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Abstract. Advances in ambient environmental monitoring
technologies are enabling concerned communities and citi-
zens to collect data to better understand their local environ-
ment and potential exposures. These mobile, low-cost tools
make it possible to collect data with increased temporal and
spatial resolution, providing data on a large scale with un-
precedented levels of detail. This type of data has the po-
tential to empower people to make personal decisions about
their exposure and support the development of local strate-
gies for reducing pollution and improving health outcomes.

However, calibration of these low-cost instruments has
been a challenge. Often, a sensor package is calibrated via
field calibration. This involves colocating the sensor package
with a high-quality reference instrument for an extended pe-
riod and then applying machine learning or other model fit-
ting technique such as multiple linear regression to develop
a calibration model for converting raw sensor signals to pol-
lutant concentrations. Although this method helps to correct
for the effects of ambient conditions (e.g., temperature) and
cross sensitivities with nontarget pollutants, there is a grow-
ing body of evidence that calibration models can overfit to
a given location or set of environmental conditions on ac-
count of the incidental correlation between pollutant levels
and environmental conditions, including diurnal cycles. As
a result, a sensor package trained at a field site may provide
less reliable data when moved, or transferred, to a different
location. This is a potential concern for applications seek-
ing to perform monitoring away from regulatory monitoring
sites, such as personal mobile monitoring or high-resolution
monitoring of a neighborhood.

We performed experiments confirming that transferability
is indeed a problem and show that it can be improved by
collecting data from multiple regulatory sites and building
a calibration model that leverages data from a more diverse
data set. We deployed three sensor packages to each of three
sites with reference monitors (nine packages total) and then
rotated the sensor packages through the sites over time. Two
sites were in San Diego, CA, with a third outside of Bakers-
field, CA, offering varying environmental conditions, general
air quality composition, and pollutant concentrations.

When compared to prior single-site calibration, the multi-
site approach exhibits better model transferability for a range
of modeling approaches. Our experiments also reveal that
random forest is especially prone to overfitting and con-
firm prior results that transfer is a significant source of both
bias and standard error. Linear regression, on the other hand,
although it exhibits relatively high error, does not degrade
much in transfer. Bias dominated in our experiments, sug-
gesting that transferability might be easily increased by de-
tecting and correcting for bias.

Also, given that many monitoring applications involve the
deployment of many sensor packages based on the same
sensing technology, there is an opportunity to leverage the
availability of multiple sensors at multiple sites during cali-
bration to lower the cost of training and better tolerate trans-
fer. We contribute a new neural network architecture model
termed split-NN that splits the model into two stages, in
which the first stage corrects for sensor-to-sensor variation
and the second stage uses the combined data of all the sensors
to build a model for a single sensor package. The split-NN
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modeling approach outperforms multiple linear regression,
traditional two- and four-layer neural networks, and random
forest models. Depending on the training configuration, com-
pared to random forest the split-NN method reduced error
0 %-11 % for NO, and 6 %—13 % for O3.

1 Introduction

As the use of low-cost sensor systems for citizen science and
community-based research expands, improving the robust-
ness of calibration for low-cost sensors will support these
efforts by ensuring more reliable data and enabling a more
effective use of the often-limited resources of these groups.
These next-generation technologies have the potential to re-
duce the cost of air quality monitoring instruments by or-
ders of magnitude, enabling the collection of data at higher
spatial and temporal resolution, providing new options for
both personal exposure monitoring and communities con-
cerned about their air quality (Snyder et al., 2013). High-
resolution data collection is important because air quality
can vary on small temporal and spatial scales (Monn et al.,
1997; Wheeler et al., 2008). This variability can make it dif-
ficult to estimate exposure or understand the impact of local
sources using data from existing monitoring networks (Wil-
son et al., 2005), which provide information at a more re-
gional scale. Furthermore, studies have highlighted instances
where air quality guidelines have been exceeded on small
spatial scales, in so-called “hot spots” (Wu et al., 2012). This
may be of particular concern for environmental justice com-
munities, where residents are unknowingly exposed to higher
concentrations of pollutants due to a lack of proximity to lo-
cal monitoring stations. One group using low-cost sensors
to provide more detailed and locally specific air quality in-
formation is the Imperial County Community Air Monitor-
ing Network (English et al., 2017). The goal of this network
of particulate monitors is to help inform local action (e.g.,
keeping kids with asthma inside) or open the door to con-
versations with regulators (English et al., 2017). In another
example, researchers are investigating the potential for wear-
able monitors to improve personal exposure estimates (Jerrett
etal., 2017).

The increasing use of low-cost sensors is driving a grow-
ing concern regarding data quality (Clements et al., 2017).
Low-cost sensors, particularly those designed to detect gas-
phase pollutants, are often cross sensitive to changing envi-
ronmental conditions (e.g., temperature, humidity, and baro-
metric pressure) and other pollutant species. Much work has
gone into exploring calibration methods, models, and tech-
niques that incorporate corrections for these cross sensitivi-
ties to make accurate measurements in complex ambient en-
vironments (Spinelle et al., 2014, 2015b, 2017; Cross et al.,
2017; Sadighi et al., 2018; Zimmerman et al., 2018). While
the methods of building (or training) calibration models dif-
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fer, these studies have all utilized colocations with high-
quality reference instruments in the field — instruments such
as Federal Reference Method or Federal Equivalent Method
monitors (FRM/FEM) (Spinelle et al., 2014, 2015b, 2017;
Cross et al., 2017; Sadighi et al., 2018; Zimmerman et al.,
2018). These colocated data allow accurate calibration mod-
els to be built for the conditions that the sensors will experi-
ence in the field (e.g., diurnal environmental trends and back-
ground pollutants). A recurring observation has been that lab-
oratory calibrations, while valuable for characterizing a sen-
sor’s abilities, perform poorly compared to field calibrations,
likely due to an inability to replicate complex conditions in a
chamber (Piedrahita et al., 2014; Castell et al., 2017).
Recently, researchers have begun to explore calibrating
sensors in one location and testing them in another, called
transfer. Often, a decrease in performance is seen in new lo-
cations where conditions are likely to differ from the condi-
tions of calibration. In one study, researchers testing a field
calibration for electrochemical SO, sensors from one loca-
tion in Hawaii and at another location also in Hawaii found
a small drop in correlation between the reference and con-
verted sensor data (Hagan et al., 2018). This was attributed
to the testing location being a generally less polluted envi-
ronment (Hagan et al., 2018). In a study that involved cali-
bration techniques for low-cost metal oxide O3 sensors and
nondispersive infrared CO; sensors in different environments
(e.g., typical urban vs. a rural area impacted by oil and gas
activity), researchers found that simpler calibration models
(i.e., linear models), although generally lower in accuracy,
performed more consistently (i.e., transferred better) when
faced with significant extrapolations in time or typical pollu-
tant levels and sources (Casey and Hannigan, 2018). In con-
trast, more complex models (i.e., artificial neural networks)
only transferred well when there was little extrapolation in
time or pollutant sources. A study utilizing electrochemi-
cal CO, NO, NO», and O3 sensors found that performance
varied spatially and temporally according to changing atmo-
spheric composition and meteorological conditions (Castell
etal., 2017). This team also found calibration model parame-
ters differed based on where exactly a single sensor node was
colocated (i.e., a site on a busy street versus a calm street),
supporting the idea that these models are being specialized
to the environment where training occurred (Castell et al.,
2017). In a recent study targeting this particular issue with
low-cost sensors, electrochemical NO and NO; sensors were
calibrated at a rural site using a multivariate linear regres-
sion model, support vector regression models, and a random
forest regression model. The performance of these models
was then examined at two urban sites (one background urban
site and one near-traffic urban site). For both sensor types,
random forests were found to be the best-performing mod-
els, resulting in mean average errors between 2 and 4 parts
per billion (ppb) and relatively useful information in the new
locations (Bigi et al., 2018). One important note from the au-
thors is that both sensor signals were included in the models
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for NO and NO; respectively, potentially helping to mitigate
cross-interference effects (Bigi et al., 2018). In another re-
cent study, researchers also compared several different cali-
bration model types, as well as the use of individualized ver-
sus generalized models and how model performance is af-
fected when sensors are deployed to a new location (Malings
et al., 2019). An individualized model is a model for a sen-
sor based on its own data, whereas a generalized model com-
bines the data from all the sensors of the same type being cal-
ibrated. The researchers found that the best-performing and
most robust model types varied by sensor type; for example,
simpler regression models performed best for electrochemi-
cal CO sensors, whereas more complicated models, such as
artificial neural networks and random forest models, resulted
in the best performance for NO;. Despite the varied results,
in terms of the best-performing model types, the researchers
observed that across the different sensor types tested, gen-
eralized models resulted in more consistent performance at
new sites than individualized models despite having slightly
poorer performance during the initial calibration (Malings
et al., 2019). If this observation holds across sensor types
and the use in other locations, it could help solve the prob-
lem of scaling up sensor networks, allowing for much larger
deployments.

The mixed results and varying experimental conditions
of these studies highlight the need for a more comprehen-
sive understanding of how and why calibration performance
degrades when sensors are moved. A better understanding
could inform potential strategies to mitigate these effects. As
recent research has successfully applied advanced machine
learning techniques to improve sensor calibration models
(Zimmerman et al., 2018; De Vito et al., 2009; Casey et al.,
2018), we believe these techniques could also be leveraged in
innovative ways to improve the transferability of calibration
models.

This paper contributes an extensive transferability study
as well as new techniques for data collection and model
construction to improve transferability. We hypothesize that
transferability is an important issue for sensors that exhibit
cross sensitivities. Based on the hypothesis that the increased
errors under transfer are due to overfitting, we propose that
training a calibration model on multiple sites will improve
transfer. Finally, we propose that transfer can be further im-
proved with a new modeling method, split-NN, that can use
the data from multiple sensor packages trained at multiple
sites to train a two-stage model with a global component that
incorporates information from several different sensors and
locations and a sensor-specific model that transforms an in-
dividual sensor’s measurements to a form that can be input
to the global model

As many previous studies studied colocation with refer-
ence measurements in one location and a validation at a sec-
ond location, we designed a deployment that included trip-
licates of sensor packages colocated at three different refer-
ence monitoring stations and then rotated through the three
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sites — two near the city of San Diego, CA, and one in a
rural area outside of Bakersfield, CA. This allows for fur-
ther isolating the variable of a new deployment location.
The analysis focuses on data from electrochemical Oz and
NO; sensors, although other sensor types were deployed
and used in the calibration, analogous to Bigi et al. (2018).
These pollutants are often of interest to individuals and
communities given the dangers associated with ozone ex-
posure (Brunekreef and Holgate, 2002) and nitrogen diox-
ide’s role in ozone formation. In studying these pollutants,
we are adding to the existing literature by examining the
transferability issue in relation to electrochemical O3 and
NO; sensors, which are known to exhibit cross-sensitive ef-
fects (Spinelle et al., 2015a). We compare the transferabil-
ity of multiple linear regression models, neural networks,
and random forest models. Based on these results, we intro-
duce a new training method that trains all the sensors us-
ing a split neural network that consists of a global model
and sensor-specific models that account for the differing be-
haviors among the individual sensors. Sharing data holds the
promise to lower training costs while at the same time low-
ering prediction error.

