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In this paper we study the stability and its trade-o↵ with optimization error for stochas-

tic gradient descent (SGD) algorithms in the pairwise learning setting. Pairwise learning

refers to a learning task which involves a loss function depending on pairs of instances

among which notable examples are bipartite ranking, metric learning, area under ROC

curve (AUC) maximization and minimum error entropy (MEE) principle. Our contribu-

tion is twofold. Firstly, we establish the stability results for SGD for pairwise learning

in the convex, strongly convex and non-convex settings, from which generalization er-

rors can be naturally derived. Secondly, we establish the trade-o↵ between stability and

optimization error of SGD algorithms for pairwise learning. This is achieved by lower-

bounding the sum of stability and optimization error by the minimax statistical error

over a prescribed class of pairwise loss functions. From this fundamental trade-o↵, we

obtain lower bounds for the optimization error of SGD algorithms and the excess ex-

pected risk over a class of pairwise losses. In addition, we illustrate our stability results

by giving some specific examples of AUC maximization, metric learning and MEE.
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1. Introduction

This paper concerns with pairwise learning which usually involves a pairwise loss
function, i.e., the loss function depending on a pair of examples which can be ex-
pressed by `(f, (x, y), (x0

, y
0)) for a hypothesis function f : X ! R. This is in

contrast to the problem of pointwise learning in standard classification and regres-
sion which typically involves a univariate loss function `(f, x, y). Several important
learning tasks can be viewed as pairwise learning problems. For instance, bipartite
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ranking [2,10,34] and AUC maximization [15,21,45,48,49] aim to correctly predict
the ordering of pairs of binary labeled samples. This involves the use of a misrank-
ing loss `(f, (x, y), (x0

, y
0)) = I{f(x)�f(x0)<0}Iy=1Iy0=�1, where I{·} is the indicator

function. In practice, one usually replaces the indicator function I{f(x)�f(x0)<0} by
a smooth convex surrogate function like (1� (f(x)� f(x0)))2. Other important ex-
amples include metric learning [3,11,42,43,44,4] and minimum error entropy (MEE)
principle [19,20,32,40].

Stochastic gradient descent (SGD) has now become the workhorse in machine
learning as it scales well to big data. In particular, SGD-type algorithms for pairwise
learning have been proposed and extensively studied in the recent work [15,20,
23,28,41,47,49]. The overall performance of SGD algorithms is measured by the
excess expected risk which can be decomposed into two parts: the optimization
error and generalization error. The optimization error is sometimes referred to
as computational error which characterizes the discrepancy between an output of
SGD and the empirical risk minimizer from batch learning. It portrays how fast
the algorithm converges as the number of iterations grows. The generalization error
describes the discrepancy between the population risk of an output of SGD and its
empirical risk. One can interpret the expected and empirical risks as the test error
and the training error, respectively. The analysis of optimization and generalization
errors has been conducted in the existing literature using various approaches but
most of them have been done separately. A natural question would be what is the
trade-o↵ between generalization and optimization errors which requires to analyze
these two errors together rather than separately.

Generalization analysis has been done for SGD algorithms for pairwise learning
using di↵erent techniques such as covering number [41], Rademacher complexities
[22] and integral operators [20,28,47]. An alternative approach is to use the the
concept of algorithmic stability [5,29]. While a large amount of work has been
devoted to studying the stability for pointwise learning, there is few work on the
stability for pairwise learning except the work by Agarwal and Niyogi [1] which
focused on the regularized ERM formulation for bipartite ranking.

Main Contribution. The first contribution of our work is to establish random-
uniform stability [13] of randomized SGD algorithms for pairwise learning in both
convex and non-convex settings, from which generalization error bounds of SGD
algorithms can be obtained very naturally. We then illustrate the stability results
using concrete examples in metric learning, AUC maximization and MEE principle.
Our second contribution is the trade-o↵ framework for stability and optimization
error of SGD for pairwise learning, which indicates that tight stability leads to a
slow convergence rate (large optimization error), and vice versa. This is achieved
by establishing minimax statistical error for the sum of stability and optimization
error over a prescribed class of pairwise loss functions. To the best of our knowledge,
this is the first-ever known work on the stability and its trade-o↵ with optimization
error for randomized SGD algorithms in the setting of pairwise learning.
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Our work is inspired by the recent work [18] and [8] which focused on the
setting of pointwise learning. Our studies di↵er from previous work in the following
aspects. Firstly, Hardt et al. [18] established stability results for the last iterate of
randomized iterative SGD algorithms for pointwise learning. Our work significantly
extends the results in [18] to the setting of pairwise learning since we establish
both the last iterate and the average of iterates of SDG algorithms for pairwise
learning. Secondly, Chen et al. [8] studied the trade-o↵ results between stability
and optimization error for SGD in pointwise learning which employed a strong
notion of stability called uniform stability [5] specifically tailored for deterministic
algorithms. Our trade-o↵ framework uses a weak notion called random uniform
stability [13] which applies to the randomized iterative SGD algorithms. In addition,
we established lower bounds of the average of the iterates of SGD algorithms for
pairwise learning which match the upper bounds in the literature of online pairwise
learning [23,41]. The results are new even for the case of pointwise learning.

Related Work. The stability analysis dates back to the work [12,35] where it
was shown that the variance of the leave-one-out error can be upper bounded by
hypothesis stability [24]. Bousequet and Elissee↵ [5] used the notation of uniform
stability and studied stability of regularization based algorithms. Kutin and Niyogi
[25] introduced several weaker variants of stability, and showed how they are suf-
ficient to obtain generalization bounds for certain algorithms. Rakhlin et al. [33]
and Mukherjee et al. [29] studied the relation between stability and learnability. All
these work considered the stability of deterministic learning algorithms such as kNN
rules, ERM and regularized network and it cannot be used to study a large num-
ber of randomized learning algorithms. More recently, Chen et al. [8] employed the
strong notation of uniform stability and established the trade-o↵ between stability
and convergence rates of certain iterative algorithms.

Elissee↵ et al. [13] extended the work [5] and introduced a notion of random
uniform stability for studying randomized algorithms such as bagging. Hardt et
al. [18] first established random uniform stability for randomized iterative SGD
algorithms for convex and non-convex settings in the setting of pointwise learning.
The results were further improved in the work [26,31] by exploring the structures
of the loss function and the data.

Concurrently, SGD algorithms for pairwise learning were originally introduced
and studied in [41]. Pairwise learning involves statistically dependent pairs of in-
stances while, in practice, the individual instances are i.i.d. according an unknown
distribution. As such, standard analysis for the pointwise learning case can not be
directly applied to pairwise learning. Indeed, there is a considerable e↵orts on devel-
oping various new techniques to study the convergence of SGD for pairwise learning.
In particular, generalization bounds [7] of SGD for pairwise were established us-
ing uniform convergence approaches such as covering number [41] and Rademacher
complexity [23]. The work [46] used integral operators developed in [36,37] to show
the convergence of SGD for pairwise learning with a focus on the least-square loss
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and the setting of reproducing kernel Hilbert spaces.
A close related concept to algorithmic stability is the statistical robustness which

considers the problem of how the estimators change relatively to the perturbation
of the underlying distribution generating the data. This robustness concept is more
general than algorithmic stability we consider here. In the appealing work [9], it
was shown that minimizers of the regularized ERM is statistically robust in the
setting of reproducing kernel Hilbert spaces.

Organization of this paper. The rest of the paper is organized as follows. Section
2 introduces some basic notations and concepts related to stability which will be
used later. In Section 3, we present stability results for SGD in the pairwise learning
setting. We establish the trade-o↵ results between stability and optimization error
in Section 4. Examples are given in Section 5. We conclude the paper in Section 6.

2. Preliminaries

Let the sample S = {zi = (xi, yi) : i = 1, . . . , n} be drawn i.i.d. from D on
Z = X ⇥ Y where X is a domain in Rd and Y ✓ R. Let w 2 Rd be the model
parameter associated with the hypothesis function f (e.g., the linear hypothesis
function f(x) = wT

x ). The goal of pairwise learning is to minimize the following
population risk:

R(w)
def
= E(z,z0)⇠D⇥D[`(w, z, z

0)]. (2.1)

The corresponding empirical risk is defined by

RS(w)
def
=

2

n(n� 1)

X

i<j

`(w, zi, zj). (2.2)

We use the conventional notation A denote the randomized SGD algorithm and
A(S) to denote its output based on S. The expected generalization error of A(S)
is given by

✏gen
def
= ES,A[RS(A(S))�R(A(S))], (2.3)

where the expectation is taken over the randomness of A and S.

2.1. SGD for Pairwise Learning

Recall that the pairwise learning loss ` : Rd ⇥ Z ⇥ Z ! R+ is defined, for any
w, z, z

0 2 Z, by `(w, z, z
0). The SGD updates for pairwise learning [23,41,47,49] are

given by w1 = 0, and for 2  t  T ,

wt = wt�1 �
↵t�1

t� 1

t�1X

j=1

r`(wt�1, z⇠t , z⇠j ), (2.4)

where {z⇠j}Tj=1 are examples from S with the indexes {⇠j}Tj=1 chosen at random
from {1, · · · , n}, and r` denotes the gradient with respect to the first argument.
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The above algorithm is an extension of the standard SGD in the pointwise
learning setting to the pairwise learning setting. It was first introduced by Wang
et al. [41] as online gradient descent for pairwise learning. It was further developed
for AUC maximization [15,47,49] and MEE [20] for the stochastic setting (i.e. the
data are assumed to be i.i.d.). For simplicity, we refer to it as SGD for pairwise
learning or just SGD when it is clear from the context.

There are two schemes for choosing {⇠j}Tj=1 for the SGD update rule which are
independent of the sample S. The first one, called the random permutation rule,
is to choose a new random permutation over {1, · · · , n} at the beginning of each
epoch and go through the examples in the order determined by the permutations.
The other is the random selection rule which selects each ⇠j uniformly at random
in {1, · · · , n} at each step. In this work, our results hold true for the above two
schemes.

The output of SGD algorithm (2.4) at T can be the last iterate A(S) = wT or
the average of iterates A(S) = w̄T = 1

T

PT
t=1 wt. We denote A

last(S) = wT and
A

avg(S) = w̄T . Later on we use the conventional notation A(S) to denote A
avg(S)

or Alast(S) when it can be either of them.

2.2. Algorithmic Stability and Its Relation with Generalization

We will use a modification of ✏-uniform stability introduced by Agarwal and Niyogi
[2] which considered the regularized ERM formulation for ranking problems. It can
also be regarded as an extension of random uniform stability [13] to the case of
pairwise learning.

Definition 2.1. An SGD algorithm A for pairwise learning is called random uni-
form stable with " > 0 if for all data sets S, S

0 2 Zn according to distribution D

such that S and S
0 di↵er in at most one example, we have

sup
(z,z0)⇠D⇥D

EA[`(A(S), z, z0)� `(A(S0), z, z0)]  ✏. (2.5)

Here, the expectation is taken only over the randomness of A. We denote the
smallest constant " satisfies (2.5) as ✏stab(A, T, `, D, n).

It is worthy of noting that we always assume that the randomness for algorithm
A is independent of the sample S which is i.i.d. generated from D on X ⇥ Y. The
notation ✏stab(A, T, `, D, n) can be ✏stab(Alast

, T, `, D, n) for the last iterate of SGD
or ✏stab(Aavg

, T, `, D, n) for the average of iterates.
The following theorem describes the relation between the stability and gener-

alization for pairwise learning which is originally in the work [2,1] for bipartite
ranking. We include its proof for completeness.

