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ABSTRACT. Recently, there is considerable work on developing efficient sto-
chastic optimization algorithms for AUC maximization. However, most of
them focus on the least square loss which may be not the best option in prac-
tice. The main difficulty for dealing with the general convex loss is the pairwise
nonlinearity w.r.t. the sampling distribution generating the data. In this pa-
per, we use Bernstein polynomials to uniformly approximate the general losses
which are able to decouple the pairwise nonlinearity. In particular, we show
that this reduction for AUC maximization with a general loss is equivalent to
a weakly convex (nonconvex) min-max formulation. Then, we develop a novel
SGD algorithm for AUC maximization with per-iteration cost linearly w.r.t.
the data dimension, making it amenable for streaming data analysis. Despite
its non-convexity, we prove its global convergence by exploring the appealing
convexity-preserving property of Bernstein polynomials and the intrinsic struc-
ture of the min-max formulation. Experiments are performed to validate the
effectiveness of the proposed approach.

1. Introduction. Area under the ROC curve (AUC) [2, 6, 11, 14] is a widely
used metric for measuring classification performance in imbalanced classification
and bipartite ranking. In imbalanced classification, the instances in one class are
much more than the other class. Imbalanced data sets exist in many real-world
domains such as fraud detection, information retrieval and medical diagnosis. It is of
fundamental importance to develop efficient optimization algorithms for analyzing
streaming data which is prevalent at the big data era.

There are considerable efforts on developing batch (offline) algorithms for AUC
maximization, which use the entire data once, including the cutting plane algorithm
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[16] and gradient descent methods [3, 15, 35]. These algorithms have convergence
rates of O(min(l /e, 1/ \/E)) to achieve precision € which, however, needs high per-
iteration cost O(nd). Here, A\, n,d are the regularization parameter, the number of
examples, and the dimension of the data, respectively. Such algorithms are not
suitable for analyzing massive streaming data due to the expensive per-iteration
cost.

Stochastic optimization algorithms such as SGD [1, 18, 19, 28, 29, 30, 34, 33]
are iterative and incremental in nature and process each new sample (input) with
a computationally cheap update, making them amenable for large-scale streaming
data analysis. However, most of existing studies focus on classification error where
the objective function is linear w.r.t. the sampling distribution. This means that
the expectation in the expected risk is taken w.r.t. a single data point. In contrast,
the problem of AUC maximization involves the expectation of a pairwise loss func-
tion which depends on pairs of data points which makes the direct employment of
standard SGD infeasible.

The studies [17, 31, 34, 36] developed SGD or online gradient descent algorithms
for AUC maximization. Such appealing algorithms do gradient descent based on
gradient of the local error which compares the current example with all previous
ones. As a result, one needs to access previous examples which leads to expensive
space and per-iteration complexity of O(td) for d-dimensional data at iteration t¢.
Although this problem is partially mitigated by the use of buffers with a fixed size
B, this reduction is not necessarily an ideal approach. The work [12] followed the
same approach and noticed that such algorithms for the least square loss only need
to update the covariance matrix of the training data with per-iteration complexity
O(d?), which could be not scalable well to high-dimensional data.

The recent work [32, 22, 21] used the min-max reformulation of AUC maximiza-
tion with the least square loss. The main idea is to reduce the double integral w.r.t.
pairs of examples in the original objective function to a single integral w.r.t. an
individual example by introducing auxiliary variables. However, one shortcoming
of the above studies is that such methods depend critically on the structure of the
least square loss and can not apply to the general losses such as logistic loss and
hinge one. This largely limits the practical applications of AUC optimization algo-
rithms since the least square loss is arguably not the best suitable loss in practice.
The very recent work [20] considered AUC maximization with deep neural networks
associated with the least square loss, which resutls in a nonconvex-concave minmax
problem.

In this paper, we make efforts to develop novel SGD-type algorithms for AUC
maximization with a general loss. In particular, we first propose to use Bernstein
polynomials [25, 26] to uniformly approximate the general loss. Then, we derive its
equivalent (non-convex) min-max formulation which removes the pairwise structure
in the original AUC objective function. We show that this non-convex min-max
formulation is weakly convex [10, 24] in the primal variables and develop novel
SGD-type algorithms inspired by the recent work [27]. In contrast to the local
convergence proved in [27], we are able to show that our novel algorithms enjoy
the global convergence. The novel idea is the introduction of proximal terms only
on partial primal variables instead of all of them in our algorithmic design, and an
appealing relation between the original AUC objective function, which is convex due
to the convexity-preserving property of Bernstein polynomials, and the duality gap
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arising from the special structure of the min-max formulation (see more discussions
in Section 3).

2. AUC maximization with general loss and min-max reformulation. The
AUC score [14] has an elegant probabilistic formulation. Specifically, suppose
z = (z,y) and 2’ = (2/,y’) are independently drawn from an unknown (sampling)
distribution P on Z = X x Y where ) = {£1}. Then, the AUC score is the prob-
ability of a positive sample ranking higher than a negative sample (e.g., [5, 14])
which is given by

AUC(w)=Pr({w,z) > (w,2")|ly=1,y' =-1) :E[H[(w,xfzwzo] ’y: 1,9 = —1] , (2.1)

where the expectation is w.r.t. (z,2z’). Hence, maximizing AUC(w) is equivalent
to minimizing 1 — AUC(w) which is given by E[HKW,I,Z/KO]‘y =1,y =-1]. It
involves a pairwise 108 Ijw,z—z1y<0ljy=1]l[ =—1, i-e. the loss depends on a pair of
examples (,y) and (2’,y’). In practice, one often replaces the indicator function I
by a convex surrogate loss £ : R — RT which satisfies Ij(w,z—oy<0) < £((W, 2 —2')).
It can be any convex loss such as the hinge loss £(s) = (1 — s) or logistic regression
loss £(s) = log(1 + e~ *). One can find appealing results in [13] on how statistical
consistency is related to the choice of different loss functions.

Now AUC maximization can be equivalently formulated as

o, {g(w) = E[U(w @ —w 2"yl ——u] }, (2:2)

where the constant term Br( in the original formulation is ignored.

