
Atmos. Meas. Tech., 12, 4211–4239, 2019

https://doi.org/10.5194/amt-12-4211-2019

© Author(s) 2019. This work is distributed under

the Creative Commons Attribution 4.0 License.

Evaluating and improving the reliability of gas-phase sensor system
calibrations across new locations for ambient measurements and
personal exposure monitoring
Sharad Vikram1, Ashley Collier-Oxandale2, Michael H. Ostertag1, Massimiliano Menarini1, Camron Chermak1,
Sanjoy Dasgupta1, Tajana Rosing1, Michael Hannigan2, and William G. Griswold1

1Department of Computer Science and Engineering, University of California, San Diego, California, USA
2Environmental Engineering Program, University of Colorado, Boulder, Colorado, USA

Correspondence: William B. Griswold (wgg@cs.ucsd.edu)

Received: 23 January 2019 – Discussion started: 12 February 2019

Revised: 18 May 2019 – Accepted: 29 May 2019 – Published: 6 August 2019

Abstract. Advances in ambient environmental monitoring

technologies are enabling concerned communities and citi-

zens to collect data to better understand their local environ-

ment and potential exposures. These mobile, low-cost tools

make it possible to collect data with increased temporal and

spatial resolution, providing data on a large scale with un-

precedented levels of detail. This type of data has the po-

tential to empower people to make personal decisions about

their exposure and support the development of local strate-

gies for reducing pollution and improving health outcomes.

However, calibration of these low-cost instruments has

been a challenge. Often, a sensor package is calibrated via

field calibration. This involves colocating the sensor package

with a high-quality reference instrument for an extended pe-

riod and then applying machine learning or other model fit-

ting technique such as multiple linear regression to develop

a calibration model for converting raw sensor signals to pol-

lutant concentrations. Although this method helps to correct

for the effects of ambient conditions (e.g., temperature) and

cross sensitivities with nontarget pollutants, there is a grow-

ing body of evidence that calibration models can overfit to

a given location or set of environmental conditions on ac-

count of the incidental correlation between pollutant levels

and environmental conditions, including diurnal cycles. As

a result, a sensor package trained at a field site may provide

less reliable data when moved, or transferred, to a different

location. This is a potential concern for applications seek-

ing to perform monitoring away from regulatory monitoring

sites, such as personal mobile monitoring or high-resolution

monitoring of a neighborhood.

We performed experiments confirming that transferability

is indeed a problem and show that it can be improved by

collecting data from multiple regulatory sites and building

a calibration model that leverages data from a more diverse

data set. We deployed three sensor packages to each of three

sites with reference monitors (nine packages total) and then

rotated the sensor packages through the sites over time. Two

sites were in San Diego, CA, with a third outside of Bakers-

field, CA, offering varying environmental conditions, general

air quality composition, and pollutant concentrations.

When compared to prior single-site calibration, the multi-

site approach exhibits better model transferability for a range

of modeling approaches. Our experiments also reveal that

random forest is especially prone to overfitting and con-

firm prior results that transfer is a significant source of both

bias and standard error. Linear regression, on the other hand,

although it exhibits relatively high error, does not degrade

much in transfer. Bias dominated in our experiments, sug-

gesting that transferability might be easily increased by de-

tecting and correcting for bias.

Also, given that many monitoring applications involve the

deployment of many sensor packages based on the same

sensing technology, there is an opportunity to leverage the

availability of multiple sensors at multiple sites during cali-

bration to lower the cost of training and better tolerate trans-

fer. We contribute a new neural network architecture model

termed split-NN that splits the model into two stages, in

which the first stage corrects for sensor-to-sensor variation

and the second stage uses the combined data of all the sensors

to build a model for a single sensor package. The split-NN
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modeling approach outperforms multiple linear regression,

traditional two- and four-layer neural networks, and random

forest models. Depending on the training configuration, com-

pared to random forest the split-NN method reduced error

0 %–11 % for NO2 and 6 %–13 % for O3.

1 Introduction

As the use of low-cost sensor systems for citizen science and

community-based research expands, improving the robust-

ness of calibration for low-cost sensors will support these

efforts by ensuring more reliable data and enabling a more

effective use of the often-limited resources of these groups.

These next-generation technologies have the potential to re-

duce the cost of air quality monitoring instruments by or-

ders of magnitude, enabling the collection of data at higher

spatial and temporal resolution, providing new options for

both personal exposure monitoring and communities con-

cerned about their air quality (Snyder et al., 2013). High-

resolution data collection is important because air quality

can vary on small temporal and spatial scales (Monn et al.,

1997; Wheeler et al., 2008). This variability can make it dif-

ficult to estimate exposure or understand the impact of local

sources using data from existing monitoring networks (Wil-

son et al., 2005), which provide information at a more re-

gional scale. Furthermore, studies have highlighted instances

where air quality guidelines have been exceeded on small

spatial scales, in so-called “hot spots” (Wu et al., 2012). This

may be of particular concern for environmental justice com-

munities, where residents are unknowingly exposed to higher

concentrations of pollutants due to a lack of proximity to lo-

cal monitoring stations. One group using low-cost sensors

to provide more detailed and locally specific air quality in-

formation is the Imperial County Community Air Monitor-

ing Network (English et al., 2017). The goal of this network

of particulate monitors is to help inform local action (e.g.,

keeping kids with asthma inside) or open the door to con-

versations with regulators (English et al., 2017). In another

example, researchers are investigating the potential for wear-

able monitors to improve personal exposure estimates (Jerrett

et al., 2017).

The increasing use of low-cost sensors is driving a grow-

ing concern regarding data quality (Clements et al., 2017).

Low-cost sensors, particularly those designed to detect gas-

phase pollutants, are often cross sensitive to changing envi-

ronmental conditions (e.g., temperature, humidity, and baro-

metric pressure) and other pollutant species. Much work has

gone into exploring calibration methods, models, and tech-

niques that incorporate corrections for these cross sensitivi-

ties to make accurate measurements in complex ambient en-

vironments (Spinelle et al., 2014, 2015b, 2017; Cross et al.,

2017; Sadighi et al., 2018; Zimmerman et al., 2018). While

the methods of building (or training) calibration models dif-

fer, these studies have all utilized colocations with high-

quality reference instruments in the field – instruments such

as Federal Reference Method or Federal Equivalent Method

monitors (FRM/FEM) (Spinelle et al., 2014, 2015b, 2017;

Cross et al., 2017; Sadighi et al., 2018; Zimmerman et al.,

2018). These colocated data allow accurate calibration mod-

els to be built for the conditions that the sensors will experi-

ence in the field (e.g., diurnal environmental trends and back-

ground pollutants). A recurring observation has been that lab-

oratory calibrations, while valuable for characterizing a sen-

sor’s abilities, perform poorly compared to field calibrations,

likely due to an inability to replicate complex conditions in a

chamber (Piedrahita et al., 2014; Castell et al., 2017).

Recently, researchers have begun to explore calibrating

sensors in one location and testing them in another, called

transfer. Often, a decrease in performance is seen in new lo-

cations where conditions are likely to differ from the condi-

tions of calibration. In one study, researchers testing a field

calibration for electrochemical SO2 sensors from one loca-

tion in Hawaii and at another location also in Hawaii found

a small drop in correlation between the reference and con-

verted sensor data (Hagan et al., 2018). This was attributed

to the testing location being a generally less polluted envi-

ronment (Hagan et al., 2018). In a study that involved cali-

bration techniques for low-cost metal oxide O3 sensors and

nondispersive infrared CO2 sensors in different environments

(e.g., typical urban vs. a rural area impacted by oil and gas

activity), researchers found that simpler calibration models

(i.e., linear models), although generally lower in accuracy,

performed more consistently (i.e., transferred better) when

faced with significant extrapolations in time or typical pollu-

tant levels and sources (Casey and Hannigan, 2018). In con-

trast, more complex models (i.e., artificial neural networks)

only transferred well when there was little extrapolation in

time or pollutant sources. A study utilizing electrochemi-

cal CO, NO, NO2, and O3 sensors found that performance

varied spatially and temporally according to changing atmo-

spheric composition and meteorological conditions (Castell

et al., 2017). This team also found calibration model parame-

ters differed based on where exactly a single sensor node was

colocated (i.e., a site on a busy street versus a calm street),

supporting the idea that these models are being specialized

to the environment where training occurred (Castell et al.,

2017). In a recent study targeting this particular issue with

low-cost sensors, electrochemical NO and NO2 sensors were

calibrated at a rural site using a multivariate linear regres-

sion model, support vector regression models, and a random

forest regression model. The performance of these models

was then examined at two urban sites (one background urban

site and one near-traffic urban site). For both sensor types,

random forests were found to be the best-performing mod-

els, resulting in mean average errors between 2 and 4 parts

per billion (ppb) and relatively useful information in the new

locations (Bigi et al., 2018). One important note from the au-

thors is that both sensor signals were included in the models
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for NO and NO2 respectively, potentially helping to mitigate

cross-interference effects (Bigi et al., 2018). In another re-

cent study, researchers also compared several different cali-

bration model types, as well as the use of individualized ver-

sus generalized models and how model performance is af-

fected when sensors are deployed to a new location (Malings

et al., 2019). An individualized model is a model for a sen-

sor based on its own data, whereas a generalized model com-

bines the data from all the sensors of the same type being cal-

ibrated. The researchers found that the best-performing and

most robust model types varied by sensor type; for example,

simpler regression models performed best for electrochemi-

cal CO sensors, whereas more complicated models, such as

artificial neural networks and random forest models, resulted

in the best performance for NO2. Despite the varied results,

in terms of the best-performing model types, the researchers

observed that across the different sensor types tested, gen-

eralized models resulted in more consistent performance at

new sites than individualized models despite having slightly

poorer performance during the initial calibration (Malings

et al., 2019). If this observation holds across sensor types

and the use in other locations, it could help solve the prob-

lem of scaling up sensor networks, allowing for much larger

deployments.