Theorem 2.1. If the SGD algorithm A is random uniform stable with " > 0, then
we have

|ES,A[RS(A(S))�R(A(S))]|  2✏. (2.6)
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Proof. Denote by S = (z1, · · · , zn) and S̃ = (z̃1, · · · , z̃n) two samples wherein the
examples are i.i.d. chosen from D. Let S

0(i) be an i.i.d. copy of S except the ith
example being replaced by z̃i. Let S00(i, j) = (z1, · · · , z̃i, · · · , z̃j , · · · , zn). Therefore,

ESEA[RS(A(S))] = ESEA

h 2

n(n� 1)

X

i<j

`(A(S); zi, zj)
i

=ES̃ESEA

h 2

n(n� 1)

X

i<j

`(A(S00(i, j)); z̃i, z̃j)
i

= ES̃ESEA

h 2

n(n� 1)

X

i<j

`(A(S); z̃i, z̃j)
i
+ � = ESEA

h
R(A(S))

i
+ �, (2.7)

where the second equality comes from the identical distribution assumption. The
residual term � in the last two equations can be expressed as

� =
2

n(n� 1)

X

i<j

ES̃ESEA

h
`(A(S00(i, j)); z̃i, z̃j)� `(A(S); z̃i, z̃j)

i

=
2

n(n� 1)

X

i<j

ES̃ESEA

h
`(A(S00(i, j)); z̃i, z̃j)� `(A(S0(i)); z̃i, z̃j)

+ `(A(S0(i)); z̃i, z̃j)� `(A(S); z̃i, z̃j)
i

=
2

n(n� 1)

X

i<j

ESEAE(z̃i,z̃j)⇠D⇥D

h
`(A(S00(i, j)); z̃i, z̃j)� `(A(S0(i)); z̃i, z̃j)

i

+
2

n(n� 1)

X

i<j

ESEAE(z̃i,z̃j)⇠D⇥D

h
`(A(S0(i)); z̃i, z̃j)� `(A(S); z̃i, z̃j)

i
. (2.8)

Note that S
00(i, j) and S

0(i) di↵er in only one example and so do S
0(i) and S.

Furthermore, taking the supremum over any two data sets S, S
0 di↵ering in only

one example, we can bound the di↵erence as

|�|  2 sup
S,S0,(z,z̃)⇠D⇥D

EA [`(A(S0); z, z̃)� `(A(S); z, z̃)]  2✏, (2.9)

by our assumption on the random uniform stability of A. The claim follows.

Theorem 2.1 bounds the expected generalization error of SGD for pairwise learn-
ing with two times of its random uniform stability bound. We will present the
detailed bounds for the stability of SGD for pairwise learning in Section 3.

2.3. Stability and Optimization Error Decomposition

In this subsection, we assume w 2 ⌦ ✓ Rd. Recall that A(S) is the output of SGD
algorithm (2.4) for pairwise learning at iteration T . The overall performance of the
output A(S) is measured in terms of the excess risk defined as

�R(A(S))
def
= R(A(S))� inf

w2⌦
R(w). (2.10)
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For notional simplicity, let

w⇤
S = argminw2⌦RS(w), (2.11)

and

w⇤ = argminw2⌦R(w). (2.12)

Then we can obtain the following decomposition, namely,

�R(A(S)) = R(A(S))�R(w⇤)

= R(A(S))�RS(A(S)) +RS(A(S))�RS(w
⇤
S)

+RS(w
⇤
S)�RS(w

⇤) +RS(w
⇤)�R(w⇤)

 R(A(S))�RS(A(S)) +RS(A(S))�RS(w
⇤
S)

+RS(w
⇤)�R(w⇤), (2.13)

where the last inequality follows from the fact RS(w⇤
S) � RS(w⇤)  0 from the

definition w⇤
S (i.e. (2.11)). Taking expectation on both sides of (2.13) w.r.t. the

randomness of S and A and noting that ES [RS(w⇤)�R(w⇤)] = 0, we can decompose
the expected excess risk as

ES,A[�R(A(S))]ES,A[R(A(S))�RS(A(S))| {z }
generalization error

]+ES,A[RS(A(S))�RS(w
⇤
S)| {z }

optimization error

]. (2.14)

Denote the expected generalization error and optimization error of A(S)

as ✏gen(A, T, `, D, n)
def
= ES,A[R(A(S)) � RS(A(S))] and ✏opt(A, T, `, D, n)

def
=

ES,A[RS(A(S)) � RS(w⇤
S)]. Note that the above quantities are indexed by the es-

timator A(S), loss function `, data distribution D and sample size n. When it is
clear from the context, we will omit these indexes for simplicity. As a result, we can
rewrite (2.14) as

ES,A[�R(A(S))]  ✏gen(A, T, `, D, n) + ✏opt(A, T, `, D, n). (2.15)

Combining the expected excess risk decomposition (2.15) and Theorem 2.1, we
have, for any loss `, that

ES,A[�R(A(S)]  2✏stab(A, T, `, D, n) + ✏opt(A, T, `, D, n). (2.16)

The above inequality means that the overall performance of SGD measured by the
excess population risk�R(A(S)) can be decomposed into stability and optimization
error. This leads to a natural question that what is the trade-o↵ between these two
terms and whether SGD can achieve both the tighter stability bounds and fast
convergence rate.

To answer this question, we consider the stability and optimization error for the
last output of SGD (i.e. Alast(S)) over a class of convex pairwise losses L and D is
the class of all probability distributions which are given by

E last
stab (T,L,D, n)

def
= sup

`2L,D2D
✏stab(A

last(S), T, `, D, n),
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and

E last
opt (T,L,D, n)

def
= sup

`2L,D2D
✏opt(A

last(S), T, `, D, n).

Likewise, one can define Eavg
stab (T,L,D, n)

def
= sup`2L,D2D ✏stab(Aavg(S), T, `, D, n)

and Eavg
opt (T,L,D, n)

def
= sup`2L,D2D ✏opt(Aavg(S), T, `, D, n).

Recall that the minimax risk in nonparametric statistics [38,39] is given by
inf ewn

supD2D ES⇠Dn [�R(ewn)] where the infinimum is taken with respect to all
possible estimator ewn : Zn ! Rd which is a function of a random sample S =
{z1, . . . , zn}, i.e. ewn = ewn(S). The key idea is to connect the above two errors with
minimax risk in nonparametric statistics as given by the following lemma.

Lemma 2.1. For any convex pairwise loss ` 2 L, there holds

2E last
stab (T,L,D, n) + E last

opt (T,L,D, n) � inf
ewn

sup
D2D

ES⇠Dn [�R(ewn)], (2.17)

and

2Eavg
stab (T,L,D, n) + Eavg

opt (T,L,D, n) � inf
ewn

sup
D2D

ES⇠Dn [�R(ewn)]. (2.18)

Proof. We only prove (2.17) as the proof for (2.18) is exactly the same.
From (2.16) and definitions for E last

stab (T,L,D, n) and E last
opt (T,L,D, n), we have,

for any ` 2 L, that

sup
D2D

ES,A[�R(Alast(S))]  2E last
stab (T,L,D, n) + E last

opt (T,L,D, n). (2.19)

Notice that �R(Alast(S)) = E(z,z0)[`(A
last(S), z, z0)] � infw E(z,z0)[`(w, z, z

0)] and
the randomness of the SGD algorithm A is independent of S. Consequently,

ES,A[�R(Alast(S))] = ES

�
EA[�R(Alast(S))]

 

= ES

�
EA[E(z,z0)[`(A

last(S), z, z0)]
 
� inf

w
E(z,z0)[`(w, z, z

0)]. (2.20)

Since ` 2 L is convex with respect to the first argument, Jensen’s inequality tells
us that

EA[E(z,z0)[`(A
last(S), z, z0)] � E(z,z0)

⇥
`(EA[A

last(S)], z, z0)
⇤
. (2.21)

Putting (2.20) and (2.21) together, we have

ES,A[�R(Alast(S))] � ES

⇥
�R(EA[A

last(S)] )
⇤
.

Putting this back into (2.19) yields that

2E last
stab (T,L,D, n) + E last

opt (T,L,D, n) � sup
D2D

ES

⇥
�R(EA[A

last(S)] )
⇤

� inf
ewn

sup
D2D

ES⇠Dn [�R(ewn)].

This completes the proof of the lemma.
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Using techniques from nonparametric statistics (e.g. [27,38,39]), one can esti-
mate the minimum risk on the righthand side of (2.17) and thus derive trade-o↵
results between stability and optimization error of SGD for pairwise learning as we
will do soon in Section 4.

It is worth of mentioning that this connection (2.17) was first observed in [8]
for pointwise learning which, however, focused on the deterministic algorithms.
Specifically, the uniform stability in [8] is not taken with respect to the randomness
of algorithm A and the expectation E involved in Lemma 2.1 is only with respect
to S without the randomness of algorithm A. Our paper studies stability of SGD
algorithm defined by (2.4) which involves the randomness of {⇠j}, and the uniform
stability defined by Definition 2.1 is taken in the sense of the expectation of {⇠j}.
In this sense, our result stated in Lemma 2.1 is a non-trivial extension of [8] to the
the case of randomized SGD algorithms for pairwise learning.

3. Stability Analysis of SGD Algorithms

In this section we establish stability results for SGD algorithms given by (2.4).
Before we present the main stability results, we introduce some definitions and
background materials.

3.1. Warm-up: Some Technical Preparation

The following definitions list convexity and smoothness properties of a function f .

Definition 3.1. A function f is convex if and only if domf is a convex set and
f(✓x1+(1�✓)x2)  ✓f(x1)+(1�✓)f(x2), for all x1, x2 2 domf and ✓ 2 [0, 1]. And
a function f is �-strongly convex if and only if g(x) = f(x)� (�/2)x>

x is convex.

Definition 3.2. A function f is L-Lipschitz if and only if kf(x2) � f(x1)k 
L ·kx2�x1k, for all x1, x2 2 domf. Furthermore, a function f is �-strongly smooth
or �-smooth for short if and only if f is di↵erentiable and rf(x) is �-Lipschitz.

Let S
0 = {z01, z02, · · · , z0n} be an i.i.d. copy of S but di↵er from S at precisely

one location. Assume SGD for pairwise learning is run based on S and S
0 along the

same path {⇠1, ⇠2, · · · , ⇠T } with the same initial points w1 = w0
1 = 0. Recall, for

t = 2, · · · , T , the SGD updates based on S are given by

Gt(wt�1) = wt�1 �
↵t�1

t� 1

t�1X

j=1

r`(wt�1, z⇠t , z⇠j ). (3.1)

Similarly, for t = 2, · · · , T , we denote the gradient updates based on S
0 by

G
0
t(w

0
t�1) = w0

t�1 �
↵t�1

t� 1

t�1X

j=1

r`(w0
t�1, z

0
⇠t , z

0
⇠j ).
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We say that an operator Gt is expansive with parameter ⌘t > 0 if kGt(w) �
Gt(w0)k  ⌘tkw � w0k for any w and w0

. The main theorems about stability
rely on the following lemma which states Gt is expansive.

Lemma 3.1. Assume that `(·, z, z0) is �-smooth for every pair (z, z0).

1. Then Gt is (1 + ↵t�1�)-expansive.
2. Assume in addition that `(·, z, z0) is convex and ↵t�1  2

� . Then Gt is 1-
expansive.

3. Assume in addition that `(·, z, z0) is �-strongly convex and ↵t�1  2
�+� . Then

Gt is
⇣
1� ��↵t�1

�+�

⌘
-expansive.

The proof for the above elementary results can be found in Appendix A. Note
that the results of Lemma 3.1 about Gt also apply to G

0
t.

Now consider the SGD updates respectively on S and S
0 with wt = Gt(wt�1)

and w0
t = G

0
t(w

0
t�1) for any t � 2 and the initial point w1 = w0

1 = 0. The stability
of SGD for pairwise learning critically depends on the following recursive property
of �t = kwt �w0

tk.

Theorem 3.1. Assume that `(·, z, z0) is L-Lipschitz for any z, z
0
. Suppose that both

Gt and G
0
t are expansive with parameter ⌘t. Then for 1 < t  T , under both random

rules (e.g. random permutation or selection rules), the following recursive relation
holds true.

E[�t] 
n 1

n
·min(⌘t, 1) +

⇣
1� 1

n

⌘
· ⌘t
o
E[�t�1] +

4L

n
· ↵t�1. (3.2)

The proof of this theorem is inspired by the work [18]. However, compared with
the situation in the context of pointwise learning, the key challenge here is that
at any step t, the computation of the new gradient direction not only depends
on the current example z⇠t but also on all previously used examples, i.e. {z⇠i}t�1

i=1.
We overcome this hurdle by a careful investigation into how many times SGD
has encountered the di↵erent examples between S and S

0 before the t-th step, as
illustrated below respectively for both cases of random selection and permutation
rules.

