
An Analysis of State Evolution for Approximate
Message Passing with Side Information
Hangjin Liu

NC State University
Email: hliu25@ncsu.edu

Cynthia Rush
Columbia University

Email: cynthia.rush@columbia.edu

Dror Baron
NC State University

Email: barondror@ncsu.edu

Abstract—A common goal in many research areas is to re-
construct an unknown signal x from noisy linear measurements.
Approximate message passing (AMP) is a class of low-complexity
algorithms for efficiently solving such high-dimensional regres-
sion tasks. Often, it is the case that side information (SI) is
available during reconstruction. For this reason a novel algorith-
mic framework that incorporates SI into AMP, referred to as
approximate message passing with side information (AMP-SI),
has been recently introduced. An attractive feature of AMP is
that when the elements of the signal are exchangeable, the entries
of the measurement matrix are independent and identically
distributed (i.i.d.) Gaussian, and the denoiser applies the same
non-linearity at each entry, the performance of AMP can be
predicted accurately by a scalar iteration referred to as state
evolution (SE). However, the AMP-SI framework uses different
entry-wise scalar denoisers, based on the entry-wise level of the
SI, and therefore is not supported by the standard AMP theory.
In this work, we provide rigorous performance guarantees for
AMP-SI when the input signal and SI are drawn i.i.d. according
to some joint distribution subject to finite moment constraints.
Moreover, we provide numerical examples to support the theory
which demonstrate empirically that the SE can predict the AMP-
SI mean square error accurately.

A full version of this paper is accessible at: http://www.
columbia.edu/~cgr2130/AMPSI_SE.pdf

I. INTRODUCTION

High-dimensional linear regression is a well-studied model
being used in many applications including compressed sensing
[1], imaging [2], and machine learning and statistics [3]. The
unknown signal x ∈ Rn is viewed through the linear model:

y = Ax + w, (1)

where y ∈ Rm are the measurements, A ∈ Rm×n is a known
measurement matrix, and w ∈ Rm is measurement noise. The
goal is to estimate the unknown signal x having knowledge
only of the noisy measurements y and the measurement matrix
A. When the problem is under-determined (i.e., m < n), in
order for reconstruction to be successful, it is necessary to
exploit structural or probabilistic characteristics of the input
signal x. Often a prior distribution on the input signal x is
assumed, and in this case approximate message passing (AMP)
algorithms [1] can be used for the reconstruction task.

AMP [1], [4] is a class of low-complexity algorithms for
efficiently solving high-dimensional regression tasks (1). AMP
works by iteratively generating estimates of the unknown
input vector, x, using a possibly non-linear denoiser function
tailored to any prior knowledge about x. One favorable feature

of AMP is that under some technical conditions on the mea-
surement matrix A and x, the observations at each iteration
of the algorithm are almost surely equal in distribution to x
plus independent and identically distributed (i.i.d.) Gaussian
noise in the large system limit.

AMP with Side Information (AMP-SI): In information
theory [5], when different communication systems share side
information (SI), overall communication can become more
efficient. Recently [6], [7], a novel algorithmic framework,
referred to as AMP-SI, has been introduced for incorporating
SI into AMP for high-dimensional regression tasks (1). AMP-
SI has been empirically demonstrated to have good reconstruc-
tion quality and is easy to use. For example, we have proposed
to use AMP-SI for channel estimation in emerging millimeter
wave communication systems [8], where the time dynamics of
the channel structure allow previous channel estimates to be
used as SI when estimating the current channel structure [7].

We model the observed SI, denoted by x̃ ∈ Rn, as depend-
ing statistically on the unknown signal x through some joint
probability density function (pdf), f(X, X̃). AMP-SI uses a
conditional denoiser, gt : R2n → Rn, to incorporate SI,

gt(a,b) = E[X|X + λtN (0, In) = a, X̃ = b]. (2)

The AMP-SI algorithm iteratively updates estimates of the
input signal x: let x0 = 0, the all-zeros vector, then

rt = y −Axt +
rt−1

δ
[div gt−1(xt−1 + AT rt−1, x̃)], (3)

xt+1 = gt(x
t + AT rt, x̃), (4)

where xt ∈ Rn is the estimate of x at iteration t and δ = m
n

is the measurement rate. For a differential function g : R2n →
Rn we use divg(a,b) =

∑n
i=1

∂gi
∂ai

(a,b). Using the denoiser
in (2), the AMP-SI algorithm (3)-(4) provides the minimum
mean squared error (MMSE) estimate of the signal when SI
x̃ is available [6].

