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ABSTRACT 

It has recently been shown that quantum-confined states can appear in epitaxially grown van der 

Waals material heterobilayers without a rotational misalignment (𝜃 = 0°), associated with flat 

bands in the Brillouin zone of the moiré pattern formed due to the lattice mismatch of the two 

layers. Peaks in the local density of states and confinement in a MoS2/WSe2 system was 

qualitatively described only considering local stacking arrangements, which cause band edge 

energies to vary spatially. In this work, we report the presence of large in-plane strain variation 

across the moiré unit cell of a 𝜃 = 0° MoS2/WSe2 heterobilayer, and show that inclusion of strain 

variation and out-of-plane displacement in density functional theory calculations greatly improves 

their agreement with the experimental data. We further explore the role of twist-angle by showing 
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experimental data for a twisted MoS2/WSe2 heterobilayer structure with twist angle of 𝜃 = 15°, 
that exhibits a moiré pattern but no confinement.  

Bilayers of two-dimensional (2D) van der Waals material systems have attracted recent attention 

as a host of a variety of interesting physics and potential for device applications. For example, 

twisted bilayer graphene was demonstrated to superconduct when the misalignment between the 

layers is tuned to specific ‘magic’ angles.1 This situation is typified by flat bands in the Brillouin 

zone of the moiré pattern formed by the two layers,2,3 which can give rise to correlated behavior 

such as the superconductivity. This has led to recent interest in so-called ‘twistronics’, in which 

tuning of the moiré pattern by changing the misorientation of homobilayers leads to changes in the 

electronic properties of the system.4 The 2D transition metal dichalcogenides have also emerged 

as interesting systems where flat bands emerge when a small twist angle is introduced in 

homobilayers of WSe2
5,6 or MoS2.7 Another way to realize a moiré pattern, without the need of 

rotational misalignment, are heterobilayers of materials with nonzero lattice mismatch. Effects of 

moiré patterns have been studied theoretically for a variety of 2D systems and have revealed, e.g., 

spatially modulated band gaps,8 spin splitting9 in semiconductors, or topological flat bands in 

trilayer graphene.10 In the case of 2D semiconductors, heterobilayers of MoS2 and WSe2 were 

found to exhibit spatially varying band edge energies, attributed to different local stacking 

arrangements within the moiré unit cell.11 In addition, the present authors recently described the 

observation of quantum-confined electronic states associated with flat bands in the Brillouin zone 

of the moiré pattern found in the same system.12 

 

Besides variation of local stacking arrangements, it is expected that the strain in heterolayers 

will vary spatially as the layers try to match their lattices to correspond to the lowest energy 

stacking arrangement. This sort of spatially varying strain has been experimentally observed for 

heterobilayers of graphene on hBN.13 Theoretical descriptions of the strain variation for this 

system qualitatively agree with the experiment.14–16 It is well known that strain has a significant 

impact on electronic structure such as the band gap opening in graphene/hBN bilayers17 or bandgap 

tuning in the 2D semiconductors. The interface of WSe2-MoS2 lateral heterojunctions were shown 

to have significant strains (>1%), which lead to the local band gap decrease of ~0.5 eV.18 Enhanced 

photoluminescence intensity at the interface of the same heterojunction has also been observed for 

this system,19 raising questions for the potential of unique spin/valley transport or exciton 

properties. In addition, out-of-plane deformations are expected in bilayer systems, such that there 

is minimization of the combined intralayer and interlayer energy.16 It is then natural to ask to what 

degree mechanical deformations play a role in the electronic structure of semiconducting vertical 

heterobilayers.  

 

The presence of spatially localized quantum-confined states in epitaxially grown MoS2/WSe2 

heterobilayers (with no rotational misalignment) were found to be qualitatively explained by local 

extrema of the conduction or valence band edges, i.e. the states are derived from the lowest 

(highest) lying conduction (valence) band edge.12 In this work, we show that this model holds up 

well by examining the impact of a twist angle introduced in an exfoliated heterobilayer system, 

such that a moiré pattern is observed, but no confinement, due to a relatively large band dispersion 

when there is no spatial variation of band edges. Density functional theory (DFT) calculations 

considering only local stacking arrangements described well the valence band ordering in the 
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rotationally aligned heterobilayer. However, the conduction band was not well described and 

requires the inclusion of additional mechanisms to explain the observed confinement. In this work, 

we show that in-plane as well as out-of-plane deformations have a significant impact on the 

electronic structure of the bilayer system and explain the observed spatial locations of the confined 

states. To do so, we combine experimental scanning tunneling microscopy/spectroscopy 

(STM/STS) results and a detailed DFT study. We find that the strain in the MoS2 varies across the 

moiré unit cell and that, when this strain variation is included in DFT band structure calculations, 

a greatly improved agreement is achieved between the predicted and experimentally observed 

locations of quantum-confined states. In addition, we show that the valence band edge of the 

present heterobilayer system is sensitive to interlayer separation, from which we infer a non-zero 

corrugation of the underlying WSe2. The reported behavior is of general applicability for bilayer 

systems.  

 

RESULTS AND DISCUSSION 

Spatial variation of band edges, neglecting strain. Heterobilayers of MoS2 and WSe2 were 

grown on epitaxial graphene and studied using STM/STS (for detail on the sample preparation see 

Ref. 12). Figure 1a shows the topography (left) and conductance map (right) of the same area. The 

observed moiré pattern arises from the 3.7% lattice mismatch between the MoS2 (𝑎 = 3.16 Å) and 

the WSe2 (𝑎 = 3.28 Å), which are rotationally aligned in this epitaxially grown sample (8,9). The 

moiré unit cell is shown by the black dashed line and is found to have a period of (8.7 ± 0.2) nm 

and a corrugation of 1.3 Å (at +1.5 V sample bias). The three labeled extrema in the corrugation 

of the moiré pattern are associated with three different atomic registries, as shown in Figure 1b. 

Spatial locations where the Mo atoms are directly on top of the W atoms (denoted as AA stacking) 

correspond to corrugation maxima. Alternatively, locations where the metal atom of one layer is 

opposite the chalcogen atoms of the other layer correspond to the two types of corrugation minima. 

These are denoted by ABW (ABSe) for the case where the W (Se) atom is visible when looking 

down through the top layer. Identification of the different registries in the STM images requires 

care since STM topography measurements are in general a mixture of both height and electronic 

structure, which we discuss in detail in the Supporting Information. Using STS at a temperature of 

5 K, it has been shown that states associated with the K point of the conduction band (denoted KM 

due to large MoS2 character11) were confined at the ABW locations. Similarly, states associated 

with the Г point in the valence band (denoted ГW due to large WSe2 character) were found to be 

confined at both the ABW and ABSe locations.12 Sharp peaks in dI/dV measurements associated 

with these confined states are visible in the spectra shown in Figure 1c, indicating the presence of 

flat bands in the moiré pattern Brillouin zone. 

 

It should be noted that our measurements are not sensitive to states at the K point of the valence 

band, and thus our spectra do not reveal the expected confinement associated with those states.12 
In STS, tunneling is suppressed for states at the edge of the Brillouin zone boundary because the 

tunneling barrier scales with parallel momentum. At the conduction band edge, the K point states 

are associated with the MoS2 layer which is the topmost layer. Therefore, we can resolve the KM 

band edge signal and the associated confined states. However, at the valence band edge, the K 

point states are associated with the bottommost WSe2 layer, such that tunneling through the MoS2 

is required to observe a KW band edge signal. This signal can be resolved with a large enough 

modulation voltage, but then sharp peaks in the spectrum cannot be resolved due to modulation 

voltage-limited energy resolution (see Figure S4 of Ref. 12 where the KW band edge is evident, 
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but no sharp peak is observed for ГW). We therefore focus on the KM conduction and ГW valence 

band edge states in the following. 