The mixed results and varying experimental conditions

of these studies highlight the need for a more comprehen-

sive understanding of how and why calibration performance

degrades when sensors are moved. A better understanding

could inform potential strategies to mitigate these effects. As

recent research has successfully applied advanced machine

learning techniques to improve sensor calibration models

(Zimmerman et al., 2018; De Vito et al., 2009; Casey et al.,

2018), we believe these techniques could also be leveraged in

innovative ways to improve the transferability of calibration

models.

This paper contributes an extensive transferability study

as well as new techniques for data collection and model

construction to improve transferability. We hypothesize that

transferability is an important issue for sensors that exhibit

cross sensitivities. Based on the hypothesis that the increased

errors under transfer are due to overfitting, we propose that

training a calibration model on multiple sites will improve

transfer. Finally, we propose that transfer can be further im-

proved with a new modeling method, split-NN, that can use

the data from multiple sensor packages trained at multiple

sites to train a two-stage model with a global component that

incorporates information from several different sensors and

locations and a sensor-specific model that transforms an in-

dividual sensor’s measurements to a form that can be input

to the global model

As many previous studies studied colocation with refer-

ence measurements in one location and a validation at a sec-

ond location, we designed a deployment that included trip-

licates of sensor packages colocated at three different refer-

ence monitoring stations and then rotated through the three

sites – two near the city of San Diego, CA, and one in a

rural area outside of Bakersfield, CA. This allows for fur-

ther isolating the variable of a new deployment location.

The analysis focuses on data from electrochemical O3 and

NO2 sensors, although other sensor types were deployed

and used in the calibration, analogous to Bigi et al. (2018).

These pollutants are often of interest to individuals and

communities given the dangers associated with ozone ex-

posure (Brunekreef and Holgate, 2002) and nitrogen diox-

ide’s role in ozone formation. In studying these pollutants,

we are adding to the existing literature by examining the

transferability issue in relation to electrochemical O3 and

NO2 sensors, which are known to exhibit cross-sensitive ef-

fects (Spinelle et al., 2015a). We compare the transferabil-

ity of multiple linear regression models, neural networks,

and random forest models. Based on these results, we intro-

duce a new training method that trains all the sensors us-

ing a split neural network that consists of a global model

and sensor-specific models that account for the differing be-

haviors among the individual sensors. Sharing data holds the

promise to lower training costs while at the same time low-

ering prediction error.

2 Methods

2.1 The MetaSense system

2.1.1 Hardware platform

A low-cost air quality sensing platform was developed to

interface with commercially available sensors, initially de-

scribed in Chan et al. (2017). The platform was designed

to be mobile, modular, and extensible, enabling end users to

configure the platform with sensors suited to their monitoring

needs. It interfaces with the Particle Photon or Particle Elec-

tron platforms, which contain a 24 MHz ARM Cortex M3

microprocessor and a Wi-Fi or 3G cellular module, respec-

tively. In addition, a Bluetooth Low Energy (BLE) module

supports energy-efficient communication with smartphones

and other hubs with BLE connectivity. The platform can in-

terface with any sensor that communicates using standard

communication protocols (i.e., analog, I2C, SPI, UART) and

supports an input voltage of 3.3 or 5.0 V. The platform can

communicate results to nearby devices using BLE or directly

to the cloud using Wi-Fi or 2G/3G cellular, depending on re-

quirements. USB is also provided for purposes of debugging,

charging, and flashing the firmware. The firmware can also

be flashed or configured remotely if a wireless connection

is available. An SD card slot provides the option for storing

measurements locally, allowing for completely disconnected

and low-power operation.

Our configuration utilized electrochemical sensors for tra-

ditional air quality indicators (NO2, CO, O3), nondisper-

sive infrared sensors for CO2, photoionization detectors for
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Figure 1. Labeled MetaSense Air Quality Sensing Platform. (a) Modular, extensible platform in standard configuration with NO2, O3, and

CO electrochemical sensors. (b) Additional modules that can be added to the board for additional measurement capabilities.

volatile organic compounds (VOCs), and a variety of envi-

ronmental sensors (temperature, humidity, barometric pres-

sure). The electrochemical sensors (NO2: Alphasense NO2-

A43F, O3: Alphasense O3-A431, and CO: Alphasense CO-

A4) are mounted to a companion analog front end (AFE)

from Alphasense, which assists with voltage regulation and

signal amplification. Each sensing element has two elec-

trodes which give analog outputs for the working electrode

(WE) and auxiliary electrode (AE). The difference in signals

is approximately linear with respect to the ambient target gas

concentration but has dependencies with temperature, hu-

midity, barometric pressure, and cross sensitivities with other

gases. The electrochemical sensors generate an analog output

voltage, which is connected to a pair of analog-to-digital con-

verters (ADCs), specifically the TI ADS1115, and converted

into a digital representation of the measured voltage, which

is later used as inputs for our machine learning models.

Modern low-cost electrochemical sensors offer a low-cost

and low-power method to measure pollutants, but currently

available sensors are more optimized for industrial applica-

tions than air pollution monitoring: the overall sensing range

is too wide and the noise levels are too high. For example,

the Alphasense A4 sensors for NO2, O3, and CO have a mea-

surement range of 20, 20, and 500 ppm, respectively, which is

significantly higher than the unhealthy range proposed by the

United States Air Quality Index. Unhealthy levels for NO2 at

1 h exposure range from 0.36 to 0.65 ppm, O3 at 1 h exposure

from 0.17 to 0.20 ppm, and CO at 8 h exposure from 12.5 to

15.4 ppm (Uniform Air Quality Index (AQI) and Daily Re-

porting, 2015). Along with the high range, the noise levels of

the sensors make it difficult to distinguish whether air quality

is good. Using the analog front end offered by Alphasense,

the noise levels for NO2, O3, and CO have standard devi-

ations of 7.5, 7.5, and 10 ppb, respectively. These standard

deviations are large compared to observed signal levels for

NO2 and O3 measurements, which ranged between 0–35 and

12–60 ppb, respectively, during the 6-month testing period.

The ambient environmental sensors accurately measure

temperature, humidity, and pressure and are important for

correcting the environmentally related offset in electrochem-

ical sensor readings. The TE Connectivity MS5540C is a

barometric pressure sensor capable of measuring across a

10 to 1100 mbar range with 0.1 mbar resolution. Across 0

to 50 ◦C, the sensor is accurate to within 1 mbar and has a

typical drift of ±1 mbar per year. The Sensirion SHT11 is a

relative humidity sensor capable of measuring across the full

range of relative humidity (0 % to 100 % RH) with ±3 % RH

accuracy. Both sensors come equipped with temperature sen-

sors with ±0.8 and ±0.4 ◦C accuracy, respectively. The sen-

sors stabilize to environmental changes in under 30 s, which

is sufficiently fast to accurately capture changes in the local

environment.

In order to improve the robustness of the boards to ambi-

ent conditions, the electronics were conformally coated with

silicone and placed into an enclosure as shown in Fig. 2. The

housing prevents direct contact with the sensors by provid-

ing ports over the electrochemical sensors and a vent near the

ambient environmental sensors. The system relies on passive

diffusion of pollutants into the sensors due to the high power

cost of active ventilation. However, as described in Sect. 2.3,

for this study the housed sensor packages were placed in an

actively ventilated container.

2.1.2 Software infrastructure

We developed two applications for Android smartphones that

leverage the BLE connection of the MetaSense platform. The

first application, the MetaSense Configurator app, enables

users to configure the hardware for particular deployment

scenarios, adjusting aspects such as sensing frequency, power

gating of specific sensors connected, and the communication

networks utilized. The second application, simply called the

MetaSense app, collects data from the sensor via BLE and

uploads all readings to a remote database. Each sensor read-
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Figure 2. An enclosure was 3-D printed for the MetaSense Air Quality Sensing Platform with top-side ports above the electrochemical

sensors and a side port next to the ambient environmental sensors. The sensor is sized to be portable and has velcro straps that can be used to

mount it to backpacks, bicycles, etc.

ing is stamped with time and location information, support-

ing data analysis for mobile use cases. Moreover, users can

read the current air quality information on their device, giv-

ing them immediate and personalized insight into their expo-

sure to pollutants.