P P=oT)
Initial motivation for using Bernstein polynomials. We consider the
(stochactic) online setting where individual data points z = (x,y) are i.i.d from the
distribution P. The main difficulty for developing AUC optimization algorithms for
streaming data is that the population (expected) risk in (2.2) depends on pairs of
examples (z, z') which are statistically dependent as pairs of examples may share one
common individual example. The work [32] showed, for the least square loss, that
the original problem (2.2) is equivalent to a convex-concave (saddle) point problem
[23] where the new objective function depends on only one individual example.
Following the same spirit, since the least square loss is a polynomial function of
degree 2, one would naturally think of approximating the general loss ¢ by high-order
polynomial functions and then expect an equivalently saddle point reformulation.
One plain idea is to use m-th order Taylor polynomials (Taylor series) to approx-
imate ¢ which, however, is not convex even if ¢ is convex. Instead, we propose
to use the Bernstein polynomials (e.g., [25, 26]), useful tools from approximation
theory, to uniformly approximate a convex loss function. Specifically, the Bernstein
polynomial of degree m for a function ¢ :[0,1] =R are defined, for any u€[0,1], by
= k. (m " /m
B ju) = — ub (1 —u)™F = < )Ak 0) uk, 2.3
nte =32 e ) -t = 32 (T)areont, @)
where (') denotes the binomial coefficients and A*p(0) = Z?ZO(—l)k_j (I;)ap(#)
is the forward difference operator on ¢ at 0. If ¢ is Lipschitz continuous, then
By, (¢;-) converges uniformly to ¢ with a rate of (9(\/%), and the rate is O()
if ¢ has Lipschitz continuous gradient (See a self-contained proof in Part D of
the Appendix). More importantly, Bernstein polynomials are convexity-preserving,
ie. if ¢ is convex then B,,(y;-) is convex which is critical for deriving the global
convergence of our proposed algorithm later.
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To approximate the loss ¢ defined on the general interval, we assume D =

sup,cy |2]| < oo and thus s :== w'z — w2’ satisfies |s| < 2RD := L for any
w,z and 2’ as ||w|| < R. Now by changing variables u = ££* (i.e. s = L(2u — 1)),

the loss ¢ induces a function on the unit interval [0, 1] by letting ¢(u) = £(s) for any

€ [-L, L]. Consequently, there holds
L+wlaz— WTZ‘/)

2L
m

m L+w'z—w'a &
_ Ak

(k) pl0) (FHH 2 W T

i (7 ) (5) Soier2 4w a2 - w e

((w'z —w'a2') = B (g

LIt

e
:miliz: [(L/2+w x) Zm:z (77]:) (‘)W(L/Q_WTW)]C%]}
=%+1 f: [fi(w§ ) fi(w; x’)} » (24)

N
Il
=)

. ~ m k i
where fi(w;)=(5+wT2), and fi(wiz) =L, (1) (5) ZHEEO (L —wTa)k,

As argued in (2.4), AUC maximization with a general loss now becomes

uvrﬂ\iéla{f(w) . ﬁ ;E[ﬁ(ww)ﬂwz”ﬁ(wm/) =]} (25)

which is convex due to the convexity-preserving property of Bernstein polynomials
[25, 26].

2.1. Min-max formulation. Here, we show that the AUC maximization (2.5) is
equivalent to a (non-convex) min-max formulation, and discuss some properties of
its objective function. For the simplicity of notation, denote et = {e; (w,2)}™7,
where e/ (w,2) = fi(wz)l,,z) and denote e~ = {e; (w,2)}", where e; (W,z) =
fi(w;x)]l[y:_l]. Likewise, we define their expectations by E*(w) = {E}(w) :=
E.lef (w,2)]}7, and E~(w) = {E; (w) :=E.[e; (w,2)]}7. In addition, we define,
for any v=(w,a,b) ERIx R™1 xR™1 acR™?! and z=(x,y) € Z, that

F(v,a;z)= la|*+2a " (et+e7)+|jal|*—2a’e" +|b|*~2b e }.

-
2(m+1)
Theorem 2.1. AUC optimization (2.5) is equivalent to

min  maxq (v, a) := E,[F(v, a; 2)] (2.7)
iy e }

where the expectation E,[-] is taken w.r.t. z = (z,y).

Proof. Notice, since (z,y) and (2/,y") are independent, that the expectation terms
in (2.5) can be written by

E[fi(w; @) fi(ws &) ly=nLy=—1)] = Bz [fi(w; 2)Lyy] Bz [ fi(w; 2) =]
= B} (w)E; (w).
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Thus, the objective function in (2.5) can be rewritten as
2(m+1)f(w) =2(E")'E” = |[E* + E7|* - |E"||> — |E7|*.
Notice that
[ +E7* — [EF)* — |E|?
:moz}x{—||04H2—|-20zT (EJ“—l—Ef)}—}—main{||.':1||2 - 2aTE+}+mbin{||b||2—2bTE*}
= maxE. { | +2a7 (e + ) }+ minE. {[la]* - 2" e*}
+ mgnEz{HbHQ —2b'e }

=2(m + 1) minmaxE.{F(w,a,b,a;2)}.

ab «

This means that, for every w,

flw) = migl max ¢(w,a, b, a), (2.8)
a, a
and the optima are achieved at
a(w) = E*(w), b(w) = E~(w), a(w) = E*(w) +E~(w) (29
This completes the proof of the theorem. O

Properties of the min-max formulation. We discuss useful properties of the
min-max formulation and the function F. Firstly, we can show that u=(v,a) =
(w,a, b, a) in formulation (2.7) can all be restricted to a bounded domain. To see
this, notice from (2.8), (2.9) that any optimal point (v*, a*) satisfies a* =a(w*) =
Et(w*),b*=b(w*)=E~ (w*),a*=a(w*)=ET(w*) + E~(w*). Therefore, by the
definitions of E* and E~ and noting that |w 2| <||w||||lz[| <RD =%, we have

la*| < S" L =Ry, |la*| = |E*(w*) + E(w*)| < Ry + Re,
1=0

w33 () () el g,

=0 k=i

Therefore, without loss of generality, the variables (w,a, b, &) in formulation (2.7)
can be restricted to the bounded set v € Q; ={(w,a,b) : |[w| <R, |al]|<Ry,|b| <
Ry} and a€Qy={a: |a||<Ri+R.}.