 

Figure 1. (a) STM topography (left) and conductance map (right) of the same area of a MoS2/WSe2 

heterobilayer with twist angle of 0. The moiré unit cell is shown by the black dashed line in both 
panels. The height map shows the three special registries, denoted by AA for the corrugation 
maxima and by ABW, and ABSe for the two types of corrugation minima. Sample bias 𝑉𝑆 = +1.5 𝑉, 
scale bar is 5 nm. The conductance map shows the signature of the quantum-confined states at 
just the ABW location at 𝑉𝑆 = +0.6 𝑉, corresponding to the K point conduction band edge at the 
ABW locations. (b) Atomic models of AA, ABW, and ABSe stacking configurations (viewed from 
above) and their corresponding band structures from DFT calculations. Size and color of the data 
points indicate character of the states. The dashed black lines mark the conduction band 
minimum at K and the valence band maximum at Г for each registry (our STS measurements are 
not sensitive to states at the valence band K point12). Calculations shown here are done for a 
lattice constant equal to that of the average of the two materials’ relaxed lattice constants (𝑎 =
3.22 Å). (c) Spectra from representative AA, ABW, and ABSe locations. Energy shifts of the band 
edges are evident, indicated by the black arrows. The ABW and ABSe valence band edge (derived 
from the WSe2 Г point, ГW) show sharp peaks in the dI/dV signal. The ABW conduction band edge 
(derived from the MoS2 K point, KM) also shows a sharp peak. Black dashed lines show a voltage-
dependent noise level (see Methods for details). (d) Schematic showing the variation of the 
conduction (KM) and valence (ГW) bands and spatial locations of quantum-confined states 
(indicated by the dashed red lines) as seen in panel c.  

Neglecting any mechanical deformations of the layers arising from the moiré pattern, the 

different atomic registries dictate the spatial dependence of the electronic structure. Figure 1b 
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shows DFT band structure calculations for each registry, following the method of Ref. 11, done in 

a 1 × 1 unit cell with the two lattices matched to the average of their relaxed lattice constants (𝑎 =
3.22 Å) since the moiré unit cell is too large to compute in its entirety. In a semi-classical picture, 

the spatially varying band edges can be treated as a potential with the periodicity of the moiré 

pattern. Wherever there is a local maximum (minimum) in the valence (conduction) band, there is 

an effective potential-well such that there is confinement at that spatial location (Figure 1d). These 

confined states then manifest as a sharp peak in the local density of states near the band edge (i.e. 

a flat band in the moiré pattern Brillouin zone), which are evident at the ABW locations in the 

conductance map shown in Figure 1a and spectra in Figure 1c. The potential can be written as 

𝑉(𝑟) =  ∑ 𝑉�⃗�𝑒
𝑖�⃗�⋅𝑟

�⃗�      (1) 

where �⃗�  are reciprocal lattice vectors of the moiré pattern. Following the method of Ref. 17, 

assuming a slow spatial variation, we perform a Fourier decomposition of the band edge energies 

and keep only the zero and first order terms of the potential (see Supporting Information for 

details). The resulting band structure depends on the amplitude of the variation, 𝑉𝐺 , and the moiré 

wavelength, 𝐿. As we will show below, for a large variation of the band edge energies, the lowest 

lying energy band flattens such that a sharp peak is found in the density of states.  

 

In Figure 2a, we show an STM image of a heterobilayer of exfoliated MoS2 on WSe2 (on a 

graphite substrate) with θ ≈ 15° (directly measured from separate atomic resolution images, see 

Supporting Information for details). A small wavelength moiré pattern is formed, 𝐿 ≈ 1.2 nm. The 

moiré wavelength is consistent with the expected periodicity given by 𝐿 = (1 + 𝛿)𝑎/

√𝛿2 + 2(1 + 𝛿) (1 − cos 𝜃)20, where 𝑎 is the lattice constant of the MoS2, 𝛿 = 3.7% is the lattice 

mismatch, and 𝜃  is the twist angle in radians. A spectrum from an ABW site on the grown 

heterobilayer (𝜃 = 0°) is shown in Figure 2b with sharp peaks associated with the confined states 

indicated by arrows. For the small wavelength moiré pattern (𝜃 = 15°), the same spectroscopic 

features are observed (with an overall shift due to different substrates), but with no sharp peaks 

associated with quantum-confinement. Confinement is not observed at any spatial location for the 

twisted heterobilayer (see Supporting Information). The lack of confinement can be explained by 

the potential given by Equation 1. In Figure 2c, we show a schematic representing the Brillouin 

zone formed when there is a small lattice mismatch with no twist angle (left) and with a small non-

zero twist angle (right). A moiré pattern forms in both scenarios but will have a shorter wavelength 

(larger Brillouin zone) when a small twist angle is present, as seen in Figure 2a. Figure 2d shows 

the band structure for 𝜃 = 0° with no band edge variation, |𝑉𝐺| = 0, and for a band edge variation 

corresponding to that of the ΓW band edge in the grown heterobilayer, |𝑉𝐺| = 25 meV. The lowest 

lying energy band flattens when |𝑉𝐺| = 25 meV such that the dispersion of this band is very small 

(< 1 meV), which we attribute to the sharp peak in the density of states observed in the spectra of 

Figure 2c for 𝜃 = 0°. Figure 2e shows the dispersion of the lowest lying energy band as a function 

of moiré wavelength for various values of |𝑉𝐺|. For small moiré wavelengths (or large twist 

angles), the dispersion increases such that there is no longer a flat band in the moiré pattern 

Brillouin zone, regardless of the value of the band edge variation. Figure 2e also shows the 

experimental data points for flat bands associated with the ΓW point, with filled (open) data points 

indicating where confinement and flat bands are observed (not observed). Ref. 6 reports flat bands 

in a twisted homobilayer of WSe2 with 𝜃 = 3° associated with the Г point in the valence band (i.e. 

ГW). This compares well with our data and the prediction from our model, that a flat band with a 

dispersion of <10 meV emerges for their reported valence band edge variation. The mechanism 
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here is generally applicable to semiconductor hetero- or homo-bilayers when a moiré pattern is 

evident. In addition, interesting correlated phases might emerge when the flat bands observed in 

this system are gated to the Fermi level such as in twisted homobilayers of WSe2.5 

 

Figure 2. (a) STM topography of an exfoliated MoS2/WSe2 heterobilayer structure with a twist 
angle of 𝜃 = 15° . Simultaneous atomic resolution and the moiré pattern (𝐿 ≈ 1.2  nm) are 
evident in the topograph. (b) Spectra for the grown heterobilayer (𝜃 = 0°) at an ABW location 
and the exfoliated heterobilayer (𝜃 = 15°) at a corrugation minimum, showing similar features, 
expect with an overall shift in energy which can be explained to be due to substrate effects. 
Features associated with parts of the single layer Brillouin zones are indicated. Notably, for 𝜃 =
0° sharp peaks are observed (particularly for ΓW), associated with flat bands in the moiré Brillouin 
zone, which are not evident for the 𝜃 = 15° case, indicated by the arrows. Black dashed lines 
show a voltage-dependent noise level (see Methods for details). (c) Schematic representation of 
the Brillouin zone for the two layers with no twist angle (left) and a small non-zero twist angle 
(right). The purple (grey) hexagon represents the MoS2 (WSe2) Brillouin zone. The blue hexagon 
is the Brillouin zone of the moiré pattern formed. (d) Band structure for the Brillouin zone of the 
moiré pattern with 𝜃 = 0°. |𝑉𝐺| is the magnitude of the spatial variation of the band edge. With 
|𝑉𝐺| = 0, the dispersion of the lowest lying energy band, 𝛿𝐸, is on the order of 10 meV. With 
|𝑉𝐺| = 25  meV and 𝜃 = 0° , the dispersion of the lowest lying energy band is <1 meV. (e) 
Dispersion of the lowest lying energy band, 𝛿𝐸, as a function of moiré wavelength, 𝐿, or twist 
angle, 𝜃, for various values of |𝑉𝐺|. The dispersion is very small for a large value of |𝑉𝐺| and long 
moiré wavelength (or small twist angle), indicating that a flat band and confinement will occur. 
For short moiré wavelengths (or large twist angles), the dispersion is large regardless of the value 
of |𝑉𝐺|. Data points from experiment from this work and Ref. 6 shown. The filled circle indicates 
that flat bands are observed in this work for 𝜃 = 0° , and the open circle represents the 
experimental results for 𝜃 = 15°  where flat bands are not observed. Ref. 6 reports the 
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observation of flat bands associated with the Г point in the valence band for a twisted 
homobilayers of WSe2 for 𝜃 = 3°, 𝐿 ≈ 6 nm (the angle axis does not apply for this data point, 
since the lattice mismatch is zero for homobilayers rather than 3.7%). 

Returning to the grown heterobilayer and the observed band edge variation, we must consider 

the ordering of band edge energies to explain the observed confinement. Dashed lines in the band 

structures of Figure 1b mark the edges of the ГW valence band and the KM conduction band. In the 

former case, we see that the ГW valence band has nearly the same energy for the ABSe and ABW 

registries, with the band edge for the AA registry being 0.25 eV lower. Hence, we find that the 

ordering of the band edges aligns well with the experimentally observed locations of the valence-

band confined states by comparing to the spectra in Figure 1c. However, for the KM conduction 

band, the band structures do not accurately predict where confinement is observed. Specifically, 

we find from the computed band structure nearly equal KM band edge energies for the AA and 

ABW registries, with that for the ABSe registry being only 100 meV higher. However, in 

experiment, the KM conduction band edge is found to be localized only for the ABW registry 

(Figure 1c). The band structure calculations, however, do not consider any of the effects from 

mechanical deformations. In the following, we explore in detail the effects of spatially varying 

strain and interlayer separation on the electronic structure of this system. 