The remote measurements database is supported by the

MetaSense cloud application and built on Amazon’s AWS

cloud. Not only can the MetaSense app connect to this cloud,

but the MetaSense boards can be configured to connect di-

rectly to it using Wi-Fi or 3G. The measurement data can

be processed by machine learning algorithms in virtual ma-

chines in AWS, or the data can be downloaded to be analyzed

offline. The aforementioned over-the-air firmware updates

are handled through Particle’s cloud, which also allows re-

motely monitoring, configuring, and resetting boards. These

direct-to-cloud features are key to supporting a long-term,

wide-scale deployment like the one presented in this paper.

2.2 Sampling sites

For this deployment, our team coordinated with two regula-

tory agencies (the San Diego Air Pollution Control District,

SDAPCD; and the San Joaquin Valley Air Pollution Control

District, SJVAPCD) in order to access three regulatory mon-

itoring sites. Sensor packages were then rotated through each

site over the course of approximately 6 months. Each mon-

itoring site included reference instruments for NO2 and O3,

among others. The first site was in El Cajon, CA, located at

an elementary school east of San Diego, CA (El Cajon site).

This site is classified by the SDAPCD as being in the middle

of a major population center, primarily surrounded by resi-

dences (Shina and Canter, 2016); expected influences at this

site include transported emissions from the heavily populated

coastal region to the west as a well as emissions from a major

transportation corridor (Shina and Canter, 2016). The sec-

ond site was approximately 15 mi (24.1 km) to the southeast

of San Diego, located at the entrance to a correctional facil-

ity (Donovan site). This site is not located in a high-density

residential or industrial area and does not have many influ-

ences very near to the site; it is expected to provide air quality

information for the southeast area of the county (Shina and

Canter, 2016). Additionally, this site is approximately 2 mi

(3.2 km) from a border crossing utilized by heavy-duty com-

mercial vehicles – the Otay Mesa Port of Entry. The third

site was located on the roof of a DMV (Department of Mo-

tor Vehicles) in the rural community of Shafter, CA, 250 mi

(402 km) to the north near Bakersfield (Shafter site). The

SJVAPCD lists the following potential sources of air pollu-

tion for this community: rural sources (agricultural and oil

and gas production), mobile (including highways and rail-

roads), and local sources (commercial cooking, gas stations,

and consumer products) (SJVAPCD Website, 2019). Given

the differences in location, land use, and nearby sources we

expect to see differences in both the environmental (i.e., tem-

perature, humidity, and barometric pressure) and pollutant

profiles at each sites. For example, the Shafter site is con-

siderably more inland, where weather would be more domi-

nated by the desert ecosystem rather than the ocean ecosys-

tem as compared to the two San Diego sites. In addition to

being further inland, the Shafter site is rural and has a unique

nearby source (i.e., oil and gas production), which might also

result in a unique pollutant profile and differing composition

of background pollutants when compared to the San Diego

sites. Similarly, given the differences in land use and ex-

pected influences at the two San Diego sites, we may ex-

pect to see different trends in ozone chemistry. For example,

given that the El Cajon site is a highly residential area, while

the Donovan site is near the Otay Mesa border crossing, there

may be more local heavy-duty vehicle emissions at the sec-

ond site. Comparing the historical data from these sites pro-

vides some support for this idea. In the 2016 Network Plan

by the SDAPCD we see that the El Cajon site had a slightly

higher maximum 8 h ozone average than the Donovan site,

at 0.077 and 0.075 ppm respectively, while the Donovan site

had a higher maximum 1 h nitrogen dioxide average than the

El Cajon site, at 0.067 and 0.057 ppm respectively. It is pos-

sible that this difference in peak levels at each site may be

driven by the sources influencing each site, in particular the

nitrogen dioxide levels, which may be tied to heavy-duty ve-

hicle traffic. In terms of the differences between regions, the

San Joaquin Valley has consistently had more days where the
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8 h ozone standard has been exceeded than San Diego County

from 2000 to 2015 (Shina and Canter, 2016; San Joaquin Val-

ley Air Pollution Control District, 2016). In this instance the

higher frequency of ozone elevations in the San Joaquin Val-

ley may be evidence for different climate, meteorology, and

sources driving different ozone trends. This variety of envi-

ronmental and emissions profiles would allow us to mean-

ingfully test for transferability, in particular to assess to what

degree a calibration model trained on one site would overfit

for the other sites.

2.3 Data collection

In ordinary use cases, the air quality sensors would be

mounted to a backpack, bike, or other easily transportable

item as shown in Fig. 2. A calibration algorithm located

either on the sensor or a Bluetooth-compatible smartphone

would convert the raw voltage readings from the sensors and

ambient environmental conditions to a prediction of the cur-

rent pollutant levels in real time. In order to develop these

calibration models, we gathered data from air quality sensors

and colocated regulatory monitoring sites over a 6-month de-

ployment period.

To support a long-term deployment in potentially harsh

conditions where no human operator would be able to mon-

itor the sensors on a regular basis, the sensors were placed

into environmentally robust containers, shown in Fig. 3b.

The container was a dry box, measuring 27.4cm×25.1cm×
12.4cm, that was machined to have two sets of two vents on

opposing walls. Louvers were installed with two 5 V, 50 mm

square axial fans expelling ambient air from one wall and

two louvers allowing air to enter the opposite side. The con-

figuration allowed the robust container to equilibrate with

the local environment for accurate measurement of ambient

pollutants. Each container could hold up to three MetaSense

boards with cases and complementary hardware. Due to the

long timeframe of the deployment, a USB charging hub was

installed into the container to power the fans, the air quality

sensors, and either a BLU Android phone or Wi-Fi cellu-

lar hotspot. The phones and hotspots were used to connect

the sensors to the cloud; therefore, we could remotely mon-

itor the sensors’ status in real time and perform preliminary

data analysis and storage. Each board also had an SD card to

record all measurements locally, increasing the reliability of

data storage. It is important to note that end users of the air

quality sensors would not need to perform this lengthy cali-

bration procedure. End users will either receive precalibrated

devices or can perform calibration by colocating their sensor

with existing, calibrated sensors.

A container holding three MetaSense Air Quality Sensors

was placed at each regulatory site, such that each site had one

container of sensors for simultaneous measurement of condi-

tions at all three regulatory sites. After a period of time, the

containers were rotated to a new site. After three rotations,

each sensor had taken measurements at each site. Table 1 lists

Table 1. Board locations and dates for each round.

Round 1 Round 2 Round 3

9/26/17– 10/19/17– 12/21/17–

10/19/17 12/21/17 3/5/18

Board 17 El Cajon Shafter Donovan

Board 19 El Cajon Shafter Donovan

Board 21 El Cajon Shafter Donovan

Board 11 Shafter Donovan El Cajon

Board 12 Shafter Donovan El Cajon

Board 13 Shafter Donovan El Cajon

Board 15 Donovan El Cajon Shafter

Board 18 Donovan El Cajon Shafter

Board 20 Donovan El Cajon Shafter

the dates for each rotation as well as where each sensor sys-

tem was located for each rotation. The dates are approximate

due to the logistics of gaining access to regulatory field sites

and the distances traveled to deploy sensors. Also of note is

that the deployments were not of equal length. This does not

affect the results reported below because we ran all combina-

tions of training and testing sites, and training set sizes were

normalized to remove the influence of training set size.

The data from the reference monitors was provided by

the cooperating air quality districts in the form of minute-

averaged O3 and NO2 concentrations for the time period that

our sensor packages were deployed. We removed reference

data collected during calibration periods as well as any data

flagged during initial quality assurance/control by the regu-

latory agency who supplied the data. The reference data are

not final ratified data as the timing of our study did not allow

us to wait that long.

2.4 Preprocessing

Prior to using the data set for training the calibration mod-

els, we performed a preprocessing step. First, we program-

matically filtered out data samples that contained anomalous

values that might have occurred due to a temporary sensor

board malfunction (e.g., due to condensation). Specifically,

we searched for temperature and voltage spikes that were

outside the realm of reasonable values (i.e., temperature val-

ues above 60 ◦C or ADC readings above 5 V) and removed

the corresponding measurements. Each removed group of

samples was visually inspected to ensure data were not be-

ing erroneously removed. A total of 422 551 samples were

removed from the 17 948 537 collected samples, 2.4 % of the

total. For the remaining data, a simple average was computed

over each 1 min window so as to match the time resolution

of the data from the reference monitors. If an entire minute

of data is missing due to a crashed sensor or preprocessing,

no minute-averaged value is generated. Although we gath-

ered sensor voltage measurements from both the auxiliary

and working electrodes of the electrochemical sensors, we
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Figure 3. (a) Map and images of deployment locations. The Shafter DMV (red) was located 250 mi (402 km) away from Donovan (blue)

and El Cajon (yellow), which were located in San Diego, CA. (b) Deployment containers’ configuration for the extended deployment. Each

container has active ventilation to keep the internal conditions equivalent to the ambient environment.

used the difference between the two (AE–WE) as the repre-

sentative voltage for each sensor since the auxiliary voltage

is meant to serve as a reference voltage for the working elec-

trode. This treatment is consistent with the methodology of

Zimmerman et al. (2018), and we validated that the perfor-

mance of the calibration models did not differ between tests

with both electrodes and test with the difference as input fea-

tures. As a final step, the resulting minute-averaged readings

were time-matched with the reference data, removing read-

ings that had no corresponding reference reading. The result-

ing data set over the three rounds at the three sites contains

1 100 000 minute-averaged measurements.