State Evolution (SE): It has been proven that the perfor-
mance of AMP, as measured, for example, by the normalized
squared `2-error 1

n ||x
t−x||22 between the estimate xt and true

signal x, can be accurately predicted by a scalar recursion
referred as SE [9], [10] when the measurement matrix A is
i.i.d. Gaussian under various assumptions on the elements of
the signal. The SE equation for AMP-SI is as follows. Assume
the entries of the noise w are i.i.d. ∼ f(W ) with σ2

w = E[W 2],
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and let λ0 = σ2
w + E[||X||2]/nδ. Then for t ≥ 0,

λ2t = σ2
w +

1

δn
E
[
||gt−1(X + λt−1Z, X̃)−X||2

]
, (5)

where (X, X̃) ∼ f(X, X̃) are independent of Z ∼ N (0, In),
where we use N (µ, σ2) to denote a Gaussian distribution with
mean µ and variance σ2.

Considering AMP-SI (3)-(4), however, we cannot directly
apply the existing AMP theoretical results [9], [10], as the
conditional denoiser (2) depends on the index i through the SI,
meaning that different scalar denoisers will be used at different
indices within the AMP-SI iterations. Recent results [11],
however, extend the asymptotic SE analysis to a larger class
of possible denoisers, allowing, for example, each element of
the input to use a different non-linear denoiser as is the case
in AMP-SI. We employ these results to rigorously relate the
SE presented in (5) to the AMP-SI algorithm in (3)-(4).

Related Work: While integrating SI into reconstruction
algorithms is not new, AMP-SI introduces a unified framework
within AMP supporting arbitrary signal and SI dependencies.
Prior work using SI has been either heuristic, limited to
specific applications, or outside the AMP framework.

For example, Wang and Liang [12] integrate SI into AMP
for a specific signal prior density, but the method is difficult to
apply to other signal models. Ziniel and Schniter [13] develop
an AMP-based reconstruction algorithm for a time-varying
signal model based on Markov processes for the support and
amplitude. This signal model is easily incorporated into the
AMP-SI framework as discussed in the analysis of the birth-
death-drift model of [6], [7]. Manoel et al. implement an
AMP-based algorithm in which the input signal is repeatedly
reconstructed in a streaming fashion, and information from
past reconstruction attempts is aggregated into a prior, thus
improving ongoing reconstruction results [14]. This recon-
struction scheme resembles that of AMP-SI, in particular when
the Bernoulli-Gaussian model is used (see Section II-B).

Contribution and Outline: Ma et al. use numerical exper-
iments to show that SE (5) accurately tracks the performance
of AMP-SI (3)-(4) [7], as was shown rigorously for standard
AMP. Ma et al. conjecture that rigorous theoretical guarantees
can be given for AMP-SI as well [7]. In this work, we analyze
AMP-SI performance when the input signal and SI are drawn
i.i.d. according to a general pdf f(X, X̃) obeying some finite
moment conditions, the AMP-SI denoiser (2) is Lipschitz, and
the measurement matrix A is i.i.d. Gaussian.

In Section II, we give the main results, examples for various
signal and SI models, and numerical experiments comparing
the empirical performance of AMP-SI and the SE predictions.
The proof of our main theorem is provided in Section III.

II. MAIN RESULTS

A. Main Theorem

Our main result provides AMP-SI performance guarantees
when considering pseudo-Lipschitz loss functions.

Definition II.1. Pseudo-Lipschitz functions [11]: For k ∈
N>0 and any n ∈ N>0, a function φ : Rn → R is pseudo-

Lipschitz of order k, or PL(k), if there exists a constant L,
referred to as the pseudo-Lipschitz constant of φ, such that
for x,y ∈ Rn

|φ(x)− φ(y)| ≤ L
(
1+

( ||x||√
n

)k−1
+
( ||y||√

n

)k−1) ||x− y||√
n

.

