An Analysis of State Evolution for Approximate
Message Passing with Side Information

Hangjin Liu
NC State University
Email: hliu25@ncsu.edu

Abstract—A common goal in many research areas is to re-
construct an unknown signal x from noisy linear measurements.
Approximate message passing (AMP) is a class of low-complexity
algorithms for efficiently solving such high-dimensional regres-
sion tasks. Often, it is the case that side information (SI) is
available during reconstruction. For this reason a novel algorith-
mic framework that incorporates SI into AMP, referred to as
approximate message passing with side information (AMP-SI),
has been recently introduced. An attractive feature of AMP is
that when the elements of the signal are exchangeable, the entries
of the measurement matrix are independent and identically
distributed (i.i.d.) Gaussian, and the denoiser applies the same
non-linearity at each entry, the performance of AMP can be
predicted accurately by a scalar iteration referred to as state
evolution (SE). However, the AMP-SI framework uses different
entry-wise scalar denoisers, based on the entry-wise level of the
SI, and therefore is not supported by the standard AMP theory.
In this work, we provide rigorous performance guarantees for
AMP-SI when the input signal and SI are drawn i.i.d. according
to some joint distribution subject to finite moment constraints.
Moreover, we provide numerical examples to support the theory
which demonstrate empirically that the SE can predict the AMP-
SI mean square error accurately.

A full version of this paper is accessible at: http://www.
columbia.edu/~cgr2130/AMPSI_SE.pdf

1. INTRODUCTION

High-dimensional linear regression is a well-studied model
being used in many applications including compressed sensing
[1], imaging [2], and machine learning and statistics [3]. The
unknown signal x € R" is viewed through the linear model:

y =Ax+w, )

where y € R™ are the measurements, A € R™*"™ is a known
measurement matrix, and w € R™ is measurement noise. The
goal is to estimate the unknown signal x having knowledge
only of the noisy measurements y and the measurement matrix
A. When the problem is under-determined (i.e., m < n), in
order for reconstruction to be successful, it is necessary to
exploit structural or probabilistic characteristics of the input
signal x. Often a prior distribution on the input signal x is
assumed, and in this case approximate message passing (AMP)
algorithms [1] can be used for the reconstruction task.

AMP [1], [4] is a class of low-complexity algorithms for
efficiently solving high-dimensional regression tasks (1). AMP
works by iteratively generating estimates of the unknown
input vector, x, using a possibly non-linear denoiser function
tailored to any prior knowledge about x. One favorable feature
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of AMP is that under some technical conditions on the mea-
surement matrix A and x, the observations at each iteration
of the algorithm are almost surely equal in distribution to x
plus independent and identically distributed (i.i.d.) Gaussian
noise in the large system limit.

AMP with Side Information (AMP-SI): In information
theory [5], when different communication systems share side
information (SI), overall communication can become more
efficient. Recently [6], [7], a novel algorithmic framework,
referred to as AMP-SI, has been introduced for incorporating
SI into AMP for high-dimensional regression tasks (1). AMP-
SI has been empirically demonstrated to have good reconstruc-
tion quality and is easy to use. For example, we have proposed
to use AMP-SI for channel estimation in emerging millimeter
wave communication systems [8], where the time dynamics of
the channel structure allow previous channel estimates to be
used as SI when estimating the current channel structure [7].

We model the observed SI, denoted by X € R", as depend-
ing statistically on the unknown signal x through some joint
probability density function (pdf), f(X,X). AMP-SI uses a
conditional denoiser, g; : R?® — R", to incorporate SI,

g:(a,b) = E[X|X + MN(0,I,) =a,X =b]. (2

The AMP-SI algorithm iteratively updates estimates of the
input signal x: let x? = 0, the all-zeros vector, then
t—1
=y - Ax 4 T [dive (T AT LR))L )

xT =g, (x" + ATr! %), 4)

where x! € R™ is the estimate of x at iteration ¢ and § = o
is the measurement rate. For a differential function ¢ : R?" —
R™ we use divg(a,b) = >°1" gz:’; (a,b). Using the denoiser
in (2), the AMP-SI algorithm (3)-(4) provides the minimum
mean squared error (MMSE) estimate of the signal when SI

X is available [6].