Furthermore, after receiving and examining the reference

data we were able to verify our hypothesis in Sect. 2.2 that we

would observe varied environmental and pollutant conditions

among the sites. Again, this hypothesis was based on site

characteristics and data/statistics from reports available from

the respective regulatory agencies. Generally higher ozone

values were reported at Shafter, whereas generally higher

NO2 values were reported at Donovan. Higher humidity val-

ues were reported at the Donovan and El Cajon sites, as com-

pared to Shafter. Some of the lowest temperature values were

reported at Shafter. For more information see the distribution

plots in Appendix A.

2.5 Baseline calibration methods

Sensor calibration is the process of developing and training

models to convert a sensor voltage into a pollutant concen-

tration. We formulate sensor calibration as a regression prob-

lem with input features x and e representing signals from the

electrochemical sensors (O3 voltage, NO2 voltage, CO volt-

age) and environmental factors (temperature, pressure, hu-

midity), respectively, for a total of six features. These fea-

tures are input to a calibration function hθ (x,e) that esti-

mates target values y representing pollutant concentrations

(O3 ppb and NO2 ppb).

In our regression problem, we seek a function such that

hθ (x,e) ≈ y, which we formulate as an optimization where

we minimize a measure of error over a training data set

{xn,en,yn}Nn=1 according to a loss function L(hθ (x,e),y);

i.e.,

θ∗ = argminθ

1

N

N∑

n=1

L(hθ (xn,en),yn). (1)

For most of the modeling techniques we minimize the mean

squared error (MSE), except for random forest where we

minimize the variance, which behaves similar to MSE. Mod-

els trained in this way assume that, at inference time, pre-

dictions are made on data sampled from the training distri-

bution. While this assumption holds true when the air quality

sensors are trained and tested at the same site, the distribution

of pollutants and environmental conditions changes when the

sensors are moved to a new location.

We investigated the performance of three calibration mod-

els: multiple linear regression, neural networks (sometimes

called deep learning), and random forest. These methods
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vary in their ability to accurately model complex behaviors,

otherwise known as capacity, with linear regression having

relatively low capacity and neural nets and random forests

having substantial capacity. The price of high capacity is

the potential to overfit the training distribution, which is a

failure to generalize beyond the training data. Models that

overfit will incur significant error when predicting on out-

of-distribution examples. Overfitting can be mitigated with

regularization and by reducing the model capacity, but this

can only go so far if the testing distribution is substantially

different from the train distribution. All of these methods

have been previously applied to ambient pollutant estimation

by various research groups (Piedrahita et al., 2014; Spinelle

et al., 2015b, 2017; Sadighi et al., 2018; Zimmerman et al.,

2018; Casey and Hannigan, 2018) and are generally com-

mon predictive modeling methods. For neural nets, we inves-

tigated three variants: two layers, four layers, and four layers

with a split architecture, which we motivate and describe in

the next subsection.

Our baseline models were trained using the scikit-learn

Python package, and the model parameters for each baseline

model can be seen below.

1. Linear regression. We assume the functional form

h(x)�wT x + b and fit the parameters in closed form.

We use no regularization or polynomial features.

2. Two-layer neural network. We fit a two-hidden-layer

(200 wide) multilayer perceptron with rectified-linear-

unit activation functions and a final linear layer. We

train this neural network using the Adam optimizer

(β0 = 0.9,β1 = 0.999) and a learning rate of 10−3.

3. Four-layer neural network. Same as the two-layer neu-

ral network, but with four hidden layers of width 200

instead of two.

4. Random forest. We divide our data into five folds and

train a random forest of size 100 on each fold, result-

ing in 500 trees. We aim to reproduce the strategy of

Zimmerman et al. (2018) as closely as possible.

2.6 Split neural network method

Overfitting is a problem for high-capacity models with a

limited distribution in training data, resulting in poor per-

formance when a model is transferred to new locations and

environments. One method to improve model transferability

would be to collect more training data that includes the test

distribution. However, colocating a sensor at multiple differ-

ent regulatory field sites in order to capture a sufficiently

wide distribution is prohibitive in terms of cost and time.

An alternative solution is to deploy a set of sensors based on

the same technology across multiple sites and then pool their

data. However, there can be substantial sensor-to-sensor vari-

ance in performance that would amplify prediction errors.

Recent work in sensor calibration has produced architec-

tures that split model training into global and sensor-specific

training phases, primarily for metal oxide (MOX) gas sensors

produced in an industrial setting. The process involves train-

ing a global or master model on a small subset of devices

over a wide range of environmental conditions. The master

model translates raw sensor readings (i.e., voltage or current

measurements) to a target pollutant. MOX sensors, similar to

electrochemical sensors, are sensitive to ambient conditions,

so a wide range of conditions and combinations are explored

in the master calibration phase. While it can produce very

accurate calibration models, the time and expense of gather-

ing calibration data over a wide range of conditions are pro-

hibitive in the industrial manufacturing process for low-cost

sensors. To overcome this, a limited number of master mod-

els are created, and then an affine transformation is gener-

ated between individual sensors and the master sensors. The

affine transformation effectively transforms the sensors read-

ings of individual sensors to match that of the master, after

which the master calibration model can be used. A variety

of methods have been developed to this end. Zhang et al.

(2011) propose a method to calibrate a MOX sensor for de-

tecting volatile organic compounds using a neural network

to capture the complexity of the master model and an affine

transform and a Kennard–Stone sample selection algorithm

to develop a linear model between individual sensors and the

master sensor. Other research has utilized windowed piece-

wise direct standardization to transform the sensor readings

from a slave sensor to a calibrated master for single gas con-

centrations (Yan and Zhang, 2015) and direct standardization

for a range of gases and concentrations over a longer time-

frame (Fonollosa et al., 2016). While previous efforts utilized

single master sensors, Solórzano et al. (2018) showed that

including multiple master sensors in a calibration model can

improve the robustness of the overall model. Similar find-

ings were reached by Smith et al. (2017) when investigating

sensor drift whereby an ensemble model was generated by

training models for multiple sensors and the prediction was

reported as the cluster median. These two-stage calibrations

have primarily been performed in controlled laboratory set-

tings but not in real-world conditions where ambient condi-

tions and cross sensitivities may impact results. In addition,

these studies train models in a piecewise fashion, training

master and sensor-specific models separately.

We propose end-to-end training of a global and sensor-

specific models. In particular, we propose a training archi-

tecture that consists of two sets of models: a global cali-

bration model that leverages the data from a set of simi-

lar sensors spread across different training environments and

sensor-specific calibration models that detect and correct the

differences between sensors. In the previous subsection, we

associated each board i with a calibration function hθi
(x) and

fit this calibration function with its colocated data. Taking

into consideration a collection of many air quality sensors,

we propose an alternate architecture based on transfer learn-
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Figure 4. Architecture of the split-NN model in deployment (test-

ing). Each air quality sensor has a board-specific model sθi
(x) that

normalizes a given sensor’s output (x) to an intermediate represen-

tation from all sensors (u). The intermediate representation is com-

bined with environmental data (e) and input to the global model cφ .

ing (Goodfellow et al., 2016, p. 535). We propose using a

calibration function split into two distinct steps: first, pollu-

tant sensor voltages and input into a sensor-specific model,

which outputs a fixed dimensional latent vector u; and, sec-

ond, u and environmental data e are input into a global cal-

ibration model, which outputs the concentration of the tar-

get pollutants. The sensor-specific model sθi
(x) is unique for

each individual sensor and parameterized by θi , where i de-

notes the individual sensor number. The global calibration

model cφ([u|e]) is universal for all sensors and parameter-

ized by φ. For a single air quality sensor, our final calibration

function is cφ([sθi
(x)|e]). Figure 4 depicts the use of such a

model. Such a model is called a split neural network model

(split-NN) since neural networks are generally used for both

the sensor-specific models and the global calibration models.

In our experiments, the sensor-specific model sθi
is either a

linear regressor or neural network; cφ is a two-layer, 100-

neuron-wide neural network.