 

Effects of strain variation on electronic structure. Figure 3a shows two large scale STM 

images of the same area at different tunneling voltages. The 𝑉S = +2 V image shows many unit 

cells of the familiar moiré pattern, with representative areas of AA, ABW, and ABSe locations 

highlighted by the color-coded squares. The same areas are indicated in the 𝑉S = −0.8 V image. 

At these latter tunneling conditions, we can achieve simultaneous resolution of the moiré pattern 

as well as atomic resolution of the MoS2 layer. Zoomed-in images of the corresponding areas from 

𝑉S = −0.8 V are shown in Figure 2b, from which we extract the strain in the MoS2 at each location, 

by measuring the local lattice constant (see Supporting Information for details). The results for 

each location are plotted in Figure 3c, along with a height profile taken from the 𝑉S = +2 V image. 

The grey dashed line in the bottom panel of Figure 3c indicates the strain corresponding to the 

average of the lattice constants of the MoS2 and WSe2 (𝑎 = 3.22 Å). We see that at the ABSe 

location, where the corrugation is lowest such that the layers are presumably closest together, there 

is a relatively large tensile strain due to the layers trying to match their lattice constants. At the AA 

location, where the layers are furthest apart, the MoS2 appears to be ‘compensating’ for the 

deformation at the ABSe location by relaxing past the nominal MoS2 lattice constant. The strain 

variation in the MoS2 is measured to be ΔεMoS2 = εMoS2(ABSe) − εMoS2(AA) = 4.17 ± 1.45%, 

which is close to the lattice mismatch between MoS2 and WSe2, 𝛿 = 3.7%. The alignment between 

the strain variation and lattice mismatch agrees well with other bilayer systems such as 

graphene/hBN where a strain variation of ∼ 2% was reported,13 close to the lattice mismatch of 

graphene and hBN, 𝛿 = 1.8%. For the strain measured at the ABW corrugation minimum, it 

appears to be compressive (i.e. considering both measurements in Fig. 3c), whereas one would 

expect a tensile strain. However, it has been found that electrostatic forces due to the presence of 

the STM tip can distort 2D materials such as graphene,21–25 influencing the observed lattice 

constant and thus enhancing the measured strain signal. Since the atomic corrugations only become 

apparent for smaller negative voltages, the STM tip must be very close to the sample to maintain 

a measurable current, and therefore large electrostatic forces are likely present. Lateral force 

between the tip and sample might also explain why we see a difference in the observed strain 
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measured along the two axes at the ABW location, instead of a uniform biaxial strain as seen at the 

other locations, and evidence for such a distorting effect is presented in the Supporting 

information. While we see evidence of the tip distortion effects in our STM measurements, we are 

unable to separate those effects from the strain variation signal since atomic resolution was only 

achieved for a narrow sample bias range. Therefore, we proceed by calculating strain variation in 

a theoretical model that incorporates atomic relaxation. 

 

Figure 3. (a) STM images of the same area at different sample biases for the grown heterobilayer 
(𝜃 = 0°). The top panel shows an image at 𝑉𝑆 = +2.0  𝑉  sample bias, where only the moiré 
period is observed. The bottom panel shows an image at 𝑉𝑆 = −0.8 𝑉, where both the moiré 
period and atomic resolution of the MoS2 is observed. Representative AA, ABW, and ABSe locations 
are shown by blue, red, and green boxes, respectively. Scale bars are 5 nm. (b) Zoomed-in atomic 
resolution images for the regions marked in (a). 𝑉𝑆 = −0.8 𝑉. Scale bars are 5 Å. From these 
images, the in-plane strain of the MoS2 is directly measured. Lattice vectors used to extract the 

strain are shown in the AA panel with �⃗� pointing up and to the right and �⃗⃗� pointing horizontal. 
(c) Height profile (top panel) taken along the dashed line in (a). Strain in the MoS2 at each position 
(bottom panel, data points for the same locations are offset laterally for clarity). The dashed line 
shows the strain associated with the average lattice constant of the two materials (𝑎 = 3.22 Å). 
Error bars show the standard deviations for a series of measurements from each type of location 
visible in the 𝑉𝑆 = −0.8 𝑉  image in panel (a). Squares (circles) show the strain measured by 

comparing the magnitude of �⃗� (�⃗⃗�) to the nominal lattice constant of MoS2. Diamonds show the 
predicted strain values from DFT calculations at each registry. 

Domain formation and relaxation in bilayer systems have been studied theoretically in detail 

recently. Following the method of Ref. 16, we assume the interlayer potential energy can be 

obtained by summing over local energies of different registries. The total energy, consisting of 

interlayer potential energy and intralayer elastic energy, is then minimized in order to find the 

relaxed configuration of the moiré superstructure (see Supporting Information for details). The 

theoretically calculated strain at each location are shown in Figure 2c. Overall, we find good 

agreement with the results from STM topography. The predicted strain for the AA and ABSe 
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registries agree well with the experimental results. The predicted strain at the ABW registry is more 

in line with what one would expect for a corrugation minimum, as compared to the experimental 

result mentioned above. We will show next that the predicted strain values produce significant 

improvement for the agreement between theoretical band edge positions and STS observations. In 

addition, we expect that there will be strain variation in the bottom layer of the bilayer, which 

cannot be measured by our surface probe technique, but the theoretical results predict that a similar 

strain variation will occur in the WSe2. Therefore, we use the DFT-predicted strain in the following 

analysis for both layers.  

 

  

Figure 4. Effects of in-plane strain on the conduction band edge. (a) Band structure calculations 
for the AA registry for different values of strain in the MoS2. The KM and QM band edges are 
marked by the black dashed and dotted lines, respectively. (b) Band edge energies from DFT for 
the other two registries as a function of strain. Solid lines are the linear best fit to extract the 
deformation potential. See text for more details. (c) Theoretically predicted and experimentally 
observed KM band edge energies for each registry. Left axis shows the DFT results without strain 
(i.e. the same as in Figure 1b) as open circles and the DFT results incorporating strain variation as 
solid diamonds. Right axis indicates the band edge energies observed in STS and associated errors 
(horizontal thick lines, with shaded regions; see Supporting Information for details). At the AA 
locations, we don’t observe a KM band edge in STS, just the QM band edge. The observed band 
edge position is therefore a lower limit on the actual location of the KM band edge at the AA 
location, as indicated by the shaded region extending all the way up.  

To explore the effects of strain variation on the electronic structure, we perform DFT 

calculations of the heterobilayer for each registry, but for different values of the matched lattice 

constant, i.e. including the strain. The results for the AA location are shown in Figure 4a, with the 

energies of the conduction band minima at the K and Q points marked by dashed black lines. The 

effects on the band structure arising from the strain are manifold. First, the band gap shrinks as the 

MoS2 is subjected to increasing tensile strain, due to the conduction band at the K point being 
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driven downwards. Second, for large compressive strains, the ordering of the conduction band 

minimum at the K and Q points invert, causing this stacking arrangement to have an indirect gap. 

In addition, we see that the valence band experiences a shift, although to a lesser degree; the 

valence band edge at the Г point is driven up, while there is little change elsewhere in the Brillouin 

zone. We can quantify the effect of strain at each point in the Brillouin zone by extracting the band 

edge energy. The result is shown in Figure 4b for the K and Q points (KM and QM, respectively) 

for the ABW and ABSe registries. We fit a linear behavior to the extracted band edge energies, with 

the slope of the fit being the deformation potential. From this point on, we assume that the band 

edge shifts in the conduction band are associated only with the strain in the MoS2, and any shifts 

in the valence band are associated only with the strain in the WSe2. This assumption is motivated 

by the fact that the deformation potentials in the conduction (valence) band are very similar to 

those obtained in calculations for individual monolayers of MoS2 (WSe2), as demonstrated in the 

Supporting Information. 

 

The deformation potential for the KM band edge for the AA registry is found to be −0.16 eV/%. 

