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It is common for search and optimization problems to have alternative equivalent encodings in ASP.
Typically none of them is uniformly better than others when evaluated on broad classes of problem
instances. We claim that one can improve the solving ability of ASP by using machine learning
techniques to select encodings likely to perform well on a given instance. We substantiate this claim
by studying the hamiltonian cycle problem. We propose several equivalent encodings of the problem
and several classes of hard instances. We build models to predict the behavior of each encoding,
and then show that selecting encodings for a given instance using the learned performance predictors
leads to significant performance gains.

1 Introduction

Answer Set Programming (ASP) [3] has been shown to be especially effective on search and optimization
problems whose decision versions are in the class NP, including many problems of practical interest
[9, 6]. Despite the ease of modeling and the demonstrated potential of ASP, using it poses challenges.
In particular, it is unlikely a single solver will emerge that would uniformly outperform other solvers.
Consequently, selecting a solver for an instance may mean the difference between solving the problem
within an acceptable time and having the solver run “forever.” To address the problem, solver selection,
portfolio solving, and automated solver parameter configuration have all been extensively studied [17,
10, 14, 16, 12]. The key idea has been to learn instance-driven performance models and use them, given
an instance, to select a solver (or a parameter configuration) that might perform well on that instance.

Another challenge is selecting the right encoding. It is well known that problems have alternative
equivalent encodings as answer set programs. The problem is that these encodings typically perform
differently when run on different instances. Consequently, one can seek program rewriting heuristics to
generate better performing programs, or develop methods for encoding selection and encoding portfolio
solving, similar to those used in portfolio solving. The first idea has received some attention in recent
years [4, 2, 11]. However, the approach to capitalize on the availability of collections of equivalent
encodings has not yet been explored.

We pursue here this latter possibility and offer for it a proof of concept. To this end, we study a com-
putationally hard hamiltonian cycle (HC) problem. We construct several ASP encodings of the problem
as well as a collection of hard instances. We show that using standard machine learning approaches
one can build a performance model for each encoding based on its performance data, and that these
performance models are effective in guiding a selection of encodings to be used with a particular in-
stance. Our experiments show performance improvements and suggest encoding selection as a technique
of improving ASP potential to solve hard problems.
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2 Encoding Candidates for the HC Problem

The HC problem has directed graphs as input instances. An instance is given by the lists of nodes and
links (edges), represented as ground atoms over a unary predicate node and a binary predicate link.
The code below represents a directed graph with four nodes and six links.

node (1..4).
link (1,2).1ink(1,3).1ink(2,1).1ink(3,4).1ink (4,2).1ink (4,3).

The HC problem imposes constraints on a set of edges selected to form a solution: there has to
be exactly one edge leaving each node, exactly one edge entering each node, and every node must be
reachable from every other node by a path of selected edges. These constraints can be modeled by
program rules such as those below.

%Select edges

{ hcyc(X,Y) : 1ink(X,Y) }=1 :- node(X).
{ hcyc(X,Y) : 1link(X,Y) }=1 :- node(Y).
%Define reachability

reach(X,Y) :- hcyc(X,Y).

reach(X,Z) :- reach(X,Y),hcyc(Y,Z).

%Enforce reachability
:- not reach(X,Y),node(X),node(Y).

The first two rules model the constraints on the number of selected edges (represented by a binary
predicate hcyc) leaving and entering each node. The third and the fourth rule together define the concept
of reachability by means of selected edges. Finally, the last rule, a constraint, guarantees that every node
is reachable from every other node by means of selected edges only.

We can rewrite this encoding to generate its variants. For example, reachability can be modeled by
selecting a node, say 1, and requiring that every node in the graph (including 1) is reachable from 1 by a
non-trivial path (at least one edge) of selected edges. Another possibility is to change the way we select
edges by rewriting the first two rules.

To obtain a collection of several high-performing encodings for the HC problem, we generated 15
encodings based on different constraint representation and rewriting ideas, as discussed above. We ran
these encodings on hard instances to the HC problem (cf. Section 3) and selected six encodings based
on (1) the percentage of solved instances, and (2) the number of instances for which an encoding yields
the fastest solve time. We refer to these encodings as Encoding 1,...,6.!

Table 1 summarizes the performance data for the six encodings on 784 hard instances (we comment
later on how the instances were generated). The results on the number of wins, instances solved fastest by
the encoding, show that our encodings have complementary strengths. We observe that the oracle always
selecting the fastest solver solves about 98.0% of all instances, an improvement of about 16% over
the best individual encoding. This indicates that there is much room for intelligent encoding selection
methods to improve the performance of ASP on the HC problem.

3 Data Collection

Performance data. A natural and often used class of graphs for experimental studies of algorithm
performance is the class of graphs generated randomly from some distribution space. We designed a
program to generate graphs with n nodes and e edges at random and searched for areas of hardness. We

Al six encodings, the data sets and detailed experimental results can be accessed at http://cs.uky.edu/~11i259/
encodingselection.
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Table 1: Performance of individual encodings and the oracle.

