., 2003) suggests that some of the GCs are

likely to represent unidentified players in signal transduction,

transcriptional regulation, and energy production/conversion

(Figure S3; Table S1).

In contrast to existing ocean genomic reference databases,

we found the OM-RGC.v2 to capture the majority of gene-en-

coding metagenomic and metatranscriptomic data (70% and

51%, respectively) (Figure 2A) used in this study, making it a suit-
able resource to address our aim of analyzing whole-community

metatranscriptomic compositions. All gene sequences can be

queried online for their abundance, expression, and geographic

distribution (Villar et al., 2018), and they are linked to contextual

environmental parameters (Pesant et al., 2015) facilitating addi-

tional gene-centric explorations in the future.

Variation of Meta-omic Compositions across Latitude
and Depth
Having established resources to quantify whole-community

taxonomic, genomic, and transcriptomic compositions, we

next sought to identify patterns and drivers of compositional

structure across major axes of environmental variation in the

ocean biome at a global scale. Numerous studies have revealed

that microbial communities are vertically stratified in the ocean,

with a striking boundary between epipelagic and mesopelagic

zones (DeLong et al., 2006; Giovannoni and Stingl, 2005; Suna-

gawa et al., 2015). Polar and non-polar communities have also

been shown to separate into distinct groups with different spe-

cies-level taxonomic compositions (Ghiglione et al., 2012; Greg-

ory et al., 2019). Critically, however, the shared gene content

between different strains of the same species may be as low

as 40%, as has been shown, for example, in Escherichia coli

(Mira et al., 2010). Furthermore, gene functional redundancy in

microbial communities (i.e., when the same gene functions are

encoded by different taxa) may help to maintain important
Cell 179, 1068–1083, November 14, 2019 1071
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The schematic on the left illustrates the underlying concept of the split moving-window analysis of ecological differentiation (Ludwig and Cornelius, 1987). It

consists of a comparison of the pairwise distances between communities on opposite sides of a putative boundary with the pairwise distances between

communities on the same side. A high differentiation value captures an increase in the distance between the two sides of the boundary compared with the

distances within each side. The analysis was conducted with a window width of 10 samples and shows an ecological boundary centered around 60�N based on

the taxonomic composition (gray, relative abundance of OTUs), metagenomic composition (orange, per-cell abundance of genes), and metatranscriptomic

composition (blue, relative per-cell abundance of transcripts) of prokaryote-enriched samples from surface (SRF) and deep chlorophyll maximum (DCM) waters

(both belonging to the epipelagic layer). A similar pattern is evident for the southern hemisphere; however, the limited number of samples precluded detection of

an ecological boundary. Significancewas determined using 99%confidence intervals computed with 10,000 random permutations of the latitude values. Vertical

lines represent the window of the latitudinal range of significant values. The insufficient number of samples and latitudinal coverage prevented us to perform this

analysis for the mesopelagic layer.

See also Figure S4.
community functions in cases of biodiversity loss (Bell et al.,

2005). Thus, it is difficult to predict whether gene functional com-

positions and gene expression-regulated transcriptomic reper-

toires would follow the same patterns of taxonomic composition

changes.

To address this question, we first aimed to locate the bound-

aries of differentiation (Ludwig and Cornelius, 1987) in epipelagic

waters (SRF and DCM) along the latitudinal gradient for different

community-compositional measures derived from the prokary-

ote-enriched metatranscriptomes and metagenomes (STAR

Methods). From the equator northward, no significant differenti-

ation was identified in epipelagic waters until a latitude of 40�N.
At this point, the degree of differentiation increased significantly

for all community-compositional measures and peaked at

around 60�N. A similar trend was also observed for the southern

hemisphere (Figure 3) and is consistent with the taxonomic

compositional differences observed between polar and non-po-

lar waters for bacterial (Ghiglione et al., 2012; Gregory et al.,

2019) and viral communities (Ghiglione et al., 2012; Gregory

et al., 2019). We further found that the differentiation is reflected
1072 Cell 179, 1068–1083, November 14, 2019
by significant enrichments of operational taxonomic units (OTUs)

from the order Flavobacteriales (e.g., Formosa, Polaribacter,

NS5, NS7, and NS9 marine groups), the class Gammaproteo-

bacteria (OM182 clade and Piscirickettsiaceae), and eukaryotes

(e.g., Phaeocystis), as well as by depletions of Prochlorococcus

spp., members of the Rhodospirillaceae family, and members of

the SAR11 and SAR406 clades toward higher latitudes (Fig-

ure S4). Here, the congruent patterns observed for both metage-

nomic and metatranscriptomic differentiation—measured as

changes in the relative abundance of gene and transcript copies

at the level of OGs—indicate that on a global scale, taxonomic

composition largely shapes the composition of gene functional

content. Organismal composition also dominates over gene reg-

ulatory variations in shaping community-level transcriptomic

compositions across ecological boundaries.

Indeed, we found that all community-compositional measures

were highly correlated (Figure S5), and their variability in the

epipelagic ocean was, among a set of 27 environmental

parameters, best explained by seawater temperature (Fig-

ure 4A). This result complements earlier reports of temperature
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Figure 4. Patterns and Drivers of Global Ocean Microbiome Compositions across Depth Layers and between Polar and Non-polar Regions

(A) Taxonomic,metagenomic, andmetatranscriptomic composition of epipelagic samples (based on mitags, and the normalized abundances of eggNOG-derived

OGs from metagenomic and metatranscriptomic data, respectively) were related to each of 27 environmental factors using partial (geographic distance-cor-

rected) Mantel tests with 10,000 permutations and Bonferroni correction. Pairwise comparisons of environmental factors are shown below, with a color gradient

denoting Spearman’s correlation coefficients. Temperature is the best explanatory variable for all of the profiles in the epipelagic ocean (taxonomic profile:

Pearson’s r = 0.75; metagenomic profile: Pearson’s r = 0.69; metatranscriptomic profile: Pearson’s r = 0.64; all p < 0.05), followed by oxygen concentration, which

is highly correlated to temperature (Pearson’s r = �0.72). A more detailed description of the variables is available in https://doi.org/10.5281/zenodo.3473199.

(B) Compositional richness of polar and non-polar microbiomes across three depth layers. Taxonomic and functional metagenomic richness (numbers of OTUs

andOGs, respectively) increases with depth, although the richness is consistently lower in polar samples than in non-polar samples (two-way ANOVA: p < 0.05 for

depth layers and polar/non-polar, for both taxonomic and metagenomic functional richness). By contrast, there was no significant difference in functional

metatranscriptomic richness (number of OGs), either across depths or between polar and non-polar samples (two-way ANOVA: p > 0.05 for depth layers and

polar/non-polar). Violin plots represent the (mirrored) density distribution of the data with the median shown as a horizontal line.

(C) Correlations among species richness (number of OTUs), functional metagenomic (metaG) richness andmetatranscriptomic (metaT) richness (number of OGs).

Data were rarefied before richness computation (STAR Methods). Pearson’s correlation was used for all comparisons (OTU-metaG; r = 0.78, p < 0.001; OTU-

metaT: r = 0.16, p = 0.06; metaG-metaT: r = 0.39, p < 0.05). The solid line corresponds to the best linear fit. N.S., not significant (p > 0.05).

See also Figures S5 and S6.
as an important factor driving the taxonomic composition of

ocean microbial communities (Fuhrman et al., 2006), which

was corroborated by a later analysis of a globally distributed

set of samples that accounted for geographic effects and disen-

tangled temperature from other environmental parameters to

confirm that it acts as a key driver of taxonomic and gene func-

tional compositions in epipelagic, non-polar open ocean waters

(Sunagawa et al., 2015). In fact, the identification of an ecolog-

ical boundary starting at 40�N and peaking at 60�N coincides

with a steep temperature decrease between the North Atlantic

and Arctic waters that were sampled (Figure S6) and relates

to additional oceanographic features. At �40�N/S, the 15�C
annual-mean isotherm effectively delineates the permanently

stratified ocean from the subpolar and polar regions (Behrenfeld

et al., 2006), while winter mixing in the North Atlantic is the

strongest (deepest mixed layer depth) at �60�N (Montégut
et al., 2004). The ecological boundary we describe here for mi-

crobial community compositions could thus be due to physico-

chemical changes driven by the variability in the vertical mixing

of oceanic water masses, which is linked to differences in sea

surface temperature.