Combining this with the large compressive strain predicted for the AA location (εMoS2(AA) =

−1.46%) causes the KM band edge at the AA location to be driven up by 0.23 eV, while the band 

edges of the ABW and ABSe registries are pushed down (Figure 4c). Therefore, the quantum-

confined states are no longer predicted to occur at the AA location, in contrast to the prediction 

from the ‘zero-strain’ DFT results. The quantum-confined states are predicted to occur at the ABW 

locations, which is exactly what is seen in experiment (Figure 1a). Accounting for strain variation 

in the MoS2 greatly improves the agreement between experiment and theory, as can be seen in 

Figure 4c, where we show band edge energies extracted from spectra taken at each location. At 

the AA locations, we don’t observe a KM band edge, which is successfully explained by 

incorporating the predicted strain variation: for large compressive strains, the AA conduction band 

minima occurs at Q rather than K (Figure 4a). Therefore, we expect tunneling at the conduction 

band edge to be dominated by QM rather than KM (see Supporting Information for details). 

 

Interlayer separation dependence. Let us now turn our attention to out-of-plane deformations. 

In our STM measurements, we are only able to measure height differences of the top-most layer, 

with these heights being in general a convolution of the sample morphology and its electronic 

structure. However, at large positive sample voltages, local differences in the electronic structure 

of this system are small such that the measured topography is close to the actual morphology of 

the sample (see Supporting Information). DFT calculations predict an optimal interlayer separation 

of 6.9 Å, 6.29 Å, and 6.30 Å for the AA, ABW, and ABSe locations, respectively. Therefore, the 

corrugation predicted by DFT is 0.6 Å, less than half of the observed ~1.3 Å corrugation from the 

𝑉S = +2 V topography such as that in Figure 2c. It is qualitatively easy to rectify this discrepancy, 

noting that strain variation will induce buckling of the layers in order to minimize the system’s 

energy14. This buckling will then change the interlayer separation, deviating from the optimal 

separations predicted by DFT. To analyze this situation further, we study the impact of interlayer 

separation on the electronic structure of the bilayer system. 
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Figure 5. (a) Band structure for the AA registry at a fixed lattice constant (𝑎 = 3.22 Å), but varying 
interlayer separation. For clarity, only the 𝑑0 + 1.0 Å calculation is shown for bands other than 
the valence band (variation everywhere else is very small, <50 meV, comparable to the variation 
shown in the valence band at K or M). (b) ГW valence band edge energies extracted for each 
registry as a function of interlayer separation. The optimal interlayer separation (vertical distance 
between the planes of metal atoms in each layer) for the AA, ABW, and ABSe locations are 𝑑0 =
 6.29 Å, 6.29 Å, and 6.30 Å, respectively. The solid line shows the best fit to a third order 
polynomial. (c) Wavefunctions for the AA registry valence band at the Г (top) and K (bottom) 
points, for a representative location in the 1x1 unit cell. Vertical dashed lines denote the plane 
of the designated atoms. Interlayer region is highlighted in blue.  

Figure 5a shows the calculated band structure for the AA registry as the interlayer separation is 

varied, but with a fixed lattice constant. As the layers are pushed together, we see that the valence 

band edge at the Г point is driven up, while other points in the Brillouin zone are mostly unaffected. 

In contrast, as the layers are pulled apart, changes in the valence band are much smaller since the 

layers are becoming more like free standing monolayers. This behavior is shown for each registry 

in Figure 5b, where the band edge positions are plotted as a function of interlayer spacing as 

compared to each registry’s optimal spacing. The dependence on interlayer separation can be 

attributed to a large interlayer character of the wave function at the Г point. In Figure 5c, we show 

the wave function26 at a representative location in the 1 × 1 unit cell calculation for both the Г 

(top) and K (bottom) points in the valence band. It is easily seen that at the Г point, the wave 

function has a relatively large amplitude in the interlayer region (despite having a node between 
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the two layers). However, the wave function at the other points in the Brillouin zone, such as the 

K point shown, is localized around the WSe2 layer and decays more quickly in the interlayer 

region.  

 

Let us consider how this dependence of the ГW energy on the interlayer separation will affect 

the location of the confined states in the valence band (and how possible corrugation of the bottom 

layer of the heterobilayer, the WSe2, might play a role). The ‘zero-strain’ DFT results shown in 

Figure 1, which well predict the valence band edges and thus the locations of the confined states, 

assumes the equilibrium spacing of the two layers. However, the layers cannot be at their 

equilibrium separation because the predicted corrugation amplitude is less than the observed one 

(Figure 3c) by a factor of two. If the layers are not at their equilibrium separation, then there will 

be an effect on the band structure, particularly for the ГW valence band edge. Therefore, we 

conclude that there is both in-plane strain and out-of-plane displacement of the underlying WSe2 

layer. Utilizing our DFT results, we can model the band edge positions of this system as a function 

of the strain and interlayer separation (for details see Supporting Information). Using the 

experimentally observed valence band edge energies, corrugation, and step height from WSe2 to 

MoS2 as an input to the model, we infer the corrugation of the WSe2 layer. The results are shown 

in Figure 6, where we find that the corrugation of the underlying WSe2 is 70% of the corrugation 

in the MoS2 and that it is in phase with the MoS2 corrugation. The magnitude of the inferred 

corrugation in the WSe2 is sensitive to the measured step height from the WSe2 to MoS2, which 

we discuss in the Supporting Information. 

 

Figure 6. Height profiles of MoS2 and WSe2 determined by combining theoretical DFT predictions 
and experimentally observed signals from STM (see text and Supporting Information for more 
details). Atomic species for each layer designated on the right, as well as the underlying epitaxial 
graphene (EG) and SiC substrate. Separation distances of WSe2-EG (at the ABSe registry) and EG-
SiC substrate are assumed to be 5.2 Å and 3.1 Å, 27,28 respectively. 

CONCLUSIONS 

We have shown that in-plane strain variation and out-of-plane deformations have a significant 

impact on the electronic properties of epitaxially grown MoS2/WSe2 heterobilayers. These effects 

are quite general and extend to other 2D systems, including twisted bilayers (permitting a variation 
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in twist angle accommodates the primary difference between epitaxially grown vs. manually 

stacked samples, although nonequilibrium, uniaxial strain in the latter may also be relevant and 

can be included following the method of Ref. [30]. These results are expected to have significant 

impact on the optoelectronic properties of semiconductor heterostructures, the details of which 

should be explored in detail. Exciton behavior will be greatly affected, particularly if the direct 

gap nature of the heterostructure is modulated spatially, as is predicted from our results. 

Additionally, our results demonstrate that strain can be used as a powerful tuning parameter to 

engineer the electronic structure of van der Waals multilayers. Deformation-dependent electronic 

structure will have a major impact on optoelectronic studies, theoretical predictions, and the 

behavior of devices and must be studied in detail to gain a complete understanding of a given 

bilayer structure. Lastly, we note that MoS2/WSe2 heterobilayers could exhibit exotic electronic 

phases if the experimentally observed flat bands are gated to the Fermi level. 

 

METHODS 

The metal-organic chemical vaport deposition (MOCVD) growth of WSe2 is performed at 700 

Torr using H2 as a carrier gas at 800°C, with W(CO)6 and H2Se precursors being introduced 

separately into a cold wall vertical reactor chamber and their respective flow rates controlled via 

mass flow controllers. The optimized condition for the growth was based on a recent detailed study 

of WSe2 growth 31. On top of these layers MoS2 is deposited by CVD, using 2 mg MoO3 and 200 

mg sulfur powder as the optimal precursor ratio for synthesis performed at 850°C. The substrate 

consists of epitaxial graphene formed on SiC. The twisted heterobilayer fabrication followed the 

method described in Ref. [31]. 

 

The STM/STS measurements were carried out in ultrahigh vacuum at 5 K. Electrochemically 

etched tungsten tips cleaned in UHV by Ne ion bombardment and/or electron beam heating were 

used. STM images were recorded in constant-current mode using currents in the range 0.01 – 0.1 

nA; bias voltages refer to the sample with respect to the STM tip at ground potential. STS 

measurements of the differential tunneling conductance dI/dV were carried out using standard 

lock-in technique (modulation frequency 675 Hz with a peak-to-peak modulation of 10 mV) to 

probe the local density of electronic states. STS measurements were performed with a z-ramp on 

the order of 1 − 2 Å/V to increase the dynamic range of the measurement 32. A normalization 

factor of 𝑒−2𝜅𝑧 is applied to the spectra shown, where 𝜅 ~1 Å−1 is determined experimentally. The 

noise level is determined to be one standard deviation above the average of the measured 

conductance within the band gap of the heterobilayer, with z-dependent normalization applied to 

get the voltage dependent noise levels indicated in the figures by black dashed lines. 