The purpose of the split-NN model is that sθi
corrects for

differences in air quality sensor i’s performance relative to

the other sensors, thus normalizing the values and making

the behavior of all the sensors compatible with the global

model cφ . The performance of the estimates from cφ should

be superior to that from an individual sensor model because

it has been trained on the (normalized) data of all the boards

as opposed to just a single board.

The split model can be trained efficiently with stochastic

gradient descent. Specifically, we first collect N data sets for

each board Di = {x(i),e(i),y(i)}Ni=1. We ensure each of these

data sets is the same size by sampling each with replacement

to artificially match the largest data set. We then pool the data

sets together into one data set from which we sample mini-

batches. While each sensor-specific model sθi
is trained only

on data collected by its sensor, the regression with the other

sθi
sensor-specific models is designed to detect and correct

its bias, outputting an intermediate representations u that is

normalized with the others. The global calibration model is

trained on the normalized data from all air quality sensors.

Although training this neural network will take longer than

training one for a single board, it has several key advan-

tages over conventional calibration techniques. The first is its

ability to share information across multiple boards. Suppose

Board A is trained on Location 1 and Board B is trained on

Location 2. Pooling the data sets and using a shared model

enables the global calibration model to predict well in both

locations, and the calibration models for both boards will

have information about the other locations in them, in the-

ory improving transferability. The second is more efficient

utilization of data. By pooling data and training jointly, we

effectively multiply our data size by the number of boards.

Alternatively, field deployments can be shortened.

Calibrating a new board without a full training. Field

calibration is traditionally performed by colocating a sen-

sor package with reference monitors and then training to

match pollutant concentrations. But, suppose we already had

a fleet of low-cost sensor packages already deployed. A sim-

pler method not requiring coordination with regulatory agen-

cies would be to colocate it with a calibrated sensor pack-

age and train a model to match its predicted pollutant levels.

This risks compounding errors across models, however. The

split-NN model enables calibrating a new sensor package by

colocating to match representation instead of predictions, as

learned representations can often improve generalization in

transfer learning problems (Goodfellow et al., 2016, p. 536).

We propose calibrating sensor package N + 1 to match

the intermediate representation output of a colocated, previ-

ously calibrated sensor package. Specifically, we train model

N +1 to minimize L(uN,uN+1), or the loss between the two

packages’ intermediary outputs. These intermediate repre-

sentations are designed to be robust to changes in location;

therefore, it is expected that training to match these repre-

sentations will result in more robust calibration models. We

analyze this potential calibration technique by holding out

a board from our data sets and training a split model. We

then simulate calibrating the held out board by training a sen-

sor model to match the representations produced by another

board it was colocated with. We then use this new sensor

model with the global calibration function to produce pollu-

tant values.

3 Results and discussion

3.1 Robustness of different calibration techniques
across new locations

We evaluated a set of four baseline models described in

Sect. 2.5: multiple linear regression, two-layer neural net-

work (NN-2), four-layer neural network (NN-4), and random

forest (RF). With each of these four models, we performed

a suite of identical calibration benchmarks that measure the

robustness of models to out-of-distribution data. We split all

data sets uniformly at random into training and testing sub-

sets, reserving 20 % of each board’s data for testing. In each

benchmark, we progressively widened the training distribu-

tion by combining training data from more locations (using
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Figure 5. Graphical depiction of training versus testing for the Level 0 through Level 3 benchmarks. The Level 0 and 3 benchmarks test on

a training site using held out data. The Level 1 and 2 benchmarks train and test on different sites, also using held out data for consistency.

subsampling to maintain the training set size), while keeping

the testing set data set from one location. We have four levels

of such benchmarks.

– Level 0. Train a model on one location and test on the

same location. Several studies, discussed in Sect. 1,

have previously assessed this configuration (Zimmer-

man et al., 2018; Spinelle et al., 2015b, 2017; Cross

et al., 2017).

– Level 1. Train a model on one location and test on an-

other location. Some recent studies, also discussed in

Sect. 1, have previously studied this configuration (Ha-

gan et al., 2018; Casey and Hannigan, 2018; Bigi et al.,

2018; Malings et al., 2019).

– Level 2. Train a model on two locations and test on a

third location.

– Level 3. Train a model on three locations and test on one

of the three locations.

In the Level 0 and Level 3 benchmarks, the training and

testing data distributions have explicit overlap, whereas, in

Level 1 and 2, there is no explicit overlap. We expect perfor-

mance on Level 0 to be the best, as the training and testing

distributions are identical. We expect performance on Level

3 to be similar, due to the overlap in training and testing dis-

tributions. We expect performance on Level 1 to be the worst,

as the training distribution is the narrowest and with no ex-

plicit overlap, whereas we expect performance on Level 2 to

be between Level 1 and Level 3, for although there is no ex-

plicit overlap, the overall training distribution will be wider,

forcing the models to be more general and possibly afford-

ing more implicit overlap. Furthermore, we expect higher-

capacity models to overfit more to the training data set and,

as a result, have the largest gap between Level 0 and Level

1. Thus, we expect linear regression to have more consistent

performance across the benchmarks, albeit at relatively high

error, followed by the two-layer neural network, four-layer

neural network, and finally the random forest.

We ran each benchmark across all possible permutations

of location and sensor package, measuring six metrics in or-

der to facilitate comparisons in the literature: mean squared

error (MSE), root mean squared error (RMSE, also known

as the standard error), centered root mean squared error

(cRMSE), mean absolute error (MAE), the coefficient of

variation of mean absolute error (CvMAE), mean bias error

(MBE), and coefficient of determination (R2). Predictions

were made in parts per billion (ppb); thus MSE is reported in

ppb2, and the other errors are reported in ppb. CvMAE and

R2 are dimensionless. The results for MAE of the baseline

models are plotted in Fig. 6. Details can be explored further

in Appendix C.

From Fig. 6 we observe that, on average, as model ca-

pacity increases, Level 0 error decreases. This is consistent

across both NO2 and O3 prediction and reflects the abil-

ity of the model to fit the training distribution. Concerning

model transferability, we find that, consistently, all models

exhibit relatively high error when tested on different loca-

tions. The Level 1 and 2 benchmarks test the ability of a

model to generalize to a distribution it has not seen before,

and we see in these benchmarks that errors are much higher

and the gaps between models are much smaller. Furthermore,

the Level 2 error is slightly lower on average than Level 1 er-

ror. By adding data from another site, effectively widening

the training distribution, the models are slightly more robust

to the unseen testing distribution. Level 3 performance aligns

closely with Level 0 performance, which is to be expected,

since in both cases the training distribution contains the test-

ing distribution.

Across baselines, we observe that, on average, linear re-

gression has the highest error on all the benchmarks. How-

ever, its errors across the Level 0 through Level 3 bench-

marks are more consistent than the other models, suggesting

that low-capacity linear regression is more robust to trans-

fer. On the other hand, random forests have on average the

lowest error but have the most inconsistent results across the

levels. The results indicate a tradeoff between model capac-

ity and robustness to transfer, consistent with our intuitions

about model overfitting and generalization. Neural networks

lie in between linear regression and random forests and offer

a tradeoff between low error and consistent error.

To better understand how model performance degrades,

we produced target plots, which visualize the tradeoff be-

tween centered error (cRMSE) and bias error (MBE) (Fig. 7).
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Figure 6. Mean absolute error (MAE) boxplots for NO2 and O3, for the Level 0 through Level 3 benchmarks.

The target plots indicate that while error approximately dou-

bles when there is no explicit overlap in the distribution,

the increase in model bias is many times more. When con-

sidering the two types of error examined, the cRMSE may

be of greater concern when considering sensor performance

in new locations as compared to error due to bias. Sensor

data exhibiting errors due to bias may still provide useful in-

formation regarding the diurnal trends of pollutants or rela-

tively large enhancements. Despite the higher-capacity mod-

els showing better error and bias in a Level 0 benchmark, the

models have similar error–bias tradeoffs in a Level 1 bench-

mark, indicating that a high-capacity model cannot avoid this

performance degradation. Finally, in comparing the Level 1

and Level 2 plots, we observe that adding an additional (no-

overlapping) site primarily reduces bias. The Level 3 plots

are very similar to the Level 0 plots and are excluded from

Fig. 7 for brevity.

In general, however, we observe that model performance

degrades nontrivially when moved to different locations.

This decrease in performance could result in overconfidence

in a sensor’s readings, potentially affecting downstream deci-

sions. We briefly analyze the properties of our data that could

result in overfitting by first investigating how data distribu-

tions across sites and times differ. Over each location and

round, pollutant values can be highly variable. This is re-

flected, for example, in Fig. A3 where Shafter has higher val-

ues of NO2 in Round 1 and 2 but lower in Round 3. Further-

more, in Fig. A4, the distribution of O3 changes remarkably

across round and location. Similarly, temperature and humid-

ity change significantly across location and round, which can

be seen in Figs. A1 and A2.