We next quantified metatranscriptomic richness (i.e., the

unique number of OGs detected by cDNA sequencing), as a

proxy for the diversity of transcribed gene functions, and

compared this to taxonomic and metagenomic richness (i.e.,

the unique number of detected OTUs and OGs, respectively, de-

tected by DNA sequencing). As measures of diversity, the latter

two provide information about the stability (McCann, 2000),

functionality (Cardinale et al., 2006), and possibly productivity

(Tilman, 1995; Vallina et al., 2014) of ecological communities.

In addition, we sought to quantify the fraction of the gene-en-

coded functional potential in a given community that is actually
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transcribed at a given time by comparing metatranscriptomic

and metagenomic richness.

Taxonomic andmetagenomic richness were highly correlated,

without showing signs of saturation, supporting the previous

observation that functional redundancy in the marine ecosystem

is rather low (Fierer et al., 2013; Galand et al., 2018), and both

were found to be significantly lower in polar than in non-polar

communities at all tested depth layers (Figure 4B). These data

are congruent with studies suggesting a decrease in the taxo-

nomic diversity of communities with increasing latitude (Fuhrman

et al., 2008; Gregory et al., 2019; Ibarbalz et al., 2019; Sul et al.,

2013) and an associated decrease in gene functional diversity,

although other studies have also proposed alternative patterns

of latitudinal diversity gradients (Ghiglione et al., 2012; Ladau

et al., 2013; Raes et al., 2018). In contrast, metatranscriptomic

richness was not correlated with taxonomic richness and only

poorly correlated with metagenomic richness, and no significant

difference was found between polar and non-polar microbiomes

or between any depth layers (Figure 4B). This unexpected

disparity between metagenomic and metatranscriptomic rich-

ness patterns suggests that the non-transcribed proportion of

a given metagenome is higher in mesopelagic waters and non-

polar regions relative to epipelagic waters and polar regions.

This could be due to a higher proportion of dormant or dead,

and passively sinking, microbes in the mesopelagic compared

to the epipelagic ocean. Alternatively, these observations may

reflect the prevalence of genome streamlining in surface ocean

waters (Swan et al., 2013), where per genome, the number of

genes is expected to be lower (Mende et al., 2017). The propor-

tion of transcribed genes is thus expected to be higher than in

mesopelagic waters. Future studies will be required to determine

whether the apparent saturation of simultaneously transcribed

gene functions, despite increasing numbers of encoded gene

functions, is a feature that is also common in microbial commu-

nities from other biomes.

Differential Abundance and Expression of
Biogeochemical Cycling Genes
The pool of microbial community transcripts may vary along

environmental gradients as a function of community turnover

and/or changes in gene expression (Figures S1 and S7; STAR

Methods). To disentangle the individual contributions of these

mechanisms across environmental gradients for genes that are

involved in ecologically relevant processes, we integrated 122

prokaryote-enriched, matched metatranscriptomes and meta-

genomes and quantified the differential abundances and expres-

sion levels for a set of biogeochemical marker genes across

depth layers and between polar and non-polar waters (Figure 5).

As a first step, we sought to validate both data quality and our

analytical approach by testing whether patterns for genes

involved in well-studied processes, including carbon fixation,

photosynthesis, and nitrogen cycling could be observed. As ex-

pected, we found that the most differentially abundant tran-

scripts between epipelagic and mesopelagic layers included

those from the photosynthesis marker genes, psaA and psbA,

and genes encoding the subunits of RuBisCO (rbcL and rbcS),

the key enzyme required for carbon fixation (Figure 5A). More-

over, we observed that abundances of the rbcL and rbcS tran-
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scripts were highly correlated with those of psaA and psbB,

which is consistent with the expectation that carbon fixation is

primarily driven by photoautotrophs rather than chemoauto-

trophs (Raven, 2009; Shively et al., 1998; Swan et al., 2011).

This is further supported by the observation of low RuBisCO

gene expression levels in mesopelagic waters, despite the pres-

ence of chemoautotrophs (Figure S8). In addition to psbA, the

abundances of other photosynthetic marker genes, including

markers for the photosynthetic reaction center (petC, petE,

and petH) and the cyanobacteria-specific antenna proteins

(apcA, apcF, cpcA, cpeA, and cpeT), were lower in polar

than in non-polar waters (Figure 5B). This result likely reflects

the depletion of cyanobacteria in colder environments

(Marchant et al., 1987) (Figure S4) and an underrepresentation

of eukaryotic phototrophs in the prokaryote-enriched samples

we analyzed here.

With respect to nitrogen cycling, we detected both gene and

transcript abundances for denitrification marker genes (napA,

nirS, norB, and nosZ) to be enriched in mesopelagic versus

epipelagic waters (Figure 5A). As expected for this predomi-

nantly anaerobic process (Zehr and Ward, 2002), transcript

abundances were particularly high in oxygen-depleted waters,

although interestingly, similar transcript levels were also

observed in some well-oxygenated Arctic water samples (Fig-

ure S9). Transcripts of nitrogen fixation marker genes (nifK,

nifH, and nifD) were more abundant in non-polar than in polar re-

gions, with the highest abundances detected in waters between

20� and 35� (absolute latitude) with low nitrate and nitrite con-

centrations (Figure S10). These data generally agree with the

long-standing expectations that nitrogen fixation activity is

higher under conditions of nitrogen limitation and is primarily

driven by cyanobacteria in tropical and subtropical regions

(Dixon and Kahn, 2004; Stal, 2009). However, more recent

studies have provided additional evidence for an extended

geographic and depth range (Blais et al., 2012; Harding et al.,

2018; Moisander et al., 2017) and for a wider taxonomic breadth

of nitrogen fixing organisms including non-cyanobacterial het-

erotrophic diazotrophs (Bombar et al., 2016; Delmont et al.,

2018). Given these findings, we further investigated the biogeog-

raphy of the nifH gene in more detail and determined which

organisms not only encode this gene, but also express it. Specif-

ically, we analyzed the distribution of nifH gene and transcript

abundances among 24 nifH-encoding ‘‘species’’ that were

detected in the 122 matched metagenomes and metatranscrip-

tomes. From this analysis, we found that a number of Gamma-

and Deltaproteobacteria, for which genomes have recently

been reconstructed (Delmont et al., 2018), were not only abun-

dant, but also among the top contributors to the nifH transcript

pool in the studied samples (Figure 6). Additionally, for the first

time, to our knowledge, we detected nifH gene expression in

mesopelagic Arctic waters and reconstructed the nif operon-

containing genome of its carrier (http://doi.org/10.5281/

zenodo.3352180; STAR Methods), a candidate heterotrophic

Deltaproteobacterium or a member of the Myxococcota phylum

according to a recent proposal for a standardized bacterial tax-

onomy (Parks et al., 2018), that awaits further characterization.

In spite of the potential biases inherent to our approach that

are related to the collection of spatially discrete data over a

http://doi.org/10.5281/zenodo.3352180
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Figure 5. Differences in Gene Abundance and Expression Determine Differential Transcript Abundances of Metabolic Marker Genes across

Depth Layers and between Polar and Non-polar Regions

(A and B) Differences in the abundance of genes and transcripts, and the gene expression level of metabolic marker genes (KOs) were determined (A) between

epipelagic and mesopelagic layers and (B) between polar and non-polar regions. The data points show the differences in the mean transcript abundances, mean

gene abundances, and mean gene expression (i.e., transcript abundance normalized by gene abundance) of KOs. Differences were computed using log2-

transformed values (STARMethods) and tested for significance by Mann-Whitney tests. Differences were considered significant if p values after Holm correction

were smaller than 0.05. Only epipelagic samples were used for the data shown in (B).