A sequence (in n) of PL(k) functions {φn}n∈N>0
is called

uniformly pseudo-Lipschitz of order k , or uniformly PL(k), if,
denoting by Ln the pseudo-Lipschitz constant of φn, we have
Ln <∞ for each n and lim supn→∞ Ln <∞.

Throughout the work, || · || denotes the Euclidean norm, and
p
= denotes convergence in probability. In the case of (X, X̃)
sampled i.i.d. f(X, X̃) the AMP-SI denoiser (originally de-
fined in (2)) is separable: define ηt : R2 → R, as

ηt(a, b) = E[X|X + λtN (0, 1) = a, X̃ = b], (6)

and the AMP algorithm in (3)-(4) simplifies to

rt = y −Axt +
rt−1

δ

n∑
i=1

η′t−1([x
t−1 + AT rt−1]i, x̃i), (7)

xt+1
i = ηt([x

t + AT rt]i, x̃i), for i = 1, 2, . . . , n, (8)

where the derivative η′t(s, ·) = ∂
∂sηt(s, ·). For the denoiser in

(6), the SE is as follows: let λ0 = σ2
w + E[X2]/δ and for

t ≥ 0,

λ2t = σ2
w +

1

δ
E
[
(ηt−1(X + λt−1Z, X̃)−X)2

]
, (9)

where (X, X̃) ∼ f(X, X̃) are independent of Z ∼ N (0, 1).

Theorem II.1. For any PL(2) functions φ : R2 → R and
ψ : R3 → R, define sequences of functions φm : R2m → R
and ψn : R3n → R as follows: for vectors a,b ∈ Rm and
x,y, x̃ ∈ Rn,

φm(a,b) :=
1

m

m∑
i=1

φ(ai, bi),

ψn(x,y, x̃) :=
1

n

n∑
i=1

ψ(xi, yi, x̃i).

(10)

Then the functions in (10) are uniformly PL(2). Next, assume
the following:

(A1) The measurement matrix A has i.i.d. Gaussian entries
with mean 0 and variance 1/m.

(A2) The noise w is i.i.d. ∼ f(W ) with finite E[|W |2].
(A3) The signal and SI (x, x̃) are sampled i.i.d. from f(X, X̃)

with finite E[|X|2], finite E[|X̃|2], and finite E[|XX̃|].
(A4) For t ≥ 0, the denoisers ηt(·, ·) defined in (6) are Lips-

chitz continuous: for scalars a1, a2, b1, b2, and constant
L > 0, |ηt(a1, b1)− ηt(a2, b2)| ≤ L||(a1, b1)− (a2, b2)||.

Then, we have the following asymptotic results for the func-
tions defined in (10),

lim
m
φm(rt,w)

p
= lim

m
E[φm(W +

√
λ2t − σ2

w Z1,W)]),

lim
n
ψn(x

t + AT rt,x, x̃)
p
= lim

n
E[ψn(X + λtZ2,X, X̃)],

(11)
where Z1 ∼ N (0, Im), Z2 ∼ N (0, In), independent of W ∼
i.i.d. f(W ) and (X, X̃) ∼ i.i.d. f(X, X̃). xt and rt are
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defined in the AMP-SI recursion (7)-(8), and λt in the SE (9).

Section III contains the proof of Theorem II.1. The proof
follows from Berthier et al. [11, Theorem 14] and the strong
law of large numbers. The main details involve showing that
assumptions (A1)− (A4) allow us to apply [11, Theorem 14].

As a concrete example of how Theorem II.1 provides
performance guarantees for AMP-SI, let us consider a few
interesting pseudo-Lipschitz loss functions.

Corollary II.1.1. Under assumptions (A1)− (A4), letting ψ1 :
R3 → R be ψ1(x, y, z) = (x− y)2, then by Theorem II.1,

lim
n→∞

1

n
||xt + AT rt − x||2 p

= λ2t ,

where λ2t is defined in (5). Similarly if ψ2 : R3 → R is defined
as ψ2(x, y, z) = (ηt(x, z)− y)2, then by Theorem II.1

lim
n→∞

1

n
||xt+1 − x||2 p

= δ(λ2t+1 − σ2
w).

When ηt is Lipschitz, it is straightforward to show that ψ1 and
ψ2 are both PL(2), and thus Theorem II.1 can be applied.