We first consider the case of random selection rule.

Lemma 3.2. Suppose that we run SGD based on S and S
0 under the random

selection rule for T steps along the same path {⇠1, ⇠2, · · · , ⇠T }. For a fixed t 2 (1, T ],
assume among the first t� 1 steps, there are m steps where SGD has encountered
the di↵erent examples. Then we have the following properties:

(1) �t  min(⌘t, 1)�t�1 + 2↵t�1L, if z⇠t 6= z
0
⇠t
;

(2) �t  ⌘t�t�1 +
m
t�1 · 2↵t�1L, if z⇠t = z

0
⇠t
,

wherein ⌘t is the expansive parameter of the updates Gt and G
0
t.
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Proof. First of all, for either case, we have

�t = kGt(wt�1)�G
0
t(w

0
t�1)k

 kGt(wt�1)�Gt(w
0
t�1)k+ kGt(w

0
t�1)�G

0
t(w

0
t�1)k

 ⌘t�t�1 +
↵t�1

t� 1

t�1X

j=1

krw`(w
0
t�1, z

0
⇠t , z

0
⇠j )�rw`(w

0
t�1, z⇠t , z⇠j )k. (3.3)

Then we prove the two claims in this lemma separately.
1) For the first property, if z⇠t 6= z

0
⇠t
, we have rw`(w0

t�1, z
0
⇠t
, z

0
⇠j
) 6=

rw`(w0
t�1, z⇠t , z⇠j ) for all j = 1, · · · , t � 1. Then following the L-Lipschitz con-

dition of `, we have

krw`(w
0
t�1, z

0
⇠t , z

0
⇠j )�rw`(w

0
t�1, z⇠t , z⇠j )k  2L.

As a result, we obtain

�t  ⌘t�t�1 + 2↵t�1L. (3.4)

Next we prove the other half of the first claim of this lemma. By the triangle
inequality, we have

�t = kGt(wt�1)�G
0
t(w

0
t�1)k

 kwt�1 �w0
t�1k+

↵t�1

t� 1

t�1X

j=1

krw`(w
0
t�1; z

0
⇠t , z

0
⇠j )�rw`(wt�1; z⇠t , z⇠j )k

 �t�1 + 2↵t�1L. (3.5)

Thus the first property follows by combining (3.4) and (3.5).
2) We now prove the second property. Denote U = {1  j  t � 1|z⇠j 6=

z
0
⇠j
}. From the assumption that there are m steps where SGD has encountered

the di↵erent examples among the first t � 1 steps, we know there are m number
of elements in {z⇠j}t�1

j=1 which are di↵erent from those in {z0⇠j}
t�1
j=1. That means

|U | = m where |U | is the number of coordinates in the set U . Recall we have
z⇠t = z

0
⇠t

and thus there are at most m number of the pairs {z⇠t , z⇠j}t�1
j=1 which are

di↵erent from {z0⇠t , z
0
⇠j
}t�1
j=1. It follows that

t�1X

j=1

krw`(w
0
t�1, z

0
⇠t , z

0
⇠j )�rw`(w

0
t�1, z⇠t , z⇠j )k

=
X

j2U

krw`(w
0
t�1, z

0
⇠t , z

0
⇠j )�rw`(w

0
t�1, z⇠t , z⇠j )k.

Thus following the L-Lipschitz condition of `, we have

t�1X

j=1

krw`(w
0
t�1, z

0
⇠t , z

0
⇠j )�rw`(w

0
t�1, z⇠t , z⇠j )k  2mL.

Plugging this into (3.3), we get the second property.
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Now we consider the permutation rule for T steps. In this case, let t
?
k be the

(only one) element in the set {t | z⇠t 6= z
0
⇠t
, (k�1)n < t  kn} for each k � 1. In fact

at the t
?
k-th step, SGD encounters the di↵erent examples during the k-th epoch.

Fix an arbitrary sequence of SGD updates G1, · · · , GT based on S and another
sequence G

0
1, · · · , G0

T based on S
0. We have the following lemma for the recursive

property of the SGD updates.

Lemma 3.3. Suppose that we run SGD based on S and S
0 under the random

permutation rule for T steps along the same path {⇠1, ⇠2, · · · , ⇠T }. Assume that
both Gt and G

0
t are expansive with parameter ⌘t. For (k � 1)n < t  kn where k is

the number of epochs, we have the following properties:

(1) �t  min(⌘t, 1)�t�1 + 2↵t�1L, if t = t
?
k,

(2) �t  ⌘t�t�1 +
k�1
t�1 · 2↵t�1L, if (k � 1)n < t < t

?
k,

(3) �t  ⌘t�t�1 +
k

t�1 · 2↵t�1L, if t?k < t  kn.

Proof. 1) For each (k � 1)n < t  kn where k is the number of epochs, we have

�t = kGt(wt�1)�G
0
t(w

0
t�1)k

 kGt(wt�1)�Gt(w
0
t�1)k+ kGt(w

0
t�1)�G

0
t(w

0
t�1)k

 ⌘t�t�1 +
↵t�1

t� 1

t�1X

j=1

krw`(w
0
t�1, z

0
⇠t , z

0
⇠j )�rw`(w

0
t�1, z⇠t , z⇠j )k. (3.6)

For the first property, if t = t
?
k, we must have z⇠t 6= z

0
⇠t
. As a result,

rw`(w0
t�1, z

0
⇠t
, z

0
⇠j
) 6= rw`(w0

t�1, z⇠t , z⇠j ) for all j = 1, · · · , t � 1. Then following
the L-Lipschitz condition of `, we have

�t  ⌘t�t�1 + 2↵t�1L. (3.7)

Next we prove the other half. By the triangle inequality, we have

�t = kGt(wt�1)�G
0
t(w

0
t�1)k

 kwt�1 �w0
t�1k+

↵t�1

t� 1

t�1X

j=1

krw`(w
0
t�1; z

0
⇠t , z

0
⇠j )�rw`(wt�1; z⇠t , z⇠j )k

 �t�1 + 2↵t�1L. (3.8)

Thus the first property follows by combining (3.7) and (3.8).
2) We now prove the second property. If (k � 1)n < t < t

?
k, we have z⇠j 6= z

0
⇠j

when j 2 U
? := {t?1, · · · , t?k�1}, while z⇠j = z

0
⇠j

for j belonging to {1, 2, · · · , t}
but not in U

?. As a result, z⇠t = z
0
⇠t

and there are at most (k � 1) number of the
pairs {(z⇠t , z⇠j )}j2U? which are di↵erent from {(z0⇠t , z

0
⇠j
)}j2U? . Thus following the
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L-Lipschitz condition of `, we have

t�1X

j=1

krw`(w
0
t�1, z

0
⇠t , z

0
⇠j )�rw`(w

0
t�1, z⇠t , z⇠j )k

=
X

j2U?

krw`(w
0
t�1, z⇠t , z

0
⇠j )�rw`(w

0
t�1, z⇠t , z⇠j )k  2(k � 1)L.

Plugging this into (3.6), we get the second property.
3) Following the same strategy as above, if t?k < t  kn, there are at most k

number of the pairs {(z⇠t , z⇠j )}j2V ? which are di↵erent from {(z0⇠t , z
0
⇠j
)}j2V ? , where

V
? = {t?1, · · · , t?k}. Similarly, we have

t�1X

j=1

kr`(w0
t�1; z

0
⇠t , z

0
⇠j )�r`(w0

t�1; z⇠t , z⇠j )k  2kL.

Plugging this into the equation (3.6), we get the third property.

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. Firstly, under the random selection rule, we denote m as
the times of SGD choosing the di↵erent examples during the first t� 1 steps. Since
the examples chosen by SGD at each step are i.i.d. under the random selection
rule, m follows a binomial distribution, i.e. m ⇠ B(t � 1, 1/n). And we know that
at step t, P{z⇠t 6= z

0
⇠t
} = 1

n . Then by the independence between the t�th step and
previous t � 1 steps, the probability of that z⇠t = z

0
⇠t

at the t-th step and SGD
has encountered the di↵erent examples m times during the previous t � 1 steps

is
⇣
1 � 1

n

⌘
· Cm

t�1

⇣
1 � 1

n

⌘t�1�m⇣
1
n

⌘m
where C

m
t�1 is the binomial coe�cient. By

Lemma 3.2, for every 1 < t  T , we have

E[�t] 
1

n
·
⇣
min(⌘t, 1)E[�t�1] + 2↵t�1L

⌘

+
t�1X

m=0

✓
1� 1

n

◆
· Cm

t�1

✓
1� 1

n

◆t�1�m✓ 1

n

◆m

⇥
⇣
⌘tE[�t�1] +

m

t� 1
· 2↵t�1L

⌘


n 1

n
·min(⌘t, 1) +

⇣
1� 1

n

⌘
· ⌘t
o
E[�t�1] +

4L↵t�1

n
,

wherein the second inequality follows from the facts

t�1X

m=0

C
m
t�1

✓
1� 1

n

◆t�1�m✓ 1

n

◆m

= 1

and

t�1X

m=0

mC
m
t�1

✓
1� 1

n

◆t�1�m✓ 1

n

◆m

=
t� 1

n
.
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Secondly, under the random permutation rule, t?k is a uniformly random number
in {(k�1)n+1, (k�1)n+2, · · · , kn} and therefore 8k � 1,for every (k�1)n < t  kn

we have

P{t?k = t} =
1

n
, P{t?k > t} = 1� t� (k � 1)n

n
= k � t

n
,

and

P{t?k < t} =
t� 1� (k � 1)n

n
=

t� 1

n
� (k � 1).

By Lemma 3.3, for every (k � 1)n < t  kn with k � 1, we have

E[�t] 
1

n
·
⇣
min

�
⌘t, 1

�
E[�t�1] + 2↵t�1L

⌘
+

✓
k � t

n

◆
·
✓
⌘tE[�t�1] +

k � 1

t� 1
· 2↵t�1L

◆

+
⇣
t� 1

n
� (k � 1)

⌘⇣
⌘tE[�t�1] +

k

t� 1
· 2↵t�1L

⌘


n 1

n
·min

�
⌘t, 1

�
+

✓
1� 1

n

◆
· ⌘t
o
E[�t�1] +

4L↵t�1

n
.

Finally, combining the above two cases yields the desired result. ⇤
Before we use Theorem 3.1 to analyze the stability of SGD for convex, strongly

convex and non-convex cases respectively, we introduce the following useful lemma
which reveals an important advantage of SGD: it usually takes several steps before
the updates wt and w0

t of SGD start to di↵er from each other.

Lemma 3.4. Assume that the loss function `(·; z, z0) is nonnegative and L-
Lipschitz for all pairs (z, z0). Suppose we run SGD for T steps on two samples
of size n namely S and S

0 which di↵er in at most an example. Then, for every
t0 2 {2, · · · , n}, we have

E
h
|`(wT ; z, z

0)� `(w0
T ; z, z

0)|
i
 t0

n
sup

w,z,z0
`(w, z, z

0) + LE[�T |�t0 = 0], (3.9)

where �t0 = kwt0 �w0
t0k.

Proof. Let z, z
0 2 Z be an arbitrary pair of examples. By the conditional expec-

tation formula and the Lipschitz assumption of `, we have

E
h
|`(wT ; z, z

0)� `(w0
T ; z, z

0)|
i

= P{�t0 6= 0}E[|`(wT , z, z
0)� `(w0

T , z, z
0)|
���t0 6= 0]

+P{�t0 = 0}E[|`(wT , z, z
0)� `(w0

T , z, z
0)|
���t0 = 0]

 P{�t0 6= 0} · sup
w,z,z0

`(w, z, z
0) + LE[�T

���t0 = 0].