2 Methods
2.1 The MetaSense system
2.1.1 Hardware platform

A low-cost air quality sensing platform was developed to
interface with commercially available sensors, initially de-
scribed in Chan et al. (2017). The platform was designed
to be mobile, modular, and extensible, enabling end users to
configure the platform with sensors suited to their monitoring
needs. It interfaces with the Particle Photon or Particle Elec-
tron platforms, which contain a 24 MHz ARM Cortex M3
microprocessor and a Wi-Fi or 3G cellular module, respec-
tively. In addition, a Bluetooth Low Energy (BLE) module
supports energy-efficient communication with smartphones
and other hubs with BLE connectivity. The platform can in-
terface with any sensor that communicates using standard
communication protocols (i.e., analog, 12C, SPI, UART) and
supports an input voltage of 3.3 or 5.0 V. The platform can
communicate results to nearby devices using BLE or directly
to the cloud using Wi-Fi or 2G/3G cellular, depending on re-
quirements. USB is also provided for purposes of debugging,
charging, and flashing the firmware. The firmware can also
be flashed or configured remotely if a wireless connection
is available. An SD card slot provides the option for storing
measurements locally, allowing for completely disconnected
and low-power operation.

Our configuration utilized electrochemical sensors for tra-
ditional air quality indicators (NO;, CO, O3), nondisper-
sive infrared sensors for CO,, photoionization detectors for
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Figure 1. Labeled MetaSense Air Quality Sensing Platform. (a) Modular, extensible platform in standard configuration with NO», O3, and
CO electrochemical sensors. (b) Additional modules that can be added to the board for additional measurement capabilities.

volatile organic compounds (VOCs), and a variety of envi-
ronmental sensors (temperature, humidity, barometric pres-
sure). The electrochemical sensors (NO»: Alphasense NO»-
A43F, O3: Alphasense O3-A431, and CO: Alphasense CO-
A4) are mounted to a companion analog front end (AFE)
from Alphasense, which assists with voltage regulation and
signal amplification. Each sensing element has two elec-
trodes which give analog outputs for the working electrode
(WE) and auxiliary electrode (AE). The difference in signals
is approximately linear with respect to the ambient target gas
concentration but has dependencies with temperature, hu-
midity, barometric pressure, and cross sensitivities with other
gases. The electrochemical sensors generate an analog output
voltage, which is connected to a pair of analog-to-digital con-
verters (ADCs), specifically the TT ADS1115, and converted
into a digital representation of the measured voltage, which
is later used as inputs for our machine learning models.
Modern low-cost electrochemical sensors offer a low-cost
and low-power method to measure pollutants, but currently
available sensors are more optimized for industrial applica-
tions than air pollution monitoring: the overall sensing range
is too wide and the noise levels are too high. For example,
the Alphasense A4 sensors for NO;, O3, and CO have a mea-
surement range of 20, 20, and 500 ppm, respectively, which is
significantly higher than the unhealthy range proposed by the
United States Air Quality Index. Unhealthy levels for NO; at
1 h exposure range from 0.36 to 0.65 ppm, O3 at 1 h exposure
from 0.17 to 0.20 ppm, and CO at 8 h exposure from 12.5 to
15.4 ppm (Uniform Air Quality Index (AQI) and Daily Re-
porting, 2015). Along with the high range, the noise levels of
the sensors make it difficult to distinguish whether air quality
is good. Using the analog front end offered by Alphasense,
the noise levels for NO»,, O3z, and CO have standard devi-
ations of 7.5, 7.5, and 10 ppb, respectively. These standard
deviations are large compared to observed signal levels for
NO; and O3 measurements, which ranged between 0-35 and
12—-60 ppb, respectively, during the 6-month testing period.
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The ambient environmental sensors accurately measure
temperature, humidity, and pressure and are important for
correcting the environmentally related offset in electrochem-
ical sensor readings. The TE Connectivity MS5540C is a
barometric pressure sensor capable of measuring across a
10 to 1100 mbar range with 0.1 mbar resolution. Across 0
to 50°C, the sensor is accurate to within 1 mbar and has a
typical drift of =1 mbar per year. The Sensirion SHT11 is a
relative humidity sensor capable of measuring across the full
range of relative humidity (0 % to 100 % RH) with £3 % RH
accuracy. Both sensors come equipped with temperature sen-
sors with +£0.8 and £0.4 °C accuracy, respectively. The sen-
sors stabilize to environmental changes in under 30's, which
is sufficiently fast to accurately capture changes in the local
environment.

In order to improve the robustness of the boards to ambi-
ent conditions, the electronics were conformally coated with
silicone and placed into an enclosure as shown in Fig. 2. The
housing prevents direct contact with the sensors by provid-
ing ports over the electrochemical sensors and a vent near the
ambient environmental sensors. The system relies on passive
diffusion of pollutants into the sensors due to the high power
cost of active ventilation. However, as described in Sect. 2.3,
for this study the housed sensor packages were placed in an
actively ventilated container.

2.1.2 Software infrastructure

We developed two applications for Android smartphones that
leverage the BLE connection of the MetaSense platform. The
first application, the MetaSense Configurator app, enables
users to configure the hardware for particular deployment
scenarios, adjusting aspects such as sensing frequency, power
gating of specific sensors connected, and the communication
networks utilized. The second application, simply called the
MetaSense app, collects data from the sensor via BLE and
uploads all readings to a remote database. Each sensor read-
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Figure 2. An enclosure was 3-D printed for the MetaSense Air Quality Sensing Platform with top-side ports above the electrochemical
sensors and a side port next to the ambient environmental sensors. The sensor is sized to be portable and has velcro straps that can be used to

mount it to backpacks, bicycles, etc.

ing is stamped with time and location information, support-
ing data analysis for mobile use cases. Moreover, users can
read the current air quality information on their device, giv-
ing them immediate and personalized insight into their expo-
sure to pollutants.

The remote measurements database is supported by the
MetaSense cloud application and built on Amazon’s AWS
cloud. Not only can the MetaSense app connect to this cloud,
but the MetaSense boards can be configured to connect di-
rectly to it using Wi-Fi or 3G. The measurement data can
be processed by machine learning algorithms in virtual ma-
chines in AWS, or the data can be downloaded to be analyzed
offline. The aforementioned over-the-air firmware updates
are handled through Particle’s cloud, which also allows re-
motely monitoring, configuring, and resetting boards. These
direct-to-cloud features are key to supporting a long-term,
wide-scale deployment like the one presented in this paper.

2.2 Sampling sites

For this deployment, our team coordinated with two regula-
tory agencies (the San Diego Air Pollution Control District,
SDAPCD; and the San Joaquin Valley Air Pollution Control
District, STIVAPCD) in order to access three regulatory mon-
itoring sites. Sensor packages were then rotated through each
site over the course of approximately 6 months. Each mon-
itoring site included reference instruments for NO; and O3,
among others. The first site was in El Cajon, CA, located at
an elementary school east of San Diego, CA (El Cajon site).
This site is classified by the SDAPCD as being in the middle
of a major population center, primarily surrounded by resi-
dences (Shina and Canter, 2016); expected influences at this
site include transported emissions from the heavily populated
coastal region to the west as a well as emissions from a major
transportation corridor (Shina and Canter, 2016). The sec-
ond site was approximately 15 mi (24.1km) to the southeast
of San Diego, located at the entrance to a correctional facil-
ity (Donovan site). This site is not located in a high-density
residential or industrial area and does not have many influ-
ences very near to the site; it is expected to provide air quality
information for the southeast area of the county (Shina and
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Canter, 2016). Additionally, this site is approximately 2 mi
(3.2 km) from a border crossing utilized by heavy-duty com-
mercial vehicles — the Otay Mesa Port of Entry. The third
site was located on the roof of a DMV (Department of Mo-
tor Vehicles) in the rural community of Shafter, CA, 250 mi
(402km) to the north near Bakersfield (Shafter site). The
SJIVAPCD lists the following potential sources of air pollu-
tion for this community: rural sources (agricultural and oil
and gas production), mobile (including highways and rail-
roads), and local sources (commercial cooking, gas stations,
and consumer products) (SJVAPCD Website, 2019). Given
the differences in location, land use, and nearby sources we
expect to see differences in both the environmental (i.e., tem-
perature, humidity, and barometric pressure) and pollutant
profiles at each sites. For example, the Shafter site is con-
siderably more inland, where weather would be more domi-
nated by the desert ecosystem rather than the ocean ecosys-
tem as compared to the two San Diego sites. In addition to
being further inland, the Shafter site is rural and has a unique
nearby source (i.e., oil and gas production), which might also
result in a unique pollutant profile and differing composition
of background pollutants when compared to the San Diego
sites. Similarly, given the differences in land use and ex-
pected influences at the two San Diego sites, we may ex-
pect to see different trends in ozone chemistry. For example,
given that the El Cajon site is a highly residential area, while
the Donovan site is near the Otay Mesa border crossing, there
may be more local heavy-duty vehicle emissions at the sec-
ond site. Comparing the historical data from these sites pro-
vides some support for this idea. In the 2016 Network Plan
by the SDAPCD we see that the El Cajon site had a slightly
higher maximum 8 h ozone average than the Donovan site,
at 0.077 and 0.075 ppm respectively, while the Donovan site
had a higher maximum 1 h nitrogen dioxide average than the
El Cajon site, at 0.067 and 0.057 ppm respectively. It is pos-
sible that this difference in peak levels at each site may be
driven by the sources influencing each site, in particular the
nitrogen dioxide levels, which may be tied to heavy-duty ve-
hicle traffic. In terms of the differences between regions, the
San Joaquin Valley has consistently had more days where the
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8 h ozone standard has been exceeded than San Diego County
from 2000 to 2015 (Shina and Canter, 2016; San Joaquin Val-
ley Air Pollution Control District, 2016). In this instance the
higher frequency of ozone elevations in the San Joaquin Val-
ley may be evidence for different climate, meteorology, and
sources driving different ozone trends. This variety of envi-
ronmental and emissions profiles would allow us to mean-
ingfully test for transferability, in particular to assess to what
degree a calibration model trained on one site would overfit
for the other sites.

2.3 Data collection

In ordinary use cases, the air quality sensors would be
mounted to a backpack, bike, or other easily transportable
item as shown in Fig. 2. A calibration algorithm located
either on the sensor or a Bluetooth-compatible smartphone
would convert the raw voltage readings from the sensors and
ambient environmental conditions to a prediction of the cur-
rent pollutant levels in real time. In order to develop these
calibration models, we gathered data from air quality sensors
and colocated regulatory monitoring sites over a 6-month de-
ployment period.

To support a long-term deployment in potentially harsh
conditions where no human operator would be able to mon-
itor the sensors on a regular basis, the sensors were placed
into environmentally robust containers, shown in Fig. 3b.
The container was a dry box, measuring 27.4cm x 25.1 cm x
12.4 cm, that was machined to have two sets of two vents on
opposing walls. Louvers were installed with two 5V, 50 mm
square axial fans expelling ambient air from one wall and
two louvers allowing air to enter the opposite side. The con-
figuration allowed the robust container to equilibrate with
the local environment for accurate measurement of ambient
pollutants. Each container could hold up to three MetaSense
boards with cases and complementary hardware. Due to the
long timeframe of the deployment, a USB charging hub was
installed into the container to power the fans, the air quality
sensors, and either a BLU Android phone or Wi-Fi cellu-
lar hotspot. The phones and hotspots were used to connect
the sensors to the cloud; therefore, we could remotely mon-
itor the sensors’ status in real time and perform preliminary
data analysis and storage. Each board also had an SD card to
record all measurements locally, increasing the reliability of
data storage. It is important to note that end users of the air
quality sensors would not need to perform this lengthy cali-
bration procedure. End users will either receive precalibrated
devices or can perform calibration by colocating their sensor
with existing, calibrated sensors.