See also Figures S8, S9, S10, and S11.
period of more than 3 years and to the sampling process itself

(e.g., unaccounted effect of seasonality or potential changes in

transcript abundances during the sampling process), we were

able to corroborate expected patterns of metabolic processes

usingmetatranscriptomic data at global scale. In addition to vali-

dating our methods, we demonstrated how our community-

centric approach for analyzing metatranscriptomes can be

used in conjunction with metagenomic data, and furthermore,
bridge to new genome-resolved insights. Building on the robust-

ness of our analysis, we next focused on disentangling the

mechanisms that underpin the differences in community tran-

scriptomes across depth and latitude. Notably, we observed

cases in which transcript abundance changes could be mainly

attributed either to differences in gene abundance or gene

expression or a combination of thesemechanisms. As described

above, the enrichment of transcripts from denitrification marker
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Figure 6. Relative Gene and Transcript Abundance of 24 Nitrogenase Genes (nifH) Representing nifH-Encoding ‘‘Species’’

(A–D) Relative gene (orange) and transcript (light blue) abundance distributions of the 24 nifH genes from the OM-RGC.v2 that were detected in 122 matched

metagenomes andmetatranscriptomes (A) are shown and broken down by latitude (B) and by depth (C) of the sample origin. Genes (IDs in the bottom panel) were

annotated using a nifH-specific database (see STAR Methods). Boxplots in (A–C) show the median values as horizontal lines, interquartile ranges as boxes with

whiskers extending up to 1.5 times the interquartile range, and all values overlaid as individual data points. Colors denote phylum-level taxonomic annotations,

naming corresponds to finer grain taxonomy or database-specific identifiers (D), and stars indicate genes that were previously identified inMAGs of heterotrophic

bacterial diazotrophs (HBDs) (Delmont et al., 2018). The genome containing a nifH gene for which transcripts were detected in the mesopelagic layer in the Arctic

(OM-RGC.v2.019519152, bold) was reconstructed (see STARMethods and http://doi.org/10.5281/zenodo.3352180). Horizontal dashed lines denote the latitude

and depth that were used to define polar and non-polar (B) and epipelagic and mesopelagic waters (C), respectively.
genes inmesopelagic versus epipelagic waters aremainly driven

by changes in gene abundance (Figure 5A). In this case, gene

abundance changes, due to environmental filtering of organ-
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ismal community composition in response to higher nitrate and

nitrite concentrations in mesopelagic waters, dominate the

observed community transcriptomic differences. Conversely, a
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higher transcript abundance of marker genes for anaerobic

dissimilatory sulfate reduction (aprA and aprB) in epipelagic

waters is driven by an increased expression of these genes,

despite no significant differences in the abundance of these

genes between depth layers (Figure 5A). A taxonomic break-

down shows that 39% and 59% of aprA and aprB genes were

encoded by Proteobacteria, and only 2% of each gene could

be assigned to taxa containing known sulfate reducers (Archaea,

Firmicutes, Nitrospirae, and Deltaproteobacteria) (Muyzer and

Stams, 2008). These results suggest that the significance of

alternative uses for aprA and aprB in oxic waters, namely to

detoxify cells by catalyzing the oxidation of sulfite accumulated

in the cytoplasm, as described for clades such as SAR11 and

SAR116 (Meyer and Kuever, 2007; Smith et al., 2016), may be

of global relevance.

Amorecomplex scenario for observing differences in transcript

pools is exemplified by a number ofmarker genes for assimilatory

sulfate reduction (cysD, cysH, cysI, cysJ, and cysN), for which the

observed differences across the latitudinal gradient (i.e., higher

transcript abundances in non-polar versus polar regions) result

from a combination of community turnover and gene expression

changes. In this case, the increased transcript abundance in non-

polarwaters results fromhigher expression levels, despite a lower

abundance of genes. Interestingly, we found the transcript abun-

dance of these marker genes to be anticorrelated with that of

dmdA (Figure S11), the key gene for the demethylation of dime-

thylsulfoniopropionate (DMSP) (Howard et al., 2006), which re-

sults in incorporation of carbon and sulfur into bacterial biomass

(Kiene et al., 1999). Based on these data, we hypothesize that the

global-scale expression of the assimilatory sulfate reduction

pathway may be downregulated in response to the availability

of DMSP, which is used by prokaryotes as an alternative source

for sulfur assimilation (Kiene et al., 2000). Notably, if turnover

and differential gene expression are both operative, relying on

gene abundance alone may lead to false predictions including

patterns that would suggest the opposite of what is manifested

at the transcript level (e.g., non-photosynthetic carbon pathways

with higher epipelagic expression levels but higher mesopelagic

gene abundances ofmct and abfD).

Turnover Dominates over Gene Expression Differences
in Polar Water Communities
In light of global climate change, a better understanding of how

ocean microbial communities will respond to ongoing changes

is urgently needed (Cavicchioli et al., 2019; Overland et al.,

2018). In particular, the Arctic region has experienced some of

the highest ocean surface water temperature anomalies re-

corded to date (Hoegh-Guldberg and Bruno, 2010). Ocean

warming models (scenario RCP 8.5, business as usual) predict

that mean surface water temperatures will increase by 2�C to

5�C in the Arctic by the end of the century (Alexander et al.,

2018), highlighting a critical need to better understand how these

changes will impact microbial communities in this region. Given

that these projections focus on surface temperature changes

and due to their major contribution to biogeochemical cycles

(Field et al., 1998), we sought to assess the response of epipe-

lagic communities to environmental variation, as reflected by

measurable differences in their metatranscriptomic composi-
tion, and subsequently to use these spatially discrete data to hy-

pothesize on future projections.

Specifically, we aimed to disentangle (Figure S7; STAR

Methods) whether differences in microbial community transcrip-

tomes are impacted more strongly by community turnover an-

d/or by gene expression changes along the temperature

gradient at their sampling locations. To this end, we divided all

samples into groups of 15 samples (bins) using a sliding window

along the temperature gradient, so that each group reflected the

range of ocean warming expected before the end of the century

(median temperature difference within each bin: 1.6�C; Fig-

ure S12A). We then quantified the different mechanisms of

metatranscriptome changes within each bin (Figure 7; STAR

Methods) and found that in warmer epipelagic waters, the rela-

tive contribution of community turnover to metatranscriptomic

compositional dissimilarities is significantly lower than that of

gene expression changes. In contrast, the effect of community

turnover in colder (predominantly Arctic) waters is higher or in

the same range as gene expression changes (Figure 7A). Overall,

community turnover was found to be significantly higher in polar

communities than in non-polar communities (p < 0.001), whereas

gene expression changes displayed the opposite pattern (p <

0.001) (Figure 7B). Interestingly, the shift in the relative contribu-

tions of the different mechanisms of metatranscriptome changes

occurs at �15�C and therefore coincides with the ecological

boundary previously identified, which, as such, not only delin-

eates communities differing in their composition but also in the

mechanism shaping their transcript pool. We further found that

the effect of temperature was greater than that of other environ-

mental variables, such as nitrate/nitrite concentrations and

salinity (Figure S12), suggesting a higher acclimatory capacity

of microbial communities in warm than in cold epipelagic waters

in response to temperature variations.

Finally, by extrapolating our results from spatially discrete data

to potential consequences of climate change (Blois et al., 2013),

we hypothesize that the relative impact of organismal composi-

tion changes on microbial community transcriptomes will be

greater in polar than in non-polar waters. This extrapolation,

however, needs to be interpreted within the limitations of the

data analyzed here, namely that it cannot account for the evolu-

tionary adaptation of microbial communities to gradual changes

with time. As such, further studies resolving long-term temporal

dynamics of metatranscriptome changes are required to

improve our understanding of the contributions of community

turnover and gene expression changes in the context of environ-

mental changes. Notwithstanding, the present results provide a

first global-scale evaluation of themechanisms underpinning the

changes in community transcriptomes aswell as a framework for

future work.

Conclusions
Large-scale oceanographic sampling expeditions, such as the

World Ocean Circulation Experiment (WOCE) or GEOTRACES

(Anderson et al., 2014; Koltermann et al., 2011; Woods, 1985)

have been extremely valuable in building our understanding of

the ocean circulation, and the distribution of major nutrients

and elements including tracemetals, as well as their contribution

to the climate system. However, our geochemical and physical
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Figure 7. Relative Contributions of Com-

munity Turnover and Gene Expression

Changes to Variations in Metatranscrip-

tome Composition

Determination of the relative contributions of

community turnover and gene expression

changes to variations in the metatranscriptome

composition requires the decomposition of met-

atranscriptomic distances between communities

(Figure S7; STAR Methods). Specifically, the

relative contribution is determined as the ratio of

the gene abundance-based distance (community

turnover) and the gene expression-based dis-

tance (gene expression changes) between two

metatranscriptomes.