Now we bound P{�t0 6= 0} under random permutation and selection rules.
Under the random permutation rule, denote t

?
1 = {t | z⇠t 6= z

0
⇠t
, 1  t  n}. We

have

P{�t0 6= 0}  P{t?1  t0} =
t0

n
(3.10)
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since if t?1 > t0, then we must have �t0 = 0.
For the case of random selection rule, let t

? be the first time our algorithm
encountering the di↵erent examples. For the same reason behind (3.10), we just
need to bound P{t?  t0} and we have

P{�t0 6= 0}  P{t?  t0} 
t0X

t=1

P{t? = t} =
t0

n
.

Combining these two cases, we complete the proof.

3.2. Convex case

We present below the first stability result of SGD provided that the pairwise loss
`(·, z, z0) is convex and strongly smooth.

Theorem 3.2. Assume that the loss function `(·; z, z0) is �-smooth, convex and
L-Lipschitz for every example points z and z

0. Suppose that we run SGD with step
sizes ↵t  2/� for T steps. Then,

✏stab(A
last

, T, `, D, n)  4L2

n

T�1X

t=1

↵t, (3.11)

and

✏stab(A
avg

, T, `, D, n)  4L2

Tn

TX

t=2

t�1X

j=1

↵j , (3.12)

Proof. We now fix a pair of examples z and z
0 and apply the Lipschitz condition

on `(·, z, z0) to get

E|`(wT , z, z
0)� `(w0

T , z, z
0)|  LE[�T ], (3.13)

where �T = kwT �w0
T k. By Lemma 3.1 and Theorem 3.1, we have E[�t]  E[�t�1]+

4L
n · ↵t�1. Unraveling the recursion yields

E[�T ] 
4L

n

T�1X

t=1

↵t. (3.14)

Plugging this back into the equation (3.13), we obtained (3.11).
To prove (3.12), we notice that (3.14) holds true for any T , and therefore

E
h
|`(w̄T , z, z

0)� `(w̄0
T , z, z

0)|
i
 LE[kw̄T � w̄0

T k]

 L · 1
T

TX

t=1

E[kwt �w0
tk] =

L

T

TX

t=1

E[�t] 
4L2

nT

TX

t=2

t�1X

j=1

↵j , (3.15)

where we used the fact w1 = w0
1. This completes the proof of the theorem.
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If we choose ↵t =
2

�ta with a 2 (0, 1), then Theorem 3.2 tells us that stability

bounds of SGD for pairwise learning schemes are of order O(T
1�a

n ). If the iteration
of SGD is linear with respect to the size of the training data, e.g. T = n, SGD for
pairwise learning will achieve stability and generalization error of order O( 1

Ta ). In
this sense, faster training SGD will lead to reasonably good generalization.

3.3. Strongly convex case

If, furthermore, the function ` is strongly convex, we can establish stronger results.

Theorem 3.3. Assume that the loss function `(·, z, z0) is �-strongly convex, �-
smooth and L-Lipschitz for every example points z and z

0. Suppose that we run
SGD with the constant step size ↵  2

�+� for T steps. Then, SGD satisfies uniform
stability with

✏stab(A
last

, T, `, D, n)  8L2

�n

h
1� (1� ↵�

2
)T�1

i
. (3.16)

and

✏stab(A
avg

, T, `, D, n)  8L2

�Tn

TX

t=2

h
1� (1� ↵�

2
)t�1

i
. (3.17)

Proof. Fix a pair of examples z and z
0 and apply the boundedness of the gradient

of `(·, z, z0) to get

E
h
|`(wT ; z, z

0)� `(w0
T ; z, z

0)|
i
 LE[�T ], (3.18)

where �T = kwT �w0
T k. We then use the recursive relation between �t and �t�1 as

established in Theorem 3.1 to bound �T . Since ↵  2
�+� by assumption, we have Gt

is
⇣
1� ��↵

�+�

⌘
-expansive by Lemma 3.1. Moreover we have 1� ��↵

�+�  1�↵�
2 following

from � � � by the definitions. As a result we have Gt is
�
1� ↵�

2

�
-expansive. Hence

⌘ = 1 � ↵�
2 2 (0, 1). Then by Theorem 3.1, we have E[�t]  ⌘E[�t�1] +

4L
n · ↵.

Unravel the recursion and we have

E[�T ] 
4L↵

n

T�2X

j=0

⌘
j  8L

�n
(1� ⌘

T�1). (3.19)

Plugging this back into the equation (3.18) yields (3.16).
To prove (3.17), notice that (3.19) holds true for any T . Consequently,

E
h
|`(w̄T , z, z

0)� `(w̄0
T , z, z

0)|
i
 LE[kw̄T � w̄0

T k]

 L · 1
T

TX

t=1

E[kwt �w0
tk] =

L

T

TX

t=1

E[�t] 
8L2

�Tn

TX

t=2

(1� ⌘
t�1),

where we used the fact that �1 = 0. This completes the proof of the theorem.
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Theorem 3.3 indicates that, in the strongly convex case, although the uniform
stability is also increasing w.r.t. T , it is upper bounded by a finite bound, i.e. 8L2

�n

which is independent of the running time T .
Note that Theorem 3.3 only analyzes the uniform stability of SGD with constant

step size which is not commonly used in practice. With the help of Lemma 3.4, we
can establish the following theorem on the stability of a more popular form of SGD
in which “staircase” decaying step sizes are chosen as in the machine learning and
stochastic optimization fields [23,30].

Theorem 3.4. Assume that the loss function `(·, z, z0) is �-strongly con-
vex, �-smooth and L-Lipschitz for every example points z and z

0 and ⇢ =
supw,z,z0 `(w, z, z

0). Let d�/�e be the smallest positive integer which is larger than
or equals to �/�. Suppose that we run SGD with the varying step sizes ↵t =

2
�t for

t = 1, . . . , T and T � d�/�e+ 1. Then,

✏stab(A
last

, `, D, n)  8L2

�n

✓
1� d�/�e

T � 1

◆
+

⇢

n
(1 + d�/�e) .

Proof. It is easy to check that ↵t  2
�+� when t � 1 + �

� . Thus if t � t0 :=

1 + d�
� e, we have Gt is ⌘t-expansive with ⌘t = 1� 1

t�1 by Lemma 3.1 and the fact

1� ��
�+� · 2

�(t�1)  1� 1
t�1 . To this end, recalling Lemma 3.4, we have

E
h
|`(wT ; z, z

0)� `(w0
T ; z, z

0)|
i
 ⇢

n

✓
1 +

⇠
�

�

⇡◆
+ LE[�T |�t0 = 0]. (3.20)

Next we will bound �T := E[�T |�t0 = 0]. By Theorem 3.1, we have �t  (1 �
1

t�1 )�t�1 +
4L
n · ↵t�1 for t0  t  T . Unravel the recursion from t = T to t = t0

and we have �T  8L
n� · T�t0

T�1 . Plugging this back into the equation (3.20) yields the
desired result.

For the “staircase” decaying step sizes, it remains a question to us on how to
get similar stability results when the output of SGD is the average of iterates, i.e.
A

avg(S).

3.4. Non-convex case

If `(·, z, z0) is not convex such as in the case of MEE principle [19,20,32], we have
the following result.

Theorem 3.5. Assume that the loss function `(·, z, z0) 2 [0, 1] is �-smooth and
L-Lipschitz for any z and z

0. Suppose that we run SGD for T steps with the step
sizes ↵t  c

t where c > 0 is a scale parameter determined by the users in practice.
Then, we have

✏stab(A
last

, `, D, n)  1 + 1/(�c)

n� 1
(4cL2)

1
1+�c (T � 1)

�c
1+�c +

4cL2

n(T � 1)
+

1

n
.
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Proof. Firstly, by Lemma 3.4, we have for every t0 2 {2, · · · , n},

E
h
|`(wT ; z, z

0)� `(w0
T ; z, z

0)|
i
 t0

n
+ LE[�T |�t0 = 0]. (3.21)

Next, we will bound�T := E[�T |�t0 = 0] as a function of t0 and then minimize for t0.
By Lemma 3.1 and a variant of Theorem 3.1 modified for conditional expectation,

we have �t 
⇣
1 + (1� 1/n) �c

t�1

⌘
�t�1 + 4cL

n(t�1)  exp
n
(1� 1/n) �c

t�1

o
�t�1 +

4cL
n(t�1) . Unwind this recurrence relation from T down to t0 + 1. This gives

�T  4cL

n(T � 1)
+

T�2X

t=t0

T�1Y

s=t+1

exp

⇢
(1� 1/n)

�c

s

�
4cL

nt
,

wherein the second term

T�2X

t=t0

T�1Y

s=t+1

exp

⇢
(1� 1/n)

�c

s

�
4cL

nt

=
4cL

n

T�2X

t=t0

n
exp

h
(1� 1/n)c�

T�1X

s=t+1

1

s

io1
t

 4cL

n

T�2X

t=t0

n
exp

h
(1� 1/n)c� ln

⇣
T � 1

t

⌘io1
t

 4cL

n
(T � 1)(1�1/n)c�

T�2X

t=t0

t
�(1�1/n)c��1  4L

(n� 1)�

⇣
T � 1

t0 � 1

⌘c�
.

Thus we have �T  4cL
n(T�1) +

4L
(n�1)�

⇣
T�1
t0�1

⌘c�
. Plugging this bound into (3.21),

we have

E
h
|`(wT ; z, z

0)� `(w0
T ; z, z

0)|
i
 t0

n
+

4L2

(n� 1)�

✓
T � 1

t0 � 1

◆c�

+
4cL2

n(T � 1)
.

The right hand side is approximately minimized when t0 = (4cL2)
1

1+�c (T�1)
�c

1+�c +
1. Thus we obtain

E
h
|`(wT ; z, z

0)� `(w0
T ; z, z

0)|
i
 1 + 1/(�c)

n� 1
(4cL2)

1
1+�c (T � 1)

�c
1+�c +

4cL2

n(T � 1)
+

1

n

and we complete the proof.

For the non-convex case, it also remains a question to us on how to get similar
stability results when the output of SGD is the average of iterates, i.e., Aavg(S).
Note that Lemma 3.4 plays a key role in the stability analysis of SGD in the
general non-convex case, where the gradient updates Gt are no longer non-expansive
operations in contrast to the convex case using Lemma 3.1.
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We end Section 3 with a useful remark. The stability results above also hold
true for the projected SGD algorithm defined by

wt = ⇧⌦

n
wt�1 �

↵t�1

t� 1

t�1X

j=1

r`(wt�1, z⇠t , z⇠j )
o
, (3.22)

where ⌦ is a bounded convex domain in Rd, and ⇧⌦ is the projection operator
defined by ⇧⌦(u) = argminw2⌦ ku�wk. Typically, one can choose ⌦ to be a
bounded ball with center zero, i.e. ⌦ = {w : kwk  r0} for which the projection
operator can be computed analytically. In this case, the projection onto a convex
set is a non-expansive operation, i.e.

�t = k⇧⌦(Gt(wt�1)�G
0
t(w

0
t�1))k  kGt(wt�1)�G

0
t(w

0
t�1)k.

As a result, our previous proof techniques in the case of the original (non-projected)
SGD algorithm defined by (2.4) can still be applied to this situation. Consequently,
the stability results stated in the above theorems hold true for the projected SGD.

4. Trade-o↵ between Stability and Optimization Error

In this section, we will start from the trade-o↵ connection in Lemma 2.1 to establish
the minimax lower bound for the excess expected risk. Then, we will combine this
with the stability results in Section 3 to derive the lower bounds for the optimization
error of SGD algorithms in the setting of pairwise learning.

4.1. Minimax Lower Bounds

In particular, let ⌦ be a bounded convex domain with finite diameter, i.e. |⌦| < 1.
We consider the class Lc of convex and strongly smooth pairwise losses which is
defined by

Lc = {` : ⌦⇥ Z ⇥ Z ! R | ` is convex,� � smooth; |⌦| < 1},

and the class of strongly convex and smooth pairwise losses which is given by

Lsc = {` : ⌦⇥ Z ⇥ Z ! R | ` is � � strongly convex,� � smooth; |⌦| < 1}.

For the class Lc of pairwise loss functions, we have the following lower bound
for the minimax risk.