A container holding three MetaSense Air Quality Sensors
was placed at each regulatory site, such that each site had one
container of sensors for simultaneous measurement of condi-
tions at all three regulatory sites. After a period of time, the
containers were rotated to a new site. After three rotations,
each sensor had taken measurements at each site. Table 1 lists

Atmos. Meas. Tech., 12, 4211-4239, 2019

S. Vikram et al.: Evaluating and improving the reliability of gas-phase sensor system calibrations

Table 1. Board locations and dates for each round.

Round1  Round 2 Round 3

9/26/17-  10/19/17—  12/21/17-

10/19/17  12/21/17 3/5/18
Board 17 ElCajon  Shafter Donovan
Board 19 El Cajon  Shafter Donovan
Board 21  El Cajon  Shafter Donovan
Board 11 Shafter Donovan El Cajon
Board 12 Shafter Donovan  El Cajon
Board 13 Shafter Donovan El Cajon
Board 15 Donovan  El Cajon Shafter
Board 18 Donovan  El Cajon Shafter
Board 20  Donovan  EI Cajon Shafter

the dates for each rotation as well as where each sensor sys-
tem was located for each rotation. The dates are approximate
due to the logistics of gaining access to regulatory field sites
and the distances traveled to deploy sensors. Also of note is
that the deployments were not of equal length. This does not
affect the results reported below because we ran all combina-
tions of training and testing sites, and training set sizes were
normalized to remove the influence of training set size.

The data from the reference monitors was provided by
the cooperating air quality districts in the form of minute-
averaged O3 and NO; concentrations for the time period that
our sensor packages were deployed. We removed reference
data collected during calibration periods as well as any data
flagged during initial quality assurance/control by the regu-
latory agency who supplied the data. The reference data are
not final ratified data as the timing of our study did not allow
us to wait that long.

2.4 Preprocessing

Prior to using the data set for training the calibration mod-
els, we performed a preprocessing step. First, we program-
matically filtered out data samples that contained anomalous
values that might have occurred due to a temporary sensor
board malfunction (e.g., due to condensation). Specifically,
we searched for temperature and voltage spikes that were
outside the realm of reasonable values (i.e., temperature val-
ues above 60 °C or ADC readings above 5 V) and removed
the corresponding measurements. Each removed group of
samples was visually inspected to ensure data were not be-
ing erroneously removed. A total of 422551 samples were
removed from the 17 948 537 collected samples, 2.4 % of the
total. For the remaining data, a simple average was computed
over each 1 min window so as to match the time resolution
of the data from the reference monitors. If an entire minute
of data is missing due to a crashed sensor or preprocessing,
no minute-averaged value is generated. Although we gath-
ered sensor voltage measurements from both the auxiliary
and working electrodes of the electrochemical sensors, we
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Reference instruments:
* Donovan — NO,, O,

ajon = NO,, 05, CO

« Shafter DMV - NO,, O,;, TNMHC,
CO,(CO, - via Licor Analyzer

maintained by CU, Boulder)

Figure 3. (a) Map and images of deployment locations. The Shafter DMV (red) was located 250 mi (402 km) away from Donovan (blue)
and El Cajon (yellow), which were located in San Diego, CA. (b) Deployment containers’ configuration for the extended deployment. Each
container has active ventilation to keep the internal conditions equivalent to the ambient environment.

used the difference between the two (AE-WE) as the repre-
sentative voltage for each sensor since the auxiliary voltage
is meant to serve as a reference voltage for the working elec-
trode. This treatment is consistent with the methodology of
Zimmerman et al. (2018), and we validated that the perfor-
mance of the calibration models did not differ between tests
with both electrodes and test with the difference as input fea-
tures. As a final step, the resulting minute-averaged readings
were time-matched with the reference data, removing read-
ings that had no corresponding reference reading. The result-
ing data set over the three rounds at the three sites contains
1100 000 minute-averaged measurements.

Furthermore, after receiving and examining the reference
data we were able to verify our hypothesis in Sect. 2.2 that we
would observe varied environmental and pollutant conditions
among the sites. Again, this hypothesis was based on site
characteristics and data/statistics from reports available from
the respective regulatory agencies. Generally higher ozone
values were reported at Shafter, whereas generally higher
NO; values were reported at Donovan. Higher humidity val-
ues were reported at the Donovan and El Cajon sites, as com-
pared to Shafter. Some of the lowest temperature values were
reported at Shafter. For more information see the distribution
plots in Appendix A.

2.5 Baseline calibration methods

Sensor calibration is the process of developing and training
models to convert a sensor voltage into a pollutant concen-
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tration. We formulate sensor calibration as a regression prob-
lem with input features x and e representing signals from the
electrochemical sensors (O3 voltage, NO; voltage, CO volt-
age) and environmental factors (temperature, pressure, hu-
midity), respectively, for a total of six features. These fea-
tures are input to a calibration function hg(x,e) that esti-
mates target values y representing pollutant concentrations
(O3 ppb and NO; ppb).

In our regression problem, we seek a function such that
hg(x,e) ~ y, which we formulate as an optimization where
we minimize a measure of error over a training data set
{xn,en, yn}fl\’=1 according to a loss function L(hg(x,e),y);
ie.,

.
0% — argmmeﬁr;L(hg(xn,en),y,,). (1)

For most of the modeling techniques we minimize the mean
squared error (MSE), except for random forest where we
minimize the variance, which behaves similar to MSE. Mod-
els trained in this way assume that, at inference time, pre-
dictions are made on data sampled from the training distri-
bution. While this assumption holds true when the air quality
sensors are trained and tested at the same site, the distribution
of pollutants and environmental conditions changes when the
sensors are moved to a new location.

We investigated the performance of three calibration mod-
els: multiple linear regression, neural networks (sometimes
called deep learning), and random forest. These methods
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vary in their ability to accurately model complex behaviors,
otherwise known as capacity, with linear regression having
relatively low capacity and neural nets and random forests
having substantial capacity. The price of high capacity is
the potential to overfit the training distribution, which is a
failure to generalize beyond the training data. Models that
overfit will incur significant error when predicting on out-
of-distribution examples. Overfitting can be mitigated with
regularization and by reducing the model capacity, but this
can only go so far if the testing distribution is substantially
different from the train distribution. All of these methods
have been previously applied to ambient pollutant estimation
by various research groups (Piedrahita et al., 2014; Spinelle
et al., 2015b, 2017; Sadighi et al., 2018; Zimmerman et al.,
2018; Casey and Hannigan, 2018) and are generally com-
mon predictive modeling methods. For neural nets, we inves-
tigated three variants: two layers, four layers, and four layers
with a split architecture, which we motivate and describe in
the next subsection.

Our baseline models were trained using the scikit-learn
Python package, and the model parameters for each baseline
model can be seen below.

1. Linear regression. We assume the functional form
h(x)2w”x + b and fit the parameters in closed form.
We use no regularization or polynomial features.

2. Two-layer neural network. We fit a two-hidden-layer
(200 wide) multilayer perceptron with rectified-linear-
unit activation functions and a final linear layer. We
train this neural network using the Adam optimizer
(Bo =0.9, B1 =0.999) and a learning rate of 1073.

3. Four-layer neural network. Same as the two-layer neu-
ral network, but with four hidden layers of width 200
instead of two.

4. Random forest. We divide our data into five folds and
train a random forest of size 100 on each fold, result-
ing in 500 trees. We aim to reproduce the strategy of
Zimmerman et al. (2018) as closely as possible.

2.6 Split neural network method

Overfitting is a problem for high-capacity models with a
limited distribution in training data, resulting in poor per-
formance when a model is transferred to new locations and
environments. One method to improve model transferability
would be to collect more training data that includes the test
distribution. However, colocating a sensor at multiple differ-
ent regulatory field sites in order to capture a sufficiently
wide distribution is prohibitive in terms of cost and time.
An alternative solution is to deploy a set of sensors based on
the same technology across multiple sites and then pool their
data. However, there can be substantial sensor-to-sensor vari-
ance in performance that would amplify prediction errors.

Atmos. Meas. Tech., 12, 4211-4239, 2019

S. Vikram et al.: Evaluating and improving the reliability of gas-phase sensor system calibrations

Recent work in sensor calibration has produced architec-
tures that split model training into global and sensor-specific
training phases, primarily for metal oxide (MOX) gas sensors
produced in an industrial setting. The process involves train-
ing a global or master model on a small subset of devices
over a wide range of environmental conditions. The master
model translates raw sensor readings (i.e., voltage or current
measurements) to a target pollutant. MOX sensors, similar to
electrochemical sensors, are sensitive to ambient conditions,
so a wide range of conditions and combinations are explored
in the master calibration phase. While it can produce very
accurate calibration models, the time and expense of gather-
ing calibration data over a wide range of conditions are pro-
hibitive in the industrial manufacturing process for low-cost
sensors. To overcome this, a limited number of master mod-
els are created, and then an affine transformation is gener-
ated between individual sensors and the master sensors. The
affine transformation effectively transforms the sensors read-
ings of individual sensors to match that of the master, after
which the master calibration model can be used. A variety
of methods have been developed to this end. Zhang et al.
(2011) propose a method to calibrate a MOX sensor for de-
tecting volatile organic compounds using a neural network
to capture the complexity of the master model and an affine
transform and a Kennard—Stone sample selection algorithm
to develop a linear model between individual sensors and the
master sensor. Other research has utilized windowed piece-
wise direct standardization to transform the sensor readings
from a slave sensor to a calibrated master for single gas con-
centrations (Yan and Zhang, 2015) and direct standardization
for a range of gases and concentrations over a longer time-
frame (Fonollosa et al., 2016). While previous efforts utilized
single master sensors, Solérzano et al. (2018) showed that
including multiple master sensors in a calibration model can
improve the robustness of the overall model. Similar find-
ings were reached by Smith et al. (2017) when investigating
sensor drift whereby an ensemble model was generated by
training models for multiple sensors and the prediction was
reported as the cluster median. These two-stage calibrations
have primarily been performed in controlled laboratory set-
tings but not in real-world conditions where ambient condi-
tions and cross sensitivities may impact results. In addition,
these studies train models in a piecewise fashion, training
master and sensor-specific models separately.