State Evolution (SE): It has been proven that the perfor-
mance of AMP, as measured, for example, by the normalized
squared (y-error L ||x" —x||3 between the estimate x* and true
signal x, can be accurately predicted by a scalar recursion
referred as SE [9], [10] when the measurement matrix A is
i.i.d. Gaussian under various assumptions on the elements of
the signal. The SE equation for AMP-SI is as follows. Assume
the entries of the noise w are i.i.d. ~ f(W) with 02, = E[W?],
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and let \g = o2 + E[||X][?]/nd. Then for t > 0,
1 ~
N =02+ 5 E g1 (X + XN 1Z,X) = X[, (5

where (X, X) ~ f(X,X) are independent of Z ~ N(0,1,),
where we use NV (y, 0%) to denote a Gaussian distribution with
mean y and variance o2.

Considering AMP-SI (3)-(4), however, we cannot directly
apply the existing AMP theoretical results [9], [10], as the
conditional denoiser (2) depends on the index ¢ through the SI,
meaning that different scalar denoisers will be used at different
indices within the AMP-SI iterations. Recent results [11],
however, extend the asymptotic SE analysis to a larger class
of possible denoisers, allowing, for example, each element of
the input to use a different non-linear denoiser as is the case
in AMP-SI. We employ these results to rigorously relate the
SE presented in (5) to the AMP-SI algorithm in (3)-(4).

Related Work: While integrating SI into reconstruction
algorithms is not new, AMP-SI introduces a unified framework
within AMP supporting arbitrary signal and SI dependencies.
Prior work using SI has been either heuristic, limited to
specific applications, or outside the AMP framework.

For example, Wang and Liang [12] integrate SI into AMP
for a specific signal prior density, but the method is difficult to
apply to other signal models. Ziniel and Schniter [13] develop
an AMP-based reconstruction algorithm for a time-varying
signal model based on Markov processes for the support and
amplitude. This signal model is easily incorporated into the
AMP-SI framework as discussed in the analysis of the birth-
death-drift model of [6], [7]. Manoel et al. implement an
AMP-based algorithm in which the input signal is repeatedly
reconstructed in a streaming fashion, and information from
past reconstruction attempts is aggregated into a prior, thus
improving ongoing reconstruction results [14]. This recon-
struction scheme resembles that of AMP-SI, in particular when
the Bernoulli-Gaussian model is used (see Section II-B).

Contribution and Outline: Ma et al. use numerical exper-
iments to show that SE (5) accurately tracks the performance
of AMP-SI (3)-(4) [7], as was shown rigorously for standard
AMP. Ma et al. conjecture that rigorous theoretical guarantees
can be given for AMP-SI as well [7]. In this work, we analyze
AMP-SI performance when the input signal and SI are drawn
i.i.d. according to a general pdf f(X,X) obeying some finite
moment conditions, the AMP-SI denoiser (2) is Lipschitz, and
the measurement matrix A is i.i.d. Gaussian.

In Section II, we give the main results, examples for various
signal and SI models, and numerical experiments comparing
the empirical performance of AMP-SI and the SE predictions.
The proof of our main theorem is provided in Section III.

II. MAIN RESULTS
A. Main Theorem
Our main result provides AMP-SI performance guarantees
when considering pseudo-Lipschitz loss functions.

Definition II.1. Pseudo-Lipschitz functions [11]: For k €
Nso and any n € Ny, a function ¢ : R" — R is pseudo-

Lipschitz of order k, or PL(k), if there exists a constant L,
referred to as the pseudo-Lipschitz constant of ¢, such that
for x,y € R™

e o0l <21 ()" () )20

A sequence (in n) of PL(k) functions {¢,}nen., is called
uniformly pseudo-Lipschitz of order k , or uniformly PL(k), if,
denoting by L,, the pseudo-Lipschitz constant of ¢,,, we have
L,, < oo for each n and limsup,, .. L, < oc.

Throughout the work, || - || denotes the Euclidean norm, and
L denotes convergence in probability. In the case of (X, X)
sampled i.i.d. f(X,X) the AMP-SI denoiser (originally de-
fined in (2)) is separable: define 7, : R> — R, as

me(a,b) = BIX|X + AMN(0,1) = a, X =b],
and the AMP algorithm in (3)-(4) simplifies to

t—1 M

r _ 1~
rt:y—Axt—l—T;n;_l([xt P AT 03, (D)

(6)

it = (x" + AT, 3), (8)

where the derivative 7} (s,-) = (s, -). For the denoiser in
(6), the SE is as follows: let A\g = o2 + E[X?]/§ and for
t>0,

A

fori=1,2,...,n,

1 ~
:UiﬂLg]E (-1 (X + M1 Z,X) = X)?|, (9

where (X, X) ~ f(X, X) are independent of Z ~ N(0,1).