B. Examples

Next, we consider a few signal and SI models to show how
one can derive the denoiser in (2), use this to construct the
AMP-SI algorithm and the SE, and apply Theorem II.1. Before
we get to the examples we state a lemma that demonstrates
how functions with bounded derivative are Lipschitz.

Lemma II.1.1. A function φ : R2 → R having bounded
derivatives, | ∂∂xφ(x, y)|≤ D1 and | ∂∂yφ(x, y)|≤ D2 where
0 < D1,D2 < ∞, is Lipschitz continuous with Lipschitz
constant

√
D2

1 + D2
2.

1) Gaussian Signal and SI: In this model, referred to as
the GG model henceforth, the signal has i.i.d. Gaussian entries
with zero mean and finite variance and we have access to SI
in the form of the signal with additive white Gaussian noise
(AWGN). The signal, X, and SI, X̃, are related by

X̃ = X +N (0, σ2I). (12)

In this case, as shown in [7], because the random variables
being estimated are Gaussian, the AMP-SI denoiser (2) has a
linear form:

ηt(a, b) =
σ2
xσ

2a+ σ2
xλ

2
t b

σ2
x(σ

2 + λ2t ) + σ2λ2t
. (13)

Then the SE (5) can be computed as

λ2t = σ2
w +

1

δ

[
σ2
xσ

2λ2t−1
σ2
x(σ

2 + λ2t−1) + σ2λ2t−1

]
. (14)

We note that the denoiser in (13) is Lipschitz continuous
as a result of Lemma II.1.1, because | ∂∂aηt(a, b)|≤ 1, and
| ∂∂bηt(a, b)|≤ 1. Therefore the assumptions (A1) − (A4) are
satisfied in the GG case and we can apply Thoerem II.1.

2) Bernoulli-Gaussian Signal and SI: The Bernoulli-
Gaussian (BG) model reflects a scenario in which one wishes
to recover a sparse signal and has access to SI in the form
of the signal with AWGN as in (12). In this model, each
entry of the signal is independently generated according to

xi ∼ εN (0, 1)+(1−ε)δ0, where δ0 is the Dirac delta function
at 0. In words, the entries of the signal independently take the
value 0 with probability 1−ε and are N (0, 1) with probability
ε. In this case, as shown in [7], the AMP-SI denoiser (2) equals

ηt(a, b) = Pr (X 6= 0|a, b)E [X|a, b,X 6= 0]

= (1 + Ta,b)
−1fa,b,

(15)

where, letting ρτ2(x) be the zero-mean Gaussian density with
variance τ2 evaluated at x,

fa,b :=
σ2a+ λ2t b

σ2 + λ2t + σ2λ2t
, (16)

Ta,b :=
(1− ε

ε

)νt√2π
λ2tσ

2
ρνt(σ

2a+ λ2t b), (17)

νt := σ2λ2t (σ
2 + λ2t + σ2λ2t ).

Then the SE (5) can be computed as

λ2t = σ2
w +

1

δ

( Ta,b
1 + Ta,b

)2 [ (σ2 + λ2t−1) + σ2λ2t−1
σ2 + λ2t−1 + σ2λ2t−1

]
. (18)

We again use Lemma II.1.1 to show that the denoiser
defined in (15)-(17) is Lipschitz continuous so that the assump-
tions (A1)−(A4) are satisfied in the BG case and we can apply
Thoerem II.1. We study the partial derivatives. Combining
(15)-(17), ηt(a, b) = (1 + Ta,b)

−1fa,b. Then,∣∣∣∂ηt(a, b)
∂a

∣∣∣ = ∣∣∣ 1

1 + Ta,b

[∂fa,b
∂a

]
− 1

(1 + Ta,b)2

[∂Ta,b
∂a

]
fa,b

∣∣∣
≤ (1 + 2Ta,b)

(1 + Ta,b)2

∣∣∣∂fa,b
∂a

∣∣∣+ 1

(1 + Ta,b)2

∣∣∣∂(Ta,bfa,b)
∂a

∣∣∣.
(19)

Now we show upper bounds for the two terms of (19) sepa-
rately. For the first term, ∂fa,b

∂a ≤ 1, so (1+2Ta,b)
(1+Ta,b)2

∣∣∣∂fa,b

∂a

∣∣∣ ≤ 1.
Consider the second term of (19). From (17) and (16),

Ta,bfa,b =
(1− ε

ε

)√
2π(σ2a+ λ2t b)ρνt(σ

2a+ λ2t b),

then using ∂
∂xρτ2(x) = − x

τ2 ρτ2(x), we have∣∣∣ ∂
∂a

[
Ta,bfa,b

]∣∣∣ = [1− ε
ε

]√2πσ2

νt
ρνt(σ

2a+ λ2
t b)
∣∣∣νt − (σ2a+ λ2

t b)
2
∣∣∣.