We propose end-to-end training of a global and sensor-
specific models. In particular, we propose a training archi-
tecture that consists of two sets of models: a global cali-
bration model that leverages the data from a set of simi-
lar sensors spread across different training environments and
sensor-specific calibration models that detect and correct the
differences between sensors. In the previous subsection, we
associated each board i with a calibration function Ag, (x) and
fit this calibration function with its colocated data. Taking
into consideration a collection of many air quality sensors,
we propose an alternate architecture based on transfer learn-
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[Board 1 |-~ [86,@) || c([ule])

Figure 4. Architecture of the split-NN model in deployment (test-
ing). Each air quality sensor has a board-specific model sg, (x) that
normalizes a given sensor’s output (x) to an intermediate represen-
tation from all sensors (). The intermediate representation is com-
bined with environmental data (e) and input to the global model cy.

ing (Goodfellow et al., 2016, p. 535). We propose using a
calibration function split into two distinct steps: first, pollu-
tant sensor voltages and input into a sensor-specific model,
which outputs a fixed dimensional latent vector u; and, sec-
ond, u and environmental data e are input into a global cal-
ibration model, which outputs the concentration of the tar-
get pollutants. The sensor-specific model sq, (x) is unique for
each individual sensor and parameterized by 6;, where i de-
notes the individual sensor number. The global calibration
model cy([ule]) is universal for all sensors and parameter-
ized by ¢. For a single air quality sensor, our final calibration
function is ¢y ([sg, (x)|e]). Figure 4 depicts the use of such a
model. Such a model is called a split neural network model
(split-NN) since neural networks are generally used for both
the sensor-specific models and the global calibration models.
In our experiments, the sensor-specific model s, is either a
linear regressor or neural network; ¢y is a two-layer, 100-
neuron-wide neural network.

The purpose of the split-NN model is that sg, corrects for
differences in air quality sensor i’s performance relative to
the other sensors, thus normalizing the values and making
the behavior of all the sensors compatible with the global
model c¢y. The performance of the estimates from ¢4 should
be superior to that from an individual sensor model because
it has been trained on the (normalized) data of all the boards
as opposed to just a single board.

The split model can be trained efficiently with stochastic
gradient descent. Specifically, we first collect N data sets for
each board D; = {x(i), e® y(i) }INZI. We ensure each of these
data sets is the same size by sampling each with replacement
to artificially match the largest data set. We then pool the data
sets together into one data set from which we sample mini-
batches. While each sensor-specific model s, is trained only
on data collected by its sensor, the regression with the other
sg; sensor-specific models is designed to detect and correct
its bias, outputting an intermediate representations u that is
normalized with the others. The global calibration model is
trained on the normalized data from all air quality sensors.

Although training this neural network will take longer than
training one for a single board, it has several key advan-
tages over conventional calibration techniques. The first is its
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ability to share information across multiple boards. Suppose
Board A is trained on Location 1 and Board B is trained on
Location 2. Pooling the data sets and using a shared model
enables the global calibration model to predict well in both
locations, and the calibration models for both boards will
have information about the other locations in them, in the-
ory improving transferability. The second is more efficient
utilization of data. By pooling data and training jointly, we
effectively multiply our data size by the number of boards.
Alternatively, field deployments can be shortened.

Calibrating a new board without a full training. Field
calibration is traditionally performed by colocating a sen-
sor package with reference monitors and then training to
match pollutant concentrations. But, suppose we already had
a fleet of low-cost sensor packages already deployed. A sim-
pler method not requiring coordination with regulatory agen-
cies would be to colocate it with a calibrated sensor pack-
age and train a model to match its predicted pollutant levels.
This risks compounding errors across models, however. The
split-NN model enables calibrating a new sensor package by
colocating to match representation instead of predictions, as
learned representations can often improve generalization in
transfer learning problems (Goodfellow et al., 2016, p. 536).

We propose calibrating sensor package N 4+ 1 to match
the intermediate representation output of a colocated, previ-
ously calibrated sensor package. Specifically, we train model
N +1 to minimize L(uy, uy+1), or the loss between the two
packages’ intermediary outputs. These intermediate repre-
sentations are designed to be robust to changes in location;
therefore, it is expected that training to match these repre-
sentations will result in more robust calibration models. We
analyze this potential calibration technique by holding out
a board from our data sets and training a split model. We
then simulate calibrating the held out board by training a sen-
sor model to match the representations produced by another
board it was colocated with. We then use this new sensor
model with the global calibration function to produce pollu-
tant values.

3 Results and discussion

3.1 Robustness of different calibration techniques
across new locations

We evaluated a set of four baseline models described in
Sect. 2.5: multiple linear regression, two-layer neural net-
work (NN-2), four-layer neural network (NN-4), and random
forest (RF). With each of these four models, we performed
a suite of identical calibration benchmarks that measure the
robustness of models to out-of-distribution data. We split all
data sets uniformly at random into training and testing sub-
sets, reserving 20 % of each board’s data for testing. In each
benchmark, we progressively widened the training distribu-
tion by combining training data from more locations (using
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000000

(c) Level 2 (d) Level 3

Figure 5. Graphical depiction of training versus testing for the Level O through Level 3 benchmarks. The Level 0 and 3 benchmarks test on
a training site using held out data. The Level 1 and 2 benchmarks train and test on different sites, also using held out data for consistency.

subsampling to maintain the training set size), while keeping
the testing set data set from one location. We have four levels
of such benchmarks.

— Level 0. Train a model on one location and test on the
same location. Several studies, discussed in Sect. 1,
have previously assessed this configuration (Zimmer-
man et al., 2018; Spinelle et al., 2015b, 2017; Cross
et al., 2017).

— Level 1. Train a model on one location and test on an-
other location. Some recent studies, also discussed in
Sect. 1, have previously studied this configuration (Ha-
gan et al., 2018; Casey and Hannigan, 2018; Bigi et al.,
2018; Malings et al., 2019).

— Level 2. Train a model on two locations and test on a
third location.

— Level 3. Train a model on three locations and test on one
of the three locations.

In the Level 0 and Level 3 benchmarks, the training and
testing data distributions have explicit overlap, whereas, in
Level 1 and 2, there is no explicit overlap. We expect perfor-
mance on Level O to be the best, as the training and testing
distributions are identical. We expect performance on Level
3 to be similar, due to the overlap in training and testing dis-
tributions. We expect performance on Level 1 to be the worst,
as the training distribution is the narrowest and with no ex-
plicit overlap, whereas we expect performance on Level 2 to
be between Level 1 and Level 3, for although there is no ex-
plicit overlap, the overall training distribution will be wider,
forcing the models to be more general and possibly afford-
ing more implicit overlap. Furthermore, we expect higher-
capacity models to overfit more to the training data set and,
as a result, have the largest gap between Level O and Level
1. Thus, we expect linear regression to have more consistent
performance across the benchmarks, albeit at relatively high
error, followed by the two-layer neural network, four-layer
neural network, and finally the random forest.

We ran each benchmark across all possible permutations
of location and sensor package, measuring six metrics in or-
der to facilitate comparisons in the literature: mean squared
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error (MSE), root mean squared error (RMSE, also known
as the standard error), centered root mean squared error
(cRMSE), mean absolute error (MAE), the coefficient of
variation of mean absolute error (CvMAE), mean bias error
(MBE), and coefficient of determination (R?). Predictions
were made in parts per billion (ppb); thus MSE is reported in
ppb?, and the other errors are reported in ppb. CYMAE and
R? are dimensionless. The results for MAE of the baseline
models are plotted in Fig. 6. Details can be explored further
in Appendix C.

From Fig. 6 we observe that, on average, as model ca-
pacity increases, Level O error decreases. This is consistent
across both NO, and O3 prediction and reflects the abil-
ity of the model to fit the training distribution. Concerning
model transferability, we find that, consistently, all models
exhibit relatively high error when tested on different loca-
tions. The Level 1 and 2 benchmarks test the ability of a
model to generalize to a distribution it has not seen before,
and we see in these benchmarks that errors are much higher
and the gaps between models are much smaller. Furthermore,
the Level 2 error is slightly lower on average than Level 1 er-
ror. By adding data from another site, effectively widening
the training distribution, the models are slightly more robust
to the unseen testing distribution. Level 3 performance aligns
closely with Level 0 performance, which is to be expected,
since in both cases the training distribution contains the test-
ing distribution.

Across baselines, we observe that, on average, linear re-
gression has the highest error on all the benchmarks. How-
ever, its errors across the Level O through Level 3 bench-
marks are more consistent than the other models, suggesting
that low-capacity linear regression is more robust to trans-
fer. On the other hand, random forests have on average the
lowest error but have the most inconsistent results across the
levels. The results indicate a tradeoff between model capac-
ity and robustness to transfer, consistent with our intuitions
about model overfitting and generalization. Neural networks
lie in between linear regression and random forests and offer
a tradeoff between low error and consistent error.

To better understand how model performance degrades,
we produced target plots, which visualize the tradeoff be-
tween centered error (cC(RMSE) and bias error (MBE) (Fig. 7).
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Figure 6. Mean absolute error (MAE) boxplots for NO, and O3, for the Level 0 through Level 3 benchmarks.

The target plots indicate that while error approximately dou-
bles when there is no explicit overlap in the distribution,
the increase in model bias is many times more. When con-
sidering the two types of error examined, the cRMSE may
be of greater concern when considering sensor performance
in new locations as compared to error due to bias. Sensor
data exhibiting errors due to bias may still provide useful in-
formation regarding the diurnal trends of pollutants or rela-
tively large enhancements. Despite the higher-capacity mod-
els showing better error and bias in a Level 0 benchmark, the
models have similar error—bias tradeoffs in a Level 1 bench-
mark, indicating that a high-capacity model cannot avoid this
performance degradation. Finally, in comparing the Level 1
and Level 2 plots, we observe that adding an additional (no-
overlapping) site primarily reduces bias. The Level 3 plots
are very similar to the Level O plots and are excluded from
Fig. 7 for brevity.

In general, however, we observe that model performance
degrades nontrivially when moved to different locations.
This decrease in performance could result in overconfidence
in a sensor’s readings, potentially affecting downstream deci-
sions. We briefly analyze the properties of our data that could
result in overfitting by first investigating how data distribu-
tions across sites and times differ. Over each location and
round, pollutant values can be highly variable. This is re-
flected, for example, in Fig. A3 where Shafter has higher val-
ues of NO; in Round 1 and 2 but lower in Round 3. Further-
more, in Fig. A4, the distribution of O3 changes remarkably
across round and location. Similarly, temperature and humid-
ity change significantly across location and round, which can
be seen in Figs. Al and A2.

A question that remains is to what degree overfitting or
unique (nonoverlapping) distributions of environmental data
at the sites is contributing to the failure of the high-capacity
models to transfer well. In an effort to better understand what
may be driving the drop in performance of the high-capacity
models when boards are moved, we examined error density
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plots for temperature and humidity for the Level 1 bench-
marks. In these types of plots, one of the predictors, such as
temperature or humidity, is plotted against the error for all
three sites in a single plot. Figure 8 displays the error den-
sity plots in MAE for absolute humidity against the error for
the O3 estimation, for both the linear regression and random
forest models. These plots illustrate how the magnitude of
error varies with respect to higher or lower predictor values
as well as how different pairs of training and testing sites
compare. There are a couple of things we can derive from
this collection of plots. First, we observe that the pollutant
concentrations at the Shafter site are difficult to predict, ex-
cept for random forest when trained at Shafter itself (Fig. 8f).
The Shafter site was spatially far from the other sites and
likely had a unique composition of background pollutants
and ambient environmental conditions. Second, we observe
that when training a random forest model at one site and test-
ing it at a different site (Fig. 8, bottom row), the error density
plots look similar to the results from the linear regression
models (Fig. 8, top row) despite the higher capacity of ran-
dom forest models. Furthermore, comparing panels a and d,
the errors at Shafter seem comparable to those at El Cajon for
the random forest model, whereas for the linear regression
model the errors seem greater at Shafter versus the second
San Diego site. This difference potentially indicates that lin-
ear regression models are better at transferring between more
similar environments, which has been observed by other re-
searchers as well (Casey and Hannigan, 2018). We also ob-
serve that the greater errors at the Shafter site are occurring at
humidity values that were seen in the training data set (more
centrally in the plot), as is evident by their representation in
the Donovan data. This implies that these errors did not oc-
cur at humidity values that have been extrapolated beyond the
original training data set, but rather from overfitting at values
in the distribution. This leads us to conclude that overfitting
is the reason random forest’s net performance in transfer is
not much better than linear regression.
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Figure 7. Target plots for Level 0 through Level 2 for both NO; and O3. In each panel, the centered error is plotted on the x axis, while the
bias error (MBE) is plotted on the y axis. The differing colors then illustrate the performance of each calibration model at each level and for
these metrics. Each point in the plot corresponds to a different individual benchmark (i.e., a unique round, location, and board).