Secondly, it is easy to see that the involved function F(v,«;z) is not convex
with respect to v = (w,a, b) and is strongly concave with respect to . Hence the
min-max formulation (2.7) is not a standard convex-concave saddle point problem
[23]. However, one can show that F is p-weakly convex on v for some p > 0,
Le. F(v,o;z) + §||v|* is convex on v for any a and z [24, 8] (See its proof
in Part A of the Appendix). Perhaps most importantly, one can further show
that adding a partial regularization term ||w]||? to F(v, a; z), instead of the square
norm of all primal variables |[v||?, will play the same convexity-inducing effect, i.e.
F(v,a;z) + %|wl|? is convex w.r.t. v for a sufficient large v > 0. To show this, let
us introduce some notations

m m
Sf =il Sf=> il - 1)L,

=0 1=0
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st =35 (1) () D v

1=0 k=1
Let
Yo = %ﬂ max{ (2R, +Ry)D*Sy +D?(S;)?, (R +2R2)D*S; +D?*(S7)?} (2.10)
and consider
P (v, 02) = F(v,:2) + 2w = Wi % (2.11)

Proposition 1. Assume v > o where g is given by (2.10). Then, for any fized
w;_1 and z, we have that @fy(v, «; z) is conver w.r.t. v and concave w.r.l. .

As we will see in the next section, this proposition plays a key role in designing
an SGD-type algorithm which enjoys the global convergence (see the proof in Part
B of the Appendix).

3. Algorithm and convergence analysis. In this section, we propose a stochas-
tic optimization algorithm for our novel min-max formulation (2.7). Our proposed
algorithm called SAUC is described in Algorithm 1 which is inspired by the recent
work [27]. In particular, the appealing work [27] studied a family of non-convex
min-max problems where the minimization component is weakly convex and the
maximization component is concave, which is motivated by the studies on weakly
convex minimization problems [8, 7].

Algorithm 1 Stochastic AUC Optimization (SAUC)

1: Input: R> 0,y >~ and 8 > 0.
2: Initialize vo = 0 and & = 0.
3: fort=1to7T —1do
4 Set vi=vi_1,al =a;—; and np, = %
for j=1tot do
Randomly sample 2} = (zf%,%) and compute

Y =Projq, (Vi_; —n: VP, (Vi_1,a_y;2})),
= Prong (01271 + ntvcx@fy (V;,l, a;’—ﬁ z;))
7. end for

8 Compute ¥, = 2 2"} vt and oy = ¢ Z;;E ol

9: end for

10: OQutput: vy := % ZZ:OI v; and ap = % th:ol ay.

Our algorithm SAUC has a cheap storage and per-iteration cost. Indeed, at
line 6, the samples {2} = (z},y})} are i.i.d from the distribution P on X' x . As
such, one only need to store the current sample with space O(d), which is linear
w.r.t. the data dimension. It makes SAUC the first truly online algorithm for AUC
maximization with general loss. The main per-iteration cost comes from lines 6
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and 7, which is the standard SGD-type algorithm by [23] for solving the standard
(convex-concave) stochastic saddle point problem:
\?enﬂnl ;neegz{@fy(v,a) =K. (® (v, a5 2)) }. (3.1)

Note that the projections at line 6 can be easily computed since €; and Q9
are bounded /¢5-balls. The computation of Vvé’; (involving the computation of
Vfi(w;z) and Vfj(w;z) etc.) only needs to compute and save the inner product
wT'z, which costs O(d) then do arithmetic operations O(m) times. Thus, the per-
iteration cost is O(m + d), where the m can be ignored for large d.

Compared with the work [27], the main difference of our algorithm from that
in [27] is that we propose to use the proximal term 7||lw — w;_1[|* in (3.1) in-
stead of £||v — V¢_1]|?. This simple design is important to prove the convergence
of the global convergence of Algorithm 1. To be more specific, we can inter-
pret the result in [27] under our setting of AUC maximization as follows. Let
P(v) := maxy ¢(v, ), where ¢(v, ) is defined in (2.5), and ¥, (v) := ¥(v) +r(v),
where r(v) is the indicator function of Q; (i.e. if v € Qq, then r(v) = 0; other-
wise, r(v) = 00). The work [27] transformed a constrained optimization problem,
namely minycq, ¥(v) to an unconstrained, however non-smooth optimization prob-
lem, i.e. miny ¢, (v). They used proximal term £|v —v,_1|? in (3.1) and accord-
ingly defined v, := argmin,cq, ¥(v) + 5[|v — v;||%. Then for 7 chosen uniformly
from {0, --- , T —1}, the following result, with appropriately choosing stepsizes, was
established E [dist? (0, 8¢,(v,))] < p?E|[v, — v, > < O(*21) namely, v, is close
to an e-stationary point (i.e. v,) of ¢,.(v) with e = O(y/log(T')/T). Note that this
only means the local convergence of v; and it is difficult to show the global conver-
gence since ¥(v) = (|JET +E~ |2 + ||al|? —2a"E* + ||b|2 - 2b"E7)/(2(m + 1)),
as a function of v = (w,a,b), is not convex.

The global convergence result for Algorithm 1 is stated as follows. Let w* :=
argmin <z f (w) to be an optimal solution of the original AUC maximization
problem (2.5).

Theorem 3.1. Assume the data {2} =(2},y}) € XxY :t€[1,T-1],1<j<t} are i.i.d
and consider the sequence {Wt}gl generated by Algorithm 1 with stepsizes {n =

B/\/t}. For the output defined by Wr =+ Z?;Bl wy, we get E[f (Wr)—f(w*)]? < S’%,

where Cy, is an absolute constant depending on m but independent of T'.

The proof of Theorem 3.1 requires the following lemma. It shows the convergence
of the SGD-type algorithm for solving the saddle point problem (3.1) (the inner loop
from line 5 to line 8 in Algorithm 1 with fixed ¢ in the outer loop). Recall that gpfy
is defined by (3.1) and define the duality gap at u; := (v, &) by

ex(0g) == max ¢l (v, a) — ‘{Iébnl ol (v, ). (3.2)

Lemma 3.2. Assume that the data {2} = (z¥y¥) :k e [Lt],j € [Lk]} is i.i.d. and
consider the sequence {u; t-Fl generated by the inner loop from line 5 to line 8 in
Algorithm 1 with the stepsize 1y = 3/\/t. Then we have Ele, ()] < Cy1/v/t, where
Cy is an absolute constant independent of t (see its explicit expression in the proof).