Theorem IL1. For any PL(2) functions ¢ : R?> — R and
1 : R3 — R, define sequences of functions ¢, : R — R
and 1, : R3 — R as follows: for vectors a,b € R™ and
x,y,X € R,

1 m
Om(a,b) = —3  o(ai,by),
. o (10)
(X, y,X) 1= - ;w(fﬂiayia%i)-

Then the functions in (10) are uniformly PL(2). Next, assume
the following:
(A1) The measurement matrix A has i.i.d. Gaussian entries
with mean 0 and variance 1/m.
(A2) The noise w is i.i.d. ~ f(W) with finite E[|W?].
(A3) The signal and SI (x,X) are sampled i.i.d. from f(X, X)
with finite E[| X|?], finite E[| X |?], and finite E[| X X|].
(Ad) For t > 0, the denoisers n;(-,-) defined in (6) are Lips-
chitz continuous: for scalars ay,as,by1,bs, and constant
L >0, |n(a1,br) —ne(az, b2)| < Li|(a1,b1) — (a2, b2)]l-
Then, we have the following asymptotic results for the func-
tions defined in (10),

lim ¢, (rf, w) £ im E[¢,, (W + /X2 — 02 Z1, W))),
lim ¢, (xF + ATt x, %) £ lim E[th, (X + A\ Zo2, X, X)],
’ (11)
where Zy ~ N(0,1,,), Zo ~ N(0,1,,), independent of W ~
idud. f(W) and (X,X) ~ dd.d. f(X,X). xt and r* are
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defined in the AMP-SI recursion (7)-(8), and \; in the SE (9).

Section III contains the proof of Theorem II.1. The proof
follows from Berthier et al. [11, Theorem 14] and the strong
law of large numbers. The main details involve showing that
assumptions (A1) — (A4) allow us to apply [11, Theorem 14].

As a concrete example of how Theorem II.1 provides
performance guarantees for AMP-SI, let us consider a few
interesting pseudo-Lipschitz loss functions.

Corollary IL1.1. Under assumptions (A1) —(A4), letting ' :
R3 = R be ! (z,y,2) = (x — y)?, then by Theorem II1,

1
lim —||x' 4+ ATr! — x||? £ A2,
n—oo N

where \? is defined in (5). Similarly if 1) : R3 — R is defined
as ¥?(x,y,2) = (n:(z, 2) — y)?, then by Theorem II.1
N 2P sy\2 2
nlggo EHX = x[[" = 06(A\ip1 — o)

When n, is Lipschitz, it is straightforward to show that 4" and
2 are both PL(2), and thus Theorem II.1 can be applied.

B. Examples

Next, we consider a few signal and SI models to show how
one can derive the denoiser in (2), use this to construct the
AMP-SI algorithm and the SE, and apply Theorem II.1. Before
we get to the examples we state a lemma that demonstrates
how functions with bounded derivative are Lipschitz.

Lemma IL1.1. A function ¢ : R* — R having bounded
derivatives, %(ﬁ(fmyﬂg D; and |6%¢(a:,y)\§ Dy where
0 < Di,Dy < oo, is Lipschitz continuous with Lipschitz

constant \/D? + D3.

1) Gaussian Signal and SI: In this model, referred to as
the GG model henceforth, the signal has i.i.d. Gaussian entries
with zero mean and finite variance and we have access to SI
in the form of the signal with additive white Gaussian noise
(AWGN). The signal, X, and SI, X, are related by

X =X + N(0, 020). (12)

In this case, as shown in [7], because the random variables
being estimated are Gaussian, the AMP-SI denoiser (2) has a
linear form:

o20%a + a2 )\?b

b) = . 13
m(a,b) 02(02 + A\2) + 02)? (13)
Then the SE (5) can be computed as
2,22
N2 =gy 77 fic (14)

0 Lo2(0? +Aq) + 02N,
We note that the denoiser in (13) is Lipschitz continuous
as a result of Lemma IL1.1, because |2 (a,b)|< 1, and
|%nt(a, b)|< 1. Therefore the assumptions (A1) — (A4) are
satisfied in the GG case and we can apply Thoerem II.1.