Trained at Donovan

Trained at El Cajon

Trained at Shafter

50 50 50
I £l Cajon
c B Donovan
© a0 a0 a0 I Shafter
[}
0n _—
L oy 30 30
g =
=
20 20
]
]
(7]
£
-l ;
o - L i f
0.00 025 050 0.75 100 1.25 1.50 175 2.00 0.00 0.25 050 0.75 100 125 1.50 175 2.00 0.2 0.4 0.6 08 1.0 1.2 14 16 18
Absolute humidity (g m=)
50 50 50
N El Cajon
EE Donovan
- 40 40 40
7] Il Shafter
@
= _—
ez 20 10
£ =2
[=] g 20 20
T =
c
]
m 10

0.50

175

100 125 150 2.00 0.00 025

0.75
Absolute humidity (g m=)

100 125 150
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1 benchmark.

3.2 Benefits of sharing data across sensor packages

In this section, we evaluate the split-NN model architec-
ture’s utility for improving the transferability of a calibration
model. The novelty of the split-NN model for calibrating a
board’s model is its ability include (normalized) data from
other boards. Given that the resources for calibration are lim-
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ited, the research questions for split-NN revolve around how
boards could be best distributed to available field sites. For
a standard modeling technique like random forest, a board
has to be placed at three sites for three rounds to experience
the wide training distribution that achieves the exceptional
transferability observed in the Level 3 benchmarks. However,
with the split-NN model, multiple boards can be deployed for
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just one round, divided equally across the sites. Then the data
from their boards can be normalized and shared to produce
models that we hypothesize to be of similar quality to a Level
3 benchmark, but in one-third of the time, in a single round.

To help reveal the value of calibrating multiple boards at
once, we performed three one-round benchmarks: one board
at each of the three sites, two boards at each of the three sites,
and three boards at each of the three sites. In each of these
conditions, a board is trained from a single round of data and
tested on the other locations, not its own. In this vein, these
are all Level 1 benchmarks; thus we compare the resulting
models against our Level 1 baselines. We expect the split-NN
to outperform Level 1 random forest, as the inclusion of more
data helps reduce bias. In the situation that there are more
boards to calibrate than there are training sites, there is an
opportunity to also incorporate additional data boards at the
same site. We expect that a greater multiplicity of boards at
each site will produce slightly better models, but with dimin-
ishing returns. We evaluated this effect by including training
split-NNs with increasing numbers of boards at each site, in-
dicated by the variants split-NN (3), split-NN (6), and split-
NN (9), corresponding to having one board at each site, two
boards at each site, and three boards at each site. Figure 6 de-
picts how the voltages collected from one board in the split-
NN (9) condition are translated into predictions, both plotted
against the corresponding reference data points. We perform
a similar assessment with two-round (Level 2) benchmarks,
still testing only on sites that a board has not been trained
on. As previously, we control for the total amount of data,
simulating an abbreviated deployment for the Level 2 bench-
marks.

Figure 10a-b shows that the split-NN model on aver-
age has slightly lower MAE in the Level 1 benchmarks
when compared to the random forest model. We see in and
Fig. 10c—d that the gap widens with the Level 2 benchmark,
indicating that the split-NN model is able to better capitalize
on the additional data. The results also support our hypothe-
sis that we receive diminishing returns with additional data.
Detailed results are provided in Appendix D.

The marginal improvement seen in the Level 1 bench-
marks has two possible causes. One possibility is that the
difference in behavior between sensors is nonlinear. To test
this, we implemented a full neural network as the first stage.
The results were comparable with a linear regression first
stage with only slight improvement, suggesting that the re-
lationship between the sensors is well represented by a linear
model. The other possibility is that the pollution distributions
have insufficient overlap across sites, compromising the first-
stage linear regression to correct bias. The fact that using two
rounds of data (Level 2) does much better suggests that this
lack of overlap is a likely culprit.
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Figure 9. A single board comparison (Board 12) of the relationship
between the raw sensor values and target pollutant concentrations
(left) and the predicted and target pollutant concentrations after the
model was run (right) for the Level 1 split-NN (9) condition. The
solid black line is a linear trend line and the dashed lines represent

the 95th percentile.

3.3 Discussion

As low-cost sensor studies move from understanding sensor
signal performance to how this performance is affected by
moving sensors to new sampling locations or utilizing them
in new applications, it is important that the results are trans-
lated into best practices to support the collection of usable
high-quality data. This is particularly important given the in-
terest in sensors by community-based organizations and cit-
izen scientists. Although the present study examined only
electrochemical O3 and NO; sensors and the sampling sites
were limited to three in California, it adds to a body of evi-
dence that location matters in the calibration of low-cost sen-
sors because the background environmental conditions mat-
ter. With this in mind, we make the following observations
and recommendations.

We observed how prediction performance degrades when
a sensor is moved to a new location, especially for high-
capacity modeling techniques. In particular, training a com-
plex random forest calibration model will likely result in rel-
atively low error at a colocated site but can incur relatively
high error at a different site. Although their predictions at a
new site will have lower error than linear regression, the error
they exhibit at the training site will likely not be representa-
tive of their error in practice. A linear model, on the other
hand, despite not predicting as well at the training site, will
not have substantially greater error at testing time. Thus, if

Atmos. Meas. Tech., 12, 4211-4239, 2019



4224

S. Vikram et al.: Evaluating and improving the reliability of gas-phase sensor system calibrations

Level 1 Level 2
10 10
a8 8
o
N 6
0 —
z ¢
= a 4
2 2
ST N2 SpitNN(3)  SpitNN () RF " N4 SpiNN(E)  SpithN (9) RF
Model Model
18 p— 18
16 T 16
14 14
gt 12
o
m g v - b
o E 8 8
E 6 —_— 13
4 I 4
2 2
o o
NN-4 Split-NN (3)  Split-NN (3) RF NN-4 Split-NN (3)  Split-NN (3) RF
Model Model

Figure 10. Results of evaluating the split-NN model with a linear regression first stage, compared against the RF model in both Level 1 and
Level 2 comparisons. The split-NN model has a lower mean and median error in all conditions. Boxplots are pictured without outliers for

clarity.

it is important to know the likely error of your calibration
model under transfer, it would be best to use a low-capacity
method like linear regression.

When we drilled down to investigate the contributors to
error when changing location, we found that bias error was a
significant contributor in many cases. This is interesting be-
cause bias error indicates a loss of accuracy (a nonrandom
additive error) rather than a loss of precision (random noise).
This suggests that when moving a sensor to a new location, if
the bias can somehow be detected, then it may be possible to
make a bias correction to improve model performance. This
result also motivates the use of the split neural network ar-
chitecture, which has a model-specific correction stage that
is designed to learn unbiased representations of sensor mea-
surements.

We had expected that training at multiple sites would
provide much better transferability, but the improvements
were not substantial, suggesting that the high-capacity mod-
els were mostly improving due to implicit overlap in dis-
tributions and not actual generalization. This suggests that
calibration should be directed at capturing the widest condi-
tions possible, for example using many field sites with vary-
ing conditions, so as to create an overlap between the distri-
butions of training and use. This recommendation is further
supported by the observation that the Level 3 benchmarks
performed nearly as well as the Level 0 benchmarks, in spite

Atmos. Meas. Tech., 12, 4211-4239, 2019

of carrying the load of a much wider distribution in the mod-
els.

The split-NN approach provides a potentially economical
approach to creating overlap in distributions since sensors
can share their data for calibration. That is, when calibrat-
ing multiple sensors, rather than colocating multiple sensors
at a field site and rotating those sensors over time, it makes
sense to distribute the sensors to as many field sites as possi-
ble to capture the widest distribution of conditions. The split-
NN method has the additional benefit of being able to train a
calibration model for a sensor that has never been colocated
with a reference instrument. By simply colocating an uncali-
brated sensor with a calibrated sensor and training the sensor-
specific model to match the intermediate output of the cali-
brated sensor, the uncalibrated sensor can leverage the same
global calibration model. More study will be required to see
how well the split-NN approach scales as the training data
distribution increases and to determine the bounds on cali-
bration without reference colocation.

4 Conclusions
As low-cost gas-phase sensors are increasingly being

adopted for citizen science efforts and community-based
studies, there is a need to better understand what contributes
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to accurate sensing. A key question is how a change in back-
ground environmental or pollutant conditions, often unique
to a location, affects accuracy. A rotating deployment strat-
egy enabled benchmarking the transferability of models and
investigating how to improve accuracy.

For our setting and conditions, we found the following.

— Model error increased under transfer for all the model-
ing techniques investigated, demonstrating that overfit-
ting is a concern. The effects are most dramatic when
transferring high-capacity models like random forest
that are trained with data that will not be representa-
tive of the conditions of use. The lower-capacity lin-
ear regression method deteriorated much less. This sug-
gests that the predicted model error for linear regression
will be more accurate under transfer, making it attrac-
tive when knowing the predicted error is important for
the intended application.

— Tantalizingly, much of the error introduced by transfer
was bias. Given the simple structure of bias error, this
suggests that transferability might be increased by de-
tecting and correcting for bias.

— When multiple sensors based on the same technology
are being trained at the same time, we found that a split
neural network architecture modestly decreases predic-
tion error under transfer by giving a sensor’s model ac-
cess to normalized data from other sensors at other lo-
cations, hence widening the distribution without requir-
ing additional data collection. Depending on the train-
ing configuration, compared to random forest the split-
NN method reduced error 0 %—11 % for NO, and 6 %—
13 % for O3. This method also enables calibrating new
sensors against existing calibrated sensors at increased
cost.

— For all the modeling techniques investigated, widen-
ing the data distribution proved a good strategy to re-
duce prediction error under transfer, even for the lower-
capacity linear regression method. Notably, markedly
better results were achieved when the training distri-
bution contained the distribution encountered in use. In
other words, for the setting and conditions investigated,
training with representative data trumped algorithms.