The proof of Lemma 3.2 is standard [23]. A self-contained proof can be found in
Part C of the Appendix. To prove Theorem 3.1, we further define, for any wy, that
Wi = argminy < g{f(W) + 3[|lw — W[|*}. Now we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. We first estimate f(w;) — f(w*). For this purpose, notice
the convexity of f(w) indicates
F(W) = f(W") < (Wi —w*) TV [ (W),

and the optimality condition of w; implies

(W — W) T (V (W) + (W — W) > 0.
Combining these two inequalities implies that

F(We) = f(W*) < y(Wy — W) (W5 — ).
Consequently,

F(We) = f(W") < 2Ry[[Wy — wi|. (3.3)

Moreover, the Lipschitz continuity of f(w) for |w| < R, we have |f(W;) — f(W)] <
Ly ||W¢ — V|| where Ly := D(S{ Ra+ Sy Ry)/(m+1) estimated as the upper bound
of ||V f(w)|. Combining this with (3.3) implies, for any ¢, that

fwi) = F(w") < (L1 + 2Ry)[[wi — Wi

By convexity and Cauchy-Schwarz inequality, the above estimation indicates

T-1 2 )2 T-1
(o) f(w)? < {; Z[f(v-m—f(w*)]} Sl > 0
t=0

Now observe that
Yie - _ Ve _ . AT _ _
§||Wt—Wtfl||2 Sf(Wt)+5HWt—WHH2—f(WH)—§HWH—Wt71||2 <e(uy), (3.5)
wherein the first inequality follows the optimality condition of w;_; and the ~-
strong convexity of f(w)+ I |lw—w,_1[|? for [|[w| < R, while the second inequality

can be derived as follows. Indeed, from (2.8) in the proof of Theorem 2.1 we know
that f(W;) = min, p maxy ¢(Wy, a, b, a) which implies that

£ + LWy — Wo—1||? = min max ¢(w, a, b, @) + LWy — w1 ||?
2 ab o 2
< max ¢(Vy, o) + 1||\7Vt —w;_1|* = max <pfy(\7t, ).
o 2 aEs
In addition, by (2.8) again
f(Wee1) + %Hwt—l —wi|?

= min{ £ () + 3w = Wit 2} = mip fminmax 6(v, @) + lw = wia P}

Y _ 20 - _ v _ 2
> min{min (v, &) + 5 [w = Wi [} = min {o(v, @) + gllw - wes [*}

= \?enﬂnl gay(v,at).

To further bound (3.5), we need the following elementary inequalities:
Wit = Wia||? = [|We — Wi ]|
=(IWe—1 = Wi | = |We = Wea[[) (Wit = Wea || + [[We — W)
<[Wier = Wil - (2| Wim1 = Weor || + [Wie1 — Wi))
=2[[Wio1 = Wema | - [[Wem1 — Wil + [[Wem1 — w2

1 _ . _
§§||Wt—1 =Wy |]? + 4| Wy — w2
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Combining this with (3.5) implies that
F(W0) < F(W1-0) + () + S ([Wemy = Wooa|? = W = e |P)
< f(Wio1) +e(e) + %HVAthl — Wil 4+ 29[ W1 — Wi
< f(Weer) + %HVAthl — V_Vt71||2 + e (),

where the last inequality used the fact %|[W;_1 — wy||? < e(@;) from (3.5). We also
notice, by the definition of w;_1, that

f(Wi—1) + %Hwtq —wi|? < f(Wia).
Combining the above two estimations, we get
F(%1) < F(Wemr) = It = W] 4 5 ().

Adding the inequalities from t = 1 to t = T, we have

T-1 T
DW= Wl|* < 3y7H(f(Wo) — f(Wr)) + 157D ety
=0

t=1

T
<3y '2LR) + 15771 ey

t=1

Combining this with (3.4) and taking expectation on both sides imply that

Bl ) - v < X2 o Ry 521@ ()]}

Combining it with Lemma 3.2 completes the proof with C,,, = 30(L; +2Rv)?(L1 R+
Ciy O

Trading off the approximation error of Bernstein polynomials and Theorem 3.1
yields the following final convergence rate for the original objective function g of
AUC maximization defined by (2.2).

Theorem 3.3. Consider a surrogate loss function ¢ on [—L, L], with Lipschitz
constant G, Bernstein approximation with degree m, and the SAUC output wr
after T iterations. Then we have

_ 9GRD BC™
— <
E[g(wr) Hviﬁip;g(w)]— i + T

where C and B are constants depending on G, R, D and 8 but independent of m
and T.

The proof of Theorem 3.3 is given in Part D of the Supplementray Material. From
the above theorem, we can choose m = logs(T'/*/logT) = O(log T) which yields
the final convergence rate of O(4/1/logT). However, this analysis and convergence
rate is not satisfactory. It remains a challenging problem to us on how to derive a
desirable final convergence rate.
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4. Experiments. In this section, we compare our proposed algorithm SAUC against
existing AUC optimization algorithms. In particular, SAUC-H and SAUC-L denotes
SAUC with the hinge loss and the logistic loss, respectively. All experiments were
implemented in Python 3 with 16 x 3.0GHz CPUs and 128GB memory.

We conducted our experiments on 9 benchmark datasets which are downloaded
from the LIBSVM [4] and UCI machine learning repository [9]. Multi-class datasets
have been converted into binary-class by randomly partitioning classes into positive
and negative groups. All data have been normalized with unit o-norm. Information
about these datasets is summarized in Table 1.

TABLE 1. Statistics of datasets

Name |# Instances |# Features| Name |# Instances|# Features Name # Instances |# Features
australian 690 14 leu 38 7,129 sector 6,412 55,197
cod-rna 59,535 8 madelon 2,000 500 skin nonskin| 245,057 3
dna 2,000 180 news20 15,935 62,061 svmguide1 3,089 4

Generalization performance: We compare SAUC with following state-of-the-
art online learning algorithms for AUC optimization: 1) Online AUC Maximiza-
tion(OAM) [36] with focus on OAM,,, assocaited with the hinge loss. The buffer
sizes N, N_ for positive and negative classes are set as 100 as in the original paper;
2) One-Pass AUC Maximization(OPAUC) [12] optimizes square loss with ¢y reg-
ularizing term. 3) Stochastic Online AUC Maximization(SOLAM) [32] optimizes
square loss on bounded domain; 4) Stochastic Proximal Algorithm for AUC Max-
imization(SPAM) [22] optimizes square loss with ¢5 regularizer; 5) Fast Stochastic
AUC Maximization(FSAUC) [21] optimizes square loss on bounded ¢; domain. The
probability parameter J is set as 0.1 as in the codes author provided. All the al-
gorithms with ¢y regularizer is converted to £o-norm constraint for the sake of fair
comparison.