(A) The relationship of the ratio with temperature

was analyzed by dividing the epipelagic samples

into groups (bins) of 15 samples each using a

sliding window along the temperature gradient.

For each bin, we report the median ratio (among

all the pairwise comparisons within each bin) as a

function of the median temperature of the

samples present in the bin. The significance is

determined by a Wilcoxon test comparing the

within-bin distribution of the ratios to 1 (in which

case the relative contributions of community

turnover and gene expression changes are the

same). The Holm correction was used to adjust for multiple testing. The ratio was considered to be significantly different from 1 if p < 0.05.

(B) The inner panel represents the difference for community turnover and gene expression changes between polar and non-polar regions. The distributions

capture the distances of each component for all pairwise comparisons of polar and non-polar epipelagic samples. Violin plots represent the (mirrored) density

distribution of the data with the median shown as horizontal line. Significance was tested by the Wilcoxon test; ***p < 0.001.

See also Figure S12.
knowledge of the ocean remains incomplete without incorpo-

rating the processes that regulate biogeochemical cycles at

planetary scale (Falkowski et al., 2008). Analyzing the repertoire

of genes and transcripts from environmental samples can inform

us about the potential and activity of microbial communities that

drive these cycles at global scale and thus help us to understand

the intertwined processes that shape the physico-chemical state

of the ocean through biological activity.

In this study, we describe global biogeographical patterns of

microbial community transcriptome compositions and demon-

strate how changes in these compositions can be attributed to

community turnover and/or gene expression changes as the un-

derlying mechanisms. Assessing the mechanisms that underlie

such compositional differences, as demonstrated here, can

help us to determine whether changes in the molecular activities

of microbial communities are regulated by gene expression

changes or by a turnover of organisms containing genomic mod-

ifications that arose over evolutionary time. In addition, an

improved understanding of the ecological factors that drive com-

munity compositional and diversity changes can help us to better

predict how ocean microbial communities will respond to envi-

ronmental changes. For example, the consistent identification

of temperature as a major explanatory factor for global-scale

community-level differences in genomic (Sunagawa et al.,

2015) and transcriptomic (this study) composition, as well as

taxonomic diversity (Gregory et al., 2019; Ibarbalz et al., 2019),

has wide-ranging implications, in particular for the Arctic Ocean,

given the current projections of disproportionately high warming

rates in this region (Alexander et al., 2018; IPCC, 2014).
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Notably, the analyses of this study were enabled by

a systematic, highly contextualized, pan-oceanic set of

metagenomic and metatranscriptomic data that, along with the

OM-RGC.v2, complements other large-scale datasets that

have been developed for eukaryotes (Carradec et al., 2018; Ibar-

balz et al., 2019), prokaryotes (Biller et al., 2018), and viruses

(Gregory et al., 2019). Together, these will pave the way for an

eco-systems level understanding of ocean plankton diversity,

function, and activity across boundaries of organismal size

ranges. To reach this goal, it will be important to integrate tempo-

ral meta-omics data, ideally from global observations, to ac-

count for seasonal variations and other concomitant environ-

mental changes, such as increased stratification, acidification,

nutrient availability, and deoxygenation of the oceans (Bopp

et al., 2013; Schmittner et al., 2008). Such concerted efforts

are required to further refine gene-to-ecosystem models (Coles

et al., 2017; Garza et al., 2018; Guidi et al., 2016) and to inform

environmental and climate policies (Le Quéré et al., 2018), which

must consider not only howmicroorganisms are impacted by but

also how they may affect anthropogenic climate change (Cavic-

chioli et al., 2019).
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Blais, M., Tremblay, J.-É., Jungblut, A.D., Gagnon, J., Martin, J., Thaler, M.,

and Lovejoy, C. (2012). Nitrogen fixation and identification of potential diazo-

trophs in the Canadian Arctic. Global Biogeochem. Cycles 26. https://doi.

org/10.1029/2011gb004096.

Blois, J.L., Williams, J.W., Fitzpatrick, M.C., Jackson, S.T., and Ferrier, S.

(2013). Space can substitute for time in predicting climate-change effects on

biodiversity. Proc. Natl. Acad. Sci. USA 110, 9374–9379.

Bombar, D., Paerl, R.W., and Riemann, L. (2016). Marine Non-Cyanobacterial

Diazotrophs: Moving beyond Molecular Detection. Trends Microbiol. 24,

916–927.

Bopp, L., Resplandy, L., Orr, J.C., Doney, S.C., Dunne, J.P., Gehlen, M., Hal-
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Genetic and environmental data were collected at 126 sampling stations across all major oceanic provinces during the Tara Oceans

expedition (2009 - 2013). Stations with absolute latitude above 60� were generally considered to be polar. Additionally, station 155 (at

54.5�N) was considered a polar station based on amanual evaluation of associated environmental data. The sampling was conduct-

ed within the mesopelagic layer (MES, 200-1000 m) and within the epipelagic layer at the sea surface (SRF, 5-10 m) and the deep

chlorophyll maximum (DCM, 20-200 m) layer, with the exception of nine epipelagic samples that could not be classified as either

SRF or DCM (MIX, 25-200 m). The sampling strategy and methodology are described in detail elsewhere (Pesant et al., 2015). Infor-

mation about the samples used in this study is provided in https://doi.org/10.5281/zenodo.3473199. Environmental data measured

or inferred at the depth of sampling are published at the PANGAEA database (https://doi.org/10.1594/PANGAEA.875582). Additional

information used throughout the manuscript is available at https://www.ocean-microbiome.org.

METHOD DETAILS

Extraction of nucleic acids and sequencing of DNA and cDNA
Metagenomic DNA and RNA were extracted from prokaryote and girus-enriched size fraction filters as described previously (Alberti

et al., 2017). For the DNA libraries, extracted DNA was sonicated to a size range of 100-800 bp. The DNA fragments were subse-

quently end-repaired and 30-adenylated before Illumina adapters were added using the NEBNext Sample Reagent Set (New England

Biolabs). The ligation products were then purified by Ampure XP (Beckmann Coulter), and the DNA fragments (> 200 bp) were PCR-

amplified with Illumina adaptor-specific primers and Platinum Pfx DNA polymerase (Invitrogen). The amplified fragments were then

size selected (�300 bp) on a 3% agarose gel. For the metatranscriptomic libraries, ‘low-input’ cDNA synthesis methods adapted to

prokaryotic mRNA were used (Alberti et al., 2014) (STAR Methods). Briefly, total RNA was depleted of rRNA using the Ribo-Zero

Magnetic Kit for Bacteria (Epicentre) and then concentrated to 10 mL total volume with the RNA Clean and Concentrator-5 kit

(ZymoResearch). The amount of depleted RNA was measured by Qubit RNA HS Assay quantification, and 40 ng or less was used

to synthesize cDNA with the SMARTer Stranded RNA-Seq Kit (Clontech). Additional details are described elsewhere (Alberti

et al., 2017). All libraries (DNA and RNA) were subjected to profile analysis using an Agilent 2100 Bioanalyzer (Agilent Technologies,

USA) and qPCR (MxPro, Agilent Technologies, USA), and then sequenced with 101 base-length read chemistry in a paired-end flow

cell on Illumina HiSeq2000 sequencing machines (Illumina, USA).