Theorem 4.1. There exists a pairwise loss ` 2 Lc such that

inf
ewn

sup
D2D

ES⇠Dn [�R(ewn(S))] �
3�|⌦|2

128
p
6n

. (4.1)

The proof of Theorem 4.1 can be found in Appendix B which involves the Le
Cam’s method [27].

An immediate by-product result from the above theorem is the following corol-
lary which states the lower bound for the excess expected risk when ` 2 Lc.
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Corollary 4.1. There holds

inf
ewn

sup
`2Lc,D2D

ES [�R(ewn)] �
3�|⌦|2

128
p
6n

. (4.2)

Proof. The result follows directly from Theorem 4.1 and the elementary inequality:

inf
ewn

sup
`2Lc,D2D

ES [�R(ewn)] � sup
`2Lc

inf
ewn

sup
D2D

ES [�R(ewn).

We now present the lower bound for the minimax risk for the class Lsc of pairwise
losses.

Theorem 4.2. There exists a pairwise loss ` 2 Lsc such that

inf
ewn

sup
D2D

ES [�R(ewn)] �
�|⌦|2

32n
. (4.3)

We postpone the proof of Theorem 4.2 to Appendix C. An immediate result is
the following lower bound for the excess expected risk for ` 2 Lsc.

Corollary 4.2. There holds

inf
ewn

sup
`2Lsc,D2D

ES [�R(ewn)] �
�|⌦|2

32n
. (4.4)

Proof. The result follows directly from Theorem 4.2 and the elementary inequality:

inf
ewn

sup
`2Lsc,D2D

ES [�R(ewn)] � sup
`2Lsc

inf
ewn

sup
D2D

ES [�R(ewn)].

4.2. Optimization Lower Bounds for SGD of Pairwise Learning

In this subsection, we assume now that there exists an absolute constant b > 0
such that, for any loss ` 2 L where L can be Lc or Lsc for di↵erent settings in our
consideration, there holds

sup
z,z02Z

min
w2⌦

kr`(w, z, z
0)k  b.

Under this condition, we can see that ` is (|⌦|�+ b)-Lipschitz. Indeed, for any fixed
z, z

0 2 Z, assume w0 = argminw2⌦ kr`(w, z, z
0)k. Then, by the �-smoothness

of `, we have, for any w 2 ⌦, that kr`(w, z, z
0) � r`(w0, z, z

0)k  �kw �
w0k  �|⌦|. This indicates that kr`(w, z, z

0)k  kr`(w, z, z
0) � r`(w0, z, z

0)k +
kr`(w0, z, z

0)k  �|⌦| + b. Since z, z
0 and w are arbitrary, it follows that ` is

(|⌦|� + b)-Lipschitz, i.e., L = |⌦|� + b.

Combining the minimum lower bound in Theorem 4.1 with Lemma 2.1, one can
derive the following lower bound for SGD of pairwise learning with smooth convex
loss functions.

Theorem 4.3. Consider the output Aavg(S) of the projected SGD with step sizes
↵t at iteration T based on a pairwise loss ` 2 Lc, and the following cases:
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(1) Constant step size: ↵t ⌘ ↵ = c
Ta  2

� with a 2 [0, 1);

(2) Staircase decaying step sizes: ↵t =
c
ta with a 2 (0, 1) and c  2

� .

Then, for either of the above cases, there exists a universal constant eC1, and T0

such that, for any T � T0, there holds Eavg
opt (T,Lc,D, n) � eC1

T 1�a .

Proof. 1) Putting ↵t ⌘ c
Ta back into (3.12) in Theorem 3.2 implies that

Eavg
stab (T,Lc,D, n)  4L2

nT

TX

t=2

t�1X

j=1

↵j 
4cL2

nT 1+a

TX

t=2

(t� 1)  4cL2

n
· T 1�a

. (4.5)

Noting the relation (2.17) and applying Theorem 4.1, we have

8cL2

n
· T 1�a + Eavg

opt (T,Lc,D, n) � 3�|⌦|2

128
p
6n

.

It follows that

Eavg
opt (T,Lc,D, n) � 3�|⌦|2

128
p
6n

� 8cL2

n
· T 1�a := Q(n).

Note that it is well known that the optimization error of the projected SGD is
independent of the sample size n (see the results in [23] for example). That means
Eavg
opt (T,Lc,D, n) is actually not a function of n although we include n in its

construction. As a result, we can take maximum of Q(n) over n so that the re-

sulting lower bound is “best”. To this end, letting ⌧0 =
h

3�|⌦|2

2048
p
6cL2

i1/(1�a)
and

C0 = 3�2|⌦|4
1048576cL2 , we can rewrite Q(n) as

Q(n) =
C0

T 1�a
� 8cL2

T
1�a


1p
n
� (

⌧0

T
)1�a

�2
.

Thus for su�ciently large T � ⌧0, we can always find an integer n0 such that
2
3

⇣
T
⌧0

⌘1�a
 p

n0  2
⇣

T
⌧0

⌘1�a
. Let C1 = 9�2|⌦|4

4194304cL2 . As a result, we have

Q(n0) �
C0

T 1�a
� 2cL2

T
1�a

⇣
⌧0

T

⌘2(1�a)
=

C1

T 1�a
.

Thus we obtain, for any T � ⌧0

Eavg
opt (T,Lc,D, n0) �

C1

T 1�a
.

Since Eavg
opt (T,Lc,D, n) is independent of n, we establish the desired result.

2) Plug ↵t =
c
ta into (3.12) and let c0 = c/(1� a). We have

Eavg
stab (T,Lc,D, n)  4L2

Tn

TX

t=2

t�1X

j=1

c

ja
 4cL2

(1� a)n

TX

t=2

t
1�a

T
 4c0L2

n
· T 1�a

. (4.6)

Recall the first equation namely (4.5) in the proof of the first case. We can find
that the only di↵erence between these two stability results, namely (4.6) and (4.5),
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comes from we replacing c by c
0. Likewise denote ⌧

0
0 =

h
3�|⌦|2

2048
p
6c0L2

i1/(1�a)
and

C
0
0 = 3�2|⌦|4

1048576c0L2 . Thus for su�ciently large T � ⌧
0
0, we can always find an integer

n
0
0 s.t. 2

3

⇣
T
⌧ 0
0

⌘1�a

p
n0
0  2

⇣
T
⌧ 0
0

⌘1�a
. Let C

0
1 = 9�2|⌦|4

4194304c0L2 . It is natural to use

the same strategy to obtain almost the same lower bound for the optimization error
as the case of constant step size, viz.,

Eavg
opt (T,Lc,D, n

0
0) �

C
0
1

T 1�a
.

Again, as Eavg
opt (T,Lc,D, n) is independent of n, the desired result is proved.

The work of Wang et al. [41] considered the regret bound for projected online
gradient descent algorithm in pairwise learning which is exactly SGD algorithm we
consider here in the stochastic setting. Specifically, in [41, Theorem 13], they gave
the regret rate of O(

p
T ) of the projected online gradient descent algorithm with

varying step sizes ↵t = O

⇣
1p
t

⌘
for pairwise learning. While in [23, Theorem 3], they

obtained the online to batch conversion bound. Combining the above results, we can

obtain an upper bound of the convergence rate, i.e., O
⇣

1p
T

⌘
(up to a log T factor).

This result meets the lower bound we have established in Theorem 4.3 which says

this algorithm can not have better worst-case convergence rate than O

⇣
1p
T

⌘
with

step sizes ↵t = O

⇣
1p
t

⌘
in the general convex smooth case. Thus our results confirm

its optimality up to a logarithmic factor.
From Theorem 4.2, we can get the following two theorems about the lower

bounds for the optimization error of SGD with fixed step size and varying step
sizes respectively in the setting of smooth strongly convex loss functions.

Theorem 4.4. Let the projected SGD with fixed step size ↵t ⌘ ↵  2
�+� for T

iterations to get an output Aavg(S) based on a pairwise loss ` 2 Lsc. Then we can
get the following results, viz.,

Eavg
opt (T,Lsc,D, n) � 16(|⌦|� + b)2

�n

⇣
1� ↵�

2

⌘T�1
� C,

wherein the o↵set C = 1
n

⇣
16(|⌦|�+b)2

� � �|⌦|2
32

⌘
> 0.

Proof. Recall (3.17). We have

E|`(w̄T , z, z
0)� `(w̄0

T , z, z
0)|  LE[kw̄T � w̄0

T k]

 8L2

�n

1

T

TX

t=2

(1� ⌘
t�1)  8L2

�n

⇥
1� ⌘

T�1
⇤
. (4.7)

Thus we have

Eavg
stab(T,Lsc,D, n)  8L2

�n

h
1� (1� ↵�

2
)T�1

i
.
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Noting the relation (2.18) and applying Theorem 4.2, we have

16L2

�n

h
1� (1� ↵�

2
)T�1

i
+ Eavg

opt (T,Lsc,D, n) � �|⌦|2

32n
.

It follows that

Eavg
opt (T,Lsc,D, n) � �|⌦|2

32n
� 16L2

�n

h
1� (1� ↵�

2
)T�1

i
.

Recall L = |⌦|� + b and we have finished the proof.

Theorem 4.5. Let the projected SGD with step sizes ↵t for T iterations to get an
averaged output A

avg(S) based on a pairwise loss ` 2 Lsc. Let ↵t = 2
�t . Denote

C := 2(�|⌦|2+b|⌦|)
n ·

⇣
�
� + 3

⌘
� �|⌦|2

32n + 16(|⌦|�+b)2

n� · ln
⇣

�
� + 3

⌘
. Then,

Eavg
opt (T,Lsc,D, n) � 16L2(� + �)

�2n
· lnT

T
� C.

Proof. It is easy to check that ↵t  2
�+� when t � 1+ �

� . Let d�/�e be the smallest

positive integer which is larger than or equals to �/�. Thus if t � t0 := 2 + d�
� e,

we have Gt is ⌘t-expansive with ⌘t = 1 � 1
t�1 due to Lemma 3.1 and the fact

1� ��
�+� · 2

�(t�1)  1� 1
t�1 .

Let �t = kwt �w0
tk and t

?
1 be the first time that the SGD algorithms encounter

the di↵erent examples. By the conditional expectation formula, we have

E[�t] = P{t?1  t0}E[�t
��t?1  t0] + P{t?1 > t0}E[�t

��t?1 > t0]

=
t0

n
· E[�t

��t?1  t0] +

✓
1� t0

n

◆
· E[�t

��t?1 > t0].

If t < t0, we have E[�t
��t?1 > t0] = 0 as the SGD algorithms have not encountered

the di↵erent examples during the first t steps. Thus when t < t0 we have

E[�t] =
t0

n
· E[�t

��t?1  t0] 
t0

n
· |⌦|. (4.8)

If t � t0, we have

E[�t] 
t0

n
· |⌦|+ E[�t

��t?1 > t0].

Denote�t := E[�t|t?1 > t0]. Recall Gt is ⌘t-expansive with ⌘t = 1� 1
t�1 . By Theorem

3.1, we have �t  (1� 1
t�1 )�t�1 +

4L
n ·↵t�1 for t � t0. Unravel the recursion from

t to t0 and we have �t  8L
n� · t�t0

t�1 . Thus when t � t0, we have

E[�t] 
t0

n
· |⌦|+ 8L

n�
· t� t0

t� 1
. (4.9)

Combining (4.8) and (4.9), for t � 2, we have

E[�t] 
t0

n
· |⌦|+ 8L

n�
· (t� t0)+

t� 1
, (4.10)
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where (t� t0)+ = max(0, t� t0).
Let w̄T = 1

T

PT
t=1 wt. Using the Lipschitz condition of `(·; z, z0), we further

have

E
h
|`(w̄T , z, z

0)� `(w̄0
T , z, z

0)|
i
 LE[kw̄T � w̄0

T k]

 L · 1
T

TX

t=2

E[kwt �w0
tk] = L · 1

T

TX

t=2

E[�t]

 t0

n
· L|⌦|+ 8L2

n�
· 1
T

TX

t=2

(t� t0)+
t� 1

, (4.11)

wherein the last inequality comes from (4.10). Next we will bound
PT

t=2
(t�t0)+

t�1 .
Actually we can write

TX

t=2

(t� t0)+
t� 1

=
TX

t=t0+1

t� t0

t� 1
=

TX

t=t0+1

t� 1 + 1� t0

t� 1
= T � t0 �

TX

t=t0+1

t0 � 1

t� 1

 T � t0 �
Z T+1

t=t0+1

t0 � 1

t� 1
dt = T � t0 � (t0 � 1)(lnT � ln t0)

= T � t0 + (t0 � 1) · ln t0 � (t0 � 1) · lnT
 (T � 1) · ln t0 � (t0 � 1) · lnT, (4.12)

where the last inequality comes from the fact ln t0 � 1 as t0 := 2 + d�
� e � 3.