2) Bernoulli-Gaussian Signal and SI: The Bernoulli-
Gaussian (BG) model reflects a scenario in which one wishes
to recover a sparse signal and has access to SI in the form
of the signal with AWGN as in (12). In this model, each
entry of the signal is independently generated according to

x; ~ eN(0,1)+ (1 —¢€)do, where dy is the Dirac delta function
at 0. In words, the entries of the signal independently take the
value 0 with probability 1 —e¢ and are N'(0, 1) with probability
e. In this case, as shown in [7], the AMP-SI denoiser (2) equals
77t(6% b) =Pr (X 7é 0|a7 b) E [X|a7 ba X 7& 0]

= (1 + Ta,b)ilfa,ba

where, letting p,2(z) be the zero-mean Gaussian density with
2

(15)

variance 7° evaluated at x,
o%a+ \2b
wb = 55, 16
f.,b 0_2_‘_)\%_'_0_2)\% ( )
1—e\1V2r
Tt ;:( : ) o7 P (0% + A2b), (17)
ve = X2 (02 + N2+ a%\D).
Then the SE (5) can be computed as
1 T 2 2 )\2 2)\2
X =02+ 7( g ) S Z’l) o as)
N1+ T, o2+ X +02N

We again use Lemma II.1.1 to show that the denoiser
defined in (15)-(17) is Lipschitz continuous so that the assump-
tions (A1)—(A4) are satisfied in the BG case and we can apply
Thoerem II.1. We study the partial derivatives. Combining
(15)-(17), me(a, b) = (1 + Tap) ™" fa,p- Then,

‘Ont(mb)‘ _ ‘ 1 [8fa7b} B 1 {8Ta,b}f
da 1+ T, L 0a (1+Top)2 L 8a 177

(1 + 2Ta,b) afa,b ‘ 1 ’6(Tu,bfu,b) ‘

(14+Top)?! Oda (1+T,)? da ’

<

(19)

Now we show upper bounds for the two terms of (19) sepa-
rately. For the first term, 8(’;‘;‘b <1, so % ag‘;’b <1
Consider the second term of (19). From (17) and (16),

1_
Tovfap = (TE) V2r(o?a + )\fb)p,,t (02a + )\,?b)7

then using %pfz (r) = — 5 pr2(x), we have
0 1—e1v2m0? 2 2 2 2,12
‘% [Tmbfa,b] = [ . ] ” v (07a+ Aib) (v — (07a + Ajb) ‘

1

To upper bound the above, we use exp{—z} < when

— 1+
x>0, and so pr2(z) < V272(272 + 22)~1 /\/7. Thus,

2 fruass] =

202 (1 - e) |y — (0%a + A2b)?|

Nz 2uy + (02a + A2b)2
2

2L(176) < 2(1—¢)

Ve € ~  OweE

€

where in the final inequality we use /v /02 > A\ and \; >
o by (18). Using the above in (19), | Zn;(a,b)|< 1 +2(1 —
€)/(owe). A bound for | &n,(a,b)| can be shown similarly.

C. Numerical Examples

Finally, we provide numerical results to compare the empir-
ical mean square error (MSE) of AMP-SI and the performance
predicted by SE. Fig. 1 shows the MSE achieved by AMP-SI
in the GG scenario and the SE prediction of its performance.
In this example, the signal variance 03. = 1, the measurement

noise variance o2 = 0.01, the variance of AWGN in SI

w
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—&— AMP-SI Empirical with n=100
— * - SE Prediction with n=100

MSE (db)

Iteration

Fig. 1: Empirical MSE performance of AMP-SI and SE
prediction. (GG model, n = 100, m = 30, 0, = 1, 0, = 0.1,
and o = 0.2.)

— AMP-S| Empirical with =0.2
= = = AMP-SI Empirical with 0=0.5
[ T AMP-SI| Empirical with o=1
X__SE Prediction

Iteration

Fig. 2: Empirical MSE performance of AMP-SI and SE
prediction. (BG model, n = 10000, m = 3000, ¢ = 0.2,
Ow = 01)

0% = 0.04. We averaged over 10 trials of a GG recovery
problem for empirical results of AMP-SI. For smaller n there
is some gap between the empirical MSE and the SE prediction,
as shown in Fig. 1 for n = 100, but the gap shrinks as n
is increased. (Fig. 2 shows results for the BG scenario with
n=10000, and a similar plot for GG would also show the
empirical MSE tracking the SE prediction nicely.)