To upper bound the above, we use exp{−x} ≤ 1
1+x when

x ≥ 0, and so ρτ2(x) ≤
√
2τ2(2τ2 + x2)−1/

√
π. Thus,∣∣∣ ∂

∂a

[
Ta,bfa,b

]∣∣∣ ≤ 2σ2

√
νt

(1− ε
ε

) |νt − (σ2a+ λ2
t b)

2|
2νt + (σ2a+ λ2

t b)
2

≤ 2σ2

√
νt

(1− ε
ε

)
≤ 2(1− ε)

σwε
,

where in the final inequality we use
√
νt/σ

2 ≥ λt and λt ≥
σw by (18). Using the above in (19), | ∂∂aηt(a, b)|≤ 1+ 2(1−
ε)/(σwε). A bound for | ∂∂bηt(a, b)| can be shown similarly.

C. Numerical Examples

Finally, we provide numerical results to compare the empir-
ical mean square error (MSE) of AMP-SI and the performance
predicted by SE. Fig. 1 shows the MSE achieved by AMP-SI
in the GG scenario and the SE prediction of its performance.
In this example, the signal variance σ2

x = 1, the measurement
noise variance σ2

w = 0.01, the variance of AWGN in SI
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SE Prediction with n=100

Fig. 1: Empirical MSE performance of AMP-SI and SE
prediction. (GG model, n = 100, m = 30, σx = 1, σw = 0.1,
and σ = 0.2.)
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AMP-SI Empirical with =1

SE Prediction

Fig. 2: Empirical MSE performance of AMP-SI and SE
prediction. (BG model, n = 10000, m = 3000, ε = 0.2,
σw = 0.1)

σ2 = 0.04. We averaged over 10 trials of a GG recovery
problem for empirical results of AMP-SI. For smaller n there
is some gap between the empirical MSE and the SE prediction,
as shown in Fig. 1 for n = 100, but the gap shrinks as n
is increased. (Fig. 2 shows results for the BG scenario with
n=10000, and a similar plot for GG would also show the
empirical MSE tracking the SE prediction nicely.)

Fig. 2 shows the MSE achieved by AMP-SI in the BG
scenario, and the SE prediction of its performance. We again
averaged over 10 trials of a BG recovery problem for empirical
results of AMP-SI. The signal length n = 10000, m = 3000,
the measurement noise variance σ2

w = 0.01, and ε = 0.2,
where 20% of the entries in the signal are nonzero. We vary
the variance of AWGN in SI from σ2 = 0.04, σ2 = 0.25,
and σ2 = 1. The results show that SE can predict the MSE
achieved by AMP-SI at every iteration.

III. PROOF OF THEOREM II.1
The proof of the functions in (10) being uniformly PL(2)

when φ and ψ are PL(2) is a straightforward application of
Cauchy-Schwarz.

Next we show the asymptotic results given in (11). First we
use Berthier et al. [11, Theorem 14] and then we make an
appeal to the strong law of large numbers (SLLN):

Theorem III.1. Strong Law of Large Numbers
(SLLN) [15]: Let X1, X2, ... be a sequence of i.i.d.

random variables with finite mean µ. Then the partial
averages converge almost surely to µ <∞.

We use Berthier et al. [11, Theorem 14], restated here for
convenience. To apply the result in Berthier et al. [11, Theorem
14], one needs to justify the following assumptions:

(C1) The measurement matrix A has Gaussian entries with
i.i.d. mean 0 and variance 1/m.

(C2) Define a sequence of denoisers η̃tn : Rn → Rn to be those
that apply the denoiser ηt defined in (6) elementwise
as follows: η̃tn(x) := ηt(x, x̃). For each t, η̃tn(·) are
uniformly Lipschitz. A function is uniformly Lipschitz
in n if the Lipschitz constant does not depend on n.