 

DFT calculations were done using the Vienna Ab-Initio Simulation Package33 with the projector-

augmented wave method,34 employing the Purdew-Burke-Ernzerhof generalized gradient 

approximation exchange-correlation functional35 together with dipole corrections obtained by 

Grimme’s DFT-D2 method.36 The wave functions are expanded in plane waves with a cutoff 

energy of 400 eV, and the energy convergence criteria for electronic and ionic optimization are 

10-4 eV and 0.01 eV/Å, respectively. Integration over the first Brillouin zone is carried out with a 

Γ-centered 24×24×1 k-point mesh for the wave function calculations. Spin-orbit coupling is 

included in the calculation of electronic structure. A vacuum region of over 10 Å in the direction 

normal to the 2D material layers is added to minimize the interaction between the adjacent 

supercell images. See Supporting Information for further details. In the moiré calculation, the 
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energy landscape is sampled by shifting the top layer relative to the bottom layer over a 9x9 grid 

in the unit cell, and the dispersion correction with the optB86b-vdW functional37 is adopted. For 

each stacking, the in-plane positions of Mo and W atoms are fixed, while the other atoms are fully 

relaxed. See Supporting information for further details.  
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Supporting Information 
S1. Scanning Tunneling Spectroscopy of Quantum-Confined States 

Detailed spectroscopic results are shown in our previous work1, but here we briefly touch on these 

results in the context of the mechanical deformation effects and DFT analysis presented in the main 

text. Figure S1A shows a topography image at 𝑉S = −1.5 V as well as a line along which spectra were 

taken. The color-coded spectra are shown in Fig. S1B, with spectroscopic features marked, including 

some defect states evident near the valence band edge. The marked band edges are identified with 

those in previous work,1,2 and are plotted as a function of spatial distance in Fig. S1C, from which the 

spatial variation of the band edge positions is obvious. For the conduction band edges, the QM and KM 

band edges were identified by an inflection point in the spectrum, except for the KM band edge at the 

ABSe locations, where the peak associated with the confined state identifies the band edge. For the 

valence band, the ΓW band edge is identified by the peak in the spectra, as well as the lower lying 

valence band edges previously identified as a combination of multiple states.2 All spectra were taken at 

5 K with a peak-to- peak modulation voltage of 𝑉mod = 10 mV (which is mistakenly reported in the main 

text of Ref. 1 to be the RMS value).  

This revision to the modulation voltage (with the corrected value corresponding to an RMS voltage of 

3.53 mV) has some impact on the discussion of Ref. 1. With this reduced RMS value, the expected energy 

resolution of our spectra is Δ𝐸 = 9 meV at 5 K, and 26 meV at 80 K. The significant difference between 

these two values now makes it much easier to understand why, as reported in Ref. 1, the sharp band-

edge peaks that we observe at specific locations in the moiré unit cell for measurements at 5 K, are 

found to be absent at 80 K. (Additionally, the observed peak widths of ~25 meV found in the 5 K data 

are now recognized as being intrinsic widths, i.e. not due to the modulation). 
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Fig. S7. Quantum-confined states in MoS2/WSe2 heterobilayer. (A) STM topography of the moiré pattern with multiple point 
defects visible. (B) STS measurements along the line shown in (A). Several spectroscopic features are marked (see text for 
details) to illustrate the spatial variation within the moiré pattern. Defect states are evident in the valence band at the lower AA 
location. (C) Spatial mapping of the spectroscopic features marked in (B).  

As discussed in the main text, our model incorporating strain in the MoS2 layer results in the order of the 

KM and QM band edges inverting for large values of compressive strain (Figure. 4a). While this is difficult 

to confirm explicitly in experiment, it does align well with our scanning tunneling spectroscopy (STS) 

results. As can be seen in Fig. S1B, the KM feature (either a peak near the ABW registry or a shoulder near 

the ABSe registry) is clearly apparent except at the AA registries. The spectroscopic feature identified as 

the KM band edge at the ABW location seems to shift upwards in energy, merging with the shoulder 

associated with the QM band edge at the AA location. Therefore, we treat the identification of the QM 

band edge as a lower limit on the KM band edge energy for the AA locations (Fig. 4c), since the two 

cannot be distinguished without further study.  

S2. Twisted heterobilayer 

The twisted heterobilayer was made using the flip-stack method described in Ref. 3. Briefly, exfoliated 

flakes were transferred in reverse order using a polymer film. The assembled stack was then flipped and 

placed on an evaporated gold pattern which is used as the drain electrode for STM measurements. The 

sample was then annealed in ultrahigh vacuum to remove the polymer film underneath the stack and 

then transferred to the STM chamber. The individual exfoliated layers are shown in Fig. S2A. The 

finished stack is shown in Fig. S2B, with the overlap region where the moiré pattern is observed 

indicated in bright blue. The small twist angle was achieved by optically aligning the sharp straight edges 

of the exfoliated flakes during the transfer process. Fig. S2C shows a large scale STM image along with a 

height profile taken along the indicated line. The small step at 𝑥 ≈ 0.15 μm is Δ𝑧 ≈ 0.6 nm, 

corresponding to a monolayer of MoS2. The Δ𝑧 ≈ 1.8 nm step at 𝑥 ≈ 0.3 μm is the edge of the bulk 

portion of the MoS2 flake, while the largest step at 𝑥 ≈ 0.55 μm is the MoS2 flake draping over the bulk-

to-monolayer step of the underlying WSe2.  
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Fig. S8. Fabrication and characterization of the twisted heterobilayer. (A) Optical images of the exfoliated WSe2 
(left) and MoS2 (right). The thin purple regions in each image are monolayers, as confirmed by height profiles taken 
in STM measurements. (B) The assembled heterobilayer. Outlines of the WSe2 (MoS2) are shown in grey (purple) to 
highlight features. The light blue region is where the overlap occurs and the moiré pattern is observed in STM. The 
large dark-green flake underneath the heterostructure is the graphite substrate. The yellow portion of this image is 
the evaporated gold pattern used as the tunneling drain during measurements. The arrow indicates that the large 
scale STM image is taken from that area. (C) Large scale STM image with a height profile along the dashed line 
shown. The first step at 𝑥 ≈ 0.15 𝜇𝑚 where 𝛥𝑧 ≈ 0.6 nm is the monolayer edge of the MoS2 flake. (D) Atomic 
resolution images from the areas indicated in (C). The WSe2 (left) is twisted with respect to the MoS2 (right), as 
indicated by the dashed black lines tracing the atomic rows in each image. In addition, the moiré pattern is visible 
in the image of the MoS2. (E) Series of spectroscopy taken at multiple points in the moiré pattern (like that in Fig. 
S1A and B). Virtually no band edge variation is observed. In addition, no peaks associated with quantum-confined 
states are observed.  

Zooming into the different regions of the large scale STM images allows us to explicitly confirm the twist 

angle of the layers. Atomic resolution of the WSe2 and MoS2 are shown in Fig. S2D on the left and right, 

respectively. Dashed lines are drawn along one of the atomic rows in each image, highlighting the small 

twist angle of about 15°, consistent with the observed moiré pattern which can be seen in the MoS2 

atomic resolution images. As discussed in the main text, no confinement or spatial variation of 

spectroscopic features are observed. Fig. S2E shows a series of spectra taken along a line like that in Fig. 

S1A and B. Plotted on top of each other, it is evident that there is virtually no spatial variation of the 

spectra as well as no sharp peaks like those at the ABW and ABSe locations of the heterobilayer with 𝜃 =

0°.  