Encoding Solved Percentage%  Average Solved Runtime = Number of Wins
Encoding 1  82.3 84.1 102

Encoding2  71.8 46.6 126

Encoding 3  55.3 29.7 110

Encoding4  76.2 429 155

Encoding 5 55.4 31.9 120

Encoding 6 77.4 47.7 151

Oracle 98.0 22.8

have not identified any such area. Even when we considered graphs with thousands of nodes and the
number of edges selected from the phase transition range, they could be solved within 10 seconds.?

To find classes of graphs for which the HC problem is not easily solved in ASP, we consider structured
graphs (structure often is a source of hardness). Starting with some highly structured graph that has a
hamiltonian cycle, we remove edges at random until the graph is no longer hamiltonian. In this work,
we start the process with grid graphs shown in Figure 1. We set their dimensions and “hole” locations
so that to guarantee the existence of a hamiltonian cycle. Our experiments demonstrate that graphs with
the number of edges in the phase transition region tend to yield programs that often require hundreds or
thousands of seconds, even when the graphs have relatively few nodes (of the order of hundreds).

To collect performance data, we generated a large collection of graphs. Then we combined each
graph with each of the six encodings, and ran clasp/gringo® on the resulting programs. We set the cutoff
time to 200s. When an instance timed out, we used the penalized runtime as an approximation of its
real runtime, computed based on the number k of encodings for which the instance timed out. We then
selected instances with runtime between 50s and 200s for at least one encoding (not necessarily the same
one). We call these instances reasonably hard (those that cannot be solved with any encoding in under
200s are too hard, and those that can be solved with each encoding in under 50s are too easy). Finding
reasonably hard instances is time consuming. Our experiments show that only a small fraction falls into
this category (cf. Table 2). Thus, typically several graphs need to be generated before a single reasonably
hard instance is found. We used this method to build a collection of 784 reasonably hard instances.*

Figure 1: Structured instances: regular grid graph, regular grid graph with a hole, regular triangular
graph with cutting area

Instance features. To use machine learning to construct a predictor of performance for a given instance
on a particular encoding, we need informative and easy to compute instance features. In this work,

2 As e grows (given a fixed n), the likelihood of the graph having a hamiltonian cycle switches from 0 to 1. The region where
the switch occurs is called the phase transition. For many problems, such as satisfiability of k-CNF formulas, this is where hard
problems are located [18].

Shttps://potassco.org

“The graph instances and the performance data can be downloaded from http://cs.uky.edu/~11i259/
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Table 2: Runtime distribution of Encoding 2 on 500 different instances that are gained through eliminat-
ing random edges from a regular square grid graph with length of its side 10.

runtime <50s  50s ~200s 200s<
counts 330 52 118

we considered features of two types: graph features and encoding-based features. Some graph features
capture general characteristics of graphs such as the numbers of nodes and edges, or the minimum and
the maximum degrees. Other graph features are constructed to reflect aspects of the problem at hand.
In our case, they are designed to capture properties of depth-first and breadth-first search trees rooted in
nodes of the graph as they inform about reachability from a node.’

Encoding-based features of an instance are obtained by means of the program claspre®. It extracts
static and dynamic features of ground ASP programs while solving them for a short amount of time. In
order to obtain claspre features of a graph instance, we combine the instance with our six encodings and
then pass the resulting ground programs to claspre. In total, there are 569 features in 13 groups, one
group of graph features and six pairs of groups of claspre encoding-based static and dynamic features.
When learning performance predictors (the details are in the next section), we used a narrowed down set
of features to avoid overfitting and retain features that are informative for the HC problem.

4 Encoding Selection with Machine Learning

The goal of encoding selection is to identify encodings that promise good performance for a given in-
stance. Our work is based on the performance data and instance features computed and collected for the
data set of 784 reasonably hard instances. We use this data to build regression models for the six en-
codings we constructed as representations of the HC problem. Specifically, we build k-nearest neighbor
(KNN), decision tree (DT) and random forest (RF) regressors. All these models are directly imported
from python scikit-learn package.

To select informative features we perform in-group individual feature selection followed by the fea-
ture group selection. We start with an empty feature set, randomly add one or more features, and then
test the average performance of selected features to decide whether to keep them or not.

To evaluate a particular set of selected features, we randomly divide our data into the training set
(80%) and the test set (20%), train models using the training set, and test the performance of encoding
selection result on the test set. We partition training data into 10 bins and use 10-fold cross-validation
to improve the generalization performance. The approach we described in this section results in a set of
41 features (cf. Table 3), 27 graph features and 14 claspre static features, all obtained with Encoding 1.
Our results show that clapsre dynamic features are not as informative as graph features and claspre static
features. We note, however, that because we used the greedy feature selection, our set of features may
not be optimal and better selections may be possible.