In the training phase of each algorithms, we use 5-fold cross validation to deter-
mine the bound radius R € 10[-22 and the learning rate parameter 8 € 10-22l,
The proximal parameter «y is chosen as 7 as given in (2.10). Throughout our ex-
periments, the degree of the Bernstein polynomials m is chosen to be 10. The
performance of each algorithms is evaluated by averaging results from 10 epochs of
5-fold cross validations.

Testing performances of all methods are summarized in Table 2. These results
show that SAUC achieves similar or competitive performances as other state-of-
the-art online or stochastic methods based on AUC maximization. In particular,
SAUC-H performs similarly as OAM,,, on all datasets. In addition, on datasets
australian, leu, sector, skin nonskin and svmguidel, the hinge loss based al-
gorithm SAUC-H outperforms square loss based algorithms. This suggests that the
different losses (hinge loss and logistic loss) may be more suitable for these datasets.

Convergence speed: We compare convergence versus CPU time (in seconds)
of SAUC-H and OAM,,, on datasets dna, news20 and sector. The reason for
choosing these two algorithms is because they both maximize AUC under the hinge
loss. The results are summarized in Figure 1. These results show that SAUC-H
converges much faster than OAM,,, when the data feature dimension d is high. One
important reason may be that SAUC only needs use O(d) memory and per-iteration
cost while OAM needs O(Bd), where B is the buffer size.
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TABLE 2. Comparison of AUC score (meantstd) on test data;
OPAUC on news20 and sector does not converge in a reasonable
time limit. Best AUC value on each dataset is in bold and second
is underlined.

Dataset SAUC-H SAUC-L OAMg 5 OPAUC SOLAM FSAUC SPAM
australian {.9250+.0057 | .9249+.0045 | .9238+.0031 |.9127+.0016| .9202+.0065 | .9217+.0064 | .9233+.0024
cod-rna | .9190%.0030 | .9189+.0031 |.9194+.0030|.9193+.0030| .9190+.0031 | .9190+.0031 | .9190+.0031
dnaleu .9702+.0038 | .9710+.0040 | .9716£.0025 |.9675+.0023| .9735+.0015 |.9796+.0031 | .9753+.0046
madelon {1.000+.0000|1.000+.0000 |1.000+.0000|.9810+.0269| .9907+.0131 | .9778+.0314 | .9905+.0135
news20 .6319+.0203 | .6315%.0219 | .6295+.0249 | .6315+.0242| .6317+.0184 | .6300+.0228 |.6321+.0151
sector .9759+.0013 | .9766+.0019 | .9750%.0031 - .9794+.0019| .9758+.0030 | .9774+.0029
skin nonskin|.9994+.0004 |.9994+.0003 | .9991+.0003 - .9987+.0008 | .9975%.0016 | .9990+.0006
svmguide1 | .9948+.0009 |.9966+.0003 | .9960+.0005 |.9405%.0011| .9456+.0012 | 9407+.0011 | .9388+.0013
.8848+.0062| .8842+.0013 | .8845+.0099 |.8818+.0033| .8804+.0072 | .8804+.0084 | .8796+.0101

10
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FicURE 1. Comparison of convergence speed between SAUC-H
and OAMg,q.
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FI1GURE 2. Evaluation of AUC scores vesus the degree of the Bern-
stein polynomial.

Sensitivity of the degree of the Bernstein polynomial: Here we inves-
tigate the sensitivity of the degree m of Bernstein polynomials to the empirical
performance. Figure 2 evaluates the AUC scores of SAUC-H with varied Bernstein
polynomial degrees m on datasets dna, news20 and sector.

First of all, we find that on sector, when the Bernstein polynomial degree is
too small (e.g. m =2 or m = 5), SAUC achieves lowest AUC scores. This matches
the intuition that the Bernstein polynomial approximates the original loss badly.
Interestingly, we also find that on dna and news20 when m = 2, the approximated
loss becomes a square loss and the performance is improved, which coincides with
the results in Table 2. Finally, we find that when m is large enough, the AUC scores
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tend to become saturated. This is consistent with theoretically optimal choice of
m is O(logT) from Theorem 3.3 and a larger degree does not necessarily lead to
better performance.

5. Conclusion. In this paper we proposed to use the Bernstein polynomials to
uniformly approximate a general convex loss, and then showed that AUC maxi-
mization is equivalent to a (non-convex) weakly convex saddle point (min-max)
problem. From this equivalent formulation, we proposed a novel SGD-type AUC
optimization algorithm for streaming data analysis. Although the min-max formu-
lation is non-convex, we showed that the proposed algorithm still enjoys the global
convergence through sufficiently exploring the intrinsic structure of the min-max
formulation and the convex-preserving property of Bernstein polynomials. Finally,
we performed experiments to validate effectiveness of the proposed algorithm.
There are several directions for future research. Firstly, the decomposition of
f(w) into ¢(v, @) is not unique. It would be interesting to find other possible ones
and investigate their theoretical differences and the resulting algorithmic perfor-
mances in practice. Secondly, the choice of parameter 7y in (2.10) for SAUC is
potentially large if m or R is large. It would be interesting if we can choose the =g
adapatively using some strategies of line search. Another closely related question
is the final convergence rate for the original objective function (2.2) of AUC maxi-
mization is not desirable as the estimation of the constant C,, in terms of v9 and R
is complicated. It remians unclear to us how to derive a fast final convergence rate.

Acknowledgement. The authors would like to thank the reviewers for their con-
structive comments and suggestions.

Appendix.