(C3) ||x||22/n converges to a constant as n→∞.
(C4) The limit σw = limm→∞ ||w||2/

√
m is finite.

(C5) For any iterations s, t ∈ N and for any 2× 2 covariance
matrix Σ, the following limits exist.

lim
n→∞

1

n
EZ[x

T η̃tn(x + Z)] <∞,

lim
n→∞

1

n
EZ,Z′

[
η̃tn(x + Z)T η̃sn(x + Z′)

]
<∞,

where (Z,Z′) ∼ N(0,Σ ⊗ In), with ⊗ denoting the
tensor product and In the identity matrix.

Theorem III.2. Under the assumptions (C1)− (C5), for any
sequences of uniformly pseudo-Lipschitz functions ρm : Rm×
Rm → R and γn : Rn × Rn → R,

lim
m

(ρm(rt,w)− EZ1
[ρm(w +

√
λ2t − σ2

w Z1,w)])
p
= 0,

lim
n

(
γn(x

t + AT rt,x)− EZ2 [γn(x + λtZ2,x)]
) p
= 0,

where Z1 ∼ N (0, Im), Z2 ∼ N (0, In), xt and rt are defined
in the AMP-SI recursion (7)-(8), and λt in the SE (5).

We demonstrate that assumptions (A1) − (A4) from Sec-
tion II imply (C1)− (C5), so we can apply Theorem III.2.

Assumptions (A1) and (C1) are identical.
Next consider assumption (C2). The non-separable denoiser

η̃tn(X) = ηt(X, X̃) applies the AMP-SI denoiser defined in
(6) entrywise to its vector inputs. From (A4), {ηt(·, ·)}t≥0 are
Lipschitz continuous. Thus, for length-n vectors x1,x2, and
fixed SI x̃, ||η̃tn(x1)− η̃tn(x2)|| ≤ L||x1−x2||. The Lipschitz
constant does not depend on n, so η̃tn(·) is uniformly Lipschitz.

Assumptions (C3) and (C4) follow from the SLLN, Defini-
tion III.1: by (A2) and (A3), w and x are entrywise i.i.d. with
finite moment conditions E[|W |2] <∞ and E[|X|2] <∞.

We now show that (C5) is met. Define yi :=
xiEZ [ηt(xi + Zi, x̃i)] for i = 1, 2, . . . , n. By (A3),
(X, X̃) ∼ i.i.d. f(X, X̃), meaning y1, y2, . . . , yn are also
i.i.d.. By Def. III.1 if E[Xηt(X + Z, X̃)] < ∞ where
Z ∼ N (0, σ2

z) independent of (X, X̃) ∼ i.i.d. f(X, X̃),
then limn→∞

1
n

∑n
i=1 xiEZ [ηt(xi + Zi, x̃i)] = E[Xηt(X +

Z, X̃)]. We now show E[Xηt(X + Z, X̃)] < ∞. By (A4),
ηt(·, ·) is Lipschitz, so it is easy to show that |ηt(a1, b1)| ≤
L′(1+ |a1|+ |b1|) for some constant L′ > 0. Using this bound
and the triangle inequality,

E[Xηt(X + Z, X̃)] ≤ L′E[|X|(1 + |X + Z|+ |X̃|)]
≤ L′(E|X|+ E[X2] + E|X|E|Z|+ E|XX̃|).

(20)
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By (A3), E[|X|2],E[|X̃|2], and E|XX̃| are all finite. Then
noting that for any random variable, Y , |Y |r ≤ 1 + |Y |k for
1 ≤ r ≤ k, meaning E[|Y |]r < 1 + E[|Y |k] the boundednes
of E[Xηt(X +Z, X̃)] follows from (20) and (A3). The proof
of the second equation in (C5) follows similarly to the proof
of the first equation in (C5).

Now that we’ve justified (C1) − (C5), we make an appeal
to Theorem III.2 and the SLLN in order to finally prove (11).