In the future work we will be extending this work to an-
swer open questions that we believe are relevant to the fu-
ture of low-cost sensor calibration. One, the split neural net-
work method underperformed our expectations, so we be-
lieve techniques of this sort warrant additional investiga-
tion. Two, there are questions about the effect of tempo-
ral resolution on accuracy. Currently, our MetaSense sensors
are sampled every 5s, but the ground-truth data provided
from reference monitors is minute-averaged. By averaging
our own sensor measurements every minute, we discard data

www.atmos-meas-tech.net/12/4211/2019/

that could be relevant for calibration. Recent advances in re-
current neural networks for sequence prediction might help
leverage the high-resolution data for more robust prediction.
On the other hand, noise will be more of a factor at this res-
olution, and the sensor can take up to 30 to stabilize in new
environmental conditions (See Sect. 2.1.1). Three, a poten-
tial application of low-cost sensing is truly mobile sensing
with person- or vehicle-mounted sensors. Deployments such
as these will raise questions about the effects of mobility on
sensing accuracy, such as rapidly changing conditions, with
few studies to date (Arfire et al., 2016). Finally, we will be ex-
amining the possible use of infrastructure data (e.g., knowl-
edge of pollution sources) to infer the likelihood of specific
pollutants, providing the potential to control for cross sensi-
tivity.
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Appendix A: Environment and pollutant distributions
(based on reference data)

The following graphs summarize the distributions of pollu-
tants and environment variables provided from the reference
sensors at the three sites during the three rounds of the study.
Each bar represents the total proportion of measurements at
the given temperature or humidity (a histogram plot). The
lines are a visualization of the kernel density estimation of
the raw measurements.
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Figure A1. Temperature distributions for each location, by round.
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Figure A2. Humidity distributions for each location, by round.
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Figure A3. NO, distributions for each location, by round.
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Appendix B: Summaries of data for each location and
round

Table B1. Summary of data set grouped by location

EPANO; EPA Oz Temperature  Pressure Humidity

Location

Donovan  count 100780 100780 100780 100780 100780
mean 10.434 33.742 24.170 991.767 45.936
SD 10.807 15.378 5.624 3.226 21.966
min 0.000 0.000 13.900 982.820 4.086
25 % 3.000 24.000 20.100 989.530 27.244
50 % 7.000 35.000 22.620 991.460 49.511
75 % 14.000 43.000 27.000 993.610 64.394
max 157.000 96.000 49.710  1004.160 92.753

El Cajon  count 97412 97412 97412 97412 97412
mean 12914 29.331 24.342 997.288 43.923
SD 9.732 19.337 8.232 3.507 20.077
min 0.000 1.000 5.430 989.230 2.733
25 % 5.000 11.000 18.570 994.880 28.623
50 % 10.000 31.000 23.380 996.890 45.053
75 % 20.000 43.000 29.700 999.450 61.166
max 66.000 95.000 49.790 1010.480 85.827

Shafter count 119785 119785 119785 119785 119785
mean 12.578 26.357 22.101  1003.883 45.804
SD 9.079 20.739 8.184 5.596 18.072
min 0.000 0.000 4.010 872.756 6.349
25 % 4.700 7.800 16.156 999.750 30.585
50 % 10.800 22.300 21.040  1003.990 46.763
75 % 19.000 41.200 27.200  1007.400 60.965
max 594.600  110.400 47.700 1019.580 85.047
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Table B2. Summary of data set grouped by round

EPANO,; EPA Oz Temperature  Pressure Humidity
Round
1 count 49771 49771 49771 49771 49771
mean 5.509 36.010 26.062 994.459 48.322
SD 5.472 13.869 6.777 4.787 19.539
min 0.000 1.300 13.100 872.756 9.644
25 % 2.000 28.000 20.900 990.920 31.790
50 % 3.700 37.300 24.600 995.240 50.507
75 % 6.600 45.000 30.130 997.640 61.525
max 57.000  110.400 47.700  1002.940 92.753
2 count 75129 75129 75129 75129 75129
mean 11.916 36.974 25.953 995.989 41.511
SD 9.583 21.259 7.577 6.075 19.757
min 0.000 0.000 12.000 982.820 4.420
25 % 5.000 19.200 20.000 990.990 23.461
50 % 8.000 36.000 24.400 995.420 41.539
75 % 17.900 53.000 31.710  1000.710 56.961
max 82.000 96.000 48.180  1009.890 87.562
3 count 193077 193077 193077 193077 193077
mean 13.708 25.093 21.791 999.732 45.946
SD 10.225 17.807 7.276 6.708 20.013
min 0.000 0.000 4.010 986.770 2.733
25 % 5.100 8.000 17.190 994.300 30.192
50 % 11.600 24.700 21.000 999.090 48.470
75 % 20.000 38.500 25.780  1004.690 63.450
max 594.600 87.900 49.790  1019.580 85.440
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Appendix C: Raw results for the baseline calibration
models

The following tables are the complete error results for the
baseline models across the various conditions. In these ta-
bles, the modeling methods are labeled as MLR for multi-
ple linear regression, NN-2 for the two-layer neural network,
NN-4 for the four-layer neural network, and RF for random
forest, as described in Sect. 2.5. Likewise, the error measures
are labeled as MAE for mean absolute error, CYMAE for co-
efficient of variation of the mean absolute error, MBE for
mean bias error, MSE for mean standard error, R? for the
coefficient of determination, cRMSE for centered root mean
square error, and RMSE for root mean squared error. MSE
is reported in parts per billion squared. All other errors are
reported in parts per billion. CYMAE and R? are dimension-
less. The results are disaggregated by train and test sites and
averaged across the sensor packages.

Table C1. Level O train results for NO, (train and test on the same data set).

Train site Method MAE CvMAE MBE MSE RZ ¢RMSE RMSE

El Cajon  MLR 3.860 0.256 1.163e—14 28.094 0.685 5.259 5.259
Donovan  MLR 5.520 0.567 1.528e—15 73.035 0.312 8.374 8.374
Shafter MLR 4.671 0.354 3.628e—15 40.945 0.492 6.380  6.380

El Cajon  NN-2 2.003 0.135 0.127 8.137  0.905 2.831 2.844
Donovan  NN-2 3.134 0.328 0.093  27.100 0.733 5.175 5.189
Shafter NN-2 2.648 0.200 0.051 17.439 0.787 4.131 4.135
El Cajon NN-4 1.109 0.074 0.076 2976  0.967 1.700 1.704
Donovan  NN-4 1.946 0.213 0.033 13955 0.835 3.527 3.548
Shafter NN-4 1.755 0.133 —0.054 8.541 0.895 2.868 2.872
El Cajon RF 0.477 0.032 —0.011 0.673  0.993 0.808 0.808
Donovan  RF 0.999 0.112 —0.022 3.705 0.956 1.870 1.871
Shafter RF 0.514 0.039 —0.016 1.513  0.981 1.193 1.193

Table C2. Level 0 test results for NO,.

Train site  Testsite ~ Method MAE CvMAE MBE MSE RZ ¢RMSE RMSE

El Cajon ElCajon MLR 3.869 0.256 0.015 28999 0.683 5.333 5.333
Donovan  Donovan MLR 5.573 0.556 0.160 75.037 0.315 8.504 8.512
Shafter Shafter MLR 4.671 0.353 0.004 38.467 0.511 6.191 6.191
El Cajon  ElCajon NN-2 2.074 0.140 0.127 9.185 0.895 3.006 3.018
Donovan  Donovan  NN-2 3.390 0.345 0.204 31.458 0.696 5.559 5.581
Shafter Shafter NN-2 2.694 0.203 0.052 15.772 0.802 3.942 3.946
El Cajon ElCajon NN-4 1.465 0.098 0.076 5.524  0.938 2.327 2.331
Donovan  Donovan  NN-4 2.739 0.288 0.105 24.875 0.729 4.907 4.924
Shafter Shafter NN-4 2.089 0.158 —0.060 10.702 0.865 3.252 3.256

El Cajon  ElCajon RF 0.972 0.064 —0.028 2.929  0.968 1.683 1.683
Donovan  Donovan RF 2.010 0.216 0.031 15.113  0.830 3.794 3.797
Shafter Shafter RF 1.028 0.078 —0.041 3.822  0.951 1.943 1.943
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Table C3. Level O train results for O3 (train and test on the same data set).

Train site Method MAE CvMAE MBE MSE R CcRMSE RMSE

El Cajon MLR 6.010 0.245 1.647e—14  60.276  0.827 7.666 7.666
Donovan  MLR 6.916 0.193 —1.88le—15 85.486 0.584 9.131 9.131
Shafter MLR 5.882 0.239 9.460e—15 63.567 0.841 7.877 7.877

El Cajon  NN-2 2.810 0.112 —0.150 16.200 0.954 3.940 3.947
Donovan ~ NN-2 4.237 0.117 —0.270 35.055 0.821 5.824 5.855
Shafter NN-2 3.498 0.141 0.013 24929 0.939 4.895 4.909
El Cajon NN-4 1.369 0.055 —0.092 4418 0.987 2.053 2.064
Donovan  NN-4 2.781 0.077 —-0.212 21.314 0.874 4.055 4.102
Shafter NN-4 2.184 0.090 0.001 10.817 0.973 3.248 3.251
El Cajon RF 0.598 0.024 0.006 0.962  0.997 0.976 0.976
Donovan  RF 1.341 0.037 0.014 4938 0971 1.988 1.988
Shafter RF 0.643 0.027 0.011 1.176  0.997 1.083 1.083

Table C4. Level O test results for O3.

Train site  Test site Method MAE CvMAE MBE MSE R?> CcRMSE RMSE

El Cajon  ElCajon MLR 6.038 0.245 0.040 61471 0.822 7.744 7.744
Donovan  Donovan MLR 6.931 0.195 —0.255 85.324 0.604 9.116 9.124
Shafter Shafter MLR 5.877 0.240 0.020 63.379 0.842 7.857 7.858
El Cajon  ElCajon NN-2 2.919 0.115 —0.133 17.626  0.950 4.113 4.118
Donovan  Donovan  NN-2 4516 0.126 —0.488 40.687 0.802 6.193 6.253
Shafter Shafter NN-2 3.568 0.145 0.020 26.052 0.937 4.999 5.011
El Cajon  ElCajon NN-4 1.903 0.075 —0.068 9.252 0974 2.966 2.974
Donovan  Donovan NN-4 3.830 0.107 —0.330 33.794 0.825 5.399 5.456
Shafter Shafter NN-4 2.672 0.109 —0.012 17.052 0.959 4.050 4.052

El Cajon  ElCajon RF 1.217 0.049 0.015 3.987 0.988 1.987 1.987
Donovan  Donovan RF 2.723 0.076  —0.103 19.179 0.897 3.931 3.934
Shafter Shafter RF 1.284 0.054 0.024 4.651 0.988 2.155 2.155

Table CS. Level 1 train results for NO, (train and test on the same data set).

Train site  Method MAE CvMAE MBE MSE R?> C¢RMSE RMSE

El Cajon  MLR 3.869 0.256 0.015 28999 0.683 5.333 5.333
Donovan  MLR 5.573 0.556 0.160  75.037 0.315 8.504 8.512
Shafter MLR 4.671 0.353 0.004 38.467 0.511 6.191 6.191
El Cajon  NN-2 2.074 0.140 0.127 9.185 0.895 3.006 3.018
Donovan  NN-2 3.390 0.345 0.204 31.458 0.696 5.559 5.581
Shafter NN-2 2.694 0.203 0.052 15772 0.802 3.942 3.946
El Cajon  NN-4 1.465 0.098 0.076 5.524 0.938 2.327 2.331
Donovan  NN-4 2.739 0.288 0.105 24875 0.729 4.907 4.924
Shafter NN-4 2.089 0.158 —0.060 10.702 0.865 3.252 3.256

El Cajon RF 0.972 0.064 —0.028 2.929  0.968 1.683 1.683
Donovan  RF 2.010 0.216 0.031 15.113  0.830 3.794  3.797
Shafter RF 1.028 0.078 —0.041 3.822  0.951 1.943 1.943
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Table C6. Level 1 test results for NO,.