Substituting (4.12) into (4.11), we have

E[|`(w̄T , z, z
0)� `(w̄0

T , z, z
0)|]  t0

n
· L|⌦|+ 8L2

n�
· ln t0 �

8L2

n�
· (t0 � 1) · lnT

T
.

Recall t0 = 2 + d�
� e. Thus 2 +

�
�  t0  3 + �

� . As a result, we have

Eavg
stab(T,Lsc,D, n)  L|⌦|

n
·
✓
�

�
+ 3

◆
+

8L2

n�
· ln
✓
�

�
+ 3

◆
� 8L2

n�
·
✓
�

�
+ 1

◆
· lnT

T
.

Noting the relation (2.18) and applying Theorem 4.2, we have

2Eavg
stab(T,Lsc,D, n) + Eavg

opt (T,Lsc,D, n) � �|⌦|2

32n
.

It follows that

Eavg
opt (T,Lsc,D, n)

� �|⌦|2

32n
� 2L|⌦|

n
·
✓
�

�
+ 3

◆
� 16L2

n�
· ln
✓
�

�
+ 3

◆
+

16L2

n�
·
✓
�

�
+ 1

◆
· lnT

T

� 16L2

n�
·
✓
�

�
+ 1

◆
· lnT

T
�
⇢
2L|⌦|
n

·
✓
�

�
+ 3

◆
� �|⌦|2

32n
+

16L2

n�
· ln
✓
�

�
+ 3

◆�
.

Recall that L = |⌦|� + b and C = 2L|⌦|
n ·

⇣
�
� + 3

⌘
� �|⌦|2

32n + 16L2

n� · ln
⇣

�
� + 3

⌘
. We

have obtained the desired lower bound.
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To illustrate the practical value of Theorem 4.5, we recall the work of [23]. In [23,
Theorem 5], they established the first fast convergence rate for averaged outputs
of online gradient descent algorithm for strongly convex loss functions. Following a

variant of [50, Theorem 1] in which we choose the step sizes ↵t = O

⇣
1
t

⌘
, we can

get a regret bound of log(T ) for the projected online gradient descent algorithm.
Combine these two results and we obtain an upper bound of the optimization error,

i.e., O
⇣

log T
T

⌘
. However, our theory can only obtain a matching lower bound with

an undesirable o↵set C.

5. Examples

In this section, we illustrate the stability results obtained in Section 3 using three
specific examples, namely, AUC maximization, metric learning and MEE. In the
following examples, the model parameter w is assumed to be in ⌦ = {w : kwk 
r0}. In addition, we assume kxk  B1 and |y|  B2.

In the following, ✏stab(A, T, `, D, n) means the stability parameter for both the
last output of SGD and the average of its iterates.

5.1. AUC Maximization

Area under ROC (AUC) is a metric which is widely used for measuring the clas-
sification performance for imbalanced data [6,14,17]. The AUC score of a scoring
funciton is the probability of a random positive example ranked higher than a
random negative example [17,10]. Here we consider a population version of the
regularization framework for AUC maximization in [45]:

min
w

R(w) := E[`(w, z, z
0)], (5.1)

where `(w, z, z
0) = (1�(x�x

0)>w)2I{y=1^y0=�1}+(µ/2)kwk2. Note that an optimal
solution w? for R(w) must lie in a ball about 0 with the radius r0 =

p
2/µ since

(µ/2)kw?k2  R(w?)  R(0)  1. Hence one can let w in (5.1) satisfying kwk  r0.

As an application of Theorem 3.3, we have

Corollary 5.1. For the AUC maximization problem (5.1), the loss function
`(·; z, z0) is µ-strongly convex, (4B1 + 8B2

1

p
2/µ +

p
2µ)-Lipschitz and (8B2

1 + µ)-
smooth for every example points z and z

0. The projected SGD with the constant
step size ↵  1/(4B2

1 + µ) has the stability

✏stab(A, T, `, D, n) 
8(4B1 + 8B2

1

p
2/µ+

p
2µ)2

nµ

h
1� (1� ↵µ

2
)T�1

i
.

Proof. Since `(w; z, z0) = (1 � (x � x
0)>w)2I{y=1^y0=�1} + (µ/2)kwk2, it is easy

to check that `(w; z, z0) is (4B1+8B2
1r0+µr0)-Lipschitz and (8B2

1 +µ)-smooth for
every example points z and z

0. Note that r0 =
p

2/µ. Then we finish the proof by
substituting these constants into Theorem 3.3.
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For the case of varying step sizes, applying Theorem 3.4, we have

Corollary 5.2. For the AUC maximization problem (5.1), the loss function
`(·; z, z0) is µ-strongly convex, (4B1 + 8B2

1

p
2/µ +

p
2µ)-Lipschitz and (8B2

1 + µ)-
smooth for every example points z and z

0. The projected SGD with the varying step
size ↵t =

2
�t has the stability

✏stab(A
last

, T, `, D, n) 
8(4B1 + 8B2

1

p
2/µ+

p
2µ)2

nµ

✓
1� 1 + d8B2

1/µe
T � 1

◆
+
⇢

n

�
2 + d8B2

1/µe
�
,

wherein ⇢ = 1 + (1 + 2B1

p
2/µ)2.

Proof. We just need to show that supw,z,z0 `(w, z, z
0) = 1+(1+2B1

p
2/µ)2. Since

`(w; z, z0) = (1� (x� x
0)>w)2I{y=1^y0=�1} + (µ/2)kwk2 and kxk  B1, kwk  r0

by assumption, it is direct to find that supw,z,z0 `(w, z, z
0)  µr20

2 + (1 + 2B1r0)2.

Recall r0 =
q

2
µ . Thus we obtain ⇢ = supw,z,z0 `(w, z, z

0) = 1 + (1 + 2B1

p
2/µ)2.

5.2. Metric Learning

In supervised metric learning, the distance between two examples x and x
0 w.r.t

M 2 Sd+ is defined by kx� x
0k2M = (x� x

0)>M(x� x
0), where Sd+ denotes the cone

of all d⇥d p.s.d. matrices. For every pair of examples with labels (x, y) and (x0
, y

0),
denote Iyy0 = 1 if y = y

0, otherwise Iyy0 = �1. Using the following logistic loss
(e.g. [16]), the ERM formulation for metric learning can be written as

min
M2⌦

nX

i=1

nX

j=1

log
⇥
1 + exp

�
Iyiyj (kxi � xjk2M )

�⇤
, (5.2)

where ⌦ := {M 2 Sd+ : kMkF  r0} with k · kF denoting the Frobenius norm of
matrix. Its population risk can be expressed as E

⇥
log
�
1 + exp

�
Iyy0(kx� x

0k2M
��⇤

.

For any matrices A and B, let hA,Bitr = trace(A>
B). In this case, the model

parameter w = M and

`(w, z, z
0) = log

⇥
1 + exp

�
Iyy0hw, (x� x

0)(x� x
0)>itr

 ⇤
.

By Theorem 3.2, we have the following result.

Corollary 5.3. For the metric learning problem (5.2), the loss function `(·; z, z0)
is (4B4

1)-smooth, convex and (4B2
1)-Lipschitz for every example points z and z

0.
The projected SGD with the step sizes ↵t  1/(2B4

1) has the stability

✏stab(A, T, `, D, n)  64B4
1

n

T�1X

t=1

↵t,

where T is the number of updates.
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Proof. We first give one claim which is easy to be verified. Rewrite `(w; z, z0) =
g1(g2(w)), where g1 is L1�Lipschitz, �1�smooth and g2 is L2�Lipschitz,
�2�smooth. Then, `(w; z, z0) is (L1L2)�Lipschitz and (L1�2 + L

2
2�1)�smooth.

Rewrite `(w; z, z0) = g1(g2(w)), where
8
<

:

g1(u) = log{1 + exp(u)},
u = g2(w),

g2(w) = Iyy0hw, (x� x
0)(x� x

0)>itr.

We have g1 is 1�Lipschitz, 1/4�smooth and g2 is (4B2
1)-Lipschitz, 0�smooth as

rg2(w) = Iyy0(x�x
0)(x�x

0)>. Thus we have L = 4B2
1 and � = 4B4

1 . Substituting
these constants into Theorem 3.2 we have proved the Corollary 5.3.

5.3. Minimum Error Entropy Principle

For simplification, we concentrate on a simple linear regression case of the general
framework of MEE principle in [20,19,32], i.e.,

min
kwkr0

R(w) := E[`(w, z, z
0)], (5.3)

where the loss

`(w, z, z
0) = 1� exp

✓
� ((y � y

0)� (x� x
0)>w)2

2h2

◆

with a scaling parameter h > 0. It is obvious that the loss function is non-convex.
Notice that `(w, z, z

0) is negative and bounded with supw,z,z0 `(w, z, z
0) = 1.

Then we can use Theorem 3.5 to give a uniform stability of the projected SGD for
MEE in the following corollary.

Corollary 5.4. For MEE problem (5.3), the loss function `(·; z, z0) 2 [0, 1) is
L-Lipschitz and �-smooth for every example points z and z

0 with the following
constants

⇢
L = 4

h2 · (B2
1r0 +B1B2),

� = 4
h2 ·B2

1 + 16
h4 · (B2

1r0) +B1B2)2.

The projected SGD with step sizes ↵t  c
t for somec > 0 satisfies the uniform

stability with

✏stab(A
last

, T, `, D, n)  1 + 1/(�c)

n� 1
· (4cL2)

1
1+�c (T � 1)

�c
1+�c +

4cL2

n(T � 1)
+

1

n
,

where T is the number of updates.

Proof. We now calculate L and � of the loss ` in the MEE problem (5.3). Rewrite
`(w; z, z0) = g1(g2(w)), where g1(u) = 1 � exp{� u2

2h2 }, u = g2(w) and g2(w) =
(x�x

0)>w�(y�y
0). Assume g1 is L1�Lipschitz, �1�smooth and g2 is L2�Lipschitz,

�2�smooth. Thus we have
⇢
L1 = 2

h2 · (B1r0 +B2), L2 = 2B1,

�1 = 1
h2 + 4

h4 · (B1r0 +B2)2, �2 = 0.
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And recalling the simple claim at the beginning of the proof of Corollary 5.3, we
have

⇢
L = 4

h2 · (B2
1r0 +B1B2),

� = 4
h2 ·B2

1 + 16
h4 · (B2

1r0 +B1B2)2.

6. Conclusion

In this paper we establish the stability and its trade-o↵ with optimization error of
SGD algorithms for pairwise learning. Stability results of SGD hold true for both
convex and non-convex cases. The trade-o↵ results are established by deriving the
lower bound for the minimax statistical error from which lower bounds for the con-
vergence rate of SGD can be obtained for the cases of smooth convex and strongly
convex losses. Examples are given to illustrate our main results in specific pairwise
learning tasks such as AUC maximization, metric learning and MEE principle.

There are several directions for future work. Firstly, the stability results we
established are not data-dependent. It would be nice to obtain data-dependent
bounds related to the curvature of the loss function and the geometry of the training
data. Secondly, the lower bounds for optimization error of SGD have an undesired
bias term in Theorems 4.4 and 4.5. We do not know how to get rid of this term.
Thirdly, the stability and generalization bounds here can not explain why SGD
iterates converge to a good local minimum for the non-convex case of MEE. It was
shown in [20] that the iterates of SGD for pairwise learning converge to the target
function for large enough h. However, it remains an open question how to establish
similar results for a general scaling parameter h. Finally, generalization bounds and
stability results are obtained in expectation. It is unclear to us how to derive the
bounds with high probability.
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Appendix A. Proof of Lemma 3.1

Let `Mt(w) = 1
t�1

Pt�1
j=1 `(w, z⇠t , z⇠j ) wherein Mt = {z⇠1 , · · · , z⇠t}. We can simplify

the equation of Gt as Gt(wt�1) = wt�1 � ↵t�1rw`Mt(wt�1). It is obvious that
`Mt(w) has the same properties of convexity and smoothness with `(w; z⇠t , z⇠j ).
Then we prove the three claims in Lemma 3.1.