The first result in (11), namely the asymptotic result for
φm uniformly PL(2), follows almost immediately by applying
Theorem III.2 using ρm = φm. Namely, by Theorem III.2,

lim
m

(φm(rt,w)− EZ1
[φm(w +

√
λ2t − σ2

w Z1,w)])
p
= 0

since φm is assumed to be uniformly PL(2). To complete the
proof, we will finally prove that

lim
m

EZ1 [φm(w +
√
λ2
t − σ2

w Z1,w)]

= lim
m

1

m

m∑
i=1

EZ1 [φ(wi +
√
λ2
t − σ2

w [Z1]i, wi)]

a.s.
= E[φ(W +

√
λ2
t − σ2

w Z1,W )],

(21)

where W ∼ f(W ) independent of Z1 standard Gaussian. Then
the desired result follows since

E[φm(W +
√
λ2
t − σ2

w Z1,W)] = E[φ(W +
√
λ2
t − σ2

w Z1,W )].

Result (21) follows by the SLLN (Definition III.1) if E[φ(W+√
λ2t − σ2

w Z1,W )] is finite. By Definition II.1 it is easy to see
that if φ : R2 → R is PL(2), then there is a constant L′ > 0
such that for all x ∈ R2 : |φ(x)| ≤ L′(1 + ||x||2). Using this,

|φ(W +
√
λ2
t − σ2

w Z1,W )|≤ L′
1(1 + ||(W +

√
λ2
t − σ2

w Z1,W )||2)

≤ L′
1(1 + 3|W |2 + 2(λ2

t − σ2
w)|Z1|2),

(22)
where we have used: for any r > 0 and any a1, a2 scalars,
||(a1, a2)||2= a21+a

2
2 and (|a1|+ |a2|)r ≤ 2r−1(|a1|r+ |a2|r).

Then, using (22), and the boundedness of E[|W |2] by (A2),
E|φ(W +

√
λ2t − σ2

w Z1,W )|<∞.
The second result of (11) requires a bit more care as it is

not immediate that the function γn : R2n → R defined as
γn(a,b) := ψn(a,b, x̃) for a sequence of side informations
{x̃}n is uniformly PL(2) as needed to apply Theorem III.2.
The next step of the proof deals with carefully handling this
issue. We note that once we have shown that

lim
n
(ψn(x

t+AT rt,x, x̃)−EZ2
[ψn(x+λtZ2,x, x̃])

p
= 0 (23)

then the last step showing that

lim
n

EZ2 [ψn(x + λtZ2,x, x̃)]
p
= lim

n
E[ψn(X + λtZ2,X, X̃)],

follows by the SLLN as in (21) - (22). However, the function
γn is not obviously uniformly PL(2) since an upper bound
on |ψn(a, ã, x̃) − ψn(b, b̃, x̃)| necessarily has an ||x̃||/

√
n

factor. This is mainly a technicality as ||x̃||/
√
n is bounded

by a constant (independent of n) with high probability.
To show (23) we would like to show that for any ε > 0,

P (|ψn(xt+AT rt,x, x̃)−EZ2
[ψn(x+λtZ2,x, x̃)]|> ε)→ 0

(24)

as n→∞. Define a pair of events Tn(ε) and Bn(C) as

Tn(ε) := {|ψn(xt +AT rt,x, x̃)− EZ2 [ψn(x+ λtZ2,x, x̃)]|> ε}
and for constant C > 0 independent of n, Bn(C) := {x̃ ∈
Rn : ||x̃||/

√
n < C}. Then demonstrating (24) means

showing, for any ε > 0, that limn P (Tn(ε)) = 0. Note that,
P (Tn(ε)) = P (Tn(ε) and Bn(C)) + P (Tn(ε) and not Bn(C))

≤ P (Tn(ε)|Bn(C)) + P (not Bn(C)).

Considering the above, the first term approaches 0 as n
gets large due to Theorem III.2, since one can argue
P (Tn(ε)|Bn(C)) = P (Tn(ε)|Bp(C) for all p > p0) and con-
ditional on the event Bp(C) being true for all integers p > p0
(constant p0 > 0), the function γn defined in (III) is uniformly
PL(2) in n. This uses that x̃(n) is independent of the other
random elements, namely A(n) and w(n). Next, by choosing
C large enough, the second probability P (not Bn(C)) goes to
zero almost surely by the SLLN as ||x̃||/

√
n concentrates to

the elementwise expectation of x̃.
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