A question that remains is to what degree overfitting or

unique (nonoverlapping) distributions of environmental data

at the sites is contributing to the failure of the high-capacity

models to transfer well. In an effort to better understand what

may be driving the drop in performance of the high-capacity

models when boards are moved, we examined error density

plots for temperature and humidity for the Level 1 bench-

marks. In these types of plots, one of the predictors, such as

temperature or humidity, is plotted against the error for all

three sites in a single plot. Figure 8 displays the error den-

sity plots in MAE for absolute humidity against the error for

the O3 estimation, for both the linear regression and random

forest models. These plots illustrate how the magnitude of

error varies with respect to higher or lower predictor values

as well as how different pairs of training and testing sites

compare. There are a couple of things we can derive from

this collection of plots. First, we observe that the pollutant

concentrations at the Shafter site are difficult to predict, ex-

cept for random forest when trained at Shafter itself (Fig. 8f).

The Shafter site was spatially far from the other sites and

likely had a unique composition of background pollutants

and ambient environmental conditions. Second, we observe

that when training a random forest model at one site and test-

ing it at a different site (Fig. 8, bottom row), the error density

plots look similar to the results from the linear regression

models (Fig. 8, top row) despite the higher capacity of ran-

dom forest models. Furthermore, comparing panels a and d,

the errors at Shafter seem comparable to those at El Cajon for

the random forest model, whereas for the linear regression

model the errors seem greater at Shafter versus the second

San Diego site. This difference potentially indicates that lin-

ear regression models are better at transferring between more

similar environments, which has been observed by other re-

searchers as well (Casey and Hannigan, 2018). We also ob-

serve that the greater errors at the Shafter site are occurring at

humidity values that were seen in the training data set (more

centrally in the plot), as is evident by their representation in

the Donovan data. This implies that these errors did not oc-

cur at humidity values that have been extrapolated beyond the

original training data set, but rather from overfitting at values

in the distribution. This leads us to conclude that overfitting

is the reason random forest’s net performance in transfer is

not much better than linear regression.
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Figure 7. Target plots for Level 0 through Level 2 for both NO2 and O3. In each panel, the centered error is plotted on the x axis, while the

bias error (MBE) is plotted on the y axis. The differing colors then illustrate the performance of each calibration model at each level and for

these metrics. Each point in the plot corresponds to a different individual benchmark (i.e., a unique round, location, and board).

Figure 8. Error density plots for O3 versus normalized absolute humidity for both linear regression (LR) and random forest (RF) in a Level

1 benchmark.

3.2 Benefits of sharing data across sensor packages

In this section, we evaluate the split-NN model architec-

ture’s utility for improving the transferability of a calibration

model. The novelty of the split-NN model for calibrating a

board’s model is its ability include (normalized) data from

other boards. Given that the resources for calibration are lim-

ited, the research questions for split-NN revolve around how

boards could be best distributed to available field sites. For

a standard modeling technique like random forest, a board

has to be placed at three sites for three rounds to experience

the wide training distribution that achieves the exceptional

transferability observed in the Level 3 benchmarks. However,

with the split-NN model, multiple boards can be deployed for
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just one round, divided equally across the sites. Then the data

from their boards can be normalized and shared to produce

models that we hypothesize to be of similar quality to a Level

3 benchmark, but in one-third of the time, in a single round.

To help reveal the value of calibrating multiple boards at

once, we performed three one-round benchmarks: one board

at each of the three sites, two boards at each of the three sites,

and three boards at each of the three sites. In each of these

conditions, a board is trained from a single round of data and

tested on the other locations, not its own. In this vein, these

are all Level 1 benchmarks; thus we compare the resulting

models against our Level 1 baselines. We expect the split-NN

to outperform Level 1 random forest, as the inclusion of more

data helps reduce bias. In the situation that there are more

boards to calibrate than there are training sites, there is an

opportunity to also incorporate additional data boards at the

same site. We expect that a greater multiplicity of boards at

each site will produce slightly better models, but with dimin-

ishing returns. We evaluated this effect by including training

split-NNs with increasing numbers of boards at each site, in-

dicated by the variants split-NN (3), split-NN (6), and split-

NN (9), corresponding to having one board at each site, two

boards at each site, and three boards at each site. Figure 6 de-

picts how the voltages collected from one board in the split-

NN (9) condition are translated into predictions, both plotted

against the corresponding reference data points. We perform

a similar assessment with two-round (Level 2) benchmarks,

still testing only on sites that a board has not been trained

on. As previously, we control for the total amount of data,

simulating an abbreviated deployment for the Level 2 bench-

marks.

Figure 10a–b shows that the split-NN model on aver-

age has slightly lower MAE in the Level 1 benchmarks

when compared to the random forest model. We see in and

Fig. 10c–d that the gap widens with the Level 2 benchmark,

indicating that the split-NN model is able to better capitalize

on the additional data. The results also support our hypothe-

sis that we receive diminishing returns with additional data.

Detailed results are provided in Appendix D.

The marginal improvement seen in the Level 1 bench-

marks has two possible causes. One possibility is that the

difference in behavior between sensors is nonlinear. To test

this, we implemented a full neural network as the first stage.

The results were comparable with a linear regression first

stage with only slight improvement, suggesting that the re-

lationship between the sensors is well represented by a linear

model. The other possibility is that the pollution distributions

have insufficient overlap across sites, compromising the first-

stage linear regression to correct bias. The fact that using two

rounds of data (Level 2) does much better suggests that this

lack of overlap is a likely culprit.

Figure 9. A single board comparison (Board 12) of the relationship

between the raw sensor values and target pollutant concentrations

(left) and the predicted and target pollutant concentrations after the

model was run (right) for the Level 1 split-NN (9) condition. The

solid black line is a linear trend line and the dashed lines represent

the 95th percentile.

3.3 Discussion

As low-cost sensor studies move from understanding sensor

signal performance to how this performance is affected by

moving sensors to new sampling locations or utilizing them

in new applications, it is important that the results are trans-

lated into best practices to support the collection of usable

high-quality data. This is particularly important given the in-

terest in sensors by community-based organizations and cit-

izen scientists. Although the present study examined only

electrochemical O3 and NO2 sensors and the sampling sites

were limited to three in California, it adds to a body of evi-

dence that location matters in the calibration of low-cost sen-

sors because the background environmental conditions mat-

ter. With this in mind, we make the following observations

and recommendations.

We observed how prediction performance degrades when

a sensor is moved to a new location, especially for high-

capacity modeling techniques. In particular, training a com-

plex random forest calibration model will likely result in rel-

atively low error at a colocated site but can incur relatively

high error at a different site. Although their predictions at a

new site will have lower error than linear regression, the error

they exhibit at the training site will likely not be representa-

tive of their error in practice. A linear model, on the other

hand, despite not predicting as well at the training site, will

not have substantially greater error at testing time. Thus, if
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Figure 10. Results of evaluating the split-NN model with a linear regression first stage, compared against the RF model in both Level 1 and

Level 2 comparisons. The split-NN model has a lower mean and median error in all conditions. Boxplots are pictured without outliers for

clarity.

it is important to know the likely error of your calibration

model under transfer, it would be best to use a low-capacity

method like linear regression.

When we drilled down to investigate the contributors to

error when changing location, we found that bias error was a

significant contributor in many cases. This is interesting be-

cause bias error indicates a loss of accuracy (a nonrandom

additive error) rather than a loss of precision (random noise).

This suggests that when moving a sensor to a new location, if

the bias can somehow be detected, then it may be possible to

make a bias correction to improve model performance. This

result also motivates the use of the split neural network ar-

chitecture, which has a model-specific correction stage that

is designed to learn unbiased representations of sensor mea-

surements.

We had expected that training at multiple sites would

provide much better transferability, but the improvements

were not substantial, suggesting that the high-capacity mod-

els were mostly improving due to implicit overlap in dis-

tributions and not actual generalization. This suggests that

calibration should be directed at capturing the widest condi-

tions possible, for example using many field sites with vary-

ing conditions, so as to create an overlap between the distri-

butions of training and use. This recommendation is further

supported by the observation that the Level 3 benchmarks

performed nearly as well as the Level 0 benchmarks, in spite

of carrying the load of a much wider distribution in the mod-

els.

The split-NN approach provides a potentially economical

approach to creating overlap in distributions since sensors

can share their data for calibration. That is, when calibrat-

ing multiple sensors, rather than colocating multiple sensors

at a field site and rotating those sensors over time, it makes

sense to distribute the sensors to as many field sites as possi-

ble to capture the widest distribution of conditions. The split-

NN method has the additional benefit of being able to train a

calibration model for a sensor that has never been colocated

with a reference instrument. By simply colocating an uncali-

brated sensor with a calibrated sensor and training the sensor-

specific model to match the intermediate output of the cali-

brated sensor, the uncalibrated sensor can leverage the same

global calibration model. More study will be required to see

how well the split-NN approach scales as the training data

distribution increases and to determine the bounds on cali-

bration without reference colocation.