S3. Model of the Moiré Pattern Hamiltonian 

As described in the main text, in a semi-classical picture, the band edge variation amounts to an 

effective potential with a periodicity of the moiré pattern. To describe a real valued scalar function 𝑓(𝑟) 

that has the periodicity of the moiré pattern, it is convenient to take the Fourier decomposition: 
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𝑓(𝑟) =  ∑𝑓𝑖,𝑗𝑒
𝑖�⃗�𝑖,𝑗⋅𝑟

𝑖,𝑗

  

where �⃗�𝑖,𝑗  are reciprocal lattice vectors. The real space moiré pattern and the first shell of reciprocal 

lattice points are shown in Fig. S3A and B, respectively. Following the method of Ref. 4, for the case of a 

slowly varying function in real space, we can approximate the function considering only the terms within 

the first shell of reciprocal lattice vectors. The sum then goes over the origin and the six points labeled 

𝐺𝑖,𝑗 in Fig. S3B. The symmetry and fact that the function must be real reduces the number of relevant 

Fourier coefficients to only two: a real zeroth order component 𝑓0 and a complex first order component 

𝑓𝐺 = |𝑓𝐺|𝑒
𝑖𝜙. The function can then be shown to be 

𝑓(𝑥, 𝑦) ≈ 𝑓0 + 4|𝑓𝐺| cos (𝐺1
√3

2
𝑥) cos (𝐺1

𝑦

2
+ 𝜙) + 2|𝑓𝐺| cos(𝐺1𝑦 − 𝜙) 

where 𝐺1 =
4𝜋

√3𝐿
 and the two Fourier coefficients are defined by the value of the function at the high 

symmetry points 𝑓(0,0) = 𝐴, 𝑓 (
1

2
𝐿,

1

2√3
𝐿) = 𝐵 , 𝑓 (0,

1

√3
𝐿) = 𝐶 shown in Fig. S3A: 

𝑓0 =
𝐴 + 𝐵 + 𝐶

3
, |𝑓𝐺| =

2𝐴 − 𝐵 − 𝐶

18 cos𝜙
, tan𝜙 =

√3(𝐵 − 𝐶)

2𝐴 − 𝐵 − 𝐶
 

 

 

Fig. S9. Fourier decomposition of the potential. (A) Real space unit cell of the moiré pattern. A smoothly varying 
function 𝑓(𝑟) can be approximated by a simple first-order Fourier decomposition, where the Fourier coefficients 
are determined by the value of 𝑓(𝑟) at the high symmetry points 𝐴, 𝐵, 𝑎𝑛𝑑 𝐶, indicated in the diagram. (B) The 
first shell of reciprocal lattice points for the unit cell shown in (A). The distance between each set of neighboring 

points is 𝐺1 = 
4𝜋

√3𝐿
. 

Using the above equations, we can find the Fourier coefficients describing the potential associated with 

a band edge.  

𝑉(𝑟) =  ∑𝑉𝑖,𝑗𝑒
𝑖�⃗�𝑖,𝑗⋅𝑟

𝑖,𝑗

  

For example, the ΓW band edge energy using the zero strain DFT results at the special spatial locations in 

the moiré pattern (𝐴 = ΓW
AA = −5.33 eV, 𝐵 = ΓW

ABW = −5.12 eV, and 𝐶 = ΓW
ABSe = −5.09 eV) yields: 

𝑉0 = −5.18 eV, |VG| = 0.025 eV, 𝜙 =  −172.8° 
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The Hamiltonian is 

𝐻 =  −
ℏ2

2𝑚∗
∇2 + 𝑉(𝑟) 

where we assume an effective mass of unity for simplicity, i.e. 𝑚∗ = 𝑚𝑒. Taking advantage of the 

Fourier decomposition, the Hamiltonian can be expressed in a plane wave basis: 

𝐻 =

(

 
 
 
 

⋱ 𝑉𝐺 0 0

𝑉𝐺
∗
ℏ2|�⃗⃗�|

2

2𝑚∗
𝑉𝐺 0

0 𝑉𝐺
∗

ℏ2|�⃗⃗�|
2

2𝑚∗
𝑉𝐺

0 0 𝑉𝐺
∗ ⋱ )

 
 
 
 

 

where we have neglected the V0 term, which amounts to a constant energy offset. This resembles a 

nearly free electron model mathematically, where the term VG opens a gap of size 2VG at the Brillouin 

zone boundary. The band structures for |VG| = 0 and |VG| = 0.025 eV are shown in the main text in Fig. 

2d.  

The validity of this approach relies on a slow spatial variation of the band edge energy and an accurate 

value of the band edge energy from DFT calculations for the special high-symmetry points. Both of these 

conditions are violated to some degree for a large twist angle: any band edge energy variation would be 

over a much smaller spatial scale than for the zero twist angle case and with a twist angle, the DFT 

results are less accurate since the calculations have to match the lattice constants and necessitate a zero 

(or 180°) twist angle, as discussed below. In addition, one would expect that the individual layers would 

act more independently with a twist angle, i.e. less hybridization, deformation effects, etc., such that 

there would be a smaller spatial modulation of the band edge energy and thus a broader dispersion and 

no confinement. These conclusions are supported by the lack of band edge shifts and the lack of 

confinement observed in the case of the twisted heterobilayer, as shown in Fig. 2 and Fig. S2E.  

S4. Strain Measurement 

In order to obtain a direct measurement of the strain from our topographic images, we do a careful 

calibration of the STM piezo constants by measuring the lattice constant of epitaxial graphene and 

comparing that to the literature value. We repeat this calibration for multiple STM tip positions, where 

there are patches of graphene exposed. This allows us to make an absolute measurement of the atomic 

positions to extract lattice constants of the MoS2 at each registry.  

Since the measured corrugation of the heterostructure (~1.2 Å) and the thickness of the individual layers 

(~0.7 Å) are comparable, we investigated whether the strain is uniform along both lattice vectors and if 

there is any sheer strain. The components of the strain tensor are defined as 

휀𝑎𝑎 =
|�⃗�| − 𝑎0
𝑎0

, 휀𝑏𝑏 =
|�⃗⃗�| − 𝑎0
𝑎0

, 휀𝑎𝑏 =
1

2
tan(𝛾 − 60°) 

where the axial strains 휀𝑎𝑎 and 휀𝑏𝑏 are defined to be positive when the lattice is stretched (tensile 

strain) and negative when the lattice is compressed (compressive strain) as compared to the nominal 
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lattice of MoS2 (𝑎0 = 3.16 Å). The lattice vectors �⃗� and �⃗⃗� are shown in Fig. 3b of the main text. The 

sheer strain 휀𝑎𝑏 is defined in analogy to that for a rectangular unit cell, measuring the deviation from the 

ideal unit cell which has 60° interior angles, where 𝛾 is the angle between the lattice vectors. To 

measure the strain for each registry, we utilize the Gwyddion ‘Measure Lattice’ feature which returns 

best fits of the two lattice vectors. This measurement is repeated multiple times for each registry, the 

results of which are shown in Fig. 3c of the main text. We find that for all registries, the sheer strain is 

consistent with zero, and that the two axial strains are consistent at each registry. The shear strains are 

found to be (0.16 ± 1.5)%, (0.29 ± 1.21)%, and (−0.33 ± 0.37)% for the AA, ABW, and ABSe registries, 

respectively. The ABW registry where 휀𝑎𝑎 found to be slightly lower than 휀𝑏𝑏. This result is surprising, and 

it is inconsistent with the the theoretical strain values reported in the main text. We tentatively 

interpret this difference between the apparent 휀𝑎𝑎 and 휀𝑏𝑏 strain values for the ABW registry as due to 

the lattice distortions arising from lateral forces between the tip and sample, for which we have some 

direct experimental evidence as presented below.  

As mentioned in the main text, atomic resolution was achieved for small tunneling voltages, which 

means that the STM tip must be pushed in very close to maintain an appreciable tunneling current. 

Therefore, lateral forces between the tip and sample could have a dominant effect and influence the 

observed strain signal. As we discuss below, the moiré pattern is formed when domains of different 

registries are formed. If there are large lateral forces due to the presence of the tip, then one would 

expect to see changes of the moiré domains for those conditions with rather extreme tunneling 

conditions. The atomic resolution images might be one example of this, but a clearer example occurs at 

even smaller sample voltages. Figure S5 shows three STM images of the same area, all taken with the 

same setpoint current. The leftmost image shows the familiar moiré pattern. At very small values of 𝑉S, 

we see a very different ‘checkerboard’ pattern form (also observed, though less distinctly, in Ref. [2]), 

but still with the same periodicity as before. At these tunneling conditions, both for small positive and 

negative sample biases, we see these two distinct domains forming. What is likely happening here is 

that lateral forces due to the presence of the tip are pushing on the surface, to the point where it 

becomes energetically favorable for the top layer to be pushed into one of the two the lower energy 

configurations such that a sort of point-like stacking fault is created at the AA sites (bright spots in the 

+1.5 V image). Therefore, when the tip is pressed up close to the sample, we are seeing the layers being 

‘locked’ into separate domains of the ABW and ABSe registries. 

 

Fig. S10. Electrostatic force effects on observed topographic signals. STM topographic images for the same area 
and same setpoint current, but different sample voltages, indicated above each panel. The small tunneling voltage 
requires the STM tip to be very close to the sample for the measurement at ±0.4 V images, such that atoms lock 
into the two low energy stacking configurations. The color scale is the same for each image. 