5 Experimentation

Hardware. Our experiments were conducted on a computer with four cores, each with Intel i7-7700
3.60GHz CPU and 16GB RAM, running under 64-bit 18.04.2 LTS (Bionic Beaver) Ubuntu system. The

5 All features and explanations are available at http://cs.uky.edu/~11i259/encodingselection
Shttps://potassco.org/labs/claspre/
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Table 3: Selected instance features for encoding selection

ratio_node_edge avg_depth_beam Frac_Binary_Rules_hc1
ratio_bi_edge dfs_1st_back_depth Frac_Ternary_Rules_hcl
avg_out_degree sum_of_choices_along_path  Free_Problem_Variables_hcl
avg_in_degree depth_avg_dfs_backjump Problem_Variables_hcl
ratio_of_odd_out_degree depth_back_to_root Assigned_Problem_Variables_hc1
ratio_of_even_out_degree depth_back_to_any Constraints_hc1
ratio_of_odd_in_degree depth_one_path Rules_hcl
ratio_of_even_in_degree min_depth_bfs Frac_Normal_Rules_hcl
ratio_of_odd_degree max_depth_bfs Frac_Cardinality_Rules_hc1
ratio_of_even_degree avg_depth_bfs Frac_Choice_Rules_hc1
ratio_out_degree_less_than_.3  min_depth_beam Frac_Binary_Constraints_hcl
ratio_in_degree_less_than_3 max_depth_beam Frac_Ternary_Constraints_hcl
ratio_degree_less_than_3 avg_depth_beam Frac_Other_Constraints_hcl
avg_depth_bfs Frac_Unary_Rules_hcl

solver used is clasp’ version 3.3.2 with default parameter setting. The grounding tool is gringo® version
4.5.4. We choose 200 CPU seconds as cutoff time.

Analysis of encoding selection results. We performed encoding selection experiments using different
machine learning methods on the training set and test set described earlier. The models were trained
with the narrowed down set of features and hyper-parameters set to values obtained via the standard
hyper-parameter tuning process. The results are shown in Table 4.

The test set contains 156 instances randomly selected from the original data set of 784. The results
show that the encodings we used in the experiment have complementary strengths. The oracle solves
98.7%, or 154 out of 156 instances. Compared with Encoding 1, the always-select-best selection method
solves 14.7% more instances. We note that 98.7% is the upper bound for the performance that could be
achieved by encoding selection.

Our best predictor based on the decision tree method, solves 96.2% of instances, or 150 out of
156. This is very close to 98.7% of solved instances for the always-select-best oracle. Even the worst
performing of three machine learning models, based on the k-nearest neighbors algorithm, solves 92.9%
of instances, much better than any individual encoding. Overall, we find that each of the three machine
learning methods we studied provide promising results in terms of the percentage of the solved instances.

6 Summary

We applied machine learning techniques to build performance prediction models for a collection of six
encodings of the HC problem that showed complementary strengths on our data set. We designed features
to characterize problem instances (some of them problem independent and some reflecting the problem
of interest). Finally, we applied three kinds of regression models to construct performance predictors.
We used these predictors to select an encoding for an instance to run it on an ASP solver. The results
showed performance gain over individual encodings. Moreover, the encoding selection approach came
very close to the always-select-best oracle in terms of solved instances. We conclude that the encoding
selection method improves the solving capabilities of ASP solvers.

"https://potassco.org
$https://potassco.org
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Table 4: Test result of encoding selection experiment
Solved Percentage%  Average Solved Runtime = Number of Wins

Single encoding performance

Encoding 1 84.0 82.4 25
Encoding 2 71.2 44.0 29
Encoding 3 56.4 30.7 20
Encoding 4 78.8 38.6 28
Encoding 5 57.1 354 26
Encoding 6 79.4 48.1 26
Oracle performance

Oracle 98.7 21.1

Encoding selection

Encoding selection (KNN) 92.9 40.2

Encoding selection (DT) 96.2 42.2

Encoding selection (RF) 93.6 41.7

7 Future Work

It is unsatisfactory that the running time of our encoding selection approach is higher (about two times
higher in our experiments) than the optimal time of the always-select-best oracle. Closing that gap
is a challenge that will require more accurate runtime prediction. One way to attack the problem is
to identify more informative features, especially domain-specific features. Also, feature selection can
remove irrelevant and redundant attributes and has huge impacts on the performance of machine learning
models.

Another factor that affects the performance of solving an ASP problem is a specific solver used to
perform the search. The default parameter configuration may be good overall but more often than not
will not be optimal on specific instances. Work on parameter configuration, such as ParamILS [13], has
shown that a well-chosen parameter configuration can help achieve a performance improvement of over
one order of magnitude. Our next step is to combine encoding selection with parameter configuration.

The encoding candidates in our experiments were created and modified manually. However, it is
desirable to automate the process, that is, to generate candidates with a tool that is able to analyze an
encoding and rewrite it into several equivalent and efficient forms.
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