QUANTIFICATION AND STATISTICAL ANALYSES

Generation and annotation of the Ocean Microbial Reference Gene Catalog v2
To pre-process raw sequencing reads, we removed the adapters and primers from the whole reads and trimmed low-quality (quality

value < 20) nucleotides from both ends. Reads shorter than 30 nucleotides after trimming as well as reads (and their mates) that map-

ped to quality control sequences (PhiX genome) were discarded. Then, all single-end reads (inserts with one discarded read) were

removed. Finally, the reads (and their mates) that mapped onto sequences in a ribosomal sequence database were removed using

the SortMeRNA software (Kopylova et al., 2012). After these pre-processing steps, we used MOCAT (version 2) (Kultima et al., 2016)

to generate sets of high-quality (HQ) metagenomic and metatranscriptomic reads (option read_trim_filter; solexaqa with length

cut-off 45 and quality cut-off 20), and to remove reads matching Illumina sequencing adapters (option screen_fastafile with an

e-value of 0.00001). We then assembled the HQ metagenomic reads (option assembly; minimum length 500 bp) and predicted

gene-coding sequences [minimum length 100 nucleotides (bp)] on the assembled scaftigs [option gene_prediction; MetaGeneMark].
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WeusedCD-HIT v4.6 (Fu et al., 2012) to cluster the gene-encoding nucleotide sequences using cutoffs of 95%sequence identity and

90% alignment coverage of the shorter sequence. We then selected the longest sequence as the representative sequence for each

cluster. After removing sequences shorter than 100 nucleotides, we obtained a set of 46,775,154 non-redundant, contiguous, gene-

encoding nucleotide sequences, which we operationally defined as ‘‘genes’’ (Sunagawa et al., 2015). We refer to this set of genes as

the Ocean Microbial Reference Gene Catalog version 2 (OM-RGC.v2).

To assign a taxon to each sequence in the OM-RGC.v2, we built a reference database fromUniRef90 (59.2M proteins from release

2017_08 made available on 2017-08-30) (Suzek et al., 2015), supplemented with a set of 19.4M sequences from marine transcrip-

tomes and single-cell amplified genomes (Carradec et al., 2018). We then removed sequences of viral origin from the reference

database and replaced them with sequences from the Virus-Host DB (release 80 of 2017-04-05) (Mihara et al., 2016). We obtained

taxonomic classification of each reference sequence from the National Center for Biotechnology Information taxonomy database

(ftp://ftp.ncbi.nih.gov/pub/taxonomy release of 2017_10_26) (Mihara et al., 2016; NCBI Resource Coordinators, 2018), with the

exception of the virus taxonomic lineages, which we modified as described previously (Carradec et al., 2018) to better reflect the

classification of eukaryotic viruses.

Sequence similarities between OM-RGC.v2 sequences and the reference database were computed in protein space using

MMSEQS2 (Steinegger and Söding, 2017) with the following parameters: search–max-seqs 1000 -a -e 1E-5 -v 3. Taxonomic affilia-

tion was assigned using a weighted Lowest Common Ancestor (LCA) approach. For eachmarker gene, all protein sequencematches

in the reference database with a bitscore valueR 90%of the bitscore of the best match were kept. We excluded outlier taxa by using

a weighted LCA that covered at least 75% of all bitscores.

We used BlastKOALA (Kanehisa et al., 2016) and eggNOG-mapper (Huerta-Cepas et al., 2017) to functionally annotate the OM-

RGC.v2 according to orthologous groups in the KEGG database (release 86.1) and the eggNOG database (version 4.5.1), respec-

tively. In total, 23.6% of the genes were annotated to a KEGG orthologous group (KO), and 60.9% were annotated to an eggNOG

orthologous group (OG). In total, we annotated 9,026 KOs and 76,022 OGs. Genes that were not annotated to any OGwere clustered

de novo to define uncharacterized gene clusters (GCs). The clustering was performed with MMSEQS2 with the following options:

–cluster-mode 2–cov-mode 1 -c 0.9 -s 7–kmer-per-seq 20. GCs supported by at least 10 sequences were kept (249,914GCs in total).

Thus, of the 39% of genes without known homologs in the eggNOG database, �250,000 were grouped de novo by homology into

high confidence (minimum cluster size = 10) gene clusters (GCs), accounting for 21.8% of all the genes in the OM-RGC.v2 (Figure 2).

Profiling of taxonomic, metagenomic, and metatranscriptomic compositions
We used three different metrics of microbiome composition: the taxonomic composition, corresponding to the abundance profile of

Operational Taxonomic Units (OTUs); the metagenomic composition, corresponding to the abundance profile of functionally anno-

tated groups of genes (OGs or KOs); and the metatranscriptomic composition, corresponding to the transcriptomic abundance pro-

file. We performed the profiling on the prokaryote-enriched subset of the dataset, including 187metatranscriptomic samples and 180

metagenomic samples, of which 129 pairs were coupled (Figure 1).

Taxonomic profiling was performed using 16S/18S ribosomal RNA gene fragments directly identified in the Illumina-sequenced

metagenomes (Logares et al., 2014) as follows. We extracted 16S/18S reads, referred to as mitags, and used USEARCH v9.2.64

(Edgar, 2010) to map them to cluster centroids of taxonomically annotated 16S reference sequences from the SILVA database

(Pruesse et al., 2007) (release 128: SSU Ref NR 99; https://www.arb-silva.de/fileadmin/silva_databases/release_128/Exports/

taxonomy/tax_slv_ssu_128.txt), which had been clustered based on a 97% sequence identity cutoff beforehand. Multiple hits

were allowed (default parameters, except maxaccepts = 10,000 and maxrejects = 10,000), although only the mitags mapping to a

unique reference sequence were used to compute abundances at the OTU level. The mitags mapping to more than one reference

sequence (i.e., from different OTUs) were further processed to determine their taxonomic affiliation at a higher taxonomic level.

Then, these were assigned to the taxonomic level (domain, phylum, class, order, family, or genus) that was common to all the cor-

responding reference sequences. Abundance tables at all levels were built by counting the number of mitags assigned to each taxon

in each sample and the number of unassigned mitags. Only OTUs assigned to Bacteria and Archaea were considered and the abun-

dance table was rarefied (8,766 reads/sample) using the rrarefy function in the R package vegan (Dixon, 2003) to correct for uneven

sequencing depths among samples.

We generated metagenomic and metatranscriptomic composition profiles by mapping HQ reads from prokaryote-enriched meta-

genomes (n = 180) andmetatranscriptomes (n = 187) to theOMRGC.v2 usingMOCAT (options: screen and filterwith length and iden-

tity cutoffs of 45 and 95%, respectively, and paired-end filtering set to yes). The per-sample abundance of each reference gene in the

catalog was calculated as the gene length-normalized insert count (MOCAT option profile), i.e., mean number of reads per base, for

both data types. We subsequently converted the gene abundance profiles into functional profiles by taking the sum of the length-

normalized abundances across reference genes belonging to the same functional group (i.e., OG, KO or GC).

We determined the mapping rates of the prokaryote-enriched metagenomes and metatranscriptomes to the OM-RGC.v2 by sum-

ming the number of HQ reads that were aligned with the parameters described above. For other databases [MarRef database v3,

updated 2019/01/19 (Klemetsen et al., 2018) and a collection of metagenome-assembled genomes (MAGs) reconstructed from

Tara Oceans samples (Delmont et al., 2018)], we estimated the mapping rates by aligning the HQ reads using bwa and filtering
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the alignments with similar parameters (query aligned > = 80%, length > = 45bp and identity > = 95%). The mapping rates were then

defined as the proportion of HQ reads from a metagenome or metatranscriptome that mapped to the reference after filtering. To

compare the mapping rates to the reference genomes (which include intergenic regions) with those to the OM-RGC.v2 (only

gene-encoding sequences), we corrected for the average coding density of prokaryotic genomes using the value of 87% (Hou

and Lin, 2009; Mira et al., 2001). We additionally confirmed this estimate by using the genome statistics available from 3,491 finished

bacterial and archaeal genomes downloaded from IMG (mean: 87%, min: 41%, max: 98%, 95%, CI: 74%–94%).

Normalization and transformation of metagenomic and metatranscriptomic profiles and computation of gene
expression profiles
Per-cell normalization:

We normalized the metagenomic and metatranscriptomic profiles to relative cell numbers in the sample by dividing the gene abun-

dances by the median abundance of 10 universal single-copy phylogenetic marker genes (MGs) (Milanese et al., 2019; Sunagawa

et al., 2013). The MGs were selected as either OGs (COG0012, COG0016, COG0018, COG0172, COG0215, COG0495,

COG0525, COG0533, COG0541, and COG0552) or KOs (K06942, K01889, K01887, K01875, K01883, K01869, K01873, K01409,

K03106, and K03110) to normalize the OG and KO profiles, respectively. MGs are particularly suitable for normalizing metatranscrip-

tomic data to provide estimates of relative per-cell gene copies, because they represent constitutively expressed housekeeping

genes. In support of that notion, the metagenomic and metatranscriptomic abundances of the MGs were previously shown to be

highly correlated, indicating that the MGs are constitutively expressed across many different conditions (Milanese et al., 2019).