23 
 

S5. Theoretically Predicted Strain Variation 

Following Ref. 5, we assume the relaxation of the moiré superlattice can be described by two 

displacement fields, 𝑢𝑡 for the MoS2 and 𝑢𝑏 for WSe2. These two fields completely specify the local 

registries in the moiré superlattice, and the interlayer potential energy is obtained by summing over 

energies for these local registries. The stiffness tensors for both MoS2 and WSe2 are assumed to be 

rotationally symmetric and are described by bulk and shear modulus. The bulk moduli for MoS2 and 

WSe2 was found to be 45,235 meV/unit cell and 42,679 meV/unit cell, respectively. The shear moduli for 

MoS2 and WSe2 were found to be 27,186 meV/unit cell and 28,965 meV/unit cell, respectively. We 

numerically discretize the two displacement fields in the real space and minimize the total energy by 

conjugate gradient descent, as implemented in the Julia package6. In the minimization, three-fold 

rotational symmetry is enforced to reduce the number of variables. 

The interlayer energy after relaxation is plotted in Fig. S5, where AA, ABW and ABSe registries can be 

easily recognized. The strain values for different registries are obtained by taking the divergence of 𝑢𝑡 

and 𝑢𝑏. The strains for the AA, ABW, and ABSe registries were found to be -1.46%, 0.88%, and 1.14% in 

the MoS2 layer and 1.60%, -0.96%, and -1.24% in the WSe2 layer, respectively. 

S6. Interpreting the Measured Corrugation from Topography 

Any constant-current measurement in an STM experiment requires great care if it is to be interpreted as 

a physical topography (i.e. atomic heights) of the surface. In general, different tunneling parameters will 

yield different constant-current measurements, as demonstrated for this sample in the voltage 

dependent results shown in the Supporting Information of Ref. 1. Therefore, identifying the measured 

corrugation height at large positive voltage as the true, physical corrugation requires justification. Figure 

S6A shows constant-current profiles acquired in two different measurements, at 𝑉S = +1.5 V and 𝑉S =

−1.5 V, from which it can be seen that the ordering of the two corrugation minima swap. At large 

positive sample voltage, the ABSe location is the absolute minima of the corrugation. At large negative 

sample voltage, the ABW location is the absolute minima. The difference between the two measured 

signals can be attributed to the complicated electronic structure of the heterostructure.  

Figure S11. Interlayer potential energy per unit cell in real space. The bright patches correspond to the AA 
registry. The darker patches are the ABW and ABSe registries. The ABSe registry has a slightly lower value of interlayer 
potential energy, since three-fold rotational symmetry was enforced (rather than six-fold rotational symmetry). See 
text for details. 
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To identify which ordering is correct, i.e. which location is the actual corrugation minima, we must turn 

to spectroscopic results. In Fig. S6B, we show representative spectra at each registry, along with a 

voltage dependent noise level1. The differential conductance measured in STS is, as a first order 

approximation, proportional to the local density of states. We see that at large negative sample voltages 

there are multiple bands that contribute to the spectra, the ΓW, KM, and ΓW2 bands. The onsets of these 

bands vary depending on spatial location, which makes interpretation of these constant-current 

measurements in terms of physical topography difficult. On the other hand, at large positive sample 

voltages, there is predominantly a single band that contributes, the QM band. Spectroscopic onsets for 

this band are relatively independent of voltage, making a direct comparison between registries more 

straight-forward. In addition, the tunneling current in STM measurements is typically dominated by 

higher lying states in the sample. For negative sample bias, the higher lying states are those 

corresponding to the onset of the band edge, such that the measurement is very sensitive to the 

position of the band edge. For positive sample bias, the higher lying states are those higher in energy 

than the onset of the band edge, such that the measurement is less sensitive to the position of the band 

edge. We therefore take the large positive sample voltage (𝑉S = +1.5 V or 𝑉S = +2.0 V) as 

representative of the true ordering of the corrugation heights. This conclusion aligns with our strain 

measurement as well.  

 

Fig. S12. Interpreting topographic measurements of the heterostructure. (A) Profiles taken from STM topographs at different 
sample voltages. Notably, the absolute minima of the corrugation swap when going from large positive to large negative 
sample voltage, due to the complicated electronic structure of the heterobilayer. (B) Representative spectra taken at all three 
locations, with a voltage dependent noise level shown as the black dashed line. The complicated band shifts due to atomic 
registry and mechanical deformations make it difficult to attribute topographic measurements at large negative voltages as true 
height measurements, while variations are less prominent at large positive voltages. See text for details. 

S7. Identifying the Atomic Registries in STM 

Similar to interpreting the corrugation height, identifying atomic registries to domains of the moiré 

pattern in the STM images must be done with care. The AA registry is predicted by DFT to have the 

largest nominal interlayer separation, 𝑑0 = 6.9 Å, and therefore can confidently be assigned to the 

corrugation maximum in the STM topography signal. However, the ABW and ABSe registries interlayer 

separations predicted by DFT (𝑑0 = 6.32 Å and 𝑑0 = 6.33 Å, respectively) are very close and can even 
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swap order depending on calculation details (𝑑0 = 6.40 Å and 𝑑0 = 6.34 Å, respectively, Ref. 2). The 

ABW and ABSe registries therefore require more careful interpretation. For example, Ref. 2 does a very 

thorough analysis to identify band edge onsets in their STS signal and compare them to DFT band 

structure calculations. In our previous work,1 we tentatively identified registries by comparing our 

spectroscopy signals with those in Ref. 2 (for example, the ABW registry KM band edge is ∼ 100 meV 

lower than the ABSe band edge energy, which compares well to Figure 3 of Ref. 2). However, as we 

report in the main text, mechanical deformations have a significant impact on the electronic structure 

which were not previously considered.  

Incorporating the in-plane strain results confirms our assignment of the ABW and ABSe registries. From 

STM and the theoretical strain predictions discussed above, we can assign strain values to the domains 

of the moiré pattern and associate that with spatially resolved spectrum from STS. From DFT band 

structure calculations, we can separately determine the deformation potential (details below) and 

conduction band edge energy differences between registries. Consider first the assignment reported in 

the main text such that the ABW stacking configuration has the lowest KM band edge energy and the 

lower positive strain, 0.88%. The DFT prediction incorporating strain results in a difference between the 

AA and ABW conduction band edges of 0.38 eV, which compares favorably to the energy difference 

observed with STS (0.36 ± 0.02 eV), as seen in Figure 4c of the main text. If the assignment of the ABW 

registry is swapped to the domain with the largest tensile strain, 1.14%, then the conduction band 

energy difference between the AA and ABW registries if found to be 0.28 eV. This energy difference does 

not compare well with the observed STS signal. We therefore conclude that our reported registry 

assignment is correct.  

S8. Band Structure Calculations 

Density functional theory (DFT) calculations were performed to investigate the dependence of the 

electronic structure on mechanical deformations. For the heterostructure, calculations of 1x1 unit cells 

of MoS2 on WSe2 were computed for each registry. We assume a zero degree alignment (as opposed to 

180 degree, as detailed in Ref. 1). To compare band edge energies between different registries in the 

heterostructure, we take the reference to be the vacuum level of the WSe2 (𝐸vac). As described in the 

next section, we also perform calculations for the individual monolayers as a function of strain. For the 

monolayer calculations, we take the vacuum level of the respective monolayer as the reference.  

For the strain dependent calculations, the structure is allowed to relax while holding the lattice 

constants of the two materials fixed. For simplicity of our calculations, we choose to assume uniform 

biaxial strain (휀 = 휀𝑎𝑎 = 휀𝑏𝑏 , 휀𝑎𝑏 = 0) in both layers of the heterostructure. For the separation 

dependent calculations, the structure is fixed to the average lattice constant of the two materials 𝑎 =

�̅� = 3.22 Å and the interlayer separation is fixed at the reported values. The optimal interlayer 

separation reported in the main text, 𝑑0 = 6.9, 6.32, and 6.33 Å for the AA, ABW, and ABSe locations, 

respectively, is determined by setting the lattice constant of each layer to the average lattice constant 

and minimizing the energy of the structure. 

S9. Deformation Potentials 

DFT calculations were performed for isolated monolayers of WSe2 and MoS2, as well as the 

heterostructure for each registry. To separate the effects of mechanical deformations and hybridization, 
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we examine the position of the band edges at special points in the Brillouin zone as a function of lattice 

constant for each system. The results are shown in Fig. S7 for the AA registry and monolayers of WSe2 

and MoS2. It can be seen that the valence (conduction) band of the heterostructure primarily derives 

from WSe2 (MoS2) states, as reported previously. With these calculations done, we track the band edges 

as we vary the lattice constant in each calculation as shown. 