Train site  Test site Method MAE CvMAE MBE MSE R? cRMSE RMSE

El Cajon  Donovan MLR 7.994 0.841 —4.447 119.171 —0.304 8.782  10.639
El Cajon  Shafter MLR 7.495 0565 —1.816 103.831 —0.303 8.871 9.990
Donovan  El Cajon MLR 6.383 0.436 1.998 69.142 0.179 6.801 8.203
Donovan  Shafter MLR 8.860 0.676 0.639 132.238 —0.711 8.201 11.351
Shafter El Cajon MLR 7.472 0.504 1.940 115789 —0.303 9.532  10.366
Shafter Donovan MLR 8.553 0.856 0.904 143.748 —0.309  10.080 11.542
El Cajon  Donovan NN-2 6.552 0.688 —1.875 98.026  —0.063 8.628 9.641
El Cajon  Shafter NN-2 5.367 0.405 —0.491 52.894 0.334 7.077 7.189
Donovan  El Cajon  NN-2 9.960 0.649 2435 282631 -—1.896 13.732 14.872
Donovan  Shafter NN-2 8.567 0.662 2.822 173.652 —1.359 10.145 11.805
Shafter El Cajon  NN-2 9.623 0.642 3.077 269.781 —2.158 13.186  14.291
Shafter Donovan  NN-2 9.446 0.918 2953 250.758 —1.049  11.432 13.326
El Cajon  Donovan NN-4 6.164 0.632 —1.301 83.675 0.163 8.663 9.103
El Cajon  Shafter NN-4 5.771 0.436 —0.298 58.188 0.266 7473 7.601
Donovan  El Cajon NN-4 7.702 0.500 —0.698 132.834 —0.385 10.342  10.622
Donovan  Shafter NN-4 7.947 0.614 1.850 148.190 —0.995 10.032  10.690
Shafter El Cajon NN-4 8.609 0.563 —0.022 156.109 —0.689 11.210  11.768
Shafter Donovan  NN-4 8.358 0.827 —0.362 176.864 —0.769  12.024 12.658

El Cajon  Donovan RF 5.813 0.598 —1.477 72.216 0.291 8.005 8.414
El Cajon  Shafter RF 5.560 0420 —0.604 50.668 0.364 6.887 7.065
Donovan  ElCajon RF 5.904 0.384 —1.458 61.572 0.346 7.186 7.597
Donovan  Shafter RF 6.579 0.505 —1.846 79.515 —0.048 7.700 8.645
Shafter El Cajon RF 7.182 0487 —0.148 198.620 —1.665 10.882 11.411
Shafter Donovan RF 7.220 0.725 —1.549 153445 —0.642 11.112  11.635

Table C7. Level 1 train results for O3 (train and test on the same data set).

Train site  Method MAE CvMAE MBE MSE R?> C¢RMSE RMSE

El Cajon  MLR 6.038 0.245 0.040 61.471 0.822 7.744  7.744
Donovan MLR 6.931 0.195 —0.255 85.324 0.604 9.116  9.124
Shafter MLR 5.877 0.240 0.020 63379 0.842 7.857 7.858
El Cajon  NN-2 2919 0.115 —=0.133  17.626  0.950 4.113 4.118
Donovan  NN-2 4.516 0.126  —0.488 40.687 0.802 6.193 6.253
Shafter NN-2 3.568 0.145 0.020 26.052 0.937 4.999 5.011
El Cajon  NN-4 1.903 0.075 —0.068 9.252 0974 2.966 2.974
Donovan  NN-4 3.830 0.107 —0.330 33.794 0.825 5.399 5.456
Shafter NN-4 2.672 0.109 —0.012 17.052 0.959 4.050  4.052

El Cajon  RF 1.217 0.049 0.015 3.987 0.988 1.987 1.987
Donovan  RF 2.723 0.076 —0.103 19.179 0.897 3.931 3.934
Shafter RF 1.284 0.054 0.024 4.651 0.988 2.155 2.155
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Table C8. Level 1 test results for O3.

Train site  Test site ~ Method MAE CvMAE MBE MSE R? ¢RMSE RMSE
El Cajon  Donovan MLR 11.383 0.319 8.605 227.071 —-0.176 10.340  14.065
El Cajon  Shafter MLR 9.812 0.415 5474  182.938 0.509 11.107  12.920
Donovan  El Cajon MLR 8.384 0.327 0.173  118.977 0.671 10.163  10.488
Donovan  Shafter MLR 13.931 0.614 4.485 304.950 0.096 11.566  16.753
Shafter El Cajon MLR 9.819 0.400 —0.489 187.609 0.448 12.064  13.055
Shafter Donovan MLR 13.205 0.373 6.385 321.685 —0.639 13.259 16.624
El Cajon  Donovan NN-2 10.910 0.305 4597 231.519 —0.184 13.095 14476
El Cajon  Shafter NN-2 8.799 0.358 0.850 138.822 0.659 11.204 11.562
Donovan  El Cajon  NN-2 11.993 0.492 —5.201 300.587 0.088 14.488 15.944
Donovan  Shafter NN-2 12.644 0.547 —4.902  276.752 0.186 14.168 15.888
Shafter El Cajon  NN-2 14.346 0.630 —7.165 565238 —0.780 17.245 19.883
Shafter Donovan  NN-2 16.290 0.447 0.309 533943 —1.188 15.973  20.250
El Cajon  Donovan NN-4 11.144 0.311 5.321 233599 —0.182 13.149  14.506
El Cajon  Shafter NN-4 9.151 0.376 1.102  148.600 0.623 11.621  12.024
Donovan  El Cajon NN-4 12.290 0.506 —5.953 294927 0.099 14.143  16.031
Donovan  Shafter NN-4 17.186 0.773  —10.780 597.851 —0.945 17.224  21.627
Shafter El Cajon NN-4 11.177 0.480 —3.281 271.195 0.156 14.606 15313
Shafter Donovan  NN-4 13.084 0.372 3.730 325.781 —0.556 15.852  17.251
El Cajon  Donovan RF 10.679 0.302 6.487  189.558 0.051 11.079  13.496
El Cajon  Shafter RF 9.739 0.401 1.367 157403 0.601 11.999 12.406
Donovan  El Cajon RF 11.458 0.469 —4.232  206.904 0.381 12.335  13.735
Donovan  Shafter RF 14.236 0.608 —4.891  300.792 0.165 14.834  17.082
Shafter El Cajon RF 8.610 0.364 —1.488 120.284 0.640 10.315  10.841
Shafter Donovan RF 11.045 0.311 6.332  182.582 0.156 11.390 13.459
Table C9. Level 2 train results for NO» (train and test on the same data set).

Train sites Method MAE CvMAE MBE MSE R? C¢RMSE RMSE

Donovan, Shafter MLR 5.277 0.416 0.046 56.139 0.400 7.429 7.429

Donovan, El Cajon MLR 4.480 0.326 0.042 44.649 0.585 6.559 6.559

El Cajon, Shafter MLR 4.829 0.332 0.021 43.007 0.514 6.531 6.531

Donovan, Shafter NN-2 2.935 0.231 0.212  23.237 0.755 4.755 4.765

Donovan, El Cajon  NN-2 2.629 0.192 0.178 19.636  0.820 4.327 4.338

El Cajon, Shafter NN-2 2.665 0.183 —0.014 15.152 0.829 3.871 3.877

Donovan, Shafter NN-4 2.026 0.159 0.079 12.776  0.865 3.531 3.537

Donovan, El Cajon  NN-4 1.763 0.129 0.077 10.645 0.901 3.192 3.195

El Cajon, Shafter NN-4 1.823 0.126 0.070 8.225  0.906 2.857 2.860

Donovan, Shafter RF 1.284 0.101 —0.044 7.900 0918 2.741 2.743

Donovan, El Cajon  RF 1.154 0.084 —0.030 6.068  0.945 2.370 2.371

El Cajon, Shafter RF 1.102 0.076  —0.039 4.081 0.954 2.017 2.017
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Table C10. Level 2 test results for NO;.

Train sites Test site Method MAE CvMAE MBE MSE R? CcRMSE RMSE

Donovan, Shafter El Cajon  MLR 5.880 0.408 1.644  65.552 0.202 7514 7.901
Donovan, El Cajon  Shafter MLR 7.243 0.547 =2.411 90.821 —0.153 8.164 9.373
El Cajon, Shafter Donovan MLR 7.312 0.759 —2.242 101.530 —0.043 8.570 9.915
Donovan, Shafter El Cajon  NN-2 7.881 0513 —1.165 243984 —1.583 11.727  12.331
Donovan, El Cajon  Shafter NN-2 5.013 0.380 0434  47.193 0.402 6.699 6.829
El Cajon, Shafter Donovan  NN-2 5.786 0.592 —0.804 77.869 0.242 8.167 8.693
Donovan, Shafter El Cajon NN-4 8.579 0.554 —1.420 281.996 —1.869 12.447 12951
Donovan, El Cajon  Shafter NN-4 5.864 0.445 0.069  62.582 0.203 7.721 7.883
El Cajon, Shafter Donovan  NN-4 5.991 0.606 —0.629  92.061 0.068 9.122  9.332

Donovan, Shafter El Cajon RF 5.510 0.376  —0.670 61.713 0.255 7.271 7.561
Donovan, El Cajon  Shafter RF 5312 0402 —0.096  47.764 0.396 6.733 6.863
El Cajon, Shafter Donovan RF 5.533 0.567 —0.883 74.962 0.255 8.271 8.562

Table C11. Level 2 train results for O3 (train and test on the same data set).

Train sites Method MAE CvMAE MBE MSE RZ ¢RMSE RMSE

Donovan, Shafter MLR 6.396 0.249 —0.034 73.967 0.785 8.493 8.494
Donovan, El Cajon MLR 6.702 0.227 0.005 75.618 0.788 8.640 8.640
El Cajon, Shafter MLR 6.312 0.271 0.006 71.620 0.811 8.385 8.385
Donovan, Shafter NN-2 3.857 0.150 —0.050 30.588 0.911 5.487 5.493
Donovan, El Cajon  NN-2 3.721 0.127 0.169 28.691 0.919 5.332 5.344
El Cajon, Shafter NN-2 3.508 0.150 0.082 25.892 0.934 5.041 5.048
Donovan, Shafter NN-4 2.447 0.096 0.046 14.251 0.959 3.763 3.765
Donovan, El Cajon  NN-4 2.355 0.080 0.116 13973 0.961 3.716 3.721
El Cajon, Shafter NN-4 2.210 0.094 0.104 11.863 0.969 3.408 3412

Donovan, Shafter RF 1.499 0.059 0.069 6.184  0.982 2480 2482
Donovan, El Cajon  RF 1.466 0.050 0.041 5.897 0.984 2.421 2422
El Cajon, Shafter RF 1.325 0.057 0.023 4921 0.987 2.216 2.216

Table C12. Level 2 test results for O3.