The normalized metagenomic abundance can therefore be interpreted as the per-cell number of gene copies of a given functional

group. Accordingly, the normalized metatranscriptomic abundance can be interpreted as the relative per-cell number of transcripts

of a given functional group. We applied this normalization procedure to all of the functional (i.e., KO, OG, and OG+GC) metagenomic

and metatranscriptomic profiles used in this study.

Transformation to counts, variance stabilization, and log2 transformation:

We converted the normalized profiles to integer counts ranging from 0 to 109 using a pseudo-count (i.e., normalized abundance pro-

files were divided by their maximum, multiplied by 109, and subsequently rounded). We then corrected the count-normalized meta-

genomic and metatranscriptomic abundance profiles using variance-stabilizing transformation as implemented in the DESeq2 R

package (Love et al., 2014). This step yielded log2-transformed profiles, which are approximately homoscedastic (i.e., all genes

display approximately constant variation across samples). For each sample in the resulting profiles, the abundance values were

centered on the median of the 10MGs, so the resulting values after variance stabilization can also be interpreted as the relative num-

ber of genes/transcripts per cell.

Computation of gene expression profiles

The gene expression profiles, representing the relative number of transcripts per gene copy, correspond to the ratio between the

metagenomic composition profile (reflecting the number of gene copies per cell) and the metatranscriptomic composition profile

(reflecting the relative number of transcripts per cell). Because of the log-transformation, the expression profiles were computed

as the difference between the log2-transformed metatranscriptomic profile and the log2-transformed metagenomic profile

(Figure S7).

Computation of taxonomic and functional richness
Taxonomic richness was calculated as the number of OTUs detected in a given sample. Functional richness was computed as the

number of OGs detected in a given sample after rarefaction of the metagenomic and metatranscriptomic profiles using RTK (https://

github.com/hildebra/Rarefaction) (Saary et al., 2017).

ECOLOGICAL BOUNDARIES, PATTERNS, AND DRIVERS

Wedetected ecological boundaries using the split moving-window distance analysis (Ludwig andCornelius, 1987) as implemented in

the EcolUtils R package (https://github.com/GuillemSalazar/EcolUtils). We used the Euclidean distance of the log2-transformed

taxonomic (mitags), metagenomic and metatranscriptomic profiles (eggNOG annotation) with a window size of 10 samples. The sig-

nificance was computed based on 10,000 permutations and a significance threshold of p = 0.01.

We assessed differential OTU abundances along the latitudinal gradient by computing the latitudinal niche value for each OTU (that

is, the abundance-weighted mean absolute latitude of each OTU). The significance of the latitudinal niche values was computed by

comparing the observed values to 1,000 simulated values after randomization of the abundance table. The analysis, built on previous

developments (Stegen et al., 2012, 2013), was performed using the niche.val function in the EcolUtils R package (https://github.com/

GuillemSalazar/EcolUtils). As was done previously (Salazar et al., 2015), OTUs that appeared in less than 10 samples were excluded

from the analysis.

We related the normalized and log2-transformed taxonomic, metagenomic and metatranscriptomic profiles (eggNOG annotation)

of the epipelagic samples to 27 environmental factors through partial Mantel tests (corrected for spatial distance) with 10,000
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permutations and Bonferroni correction. We performed pairwise comparison of environmental factors using Spearman correlation

with Bonferroni correction. Spatial distances between sampling stations were computed as the shortest distance between two sam-

pling stations while avoiding landmasses, and using the geographical coordinates of each sampling station. For that purpose, we

used the bathymetry across the globe (available in the R packagemaptools) to construct a raster object. We then applied the Dijkstra

algorithm (Dijkstra, 1959) to compute the shortest distance between sampling stations,considering only the coordinates correspond-

ing to elevations below 0 m (i.e., excluding land masses).

Annotation of gene clusters by co-variation patterns
As a culture-independent approach to predict gene function, we analyzed co-variation patterns of the genes in the OM-RGC.v2 with

unknown function and no detectable homology to known sequences, which accounted for 39% of all the genes. Specifically, we first

benchmarked the co-variation analysis to 1) evaluate the extent to which the pairs of OGs that were involved in a common metabolic

process could be linked through covariation, 2) determine which type of covariation best identifies metabolically related OGs (i.e., co-

variation based on gene abundance, transcript abundance, or gene expression levels), and 3) find the correlation cut-off (rmin) that

provides optimal identification of metabolically related OGs. For that purpose we used a reduced profile with only the OGs occurring

in at least 10% of the samples to avoid spurious correlations based on insufficient data points. We computed all pairwise Pearson

correlations between OGs based on the log2-transformed metagenomic, metatranscriptomic and expression profiles. We linked

each OG to a second OG by finding the best correlated OG. The pair of OGs was considered linked if the Pearson’s r value was

high enough (i.e., if r > rmin). Whenever possible, the functional eggNOG-based annotation included a KEGG-based annotation for

each OG, which we used to determine whether pairs of OGs were involved in a common metabolic process by checking if the cor-

responding KOs were involved in a common KEGG reaction, module, or pathway. For benchmarking, true positives (TPs) were

defined as the number of OGs involved in a common metabolic process that were also linked through co-variation. False positives

(FPs) corresponded to pairs of OGs that were linked through co-variation that were not involved in a common metabolic process.

True negatives (TNs) corresponded to pairs of OGs that were not involved in a common metabolic process nor linked through co-

variation. False negatives (FNs) corresponded to pairs of OGs that were involved in a commonmetabolic process, but were not linked

through co-variation. We assessed the predictive power of the co-variation analysis by computing the false-positive rate [FPR = FP /

(FP + TN)]) and the true positive rate or sensitivity [TPR = TP / (TP + FN]). We computed the FPR and TPR for rmin values between 0 and

1 (step of 0.1) and built receiver operating characteristic curves by plotting FPR against sensitivity for each data type (gene co-abun-

dance, transcript co-abundance, and co-expression) and each metabolic linkage definition (shared reaction, module, and pathway)

(Figure S3). We subsequently used co-expression analysis to annotate all of the unknown genes, grouped into�250k GCs by finding

the GCs that could be linked to either an OG or a second GC. Specifically, we used co-expression analysis with an rmin value of 0.86,

the lowest Pearson’s r value that assured an FPR < 5%, which gave an FPR of 4.7%, 3.7%, and 3.9%, and a sensitivity of 15%, 26%

and 33% for pathways, modules, and reactions, respectively). We identified significant associations for 16,706 GC-GC pairs and 810

GC-OG pairs. Among the GC-OG pairs, 702 pairs linked a GC to an existing OG of unknown function, and the other 108 pairs linked a

GC to an existing OG of known function (Table S1).

Differential gene expression and gene abundance of microbial biogeochemical cycling genes across depths and
latitude
We built a list of marker KOs for microbial metabolism relevant to marine biogeochemical cycles by selecting KOs that could be

uniquely associated to KEGG pathways involved in photosynthesis, carbon fixation, or nitrogen or sulfur metabolism (https://doi.

org/10.5281/zenodo.3473199). Out of 72 marker KOs, 52 were detected in the dataset.

We used the log2-transformed KO profiles to compute the differences in mean gene and transcript abundances and the mean

expression for all marker KOs between the polar and non-polar samples, and between epipelagic and mesopelagic samples. We

tested the significance of the differences using the Mann-Whitney test with Holm correction for multiple testing and p < 0.05 as

the threshold for significance after correction. For the polar/non-polar comparison, only epipelagic samples were used.