Fig. 2 shows the MSE achieved by AMP-SI in the BG
scenario, and the SE prediction of its performance. We again
averaged over 10 trials of a BG recovery problem for empirical
results of AMP-SI. The signal length n = 10000, m = 3000,
the measurement noise variance afv = 0.01, and € = 0.2,
where 20% of the entries in the signal are nonzero. We vary
the variance of AWGN in SI from ¢2 = 0.04, 62 = 0.25,
and 02 = 1. The results show that SE can predict the MSE
achieved by AMP-SI at every iteration.

III. PROOF OF THEOREM II.1

The proof of the functions in (10) being uniformly PL(2)
when ¢ and v are PL(2) is a straightforward application of
Cauchy-Schwarz.

Next we show the asymptotic results given in (11). First we
use Berthier et al. [11, Theorem 14] and then we make an
appeal to the strong law of large numbers (SLLN):

Theorem III.1. Strong Law
(SLLN) [I5]: Let Xq,Xo,...

of Large Numbers
be a sequence of i.id.

random variables with finite mean p. Then the partial
averages converge almost surely to p < oo.

We use Berthier et al. [11, Theorem 14], restated here for
convenience. To apply the result in Berthier ez al. [11, Theorem
14], one needs to justify the following assumptions:

(C1) The measurement matrix A has Gaussian entries with
i.i.d. mean 0 and variance 1/m.

Define a sequence of denoisers 7%, : R™ — R™ to be those
that apply the denoiser 7, defined in (6) elementwise
as follows: 7t (x) := m(x,X). For each t, 7 () are
uniformly Lipschitz. A function is wuniformly Lipschitz
in n if the Lipschitz constant does not depend on n.
||x||3/n converges to a constant as n — oo.

The limit 6., = lim,,— o ||W||2/+/m is finite.

For any iterations s, € N and for any 2 x 2 covariance
matrix 3, the following limits exist.

(C2)

(C3)
(C4)
(C5)

1 T~t
nli}ngo EEZ[X nn(x + Z)} < o0,
.1 ~
nh_)rrolo ;EZ’Z, [?ﬁb(x +Z)T (x + Z/)] < 00,
where (Z,Z') ~ N(0,X ® I,), with ® denoting the
tensor product and I,, the identity matrix.

Theorem IIL.2. Under the assumptions (CI1) — (C5), for any
sequences of uniformly pseudo-Lipschitz functions pp, : R™ x
R™ — R and v, : R® x R"* - R,

ligln(pm(rt, W) - IEZ1 [Pm(W + \/mzl,w)}) g O7

liTIln (’yn(xt + ATyt x) — Ez, [Yn(x + A\ Zo, x)]) L 0,

where Zy ~ N (0,1,,), Zy ~ N(0,L,), x* and r" are defined
in the AMP-SI recursion (7)-(8), and A in the SE (5).

We demonstrate that assumptions (A1) — (A4) from Sec-
tion IT imply (C1) — (CS5), so we can apply Theorem IIL.2.

Assumptions (A1) and (C1) are identical.

Next consider assumption (C2). The non-separable denoiser
Nt (X) = (X, X) applies the AMP-SI denoiser defined in
(6) entrywise to its vector inputs. From (A4), {n:(-,)}+>0 are
Lipschitz continuous. Thus, for length-n vectors xi, X2, and
fixed SI X, ||77¢,(x1) — 7%, (x2)|| < L||x1 — x2||. The Lipschitz
constant does not depend on 7, so 7%, (+) is uniformly Lipschitz.

Assumptions (C3) and (C4) follow from the SLLN, Defini-
tion IIL.1: by (A2) and (A3), w and x are entrywise i.i.d. with
finite moment conditions E[|IW|?] < co and E[| X|?] < oo.

We now show that (C5) is met. Define y; =
xZEZJm(a:Z + Zi7 Ez)] ﬁor 7 = ]., 2, ey By (A3),
(X,X) ~ iid. f(X,X), meaning yi1,y2,...,Y, are also

iid. By Def. MLl if E[Xn(X 4+ Z,X)] < oo where
Z ~ N(0,02) independent of (X,X) ~ iid. f(X,X),
then limy, o0 I iy ez + Z;, %;)] = E[Xn (X +
Z,X)]. We now show E[Xn,(X + Z, X)] < co. By (A4),
n:(+, -) is Lipschitz, so it is easy to show that |n:(a1,b1)| <
L'(1+|ay|+1b1]) for some constant L’ > 0. Using this bound
and the triangle inequality,
E[Xn:(X + Z,X)] < LE[X|(1+|X + 2| + | X])]

' 2 - (20)
< L'(E|X| + E[X?] + E|X|E|Z| + E|X X]).
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By (A3), E[|X|?],E[|X|?], and E|XX]| are all finite. Then
noting that for any random variable, Y, |Y|" < 1+ |Y|* for
1 <7 <k, meaning E[|Y|]” < 1+ E[|Y|"] the boundednes
of E[Xn:(X + Z, X)] follows from (20) and (A3). The proof
of the second equation in (CS5) follows similarly to the proof
of the first equation in (CS5).