A. Weak-convexity of F w.r.t. v. Remind that a C'-smooth function with pg-
Lipschitz gradient is pg-weakly convex. Thus we prove F' is weakly convex by
calculating its Lipschitz gradient constant. Denote par = max{DSl+ + 2Ry +
Ry)D?S5,1+ DS}, and py = max{DS; + (2Rs + R1)D*S;,1 + DSy }. We
study two cases y = 1 and y = —1 separately. If y = 1, we have

(Vwe)(a — a)

1
a—e"

VVF(V7 QG Z) = m
b

So we have
(m+ 1)[VeF(v,a;2) — Vo F(V, a; 2)]
(Vwe™ (w))(a —a) = (Vwe™ (W) (a — a)
= a—et(w)—a +et(w)
b-b’

Combining this with the fact (Ve (w))(a—a)—(Vywe' (w'))(a—a’)=(Vye (w)—
VweT (W) (a —a’)+(VweT (w))(a’—a), we have

IVvF(v,a;2) = VyF(V, a; 2)|

< V[l - [V () — Ve () + e (o) — ()
+b=b|[ + (1 +[[Ve* (w)]) - [la — a’||}
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V3
< @By + Ro)D?SY - lw — w4+ DS - [w — |

+ b= ||+ (1+ DST) - la - a'|

EALIN -

m—|— 1
If y = —1, we can obtain

1 (Vwe™)(a—b)
VvF(v,a;2) = ] a
m + b—e

So we have

(m+1)[VyF(v,a;2) — Vy F(V, a; 2)]
(Vwe™ (w))(a =b) = (Vwe™ (w'))(a = b')

= a—a’

b—e (w)—b +e (W)

Combining this with the fact (Vi (W))( b)—(Vwe™ (W))(a—b') = (Vye (W)
—Vwe  (W))(a—b')+ (Vw ( ))(b’ — b), we have

IVF(v,a;2) = Vo F (V' 0 2)|

\fl {Ha = b||-[[Ve™ (w) — Ve~ (W)] + [le” (w) —e” (W)

+lla—a’ll+ (14 [[Ve~ (w)l) - [[b - b’ll}

V3 ] )
< V3[R + R)D?S - lw — W + DS - w - w|
+lla—a'| + (14 DS;) - b b'|
SLINESND
m+1

N3

In conclusion, we obtain the Lipschitz gradient parameter po = 755 max{po 2P0 +-

B. Proof of Proposition 1. Note that it is straight forward to see that &, (v, a; 2)
= F(v,0;2)+ }||w —w||? is concave w.r.t a no matter what ~ is chosen. We next
show how to choose a baseline vy > 0 such that when v > 7o, @, (v, a; 2) is convex

w.r.t v. Firstly, we can write V2, F(v,a; 2) = %_':12) -xx ', where
Z u x H[y 1]+ h (u,x)]l[y:,l]},
=

b (u, (ozz —a)i(i —1)(L/2+w ' x)"2:= h],
- m\ [k
h. =(a; — by k—i)(k—i—1 .
) =t Sk -0 () ()
(m +1)A*®(0) L T

(2L)k (2 )k_ =y



4204 ZHENHUAN YANG, WEI SHEN, YIMING YING AND XIAOMING YUAN

Then we write the Hessian matrix of (v, a;2) w.r.t. v as

Vwet Vwe™

- T m+1 m+1
_(vweJr) L

V?,VF + ")/Id

Vip, = 0 ;
K m+1 m+1
_M 0 Int1
m+1 m+1
where I is a d x d identity matrix and I,,,11 is an (m+1) x (m+ 1) identity matrix.
For simplicity, we study two cases y = 1 and y = —1 separately. On one hand, if
y =1, we have
Vet
V2 F 4yl - 0
T m+1
v\%ds’)’ = - (Vwe?) Tn+1 0 )
m—+1 m+1 I
0 0 m+1
m+1
2 o hi T 2 . .
where Vi, F' = == - gz . By Schur complement, V&, = 0 is equivalent to
HT 0 0
Im+1
0 0
m+1 I =0,
0 0 m+1
m+1

where HT = V2 F+~1;— %. Thus we only need H* = 0. Next we will

estimate the lower bound of the minimal eigenvalue of H*. Firstly, we know V2 F

+
2ito b

i=0i - [|z[|* which is lower bounded by

has only one none-zero eigenvalue, i.e.

(2R1+R2)D?SF
_ e
%‘ Secondly, we write (Vywe™)(Vwet)T =37 (Ve )(Vwel) " and
we know (Vwe)(Vwe; )T has only one none-zero eigenvalue, i.e. |[Vye; ||2. Thus
the maximal eigenvalue of (Vyet)(Vwe™)T is upper bounded by 37" [|[Vwe; || =
[Vwet||? < D?(S{)%. Finally, we have the minimal eigenvalue of H* is lower
(2R1+R2)D*SF +D?(51)?

m—+1
. (2Ri + Ry) DS} + D*(SY)?
7= m+1

to ensure that the function @ (v, ) is convex w.r.t v. Similarly, on the other hand,
if y = —1, we can choose

s (R1 + 2R2)D2%S; + D?(Sy)?
- m+1

to ensure that the function @, (v, &) is convex w.r.t v. As the deduction is almost
the same as the previous case, we omit the details here. In conclusion, we have if
the parameter v > 7o, where

. Thus the minimal eigenvalue of V2, F++vI, is lower bounded by v —

bounded by v — . This means if y = 1, we can choose

1
e max{(2R; + R2)D?Sy + D*(S])?, (R, + 2Ry)D*S5 + D*(S7 )%},

then @, (v, a) is convex w.r.t v.
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C. Proof of Lemma 3.2. The proof of Lemma 3.2 needs the following elementary
lemma.

Lemma 5.1. Let wji; := argmin,co{w' g+ %Hw — wj||?} where n > 0. We have

(wj —w)Tg < Hgll® = 55 llw = wjra|* + 5 llw = w; |, for any w € Q.

Proof. By the optimality condition of w;,1, for any w € 2, we have

1
(w—wj1)'g > G wi+1) " (W5 — wis1)- (C.1)
We decompose left hand side of (C.1) like that
1
(w—w)) g+ (wj—wjp1) g 2 E(M —wjt1) " (Wj — wjs1). (C.2)

To further decompose the right hand side of (C.1), we need the following perfect
square formulation ||w — w;||? = [|w — wjt1 + wjt1 — w; || = lw — w1 ]|* — 2(w —
wit1) " (wj —wjt1) + [|wj — wjt1]|?. Combining this with (C.2) implies that
1
(w=wj) g+ (W —wj+1) g2 %(Hw —wi1|® + llwj — wi|® = flw = wyl?).
Thus we have

1 1 1
(wj —w) g < (wj —wis1) "9 = - lwj —winl® = o= llw = wia? + o llw — wyf?

2n 21 21
< Vgl = -l = wyan I + -l — 52
-2 2n 2n
where the last inequality used the fact (w; — w;1) g < Z||g]|* + ﬁij —w;1*
Thus we have proved this lemma. O

We are ready to prove Lemma 3.2.