Annotation of nifH genes
We broke down the KO for the nifH gene (K02588) and identified 24 constituent genes found in the OM-RGC.v2 and detected in the

matched metagenomes and metatranscriptomes. We then used the gene and transcript abundances of those genes for a detailed

analysis (see Figure 6). We re-annotated the 24 individual genes by comparing them to a nifH-specific compilation of databases (Del-

mont et al., 2018). The compilation included the FunGene database (Fish et al., 2013) and the Zehr database (Heller et al., 2014), both

containing nifH genes curated from the NCBI GenBank database, and the Farnelid database, containing amplicon sequences from a

large-scale survey of nifH genes in the surface ocean (Farnelid et al., 2011) as well as the assemblies from the original study (Delmont

et al., 2018). The compilation of databases was downloaded from https://doi.org/10.6084/m9.figshare.5259421. We compared the

24 genes against the compilation database using blastn (Camacho et al., 2009) with default parameters. For phylum level annotation,

we only considered the best hit with at least 50% of the query aligned and to investigate the presence of the same gene in the data-

base we used a minimum identity of 95% and an alignment length above 80%. Following up on a gene characterized as uncultured

cyanobacterium, we identified it to be derived from the UCYN-A genome (Zehr et al., 2008)
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Reconstruction of ametagenome-assembled genomeof a putative nitrogen-fixing organism fromArcticmesopelagic
waters
We co-assembled four metagenomes from the mesopelagic Arctic Ocean (Stations 201, 205, 206, and 209) using megahit v1.1.2 (Li

et al., 2016) (parameters:–presets meta-large -t 48 -m 0.99–min-contig-len 2000) and dereplicated the resulting assemblies with

cd-hit v4.6.8-2017-0621 (compiled with make MAX_SEQ = 10000000 and parameters: -c 0.99 -T 64 -M 290000 -n 10). We then

back-mapped the dereplicated assemblies with the prokaryote-enriched Arctic metagenomes using bowtie v2.3.2 (Langmead

and Salzberg, 2012), and subsequently filtered (samtools view -q 10 -F 4 -Sb) and sorted (samtools sort @48) the alignments. We

binned the assembled contigs with metaBAT2 v2.12.1 (Kang et al., 2019) using jgi_summarize_bam_contig_depths (parameters:–

minContigLength 2000–minContigDepth 1) to build the profile and selected a minimum contig size of 2 kbp for the binning step.

We subsequently refined the bins as follows: (i) each bin was re-assembled with CAP3 v021015 (Huang and Madan, 1999) (param-

eters -o 25 -p 95) and (ii) overlapping contigs were manually checked in Geneious R10 to resolve polymorphic regions.

We screened the bins by blasting the nifH gene sequence against the assemblies and identified a candidate metagenome-assem-

bled genome (MAG) containing a sequence with > 99% identity to the nifH sequence. Using CheckM v1.0.8 (Parks et al., 2015), we

assessed the quality of the corresponding MAG, which showed 86.6% completeness, 1.9% contamination, and 0% strain hetero-

geneity. The MAG was taxonomically annotated using GTDBTk 0.3.0 (Parks et al., 2018) with the database release r89. This

annotation attributed the MAG as a member of an uncultured class within the Myxococcota phylum (formerly a class within the Del-

taproteobacteria). Additionally, the GTDBTk results showed an average nucleotide identity of < 77% with an alignment fraction <

10% with the closest placement in the database, suggesting a high level of phylogenetic novelty. The functional annotation of the

MAG was performed using Prokka v1.13 (Seemann, 2014) with options–gcode 11 and–kingdom using the domain inferred by

CheckM, as well as by additional hmmer searches (v 3.1b1) against the PFAM (release 31.0), KEGG (release 2019-02-11), COG

(release 2014) & TIGRFAM (release 15.0) databases. Based on this annotation (http://doi.org/10.5281/zenodo.3352180), we hypoth-

esize that the assembled genome is from an organismwith heterotrophicmetabolism, as it did not contain any identifiable genes from

the photosynthetic machinery or any complete pathway for carbon fixation. The contig and gene sequences of the reconstructed

genome are available at http://doi.org/10.5281/zenodo.3352180.

Decomposition of metatranscriptomic profiles and metatranscriptome-based community distances
We developed an analytical framework to measure how much of the difference in transcript abundance between samples was the

result of differences in gene abundance (reflecting community turnover) and how much was the result of differences in gene expres-

sion (reflecting gene expression changes) (Figure S1). The framework is based on the computation of the expression profiles (Enorm)

as the ratio between the log2-transformed transcript (Tnorm) and gene (Gnorm) abundance profiles (Tnorm/Gnorm), which results in the

following linear equality (Figure S7): log2(Tnorm) = log2(Gnorm) + log2(Enorm). That is, after log2-transformation, the normalized transcript

abundance of a given functional group in a given sample equals the per-cell-normalized gene abundance plus the per-cell-normal-

ized expression. We used that equality to derive an equation for the dissimilarity between two metatranscriptomic profiles. The

resulting equation using the squared Euclidean distance as the dissimilarity measure is:

di;jðlog2ðTnorm i;jÞÞ = di;jðlog2ðGnorm i;jÞÞ+di;jðlog2ðEnorm i;jÞÞ+ I i;j [equation 1]
where
I i;j =
Xk

0

ðlog2ðEnorm j;kÞ� log2ðEnorm i;kÞÞ$ðlog2ðGnorm j;kÞ� log2ðGnorm i;kÞÞ [equation 2]
and d is the squared Euclidean distance between samples i and
i,j j computed across k features (i.e., OGs).

Equation 1 allows us to analytically decompose the dissimilarity between two metatranscriptomes into the dissimilarities between

the corresponding metagenomic and expression profiles, and a third term, Ii,j (hereafter referred to as the ‘interaction component’),

which corresponds to the weighted scalar product of the profiles. Given that the scalar product of centered vectors corresponded to

their correlation coefficient, the interaction component can be interpreted as the mean correlation between the changes in abun-

dance and expression between two samples for all functional groups. Consequently, Ii,j > 0 when changes in metagenomic abun-

dance and expression between two samples are positively correlated, Ii,j < 0 when those changes are anticorrelated, and Ii, j = 0

when the changes are orthogonal.

We decomposed the metatranscriptomic dissimilarity between all samples into the abundance-based dissimilarity (i.e., commu-

nity turnover), the expression-based dissimilarity (i.e., gene expression changes), and the interaction component (Equations 1 and 2).

We then analyzed the dataset using bins in order to investigate how the communities respond to environmental variation of magni-

tude similar to that of predicted future environmental changes. Indeed, the median temperature difference within each bin was1.6�C,
much in line with predicted climate change induced variations (Alexander et al., 2018). We used a moving window to compute the

median ratio between the abundance-based and expression-based distances for all pairwise dissimilarities in bins containing 15

samples each along the whole range of seawater temperatures. Thus, values above 1 represent bins where community turnover

dominates over gene expression changes, whereas values below 1 represent bins where gene expression changes dominate
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over community turnover. For each bin, the difference between the mean ratio and 1 (equal contribution of both processes) was

computed using the Wilcoxon test with Holm correction for multiple comparisons.

DATA AND CODE AVAILABILITY

All raw reads are available through ENA at https://www.ebi.ac.uk/ena using the identifiers listed in https://doi.org/10.5281/zenodo.

3473199. Processed data are accessible at https://www.ebi.ac.uk/biostudies/studies/S-BSST297, and additional information is

provided in https://doi.org/10.5281/zenodo.3473199 and at the companion website: https://www.ocean-microbiome.org. Scripts

used in this manuscript are available through a Github repository at https://github.com/SushiLab/omrgc_v2_scripts.
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Figure S1. Transcript Abundance Profile as a Function of Community Composition and Gene Expression, Related to STAR Methods

Cartoon exemplifying how an initial community with a given expression profile may result insimilar transcript abundance profiles through two different mech-

anisms: (i) changes in the community composition (upper arrow), represented by three different species (green, red, and blue), or (ii) changes in gene expression

(lower arrow), represented by two different genes (purple and orange, with low and high expression levels, respectively).