 

Fig. S13. DFT band structure calculations as a function of lattice constant. DFT calculations for different values of 
the lattice constant for the (A) heterostructure AA registry (B) monolayer MoS2 and (C) monolayer WSe2. The KM 
and QM conduction band edges are marked by dashed lines in (A) and (B) and the ΓW and KW valence band edges 
are marked in (A) and (C). 
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First, let us turn our attention to the conduction band (i.e. MoS2 derived states). If we compare the 

heterostructure calculation to the MoS2 calculation at the same value of the lattice constant, we see 

that the difference between the QM and KM band edge energies are different (Δ𝐸𝑄,𝐾 = 0.38 eV for the 

heterostructure and Δ𝐸𝑄,𝐾 = 0.65 eV for the monolayer MoS2 with 𝑎 = �̅� = 3.22 Å). However, as we 

vary the lattice constant, the change in the band edges are very similar. This is demonstrated in Table 

S1, where we show linear fits of the band edges as a function of strain, i.e. 

𝐸 = 𝜙휀 + 𝐸0 

where 𝜙 is the deformation potential and 𝐸0 is the zero-strain position of the band edge, relative to the 

vacuum level of the system. We see that the extracted deformation potentials for the conduction band 

edges are nearly the same for the heterostructure and monolayer MoS2. We therefore assume that 

shifts in the absolute position of the KM and QM band edges can be associated with strain in the MoS2. 

The effects of hybridization are then accounted for in the zero-strain position of the band edge.  

Table S1. Strain deformation potentials from DFT calculations. Deformation potentials in meV/% strain. For the 
heterobilayer, the conduction band deformation potentials (QM and KM band edges) are associated with strain in 
the MoS2 and the valence band deformation potentials (KW and ΓW) are associated with strain in the WSe2. Asterisk 
on the ΓW monolayer deformation potential to highlight that we only consider the calculations for lattice constants 
𝑎 = 3.25 Å and higher, as explained in the text.  

 Monolayer Heterobilayer 

 MoS2 WSe2 AA ABW ABSe Mean 

QM −22 ± 5 N/A −24 ± 9 −20 ± 9 −19 ± 9 −21 ± 5 

KM −160 ± 1 N/A −169 ± 9 −165 ± 4 −169 ± 8 −168 ± 4 

KW N/A −26 ± 2 −25 ± 4 −23 ± 3 −28 ± 4 −25 ± 2 

ΓW N/A 52 ± 3* 44 ± 2 47 ± 6 38 ± 3 43 ± 2 

 

Now, turning to the valence band (i.e. WSe2 derived states), we can repeat the same procedure. We see 

that associating the changes in the conduction band with strain in the WSe2 again aligns well for the KW 

band, but the ΓW band edge is more complicated. Particularly, there is a lower lying band which creeps 

upward for large compressive strains and destroys the linearity in motion of the band edge with strain. 

However, in the heterostructure, these bands are still evident, but further apart due to the hybridization 

effects. The two ΓW bands therefore only intersect at very large values of compressive strain for the 

WSe2. As discussed in the main text, since the MoS2 is in maximal tensile strain when the layers are 

closest together, the MoS2 ‘compensates’ such that when the layers are furthest apart the MoS2 is 

compressed. In light of the evidence that there is in-plane and out-of-plane deformations in the WSe2 as 

well, we expect the opposite behavior for the WSe2 (i.e. the maximum compressive strain would be 

achieved when the layers are closest together to match the lattice constants and the maximum tensile 

strain when they are furthers apart). Therefore, we throw out the monolayer WSe2 calculation for the 

largest compressive strain when determining the deformation potential and find good agreement 

between the monolayer and heterostructure calculations as we did in the case of the MoS2 derived 

states. 

As discussed in the main text, there is an additional effect on the electronic structure due to vertical 

separation between the layers of the heterostructure. We repeat the same procedure outlined above, 

but with the vertical separation being varied while fixing the lattice constant of the two layers to the 
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average value of the lattice constant. We find that the ΓW band edge varies significantly with the 

separation of the layers (Fig. 5A) and that the ΓW band edge energy variation is well described by a third 

order polynomial (Fig. 5B). The ΓW band edge for each registry is fit to a polynomial of the form: 

ΓW = Γ̅W,0 + 𝑓1(𝑑 − 𝑑0) + 𝑓2(𝑑 − 𝑑0)
2 + 𝑓3(𝑑 − 𝑑0)

3 

Where Γ̅W,0 is the band edge position for the equilibrium spacing (i.e. the spacing determined by 

minimizing the energy while the separation distance is relaxed, and the lattice constant is fixed to the 

average value). We then compare the band edges for each registry with the value for the equilibrium 

spacing and fit the band edges to find the coefficients of the polynomial function. The results for each 

registry are shown in Table S2. There are changes at other points in the Brillouin zone, such as the KM 

band edge, but the changes are smaller and don’t evolve as uniformly as the ΓW band edge. 

Table S2. Separation deformation potentials for the 𝜞𝑾 band edge. Optimal separation distance, optimal 
separation band edge energy (relative to the vacuum level), and best fits to the polynomial function for each 
registry. 

 AA ABW ABSe 

𝑑0 (Å) 6.90 6.32 6.33 

Γ̅𝑊,0 (eV) −5.34 ± 0.01 −5.11 ± 0.01 −5.07 ± 0.01 

𝑓1 (eV/Å) −0.42 ± 0.02 −0.66 ± 0.02 −0.75 ± 0.01 

𝑓2 (eV/Å2) 0.45 ± 0.01 0.41 ± 0.01 0.45 ± 0.01 

𝑓3 (eV/Å3) −0.20 ± 0.02 −0.09 ± 0.02 −0.09 ± 0.02 

 

Note that while we compare corresponding band edges at different registries, we don’t make a 

quantitative comparison between the valence and conduction band. It is well known that DFT 

underpredicts the value of the band gap, so comparing the KM and ΓW band edges would not result in a 

meaningful measure of the effects of mechanical deformations. The results for the obtained 

deformation potentials would also be sensitive to the details of the DFT calculations, but given the 

agreement between our deformation potentials with those obtained by experimental studies, we 

believe the evolution of band edges with mechanical deformations is largely captured by our theoretical 

analysis. 

S10. Inferred WSe2 Corrugation 

In order to extract an inferred corrugation for the WSe2, we take advantage of the deformation 

potentials obtained through DFT. Since the ΓW band edge is sensitive to the separation of the layers, we 

can use the observed band edges in STS to back out the corrugation of the WSe2. Considering both strain 

and separation dependence, we can write the band edge energy at each location as  

ΓW(𝑎, 𝑑) = Γ̅W,0 + 𝜙(𝑎 − �̅�) + 𝑓1(𝑑 − 𝑑0) + 𝑓2(𝑑 − 𝑑0)
2 + 𝑓3(𝑑 − 𝑑0)

3 

where 𝜙 is the deformation potential. From STS, we have two relevant measurements, the differences 

between the ΓW band edge energies i.e. [Γ𝑊
AA − Γ𝑊

ABSe] and [Γ𝑊
ABW − Γ𝑊

ABSe]. The deformation and 

separation potentials are all known from the fits to DFT results, leaving the lattice constants in the WSe2 

and separations between the layers to be determined.  
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For each registry, we use the experimentally determined energy difference of the ΓW band edge to 

extract the layer separation as a function of lattice constant. The height of the WSe2 layer at each 

registry (𝑧W) can be inferred from the layer separation and the measured height of the MoS2 (𝑧M), i.e. 

𝑧W = 𝑧M − 𝑑. In addition, we can observe the step height of an MoS2 island directly from STM (see Fig. 

1 of Ref. 1) and relate that to the optimal spacing found in DFT. In Fig. S8, we show the results for the 

inferred corrugation of the WSe2 layer, relative to the height at the ABSe registry, as a function of the 

interlayer separation at the ABSe location. The black dashed line shows the measured step height in STM, 

with the grey dashed region indicating the standard deviation of that measurement. We see that within 

the range of experimentally determined separation at the ABSe registry, the WSe2 corrugation is in phase 

with the MoS2 corrugation that is directly observed (indicated by the blue and red lines being larger than 

zero in the grey dashed region). The magnitude of the corrugation in the WSe2 varies based on the value 

of the experimentally determined step height, but these results indicate that the WSe2 corrugation is 

indeed in phase with the MoS2 corrugation.  

 

Figure S14. Inferred corrugation of the WSe2 layer. Height difference of the WSe2 layer between the AA (ABW) and 
ABSe locations in blue (red), as a function of interlayer separation for the ABSe location. Dashed black line and the 
grey shaded region indicate the inferred separation at the ABSe registry as determined from the step height 
observed in STM and the standard deviation of that measurement, respectively.  
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