Proof of Lemma 3.2. By the convexity of cpfy(~, a), we have, for all v € Qq, that

0L (V5 0f) — (v, af) < (v = v) TVl (v], af).

Similarly by the concavity of ¢! (v,-), we have, for all a € Qy, that
AL (V) — (v a) < (@ — al)TVagh (v, al).
Denote

t

(h.3+1) (t7j+1)) = (Vvsﬁfy (V;‘v aj)a *vacpfy (V;a a;))

g;—i—l = (gv )y “9a
Thus we obtain

o (vho) =@l (viah) < (vE—v) Tgl ) — (ol —a) Tglt7 ) = (ul—u) Tl ,, (C.3)

J o

for all u = (v, @) € Q1 x Oy, Denote

Gl = GV, —GLITY) = (V@ (v], @ 2541), = Va @ (v], s 2541)).
With this notation, the (j + 1)-th update step in the t-th inner loop of Algorithm
1 can be written as
1
¢ . T At t)2
u’ ;= argmin {u G5, ; + —|u—u}||*}.

b= argmin (Gl 4 )

Similarly, we define an auxiliary sequence as

1
~1 : t ~1 2
u; (= argmin {—u A + —jjlu—u;
J+1 weD) X 2{ 741 27%” jH }7
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where A%, = G,y — g%, and Gf = ug. Applying Lemma 5.1 to u’,; and @},
implies that
t T ot <M Gt 12 i —at 2+ 1 t2 C.4
(0 —u) Gl <TGl = g llu = w7+ o~ flu — w7, (C4)
2m 2n;
<M 1 - 1
=05 —w) A, <A - 2, 10~ W * + o, 10— . (C.5)

Adding up (C.3), (C.4) and (C.5), we have

P (vha) - ¢ (v. )

U
<(af — uj )TAtH + t(”G al?+ A )+

1 t)12 t 2
; 2, Ul = w517 = o =4 17)

1 Si2 T
gy U = T = fu =1, ). (C.6)

Again, by the convexity and concavity of gptw we obtain

-1
_ _ 1
PVt a) = g (voa) £ 7 D[ (vha) = ¢ (v.ad) .
§=0
Combining this with (C.6) implies that Yu € € x Qo

t—1

_ _ 1 N
(T @) — ¢ (Vi) <5 [(@ = uh) TAL + T (G 2+ 1AL )]
j=0
1 -
+ gl = w4 = ). (1)

Now taking supreme in u € ; x 5 on both sides of (C.7) implies

€r(1) = max ) (v, @) — min ' (v, &)

t—1
1 Nt
<o [ —uh) AL+ TG 2+ 1AL )]
§=0
1
+ — sup u—u|?+ju— >
oy S (o= o — 6
lt—l n
t
<o [ (@ —uh)TAL + TG 2+ 1A )]
j:O

tn (R2 + R? + R2 + (R, + Ry)?), (C.8)
t

where the last inequality used the bounds of v and a. We next show how to

uniformly bound [|G%, ,||* and [JA%,,[*. For the simplicity of notation, we write

Gs,t J+1)7 G&”“), g‘(,tjﬂ) and g(t]Jrl as Gy, G, gv and g, respectively. We also

simply denote et = {ef (w}, 25, )}, and e™ = {e; (Wi, 2!, )}, Likewise, we
simply denote E* = {E.[e] (W}, 2)]}72 and E~ = {E.[e; (w!, 2)]}1,. We write
Gw = VW@, (vh,al; 25, )
1

= 1 {(Twe @) — ) + (Vwe (@) — b) -+ (w) — i),

— trot oot )
Ga = Va?. (v, a5 2j1) = ——
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R t t t, t t _
Gy = Vbév(vj,aj,zjﬂ) m—i—l{b e},

l{e"‘ +e —al}.

Ga =V @t(v aJ,sz)

Combining these with the facts

le® ] < ZL’ Ry, |[Vwe'|| < DS, |[[Vwe™|| < DSy,

o |<§:Z( )( ) (o VIO _p,

m
=0 k=1

implies
|Gwl* < 3(m + 1) [IIVwe+|I2Ha§- = a5 + [ Vwe ™ [*[lag — b§-ll2] +1297R?
< 3(m+1)7? [(DS{“)Q(GRf +4R3) + (DSy)*(6R; + 4R§)} +129°R?,
and
1Gall? < 20m + 1)72(Jlaf |2 + le*[12) < 4(m +1) 2R3,
1GolI2 < 2m + 1) 72 (B2 + e~ |12) < 4(m +1) 2R3,
3
IGall* <(—
Moreover we have
IGVI? = IGw[* + 1Gall* + G|
<4(m+1)"3(R} + R3) + 129°R* + 6(m + 1) 2 {S(DSf)Q + 2(DS;)2] R?

1) (R + R3) := Mj.

+6(m+1)"2 [2(D51+)2 + 3(DS;)2} R2:= M2

Then replacing e™ and e~ with ET and E~ respectively and using almost the same
deductions as the above, we have

lgvll* < M, [lgall® < M3.
Therefore we have [|G%, | [|> < M7 + M3, and [|AL | [?] < 2/|G%, |17 + 2|98, 4|17 <
4(M? + M2). Combining this with (C.8) implies
— N t /- . . + _
€¢(Te) := max o5 (v, &) — min ¢ (v, &)

t—1

577
(0 — u} ) A§+1 t(Ml + M3)

1
SE Z[ J
=0
4
%(RQ + R? + R2+ (R, + R)?), (C.9)
It suffices to bound EL, [(0f—uf)T AL, ] where the expectation EL,, is taken w.r.t.
all the randomness from (z%,z%,zg, c 215255 2h) = (28], Take into account

that @ and u’ are deterministic functions of [2{]. And note that the conditional

expectation of Al given [2}], vanishes, i.e. E€j+1|j)[AJ+1‘[ ]]=0. Thus we have

]E§+1{(ﬁ )TA§+1} E]+1{E(J+1|J) {( j ) A§+1 [j]]}
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- T
=551 { (8 — ) Bl A5 S]] =0
Taking expectation on both sides of (C.9), we conclude that

t—1

_ 1 - 4
Ele, ()] <7 D> Ej (8] —uf) TAT ]+ %(R2 + R} + R3 + (Ri + Ry)?)
3=0
SUL
+ =5 (MF + M3)
4 9 2 2 2 5Nt o 2
:%(R + R+ By + (B + Re)”) + = (M + My).
Then by choosing 1; = 3/v/t and denoting Oy := 487 [R2+ R? + R3+ (Ry + R2)?] +
53(M3% + M3)/2, we obtain the desired result. O

D. Final convergence rate. In this subsection, we investigate the final conver-
gence of the output wr of SAUC on the original objective function g of AUC
maximization given by (2.2) through theoretically optimal choice of the degree m
of Bernstein polynomials.