1. If ` is �-smooth, then `Mt(w) is also �-smooth. By the triangle inequality and
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the �-smoothness of `Mt ,

kGt(w
0)�Gt(w)k  kw0 �wk+ ↵t�1krw`Mt(w

0)�rw`Mt(w)k
 kw0 �wk+ ↵t�1�kw0 �wk = (1 + ↵t�1�)kw0 �wk.

2. We have

kGt(w
0)�Gt(w)k2 = k(w0 �w)� ↵t�1(rw`Mt(w

0)�rw`Mt(w))k2

= kw0 �wk2 + ↵
2
t�1krw`Mt(w

0)�rw`Mt(w)k2

�2↵t�1hrw`Mt(w
0)�rw`Mt(w),w0 �wi

 kw0 �wk2 �
⇣2↵t�1

�
� ↵

2
t�1

⌘
krw`Mt(w

0)�rw`Mt(w)k2

 kw0 �wk2, (A.1)

wherein the first inequality follows from the 1
� -co-coerciveness of rw`Mt(·),

namely

hrw`Mt(w
0)�rw`Mt(w),w0 �wi � 1

�
krw`Mt(w

0)�rw`Mt(w)k2,

since `Mt is both convex and �-smooth from our assumptions of `. The last
inequality in (A.1) holds because we assume ↵t�1  2

� .
3. We have �(w) = `Mt(w)� �

2 kwk2 is convex and (� � �)-smooth, which implies

the gradient of � is
⇣

1
���

⌘
-co-coercive. Thus

hrw`Mt(w
0)�rw`Mt(w),w0 �wi � ��

� + �
kw0 �wk2

+
1

� + �
krw`Mt(w

0)�rw`Mt(w)k2.

With this inequality in mind we have

kGt(w
0)�Gt(w)k2 = kw0 �wk2 + ↵

2
t�1krw`Mt(w

0)�rw`Mt(w)k2

�2↵t�1hrw`Mt(w
0)�rw`Mt(w),w0 �wi


✓
1� 2

��↵t�1

� + �

◆
kw0 �wk2 �

✓
2↵t�1

� + �
� ↵

2
t�1

◆
krw`Mt(w

0)�rw`Mt(w)k2


✓
1� ��↵t�1

� + �

◆2

kw0 �wk2,

wherein the last inequality follows from our assumption ↵t�1  2
�+� and the

inequality
p
1� x  1� x

2 which holds for x 2 [0, 1].

⇤
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Appendix B. Proof of Theorem 4.1

As we are considering the worst case over the data distribution family D and the
loss function family Lc, we just need to find some special distributions from D and
a specific loss from Lc and under these specific cases to derive the desired lower
bound.

Specifically, we consider a particular classification problem. Recall the sample
space Z = X ⇥ Y where X is a domain in Rd and Y = {�1,+1}. Naturally, Z
can be divided into two parts, viz., Z+ = X ⇥ {+1} and Z� = X ⇥ {�1}. Also we
divide X into two disjoint parts, namely, X1 and X2.

We first consider a special distribution P1 on the sample space Z. Denote the
marginal distribution of P1 on X by P1X . We assume P1X (x 2 X1) = P1X (x 2
X2) =

1
2 . Accordingly, we can write Z+ = (X1 ⇥ {+1}) t (X2 ⇥ {+1}) and Z� =

(X1 ⇥ {�1}) t (X2 ⇥ {�1}) using t to denote the disjoint union. Then, define
corresponding conditional probabilities as follows:

P1,y|X (y = 1|x 2 X1) =
1

2
+

⌫p
6n

, P1,y|X (y = �1|x 2 X1) =
1

2
� ⌫p

6n
,

P1,y|X (y = 1|x 2 X2) =
1

2
� ⌫ � 1p

6n
, P1,y|X (y = �1|x 2 X2) =

1

2
+

⌫ � 1p
6n

,

wherein the constant ⌫ 2 (1,
p
6
2 ) to ensure that the above four probabilities are all

in (0, 1). Using the law of total probability, we have

P1(z 2 Z+) =
1

2
·
⇣1
2
+

⌫p
6n

+
1

2
� ⌫ � 1p

6n

⌘
=

1

2
+

1

2
p
6n

,

P1(z 2 Z�) =
1

2
·
⇣1
2
� ⌫p

6n
+

1

2
+

⌫ � 1p
6n

⌘
=

1

2
� 1

2
p
6n

.

Similarly, we can define another distribution P2 on the same splitting of Z.
Assume P2X (x 2 X1) = P2X (x 2 X2) = 1

2 . Its conditional probabilities are given
by

P2,y|X (y = 1|x 2 X1) =
1

2
� ⌫p

6n
, P2,y|X (y = �1|x 2 X1) =

1

2
+

⌫p
6n

,

P2,y|X (y = 1|x 2 X2) =
1

2
+

⌫ � 1p
6n

, P2,y|X (y = �1|x 2 X2) =
1

2
� ⌫ � 1p

6n
.

Then, we have

P2(z 2 Z+) =
1

2
� 1

2
p
6n

, P2(z 2 Z�) =
1

2
+

1

2
p
6n

.

Let the sample S1 and S2 are i.i.d. drawn from P1 and P2, respectively.
Next, we define a specific convex and �-smooth loss function from the loss

function family Lc. Denote w 2 ⌦ as the parameter of the hypothesis function
h, where ⌦ is the parameter space. Recall that we have assumed ⌦ has a finite
diameter i.e. |⌦| < 1 and for simplicity, we also assume ⌦ is centered by 0 without
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loss of generality. Let w[1] be the first coordinate of w and denote

f1(w) =

(
�
2 (w[1]� r)2 for |w[1]� r|  r

2 ,

�r
2 |w[1]� r|� �r2

8 otherwise;

f2(w) =

(
�
2 (w[1] + r)2 for |w[1] + r|  r

2 ,

�r
2 |w[1] + r|� �r2

8 otherwise.

The pairwise loss function `(w; z, z0) : ⌦ ⇥ Z ⇥ Z �! R in our purpose is defined
as

`(w; z, z0) =

8
<

:

f1(w) for z 2 Z+, z
0 2 Z+,

1
2 (f1(w) + f2(w)) for z 2 Z+, z

0 2 Z� or z 2 Z�, z
0 2 Z+,

f2(w) for z 2 Z�, z
0 2 Z�.

It is easy to see that that ` is convex and �-smooth with respect to the first argu-
ment.

Now we consider the excess risks of the above specific loss ` under these two
distributions which is given by

R1(w) = E(z,z0)⇠P1⇥P1
[`(w; z, z0)]

= P(z 2 Z+, z
0 2 Z+) · f1(w) + P(z 2 Z�, z

0 2 Z�) · f2(w)

+ P(z 2 Z+, z
0 2 Z�) ·

1

2
(f1(w) + f2(w)) + P(z 2 Z�, z

0 2 Z+) ·
1

2
(f1(w) + f2(w))

= P1(z 2 Z+)P1(z
0 2 Z+) · f1(w) + P1(z 2 Z�)P1(z

0 2 Z�) · f2(w)

+ P1(z 2 Z+)P1(z
0 2 Z�) ·

1

2
(f1(w) + f2(w)) + P1(z 2 Z�)P1(z

0 2 Z+) ·
1

2
(f1(w) + f2(w))

=

✓
1

2
+

1

2
p
6n

◆2

· f1(w) +

✓
1

2
� 1

2
p
6n

◆2

· f2(w)

+

✓
1

2
+

1

2
p
6n

◆✓
1

2
� 1

2
p
6n

◆
· (f1(w) + f2(w))

=

✓
1

2
+

1

2
p
6n

◆
· f1(w) +

✓
1

2
� 1

2
p
6n

◆
· f2(w).

Similarly, we have that

R2(w) = E(z,z0)⇠P2⇥P2
[`(w; z, z0)] =

✓
1

2
� 1

2
p
6n

◆
· f1(w) +

✓
1

2
+

1

2
p
6n

◆
· f2(w).

Denote the excess risks as �R1(w) := R1(w) � infw2⌦ R1(w) and �R2(w) :=
R2(w)� infw2⌦ R2(w).

With the above preparations, we are now in the position to use the
Le Cam’s method ([27,38,39]) to estimate the minimax statistical error, i.e.,
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inf ewn
maxi2{1,2} ESi⇠Pn

i
[�Ri(ewn(Si))]. To this end, we write R1(w) in details as

R1(w) =

8
>>>>>>>>><

>>>>>>>>>:

⇣
1
2 + 1

2
p
6n

⌘
�r
2

�
3r
4 �w[1]

�
+
⇣

1
2 � 1

2
p
6n

⌘
�r
2

�
� 5r

4 �w[1]
�
, if w[1]  �3r

2 ,
⇣

1
2 + 1

2
p
6n

⌘
�r
2

�
3r
4 �w[1]

�
+
⇣

1
2 � 1

2
p
6n

⌘
�
2 (r +w[1])2, if |w[1] + r|  r

2 ,⇣
1
2 + 1

2
p
6n

⌘
�r
2

�
3r
4 �w[1]

�
+
⇣

1
2 � 1

2
p
6n

⌘
�r
2

�
3r
4 +w[1]

�
, if |w[1]|  r

2 ,⇣
1
2 + 1

2
p
6n

⌘
�
2 (w[1]� r)2 +

⇣
1
2 � 1

2
p
6n

⌘
�r
2

�
3r
4 +w[1]

�
, if |w[1]� r|  r

2⇣
1
2 + 1

2
p
6n

⌘
�r
2

�
w[1]� 5r

4

�
+
⇣

1
2 � 1

2
p
6n

⌘
�r
2

�
3r
4 +w[1]

�
, if w[1] > 3r

2 .

Thus, we have

rwR1(w) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

⇣
��r

2 , 0, · · · , 0
⌘>

, if w[1]  �3r
2 ,

⇣
( 12 � 1

2
p
6n

)� ·w[1] + ( 14 � 3
4
p
6n

)�r, 0, · · · , 0
⌘>

, if |w[1] + r|  r
2 ,⇣

� �r
2
p
6n

, 0, · · · , 0
⌘>

, if |w[1]|  r
2 ,⇣

( 12 + 1
2
p
6n

)� ·w[1] + (� 1
4 � 3

4
p
6n

)�r, 0, · · · , 0
⌘>

, if |w[1]� r|  r
2⇣

�r
2 , 0, · · · , 0

⌘>
, if w[1] > 3r

2 .