4 Conclusions

As low-cost gas-phase sensors are increasingly being

adopted for citizen science efforts and community-based

studies, there is a need to better understand what contributes
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to accurate sensing. A key question is how a change in back-

ground environmental or pollutant conditions, often unique

to a location, affects accuracy. A rotating deployment strat-

egy enabled benchmarking the transferability of models and

investigating how to improve accuracy.

For our setting and conditions, we found the following.

– Model error increased under transfer for all the model-

ing techniques investigated, demonstrating that overfit-

ting is a concern. The effects are most dramatic when

transferring high-capacity models like random forest

that are trained with data that will not be representa-

tive of the conditions of use. The lower-capacity lin-

ear regression method deteriorated much less. This sug-

gests that the predicted model error for linear regression

will be more accurate under transfer, making it attrac-

tive when knowing the predicted error is important for

the intended application.

– Tantalizingly, much of the error introduced by transfer

was bias. Given the simple structure of bias error, this

suggests that transferability might be increased by de-

tecting and correcting for bias.

– When multiple sensors based on the same technology

are being trained at the same time, we found that a split

neural network architecture modestly decreases predic-

tion error under transfer by giving a sensor’s model ac-

cess to normalized data from other sensors at other lo-

cations, hence widening the distribution without requir-

ing additional data collection. Depending on the train-

ing configuration, compared to random forest the split-

NN method reduced error 0 %–11 % for NO2 and 6 %–

13 % for O3. This method also enables calibrating new

sensors against existing calibrated sensors at increased

cost.

– For all the modeling techniques investigated, widen-

ing the data distribution proved a good strategy to re-

duce prediction error under transfer, even for the lower-

capacity linear regression method. Notably, markedly

better results were achieved when the training distri-

bution contained the distribution encountered in use. In

other words, for the setting and conditions investigated,

training with representative data trumped algorithms.

In the future work we will be extending this work to an-

swer open questions that we believe are relevant to the fu-

ture of low-cost sensor calibration. One, the split neural net-

work method underperformed our expectations, so we be-

lieve techniques of this sort warrant additional investiga-

tion. Two, there are questions about the effect of tempo-

ral resolution on accuracy. Currently, our MetaSense sensors

are sampled every 5 s, but the ground-truth data provided

from reference monitors is minute-averaged. By averaging

our own sensor measurements every minute, we discard data

that could be relevant for calibration. Recent advances in re-

current neural networks for sequence prediction might help

leverage the high-resolution data for more robust prediction.

On the other hand, noise will be more of a factor at this res-

olution, and the sensor can take up to 30 s to stabilize in new

environmental conditions (See Sect. 2.1.1). Three, a poten-

tial application of low-cost sensing is truly mobile sensing

with person- or vehicle-mounted sensors. Deployments such

as these will raise questions about the effects of mobility on

sensing accuracy, such as rapidly changing conditions, with

few studies to date (Arfire et al., 2016). Finally, we will be ex-

amining the possible use of infrastructure data (e.g., knowl-

edge of pollution sources) to infer the likelihood of specific

pollutants, providing the potential to control for cross sensi-

tivity.
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Appendix A: Environment and pollutant distributions
(based on reference data)

The following graphs summarize the distributions of pollu-

tants and environment variables provided from the reference

sensors at the three sites during the three rounds of the study.

Each bar represents the total proportion of measurements at

the given temperature or humidity (a histogram plot). The

lines are a visualization of the kernel density estimation of

the raw measurements.

Figure A1. Temperature distributions for each location, by round.

Figure A2. Humidity distributions for each location, by round.
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Figure A3. NO2 distributions for each location, by round.

Figure A4. O3 distributions for each location, by round.
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Appendix B: Summaries of data for each location and
round

Table B1. Summary of data set grouped by location

EPA NO2 EPA O3 Temperature Pressure Humidity

Location

Donovan count 100 780 100 780 100 780 100 780 100 780

mean 10.434 33.742 24.170 991.767 45.936

SD 10.807 15.378 5.624 3.226 21.966

min 0.000 0.000 13.900 982.820 4.086

25 % 3.000 24.000 20.100 989.530 27.244

50 % 7.000 35.000 22.620 991.460 49.511

75 % 14.000 43.000 27.000 993.610 64.394

max 157.000 96.000 49.710 1004.160 92.753

El Cajon count 97 412 97 412 97 412 97 412 97 412

mean 12.914 29.331 24.342 997.288 43.923

SD 9.732 19.337 8.232 3.507 20.077

min 0.000 1.000 5.430 989.230 2.733

25 % 5.000 11.000 18.570 994.880 28.623

50 % 10.000 31.000 23.380 996.890 45.053

75 % 20.000 43.000 29.700 999.450 61.166

max 66.000 95.000 49.790 1010.480 85.827

Shafter count 119 785 119 785 119 785 119 785 119 785

mean 12.578 26.357 22.101 1003.883 45.804

SD 9.079 20.739 8.184 5.596 18.072

min 0.000 0.000 4.010 872.756 6.349

25 % 4.700 7.800 16.156 999.750 30.585

50 % 10.800 22.300 21.040 1003.990 46.763

75 % 19.000 41.200 27.200 1007.400 60.965

max 594.600 110.400 47.700 1019.580 85.047
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Table B2. Summary of data set grouped by round

EPA NO2 EPA O3 Temperature Pressure Humidity

Round

1 count 49 771 49 771 49 771 49 771 49 771

mean 5.509 36.010 26.062 994.459 48.322

SD 5.472 13.869 6.777 4.787 19.539

min 0.000 1.300 13.100 872.756 9.644

25 % 2.000 28.000 20.900 990.920 31.790

50 % 3.700 37.300 24.600 995.240 50.507

75 % 6.600 45.000 30.130 997.640 61.525

max 57.000 110.400 47.700 1002.940 92.753

2 count 75 129 75 129 75 129 75 129 75 129

mean 11.916 36.974 25.953 995.989 41.511

SD 9.583 21.259 7.577 6.075 19.757

min 0.000 0.000 12.000 982.820 4.420

25 % 5.000 19.200 20.000 990.990 23.461

50 % 8.000 36.000 24.400 995.420 41.539

75 % 17.900 53.000 31.710 1000.710 56.961

max 82.000 96.000 48.180 1009.890 87.562

3 count 193 077 193 077 193 077 193 077 193 077

mean 13.708 25.093 21.791 999.732 45.946

SD 10.225 17.807 7.276 6.708 20.013

min 0.000 0.000 4.010 986.770 2.733

25 % 5.100 8.000 17.190 994.300 30.192

50 % 11.600 24.700 21.000 999.090 48.470

75 % 20.000 38.500 25.780 1004.690 63.450

max 594.600 87.900 49.790 1019.580 85.440
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Appendix C: Raw results for the baseline calibration
models

The following tables are the complete error results for the

baseline models across the various conditions. In these ta-

bles, the modeling methods are labeled as MLR for multi-

ple linear regression, NN-2 for the two-layer neural network,

NN-4 for the four-layer neural network, and RF for random

forest, as described in Sect. 2.5. Likewise, the error measures

are labeled as MAE for mean absolute error, CvMAE for co-

efficient of variation of the mean absolute error, MBE for

mean bias error, MSE for mean standard error, R2 for the

coefficient of determination, cRMSE for centered root mean

square error, and RMSE for root mean squared error. MSE

is reported in parts per billion squared. All other errors are

reported in parts per billion. CvMAE and R2 are dimension-

less. The results are disaggregated by train and test sites and

averaged across the sensor packages.

Table C1. Level 0 train results for NO2 (train and test on the same data set).

Train site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon MLR 3.860 0.256 1.163e−14 28.094 0.685 5.259 5.259

Donovan MLR 5.520 0.567 1.528e−15 73.035 0.312 8.374 8.374

Shafter MLR 4.671 0.354 3.628e−15 40.945 0.492 6.380 6.380

El Cajon NN-2 2.003 0.135 0.127 8.137 0.905 2.831 2.844

Donovan NN-2 3.134 0.328 0.093 27.100 0.733 5.175 5.189

Shafter NN-2 2.648 0.200 0.051 17.439 0.787 4.131 4.135

El Cajon NN-4 1.109 0.074 0.076 2.976 0.967 1.700 1.704

Donovan NN-4 1.946 0.213 0.033 13.955 0.835 3.527 3.548

Shafter NN-4 1.755 0.133 −0.054 8.541 0.895 2.868 2.872

El Cajon RF 0.477 0.032 −0.011 0.673 0.993 0.808 0.808

Donovan RF 0.999 0.112 −0.022 3.705 0.956 1.870 1.871

Shafter RF 0.514 0.039 −0.016 1.513 0.981 1.193 1.193

Table C2. Level 0 test results for NO2.