Figure S2. Prevalence and Statistical Associations to the Environment of OGs and GCs, Related to STAR Methods

Gene abundance-based prevalence versus transcript abundance-based prevalence (i.e., number of samples in which detected) for (A) eggNOG-based or-

thologous groups (OGs) and (B) de novo gene clusters (GCs) based on the 122 pairedmetagenomes andmetatranscriptomes. Prevalence distributions are shown

in the side and upper panels. The numbers of OGs andGCswith significant associations of transcript abundances to depth layers (C) and polar/non-polar regions

and (D) to environmental variables are shown. Associations were detected as statistically significant differences in transcript abundance by Wilcoxon tests for

depth layers and polar/non-polar regions (p < 0.05, after Holm correction for multiple comparisons) and as significant Pearson correlations for environmental

variables (jrj > 0.6 and p < 0.05, after Holm correction for multiple comparisons). In both cases only the OGs and GCs with a transcript abundance-based

prevalence higher than 10% were considered in order to avoid spurious associations.
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Figure S3. Rationale for the Use of Co-expression Data to Associate Groups with Unknown Functions to Known Functional Groups, Related

to STAR Methods

Evaluation of model performance for the link between OGs based on co-variation analysis. (A) Receiver operating characteristic (ROC) curves for all models.

Variation in (B) false positive rate and (C) sensitivity with increasing Pearson correlation values used as a cut-off for classification (rmin). The rmin is a value to be

optimized corresponding to the minimum Pearson r that provides sufficient predictive power (false positive rate < 5%). A total of nine models are represented,

which used co-abundance, co-transcription, and co-expression for the prediction of shared KEGG reactions, modules, and pathways, respectively, between

pairs of OGs (see details in STAR Methods).



Figure S4. Differential Abundance of the Dominant OTUs along the Latitudinal Gradient, Related to Figure 3

Latitudinal niche value (i.e., the abundance-weighted mean absolute latitude) for the 60 most abundant OTUs in the epipelagic subset of samples. Latitudinal

niche values significantly higher and lower than the value expected from a random distribution of abundances (represented by the horizontal bold lines; see STAR

Methods) are color coded. The dot size is proportional to the mean relative abundance of each OTU.



Figure S5. Correlations between the Taxonomic, Metagenomic, and Metatranscriptomic Composition, Related to Figure 4

All pairwise correlations between the Euclidean distance of the (log2-transformed) taxonomic, metagenomic, andmetatranscriptomic profiles were computed for

122 samples for which all three profiles were available. The correlation strength and significance were assessed using Mantel tests with 10,000 permutations.



Figure S6. Latitudinal Distribution of Seawater Temperature in the Epipelagic, Related to Figure 4

Seawater temperature (�C) measurements (n = 528) at the surface (SRF) and the deep chlorophyll maximum (DCM) along the TaraOceans course in relation to (A)

raw latitude values and (B) bins of the absolute latitude. Data are available at https://doi.org/10.1594/PANGAEA.875576.

https://doi.org/10.1594/PANGAEA.875576


Figure S7. Derivation of the Decomposition of a Metatranscriptome, Related to STAR Methods

Mathematical basis for (A and B) the within-sample decomposition of metatranscriptomes (transcript copies / cell) into abundance (gene copies / cell) and

expression (transcript copies / gene copy) components, and for (C) the between-sample decomposition of the Euclidean distance between metatranscriptomes

(transcript abundance differences) into the abundance component (gene abundance differences), the expression component (expression differences), and an

interaction term (abundance - expression covariation). See details in STAR Methods.



Figure S8. Gene and Transcript Abundance of RuBisCO Subunits and PSI and PSII Marker Genes, Related to Figure 5

Distribution of whole-community (log2-transformed) (A) gene and (B) transcript abundances of the RuBisCO subunits (rbcS and rbcL) and the marker genes for

photosystem I (psaA) and II (psbA) in the epipelagic and mesopelagic depth layers. Pairwise correlations based on the (C) gene and (D) transcript abundances of

the four genes are shown below. All comparisons, except the ones denoted with N.S. in (A) and (B) were significant (p < 0.05 using Wilcoxon test and Holm

correction for multiple comparisons). All Pearson correlations in (B) and (C) were significant (p < 0.05).



Figure S9. Transcript Abundance of Denitrification Marker Genes along the Oxygen Gradient, Related to Figure 5

The log2-transformed transcript abundances of nirS, norZ, nosB, and napA in relation to the oxygen concentration at the sampling location, showing a high

transcript abundance in samples taken from anoxic waters (< 100 mM) and interestingly, from oxygenated waters at stations 206, 208, and 210. The depth layer

(EPI or MES) and polar/non-polar nature of the sample are coded as the symbol type and color, respectively. The dot size is proportional to the concentration of

NO2 and NO3 (mM) when available.
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(legend on next page)



Figure S10. Expression and Transcript Abundance of the nifH, nifD, and nifK Genes in Relation to Nitrate and Nitrite Concentration, Related

to Figure 5

Gene expression and transcript abundance of the nifH, nifD, and nifK genes in relation to the total nitrate plus nitrite concentration (mM), showing a fast decay of

gene expression and transcript abundance with increased in nitrate/nitrite concentrations from 0 to 0.2 mM at absolute latitudes between 20� and 35�. Solid lines

correspond to the result of local regression.
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Figure S11. Correlation between Assimilatory Sulfate Reduction Marker Genes and the dmdA Gene, Related to Figure 5

Transcript abundance and expression of the genes involved in the assimilatory sulfate reduction pathway in relation to the transcript abundance of the dmdA gene

involved in the dimethylsulfoniopropionate (DMSP) demethylation pathway. Pearson correlation was used to test for significance of the correlation. Pearson

r values and significance are shown on the plot. Log2-transformed data were used in all cases. The correlation with the transcript abundancewas significant for all

genes and was especially high (�0.73) for cysD and cysN, the genes encoding the initial step of the pathway (i.e., the reduction of sulfate).
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Figure S12. Temperature Dominates over Other Environmental Variables in Structuring the Relative Contribution of Community Turnover

and Gene Expression Changes to Metatranscriptomic Differences between Epipelagic Communities, Related to Figure 7

Panel (A) mirrors the data in Figure 7A, so that it represents the groups of 15 samples (bins) along the temperature gradient on the x axis. The y axis, however,

captures the distribution of the temperature differences within each bin. Notably, the distributions of these differences are highly similar in polar and non-polar

waters. This indicates that the higher relative contribution of turnover in polar waters and gene expression changes in non-polar waters occurs for a similar range

of temperature differences. (B) The distribution of the interaction component (see Equation 1 in STAR Methods) for all the polar-to-polar and non-polar-to-non-

polar comparisons across the bins are not significantly different from each other (Wilcoxon test), which indicates that the absolute values of turnover and gene

expression changes are comparable between polar and non-polar communities (Figure 7B). Panel (C) is based on Figure 7A and serves as an explanatory

schematic for panel (D). To evaluate the influence of an environmental parameter on the relative contribution of community turnover and gene expression

changes, a similar analysis to the one in Figure 7A was performed. A score was attributed to each parameter as the sum of the deviation of each bin from 1 (where

the effect of both mechanisms is identical). The deviation of each individual bin is visualized as a gray line. The results are summarized in panel (D) for the

environmental parameters that were tested. The vertical lines indicate the distribution of this score for 100 random binnings (solid line denotes the median value

and dashed lines represent the 95% interval of the distribution). As a result, we identify that daylength, temperature and chlorophyll concentrations have sig-

nificant effects on the relative contributions. We further investigated these parameters, by assessing the distribution of environmental variation for polar and non-

polar regions across the bins [panels (E), (G), and (I)], and the relationship between the relative contributions (of community turnover and gene expression

changes) and the variation in the environmental parameter across the whole (unbinned) dataset [panels (F), (H), and (J)]. The left-side [(E), (G), and (I)] aims at

answering whether the difference in regimes that are observed between polar and non-polar regions may simply be due to a different range of environmental

variation. The distributions display little differences in the case of temperature, while they are strongly contrasted for daylength and chlorophyll concentrations.

Furthermore, (F), (H), and (J) provide a direct estimation of the relationship of the relative contributions of community turnover and gene expression changes with

the environmental distance. Based on linear models, temperature differences capture most of the variance, both in polar and non-polar regions. In contrast,

daylength and chlorophyll concentrations show a weaker or no trend, especially in polar regions (despite a wide range of variation). Overall, this confirms that

among the parameters tested, temperature is the best explanatory variable for the difference in the relative contribution of community turnover and gene

expression changes observed between polar and non-polar epipelagic communities.
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