The proof of Theorem 3.3 requires the following proposition on the approximation
error of Bernstein polynomials [25, 26]. Recall that the surrogate loss ¢ on general
interval [—L, L] induces a function ¢ on the unit interval [0,1] by interchanging
u = £E5 and letting p(u) = £(s) for any s € [-L, L].

Proposition 2. Given any surrogate loss function ¢ on [—L, L], with Lipschitz
constant G. Its Bernstein approximation is uniformly bounded by

L+s
sup |€(s) — Bm(;

o S
s€[—L,L]

GL
NG (D.1)
Proof. Tt is straightforward to see that if ¢ is Lipschitz continuous with constant
G then ¢ is also Lipschitz continuous with constant 2GL. Furthermore, we have
|¢(s) — Bm(¢; L2+LS)| = |p(u) — Bm(p;u)| for any s € [—L, L].

Notice that By, (;u) = E[p(ZX)], where X is a random variable obeying binomial
distribution out of m Bernoulli trials with success probability u. Hence, for any
u € [0, 1], we have

(o) ~ Bon(os )] = l(w) ~ Blo( )] = [Elp(w) (2]
< Ellp(u) - o)) < ERGLfu — || = 2GLE[u - X |

The first inequality is Jensen’s inequality. The second inequality holds because ¢ is
Lipschitz continuous. On the other hand, The variance of X satisfies, E[| X —mu|?] =
mu(l —u) < m/4. Tt follows that

((6) — Bun(s )| < 2GLE[u — ] < 2GLy[Elju — 2 = 22X /Rlmu = X]
m m m

< GL
The first inequality is Cauchy-Schwartz inequality. And the proposition follows by
taking the supremum. O

Now we are ready to prove Theorem 3.3.



AUC OPTIMIZATION 4209

Proof of Theorem 3.5. Notice that
Part I Part 1T

Elg(wr) — | iI”{Rg(W)] <2 sup |f(w) —g(W)|+[E[f(wr) — f(w)]]. (D2)
wils Iwll<r

Below we will bound both parts of (D.2). For Part I, recall that g(w) =
]E[E(WTZ‘ — WTx')I[[y:U]I[y/:,lﬂ and

f(w) :(milﬂ) ;EWW; @) py=11.fi (W5 &My =]

L+wlz—wla
:E [Bm (507 2L )H[y:1]H[y’:fl]} .

Apply Proposition 2 we have
sup [f(w) — g(w)]

L+wlz—w'a

< sup ‘E[(E(WTQC —w' ') — B(y; oL Niy=1 Iy =—1]] ‘
wll<R,|lz|<D
GL 2GRD
<= == D.3
“Vmo Ym ()

For Part 11, by Theorem 3.1, one has E[f(Wr) — f(w*)] < \/Cp,/VT where
Cp = 30(Ly +2RY)*(L1R+ C1)y™ ", Ly = D(S;}Ry+ Sy Ry)/(m+1)
Cy =487 [R2+ R2+ R2+ (Ry + Ry)?] + 58(M?2 + M2) /2,
M? = 4(m+1)"2(R*+R2)+ 1292 R*+6(m + 1)~2 [3(D5f)2+2(05;)2] R?
+6(m +1)72 [2DST)?+3(DST )| 13,

g = (2) e+ ).

To evaluate C,,,, we will need the following quantities. Firstly, the k-th order forward
difference is upper bounded by

k . k
a0 =10 (e <200 () = aamp-2

where we use the fact that (a +b)F = Z?:o (l;) a’b*=7. Secondly, the bound on ||al|

and ||b|| can be upper bounded by
Ry =) L'<(m+1)max{1,(2RD)™} < (2 + 4RD)™ := B".
i=0

Likewise, there exists By independent of m such that

R (1))

=0 k=1t

SQGL(mH)maX{LLim} Y <7§) <k)

i=0 k=1
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=4GRD(m + 1) max{1 #}SM < B
" (2RD)™ -2

the second equality we use the fact that (a+b+c)™ = > S0 (W) (?)aibk_icm_k.
Similarly, upper bounds on the gradients and the hessian of f; and fz can also be
derived as

S <m(m+1)max{1,(2RD)™}< BY", Sy §2Gm(m+1)max{1,ﬁ}3m§B£”,

G 1
T < ;3 my »~ pm - < 3 m._ pm
Sy <m’max{l,(2RD)™} < Bf*, S5 < 52D max{1, @RD)™ 13 By

Recall that, v > v, hence
1
V2o max{(2R; + R2)D*S5 + D*(S{)?, (R1 + 2R2)D*S; + D*(57)°}

> 2/qQ+)2 > T : mY . Bm.
_7m+1D (S7)° > 5 min{1, (2RD)™} :> BY

If one choose v =y, it follows

< 1
7_m—I—l

1
S ((2B1 + B2)D?Bs + D*B3) + ((B1 + 2B2)D*Bs + D*B3) < BY".

((2Ry + R2)D*SF + D*(S1)?) + ((R1 + 2R2)D*S; + D*(S;)?)

Now, one has
Ly <D((B3B2)™ + (B4B1)™) < By',
M <4(m+ 1)"2(B? + B3) + 12B3R? + 6(m + 1) 2 [3(DBy)? + 2(DBa)?| B
+6(m+1)72 [2(1733)2 + 3(DB4)2] B2 < B,

In addition, there exists constants By; and Bjs such that

3 2 m
M3 <(—= ) (BT + BY) < B,

Ci <487'[R? + BY + B3 + (B + B2)?] + 58(B%, + Bi1)/2 < Bs.
Combining all the above estimations, we have
Cpp <60(L2(L1R + C1))y ™' 4+ 240R*(L1R + C1)y
<60((B3)™(By'R + B}%))B;™ + 240R*(By"R + B}3) By
<(60R + By + 240R*) max(B3B; ',2B; ", ByBg, By B12)™.

Letting B = (60R + By + 240R?) and C = max(B3B;',2B; !, ByBs, BsB12) and
combine this result with (D.3), the theorem follows. O
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