Let w⇤
1 be (any) one of the minimum points of R1(w), i.e. R1(w⇤

1) = infw2⌦ R1(w).
From the explicit form of rwR1(w), it is direct to find that ( 12 + 1

2
p
6n

)� ·w⇤
1[1] +

(� 1
4 � 3

4
p
6n

)�r = 0. As a result, we have w⇤
1[1] =

r
2 + r

1+
p
6n

:= �. To be more
specific, we can further assume that the other coordinates of w⇤

1 except w⇤
1[1] all

equal to zero. Thus R1(w⇤
1) = infw2⌦ R1(w) = 3(

p
6n�1)�r2

8
p
6n

. Denote w1,right :=
(2�, 0, . . . , 0). So we have for any estimator ewn s.t. |ewn[1] � w⇤

1[1]| � �, we have

�R1(ewn) = R1(ewn)�R1(w⇤
1) � min{R1(0), R1(w1,right)}� 3(

p
6n�1)�r2

8
p
6n

= 3�r2

8 �
3(

p
6n�1)�r2

8
p
6n

= 3�r2

8
p
6n

.
Similarly, we write R2(w) in details as

R2(w) =

8
>>>>>>>>><

>>>>>>>>>:

⇣
1
2 + 1

2
p
6n

⌘
�r
2

�
�w[1]� 5r

8

�
+
⇣

1
2 � 1

2
p
6n

⌘
�r
2

�
3r
4 �w[1]

�
, if w[1]  �3r

2 ,
⇣

1
2 + 1

2
p
6n

⌘
�
2 (r +w[1])2 +

⇣
1
2 � 1

2
p
6n

⌘
�r
2

�
3r
4 �w[1]

�
, if |w[1] + r|  r

2 ,⇣
1
2 + 1

2
p
6n

⌘
�r
2

�
w[1] + 3r

4

�
+
⇣

1
2 � 1

2
p
6n

⌘
�r
2

�
3r
4 �w[1]

�
, if |w[1]|  r

2 ,⇣
1
2 + 1

2
p
6n

⌘
�r
2

�
w[1] + 3r

4

�
+
⇣

1
2 � 1

2
p
6n

⌘
�
2 (w[1]� r)2, if |w[1]� r|  r

2⇣
1
2 + 1

2
p
6n

⌘
�r
2

�
w[1] + 3r

4

�
+
⇣

1
2 � 1

2
p
6n

⌘
�r
2

�
w[1]� 5r

4

�
, if w[1] > 3r

2 .
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Thus, we have

rwR2(w) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

⇣
��r

2 , 0, · · · , 0
⌘>

, if w[1]  �3r
2 ,

⇣
( 12 + 1

2
p
6n

)� ·w[1] + ( 14 + 3
4
p
6n

)�r, 0, · · · , 0
⌘>

, if |w[1] + r|  r
2 ,⇣

�r
2
p
6n

, 0, · · · , 0
⌘>

, if |w[1]|  r
2 ,⇣

( 12 � 1
2
p
6n

)� ·w[1] + (�1
4 + 3

4
p
6n

)�r, 0, · · · , 0
⌘>

, if |w[1]� r|  r
2⇣

�r
2 , 0, · · · , 0

⌘>
, if w[1] > 3r

2 .

Let w⇤
2 be (any) one of the minimum points of R2(w), i.e. R2(w⇤

2) = infw2⌦ R2(w).
From the explicit form of rwR2(w), it is direct to find that ( 12 � 1

2
p
6n

)� ·w⇤
2[1] +

(� 1
4 + 3

4
p
6n

)�r = 0. So we have w⇤
2[1] = � r

2 � r
1+

p
6n

= ��. For simplicity, we
can further assume that the other coordinates of w⇤

2 except w⇤
2[1] all equal to zero.

Thus R2(w⇤
2) = infw2⌦ R2(w) = 3(

p
6n�1)�r2

8
p
6n

. Let w2,left = (�2�, 0, . . . , 0). So we
have for any ewn s.t. |ewn[1]�w⇤

2[1]| � �, we have �R2(ewn) = R2(ewn)�R2(w⇤
2) �

min{R2(0), R2(w2,left)}� 3(
p
6n�1)�r2

8
p
6n

= 3�r2

8 � 3(
p
6n�1)�r2

8
p
6n

= 3�r2

8
p
6n

.
Combining the above two situations, we have that for any output ewn, and

8i 2 {1, 2}, if |ewn[1]�w⇤
i [1]| � �, then �Ri(ewn) � 3�r2

8
p
6n

.
Then, for any i = 1, 2 there holds

ESi [�Ri(ewn(Si))] � P
n
i (|ewn[1]�w⇤

i [1]| � �) · 3�r2

8
p
6n

.

Consequently,

inf
ewn

max
i2{1,2}

ESi [�Ri(ewn(Si))] �
3�r2

8
p
6n

inf
ewn

max
i2{1,2}

P
n
i (|ewn[1]�w⇤

i [1]| � �). (B.1)

By Le Cam’s method ([27,38,39]), when |w⇤
1[1]�w⇤

2[1]| = 2�, we can further reduce
the estimation of the lower bound of the right hand side of (B.1) to a binary
hypothesis testing problem:

inf
ŵ2⌦

max
i2{1,2}

P
n
i (|ŵ[1]�w⇤

i [1]| � �) � inf
�

max
i2{1,2}

P
n
i (�(Zn

i ) 6= i), (B.2)

where the infimum is taken over all binary testing functions � : Zn ! {1, 2}. Thus
by the standard analysis of Le Cam’s method, we can further obtain

inf
�

max
i2{1,2}

P
n
i (�(Zn

i ) 6= i) � 1

2
· (1�

q
KL(Pn

1 kPn
2 )/2), (B.3)

where KL(Pn
1 kPn

2 ) is the KL divergence. By the assumption of sampling indepen-
dence, we have KL(Pn

1 kPn
2 ) = nKL(P1kP2). Furthermore, using the formulation of

the distributions P1 and P2, we have KL(P1kP2) = 1p
6n

log

✓
1+ 1p

6n

1� 1p
6n

◆
. Note that

log
⇣

1+x
1�x

⌘
 3x for x 2 [0, 0.5]. Thus KL(P1kP2)  3

6n = 1
2n . Plugging the above
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results into (B.3) gives

inf
�

max
i2{1,2}

P
n
i (�(Zn

i ) 6= i) � 1

2

 
1�

r
1

4

!
=

1

4
. (B.4)

Combining the results (B.1), (B.2) and (B.4), we have

inf
ewn

max
i2{1,2}

ESi [�Ri(ewn(Si))] �
3�r2

8
p
6n

· 1
4
=

3�r2

32
p
6n

. (B.5)

To ensure both w⇤
1 and w⇤

2 are included in ⌦, it must hold that kw⇤
1k2 = kw⇤

2k2 =
�  |⌦|

2 . Recall that � = r
2 + r

1+
p
6n

< r. Thus it is su�cient to assume r  |⌦|
2 .

This means that we can take r as large as |⌦|
2 . Take this into account and there

exists ` such that

inf
ewn

sup
D2D

ES⇠Dn [�R(ewn(S))] �
3�|⌦|2

128
p
6n

. (B.6)

The completes the proof of the theorem. ⇤

Appendix C. Proof of Theorem 4.2

We will follow the same procedure as the proof for Theorem 4.1. Specifically, we
first define two distributions P1 and P2 which are exactly the same as the definitions
in the proof of Theorem 4.1.

Then we define a specific strongly convex and strongly smooth loss function.
Let ⌦ be the parameter space. with a finite diameter i.e. |⌦| < 1 and without loss
of generality, we also assume ⌦ is centered by 0. Denote

f1(w) =
�

2
(w[1]� r)2 +

�

2

�
w[2]2 + · · ·+w[d]2

�
,

f2(w) =
�

2
(w[1] + r)2 +

�

2

�
w[2]2 + · · ·+w[d]2

�
.

We define the pairwise loss function `(w; z, z0) : ⌦⇥ Z ⇥ Z �! R as

`(w; z, z0) =

8
<

:

f1(w) for z 2 Z+, z
0 2 Z+,

1
2 (f1(w) + f2(w)) for z 2 Z+, z

0 2 Z� or z 2 Z�, z
0 2 Z+,

f2(w) for z 2 Z�, z
0 2 Z�.

It is easy to see that the above loss function `(w; z, z0) is strongly convex and �-
smooth w.r.t w. It is su�cient to show that f1(w) and f2(w) are both strongly
convex and �-smooth w.r.t w. Firstly the Hessian matrices of both f1(w) and
f2(w) have eigenvalues lower bounded by � > 0. So both f1(w) and f2(w) are
strongly convex. To show they are �-smooth, we calculate the gradients of f1(w)
and f2(w). We have rf1(w) = (�(w[1]� r),� ·w[2], . . . ,� ·w[d])> It is easy to
check that krf1(w1) � rf1(w2)k  �kw1 �w2k. Similarly we can show rf2(w)
is �-Lipschitz.
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Let distributions P1 and P2 be defined as in the proof of Theorem 4.1. Then,

R1(w) = E(z,z0)⇠P1⇥P1
[`(w; z, z0)] =

✓
1

2
+

1

2
p
6n

◆
· f1(w) +

✓
1

2
� 1

2
p
6n

◆
· f2(w).

We denote the excess risk under the distribution P1 as �R1(w) := R1(w) �
infw2⌦ R1(w). Similarly,

R2(w) = E(z,z0)⇠P2⇥P2
[`(w; z, z0)] =

✓
1

2
� 1

2
p
6n

◆
· f1(w) +

✓
1

2
+

1

2
p
6n

◆
· f2(w).

We denote the excess risk under the distribution P2 as �R2(w) := R2(w) �
infw2⌦ R2(w). Consequently,

inf
ewn

sup
`2Lsc,D2D

ES⇠Dn [�R(ewn(S)] � inf
ewn

max
i2{1,2}

ESi⇠Pn
i
[�Ri(ewn(Si))]. (C.1)

Thus it is su�cient to lower bound the right hand side of (C.1) using the Le Cam’s
method ([27,38,39]).

To this end, we write R1(w) as

R1(w) =
�1
2
+

1

2
p
6n

��
2
(r �w[1])2 +

�1
2
� 1

2
p
6n

��
2
(r +w[1])2

+
�

2

�
w[2]2 + · · ·+w[d]2

�

=
�

2

�
w[1]� rp

6n

�2
+

�r
2

2

�
1� 1

6n

�
+

�

2

�
w[2]2 + · · ·+w[d]2

�
.

Let w⇤
1 = argminw2⌦ R1(w). It is easy to see that w⇤

1[1] =
rp
6n

:= � and w⇤
1[2] =

· · · = w⇤
1[d] = 0. Thus R1(w⇤

1) = infw2⌦ R1(w) = �r2

2

�
1� 1

6n

�
. Also, for any

ewn s.t. |ewn[1] � w⇤
1[1]| � �, we have �R1(ewn) = R1(ewn) � R1(w⇤

1) � R1(0) �
�r2

2

�
1� 1

6n

�
= �r2

2 � �r2

2

�
1� 1

6n

�
= �r2

12n .
Likewise,

R2(w) ==
�

2

✓
w[1] +

rp
6n

◆2

+
�r

2

2

✓
1� 1

6n

◆
+

�

2

�
w[2]2 + · · ·+w[d]2

�
.

It is easy to see that w⇤
2 = argminw2⌦ R2(w) is given by w⇤

2[1] = � rp
6n

= ��

and w⇤
2[2] = · · · = w⇤

2[d] = 0. Thus R2(w⇤
1) = infw2⌦ R2(w) = �r2

2

�
1� 1

6n

�
. For

any estimator ewn such that |ewn[1] � w⇤
2[1]| � �, we have �R2(ewn) = R2(ewn) �

R2(w⇤
2) � R2(0)� �r2

2

�
1� 1

6n

�
= �r2

2 � �r2

2

�
1� 1

6n

�
= �r2

12n .
Combining the above estimation implies the following: for any output ewn, and

8i 2 {1, 2}, if |ewn[1] � w⇤
i [1]| � �, then �Ri(ewn) � �r2

12n . Consequently, for any
i = 1, 2, we obtain

ESi⇠Pn
i
[�Ri(ewn(Si))] � P

n
i (|ewn[1]�w⇤

i [1]| � �) · �r
2

12n
,
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which implies that

inf
ewn

max
i2{1,2}

ESi⇠Pn
i
[�Ri(ewn(Si))] �

�r
2

12n
· inf
ewn

max
i2{1,2}

P
n
i (|ewn[1]�w⇤

i [1]| � �).

(C.2)

By exactly the same analysis as (B.2), (B.3) and (B.4) in the proof of Theorem 4.1,
we further have

inf
ewn

max
i2{1,2}

P
n
i (|ewn[1]�w⇤

i [1]| � �) � 1

2

 
1�

r
1

4

!
=

1

4
. (C.3)

Combining the results (C.2), (C.2) and (C.3), we have

inf
ewn

max
D2D

ES⇠Dn [�R(ewn(S))] � inf
ewn

max
i2{1,2}

ESi⇠Pn
i
[�Ri(ewn(Si))] (C.4)

� �r
2

12n
· 1
4
=

�r
2

48n
. (C.5)

This completes the proof the theorem. ⇤
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