Now that we’ve justified (C1) — (C5), we make an appeal
to Theorem II1.2 and the SLLN in order to finally prove (11).

The first result in (11), namely the asymptotic result for
¢, uniformly PL(2), follows almost immediately by applying
Theorem II1.2 using p,,, = ¢,,,. Namely, by Theorem III.2,

lim (Gn (', W) = Bz, [om (W +\/ A} = 0%, Za, w))) £ 0

since ¢,, is assumed to be uniformly PL(2). To complete the
proof, we will finally prove that

lim Bz, [pm (W + mh w)]

1N
:I%E;]Ezl[zp(wi—‘,— A2 =02 [Za)i,wi)]  (21)

= E[p(W + /A7 — 02 Z1, W),

where W ~ f(W) independent of Z; standard Gaussian. Then
the desired result follows since

E[m (W + /A2 — 02 Z1, W)] = E[¢p(W + /A2 — 02 Z1, W)].

Result (21) follows by the SLLN (Definition I11.1) if E[¢(W +
VA2 — 02 Z1,W)] is finite. By Definition IL.1 it is easy to see
that if ¢ : R2 — R is PL(2), then there is a constant L’ > 0
such that for all x € R? : |¢(x)| < L'(1 + ||x||?). Using this,

|6(W + /A2 — 02 Z1, W)|< Ly(1+ ||(W + (/A2 — 02 Z1,W)]]?)

< L1+ 3W + 208 - 0u)l Z1),

(22)
where we have used: for any » > 0 and any a1, aq scalars,
(a1, a2)|[2= a? +a3 and (Jay |+ |az))” < 27~ (|ay | +]aa|").
Then, using (22), and the boundedness of E[|WW|?] by (A2),
Elp(W + /A2 — a2 Z1, W)|< .

The second result of (11) requires a bit more care as it is
not immediate that the function 7, : R?® — R defined as
vn(a,b) := 9, (a,b,x) for a sequence of side informations
{X}, is uniformly PL(2) as needed to apply Theorem IIL.2.
The next step of the proof deals with carefully handling this
issue. We note that once we have shown that

lim (0, (x*+ AT, %, %) —Eg, [thn (x+ X Z2, x,X]) Z 0 (23)
then the last step showing that
lim Bz, [, (x + A\ Zz2, x,%)] £ lim E[yh,, (X + A Z2, X, X)],

follows by the SLLN as in (21) - (22). However, the function
Yn is not obviously uniformly PL(2) since an upper bound
on |¢n(a,a,x) — ¢¥,(b,b,X)| necessarily has an ||X||/\/n
factor. This is mainly a technicality as ||X||/+/n is bounded
by a constant (independent of n) with high probability.

To show (23) we would like to show that for any € > 0,

P(jn (x" + ATr", %, %) = Bz, [thn (x + A Za, %, X)]|> €) = 0
(24)

as n — oo. Define a pair of events 7, (e) and B,,(C) as
To(€) == {|ton(x" + ATr", x, %) — Bz, [ton (x + \iZ2, %, X)]|> €}

and for constant C' > 0 independent of n, B,(C) := {X €
R™ : ||X||/v/n < C}. Then demonstrating (24) means
showing, for any € > 0, that lim,, P(7,,(¢)) = 0. Note that,

P(Tn(€)) = P(Tn(e) and B, (C)) + P(T.(¢) and not B, (C))

< P(Tn(€)|Bn(C)) + P(not B,(C)).
Considering the above, the first term approaches 0 as n
gets large due to Theorem III.2, since one can argue
P(T.(€)|Bn(C)) = P(Tn(€)|Bp(C) for all p > py) and con-
ditional on the event B,(C') being true for all integers p > po
(constant pg > 0), the function +,, defined in (III) is uniformly
PL(2) in n. This uses that X(n) is independent of the other
random elements, namely A (n) and w(n). Next, by choosing
C' large enough, the second probability P(not B,,(C)) goes to
zero almost surely by the SLLN as ||X||/y/n concentrates to
the elementwise expectation of X.
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