Train sites Test site Method MAE CvMAE MBE MSE R? CcRMSE RMSE

Donovan, Shafter El Cajon MLR 8.981 0362 —1.747 136.139 0.607 10.070  11.263
Donovan, El Cajon  Shafter MLR 10.436 0.447 6.596 195.691 0.452  10.844 13.384
El Cajon, Shafter Donovan MLR 11.842 0.332 8.646 234924 —0.168 10.887  14.470
Donovan, Shafter El Cajon  NN-2 8.585 0353 —0.863 142215 0.581 10.743  11.402
Donovan, El Cajon  Shafter NN-2 8.227 0338 —0.202  120.049 0.694 10390 10.844
El Cajon, Shafter Donovan  NN-2 9.896 0.278 5.069 180.978 0.103 11.353  12.892
Donovan, Shafter El Cajon NN-4 9.708 0391 —1.786 187.381 0466  12.179 12.983
Donovan, El Cajon  Shafter NN-4 9.019 0374 —0.536 139.776 0.638 11.293  11.721
El Cajon, Shafter Donovan  NN-4 9.802 0.274 4.557 159.778 0.249 11.398  12.544

Donovan, Shafter El Cajon RF 7.892 0327 —1.715 100.997 0.702 9.286  9.875
Donovan, El Cajon  Shafter RF 9.568 0.397 0.597  150.607 0.613 11.533  12.148
El Cajon, Shafter Donovan RF 9.133 0.259 4.811 135414 0.351 9.986 11.571
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Table C13. Level 3 train results for NO, (train and test on the same data set).

Train sites Method MAE CvMAE MBE MSE R?> CcRMSE RMSE

Donovan, El Cajon, Shafter ~MLR 5.505 0.478 —0.585 66.057 0.257 7.474 7.805
Donovan, El Cajon, Shafter =~ NN-2 3.205 0.276 0.024  26.908 0.711 4.929 4.967
Donovan, El Cajon, Shafter =~ NN-4 1.916 0.164 0.006 10.234 0.883 3.083 3.095
Donovan, El Cajon, Shafter ~RF 0.971 0.090 —0.102 3.344  0.961 1.628 1.648

Table C14. Level 3 test results for NO5.

Train sites Test site Method MAE CvMAE MBE MSE R? CcRMSE RMSE

Donovan, El Cajon, Shafter ~ El Cajon MLR 4.458 0.296 0.560 37.307 0.585 6.001 6.060
Donovan, El Cajon, Shafter ~Donovan MLR 6.819 0.707 —=2.001 91429 0.074 8.431 9.428
Donovan, El Cajon, Shafter ~ Shafter MLR 5.156 0.390 —0.060 48.853 0.381 6.928 6.961
Donovan, El Cajon, Shafter  El Cajon  NN-2 2.595 0.175 —0.063 13.555 0.845 3.655 3.669
Donovan, El Cajon, Shafter ~Donovan  NN-2 4.108 0.420 0.050 47.008 0.556 6.660 6.765
Donovan, El Cajon, Shafter ~ Shafter NN-2 3.064 0.231 0.120 20.686 0.742 4.473 4.486
Donovan, El Cajon, Shafter ~ El Cajon = NN-4 1.837 0.123  —0.041 7.837 00912 2.772 2.782
Donovan, El Cajon, Shafter ~Donovan NN-4 3.167 0.335 —0.075 38.583 0.542 5.784 5.812
Donovan, El Cajon, Shafter ~ Shafter NN-4 2.108 0.159 0.016 10.459 0.868 3.220 3.225

Donovan, El Cajon, Shafter ~ El Cajon  RF 1.079 0.072  —-0.039 3.634  0.959 1.885 1.886
Donovan, El Cajon, Shafter ~Donovan RF 2.583 0.277 —-0.302 20.818 0.768 4.453 4.495
Donovan, El Cajon, Shafter ~ Shafter RF 1.358 0.103  —0.035 5.324  0.933 2.281 2.287

Table C15. Level 3 train results for O3 (train and test on the same data set).

Train sites Method MAE CvMAE MBE MSE RZ CcRMSE RMSE

Donovan, El Cajon, Shafter ~MLR 7.893 0.277 1474 117.623  0.509 9.553 10.226
Donovan, El Cajon, Shafter ~ NN-2 4.547 0.157 0.426 43.025 0.834 6.216 6.309
Donovan, El Cajon, Shafter ~ NN-4 2.509 0.088 0.174 14705  0.938 3.611 3.660
Donovan, El Cajon, Shafter ~RF 1.379 0.044  0.308 5.251 0.976 1.865 1.936

Table C16. Level 3 test results for O3.

Train sites Test site Method MAE CvMAE MBE MSE R? CcRMSE RMSE

Donovan, El Cajon, Shafter ~El Cajon MLR 6.859 0.278 —0.920 81.607 0.764 8.628 8.865
Donovan, El Cajon, Shafter ~ Donovan MLR 9.870 0.276 5.047 169.555 0.141 10.236  12.282
Donovan, El Cajon, Shafter ~ Shafter MLR 6.727 0.275 0.400 82.576  0.796 8.831 8.891
Donovan, El Cajon, Shafter ~El Cajon = NN-2 3.732 0.148 —0.018 28.075 0.920 5.208 5.224
Donovan, El Cajon, Shafter ~Donovan  NN-2 5.826 0.162 1.373 65.155 0.690 7.610 7.934
Donovan, El Cajon, Shafter ~ Shafter NN-2 4.210 0.168 —0.039 36.454 0914 5.843 5.855
Donovan, El Cajon, Shafter El Cajon  NN-4 2.375 0.095 —0.069 13.066 0.963 3.552 3.572
Donovan, El Cajon, Shafter =~ Donovan NN-4 4.541 0.126 1.132 46.867 0.757 6.182 6.402
Donovan, El Cajon, Shafter ~ Shafter NN-4 2.669 0.109 —-0.106 15932  0.961 3.937 3.945

Donovan, El Cajon, Shafter El Cajon RF 1.391 0.056 0.019 5.064 0.985 2.233 2.234
Donovan, El Cajon, Shafter Donovan RF 3.504 0.096 1.142 28.621 0.849 4.594 4.837
Donovan, El Cajon, Shafter ~ Shafter RF 1.853 0.072 0.105 8.391 0.980 2.775 2.783
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Appendix D: Raw results for the split neural network
models

The following tables are error results for the split-NN models
of size 3 and size 9. The error measures are labeled as MAE
for mean absolute error, CvMAE for coefficient of varia-
tion of the mean absolute error, MBE for mean bias error,
MSE for mean standard error, R? for the coefficient of deter-
mination, cRMSE for centered root mean square error, and
RMSE for root mean squared error. The results are disaggre-
gated by train and test sites and averaged across the sensor
packages. However, because these are split models, both the
global model and the board-specific models are trained on
all the sites. However, the trained board was not placed at the
test site during training.

Table D1. Test results for split-NN Level 1, size 3 (NO»).

[\S)

Train site  Test site MAE CvMAE MBE MSE R cRMSE RMSE

El Cajon  Donovan 5.838 0.601 —0.775 90.006 0.054 8.787 9.123
El Cajon  Shafter 5.246 0.397 0.284 51.872 0.345 6.909 7.142
Donovan  El Cajon  7.177 0.484 —0.676 118.001 —0.311 9916 10.295
Donovan  Shafter 6.515 0.497 0.941 87.773 —0.143 8.652 9.130
Shafter El Cajon 7.544 0.484 0.452 183.866 —0.923 10.592  11.094
Shafter Donovan  7.516 0.736  —0.530 155.259 —0.307 10.295 11.056

Table D2. Test results for split-NN Level 1, size 9 (NO»).

Train site  Test site MAE CvMAE MBE MSE R?> CcRMSE RMSE

El Cajon  Donovan 5.713 0.590 —1.012 78.898 0.206 8.326 8.800
El Cajon  Shafter 5.011 0.379 0.007 48.441 0.390 6.726 6.896
Donovan  El Cajon  6.426 0.436 0.016 88.722  —0.018 8.797 9.180
Donovan  Shafter 6.272 0478 —0.493 78.929 —0.028 8.441 8.760
Shafter El Cajon  6.333 0.410 0.961 77.864 0.168 7.881 8.569
Shafter Donovan  6.924 0.681 —1.288 110.268 0.039 9.319 10.083

Table D3. Test results for split-NN Level 1, size 3 (O3).

Train site  Test site MAE CvMAE MBE MSE R? C¢RMSE RMSE

El Cajon  Donovan  10.278 0.287 4704 188.996 0.060 11.801  13.266
El Cajon  Shafter 8.280 0.336 0.862 125.486 0.692 10.668  10.982
Donovan  El Cajon  10.706 0420 —-3.206 225.276 0.355 13.079 14.170
Donovan  Shafter 11.369 0486 —3.829 230.534 0.351 13.619  14.783
Shafter El Cajon  10.857 0480 —3.101 380.840 —0.227 14.472  15.351
Shafter Donovan  12.195 0.343 4319 302.175 —0.297 14332 15918
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Train site  Testsite ~ MAE CvMAE MBE MSE R? CcRMSE RMSE
El Cajon  Donovan 10.414 0.291 6.012 187.446 0.057 10945 13.250
El Cajon  Shafter 8.234 0.335 1.909  123.068 0.696 10482 10.872
Donovan  El Cajon  10.244 0.394 —2.838 192.420 0.459 12.167 13.186
Donovan  Shafter 9.980 0416 —-0.463 177.129 0.534 12.147  13.237
Shafter El Cajon  9.709 0423 —2.282 211.003 0.344 12.567 13.295
Shafter Donovan  11.240 0.317 5503 216.113 —0.003 12.947  14.428
Table DS. Test results for split-NN Level 2, size 3 (NO»).
Train sites Testsite MAE CvMAE MBE MSE R? RMSE RMSE
Donovan, Shafter El Cajon 5.915 0.392 —1.035 91.805 —0.013 8.458 8.739
Donovan, El Cajon  Shafter 4.884 0.370 0.576  46.812 0.406 6.558 6.793
El Cajon, Shafter Donovan  5.362 0.543 —0.373 73.628 0.302 8.108 8.411
Table D6. Test results for split-NN Level 2, size 9 (NO»).
Train sites Test site MAE CvMAE MBE MSE R? CcRMSE RMSE
Donovan, Shafter El Cajon 4.923 0.337 —0.648 48985 0.424 6.500  6.795
Donovan, El Cajon  Shafter 4.749 0.360 0.676  43.165 0.453 6.221 6.497
El Cajon, Shafter Donovan  5.301 0.538 —0.330 69.482 0.352 7.881 8.198
Table D7. Test results for split-NN Level 2, size 3 (O3).
Train sites Testsitte MAE CvMAE MBE MSE R? CcRMSE RMSE
Donovan, Shafter El Cajon  8.285 0336 —1.515 139473 0.596 10.573  11.204
Donovan, El Cajon  Shafter 8.079 0.331 —0.189 115.897 0.708 10.153  10.577
El Cajon, Shafter Donovan  9.356 0.262 4.033 155.842  0.250 11.020 12.172
Table D8. Test results for split-NN Level 2, size 9 (O3).
Train sites Testsite MAE CvMAE MBE MSE R? cRMSE RMSE
Donovan, Shafter El Cajon 7.434 0297 —0910 105.619 0.695 9.443 9.977
Donovan, El Cajon  Shafter 7.819 0.320 0.372  110.537 0.723 9.774 10.314
El Cajon, Shafter Donovan  9.022 0.253 4.190 141.869 0.313 10427 11.654
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