Train site Test site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon El Cajon MLR 3.869 0.256 0.015 28.999 0.683 5.333 5.333

Donovan Donovan MLR 5.573 0.556 0.160 75.037 0.315 8.504 8.512

Shafter Shafter MLR 4.671 0.353 0.004 38.467 0.511 6.191 6.191

El Cajon El Cajon NN-2 2.074 0.140 0.127 9.185 0.895 3.006 3.018

Donovan Donovan NN-2 3.390 0.345 0.204 31.458 0.696 5.559 5.581

Shafter Shafter NN-2 2.694 0.203 0.052 15.772 0.802 3.942 3.946

El Cajon El Cajon NN-4 1.465 0.098 0.076 5.524 0.938 2.327 2.331

Donovan Donovan NN-4 2.739 0.288 0.105 24.875 0.729 4.907 4.924

Shafter Shafter NN-4 2.089 0.158 −0.060 10.702 0.865 3.252 3.256

El Cajon El Cajon RF 0.972 0.064 −0.028 2.929 0.968 1.683 1.683

Donovan Donovan RF 2.010 0.216 0.031 15.113 0.830 3.794 3.797

Shafter Shafter RF 1.028 0.078 −0.041 3.822 0.951 1.943 1.943
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Table C3. Level 0 train results for O3 (train and test on the same data set).

Train site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon MLR 6.010 0.245 1.647e−14 60.276 0.827 7.666 7.666

Donovan MLR 6.916 0.193 −1.881e−15 85.486 0.584 9.131 9.131

Shafter MLR 5.882 0.239 9.460e−15 63.567 0.841 7.877 7.877

El Cajon NN-2 2.810 0.112 −0.150 16.200 0.954 3.940 3.947

Donovan NN-2 4.237 0.117 −0.270 35.055 0.821 5.824 5.855

Shafter NN-2 3.498 0.141 0.013 24.929 0.939 4.895 4.909

El Cajon NN-4 1.369 0.055 −0.092 4.418 0.987 2.053 2.064

Donovan NN-4 2.781 0.077 −0.212 21.314 0.874 4.055 4.102

Shafter NN-4 2.184 0.090 0.001 10.817 0.973 3.248 3.251

El Cajon RF 0.598 0.024 0.006 0.962 0.997 0.976 0.976

Donovan RF 1.341 0.037 0.014 4.938 0.971 1.988 1.988

Shafter RF 0.643 0.027 0.011 1.176 0.997 1.083 1.083

Table C4. Level 0 test results for O3.

Train site Test site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon El Cajon MLR 6.038 0.245 0.040 61.471 0.822 7.744 7.744

Donovan Donovan MLR 6.931 0.195 −0.255 85.324 0.604 9.116 9.124

Shafter Shafter MLR 5.877 0.240 0.020 63.379 0.842 7.857 7.858

El Cajon El Cajon NN-2 2.919 0.115 −0.133 17.626 0.950 4.113 4.118

Donovan Donovan NN-2 4.516 0.126 −0.488 40.687 0.802 6.193 6.253

Shafter Shafter NN-2 3.568 0.145 0.020 26.052 0.937 4.999 5.011

El Cajon El Cajon NN-4 1.903 0.075 −0.068 9.252 0.974 2.966 2.974

Donovan Donovan NN-4 3.830 0.107 −0.330 33.794 0.825 5.399 5.456

Shafter Shafter NN-4 2.672 0.109 −0.012 17.052 0.959 4.050 4.052

El Cajon El Cajon RF 1.217 0.049 0.015 3.987 0.988 1.987 1.987

Donovan Donovan RF 2.723 0.076 −0.103 19.179 0.897 3.931 3.934

Shafter Shafter RF 1.284 0.054 0.024 4.651 0.988 2.155 2.155

Table C5. Level 1 train results for NO2 (train and test on the same data set).

Train site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon MLR 3.869 0.256 0.015 28.999 0.683 5.333 5.333

Donovan MLR 5.573 0.556 0.160 75.037 0.315 8.504 8.512

Shafter MLR 4.671 0.353 0.004 38.467 0.511 6.191 6.191

El Cajon NN-2 2.074 0.140 0.127 9.185 0.895 3.006 3.018

Donovan NN-2 3.390 0.345 0.204 31.458 0.696 5.559 5.581

Shafter NN-2 2.694 0.203 0.052 15.772 0.802 3.942 3.946

El Cajon NN-4 1.465 0.098 0.076 5.524 0.938 2.327 2.331

Donovan NN-4 2.739 0.288 0.105 24.875 0.729 4.907 4.924

Shafter NN-4 2.089 0.158 −0.060 10.702 0.865 3.252 3.256

El Cajon RF 0.972 0.064 −0.028 2.929 0.968 1.683 1.683

Donovan RF 2.010 0.216 0.031 15.113 0.830 3.794 3.797

Shafter RF 1.028 0.078 −0.041 3.822 0.951 1.943 1.943
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Table C6. Level 1 test results for NO2.

Train site Test site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon Donovan MLR 7.994 0.841 −4.447 119.171 −0.304 8.782 10.639

El Cajon Shafter MLR 7.495 0.565 −1.816 103.831 −0.303 8.871 9.990

Donovan El Cajon MLR 6.383 0.436 1.998 69.142 0.179 6.801 8.203

Donovan Shafter MLR 8.860 0.676 0.639 132.238 −0.711 8.201 11.351

Shafter El Cajon MLR 7.472 0.504 1.940 115.789 −0.303 9.532 10.366

Shafter Donovan MLR 8.553 0.856 0.904 143.748 −0.309 10.080 11.542

El Cajon Donovan NN-2 6.552 0.688 −1.875 98.026 −0.063 8.628 9.641

El Cajon Shafter NN-2 5.367 0.405 −0.491 52.894 0.334 7.077 7.189

Donovan El Cajon NN-2 9.960 0.649 2.435 282.631 −1.896 13.732 14.872

Donovan Shafter NN-2 8.567 0.662 2.822 173.652 −1.359 10.145 11.805

Shafter El Cajon NN-2 9.623 0.642 3.077 269.781 −2.158 13.186 14.291

Shafter Donovan NN-2 9.446 0.918 2.953 250.758 −1.049 11.432 13.326

El Cajon Donovan NN-4 6.164 0.632 −1.301 83.675 0.163 8.663 9.103

El Cajon Shafter NN-4 5.771 0.436 −0.298 58.188 0.266 7.473 7.601

Donovan El Cajon NN-4 7.702 0.500 −0.698 132.834 −0.385 10.342 10.622

Donovan Shafter NN-4 7.947 0.614 1.850 148.190 −0.995 10.032 10.690

Shafter El Cajon NN-4 8.609 0.563 −0.022 156.109 −0.689 11.210 11.768

Shafter Donovan NN-4 8.358 0.827 −0.362 176.864 −0.769 12.024 12.658

El Cajon Donovan RF 5.813 0.598 −1.477 72.216 0.291 8.005 8.414

El Cajon Shafter RF 5.560 0.420 −0.604 50.668 0.364 6.887 7.065

Donovan El Cajon RF 5.904 0.384 −1.458 61.572 0.346 7.186 7.597

Donovan Shafter RF 6.579 0.505 −1.846 79.515 −0.048 7.700 8.645

Shafter El Cajon RF 7.182 0.487 −0.148 198.620 −1.665 10.882 11.411

Shafter Donovan RF 7.220 0.725 −1.549 153.445 −0.642 11.112 11.635

Table C7. Level 1 train results for O3 (train and test on the same data set).

Train site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon MLR 6.038 0.245 0.040 61.471 0.822 7.744 7.744

Donovan MLR 6.931 0.195 −0.255 85.324 0.604 9.116 9.124

Shafter MLR 5.877 0.240 0.020 63.379 0.842 7.857 7.858

El Cajon NN-2 2.919 0.115 −0.133 17.626 0.950 4.113 4.118

Donovan NN-2 4.516 0.126 −0.488 40.687 0.802 6.193 6.253

Shafter NN-2 3.568 0.145 0.020 26.052 0.937 4.999 5.011

El Cajon NN-4 1.903 0.075 −0.068 9.252 0.974 2.966 2.974

Donovan NN-4 3.830 0.107 −0.330 33.794 0.825 5.399 5.456

Shafter NN-4 2.672 0.109 −0.012 17.052 0.959 4.050 4.052

El Cajon RF 1.217 0.049 0.015 3.987 0.988 1.987 1.987

Donovan RF 2.723 0.076 −0.103 19.179 0.897 3.931 3.934

Shafter RF 1.284 0.054 0.024 4.651 0.988 2.155 2.155
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Table C8. Level 1 test results for O3.

Train site Test site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon Donovan MLR 11.383 0.319 8.605 227.071 −0.176 10.340 14.065

El Cajon Shafter MLR 9.812 0.415 5.474 182.938 0.509 11.107 12.920

Donovan El Cajon MLR 8.384 0.327 0.173 118.977 0.671 10.163 10.488

Donovan Shafter MLR 13.931 0.614 4.485 304.950 0.096 11.566 16.753

Shafter El Cajon MLR 9.819 0.400 −0.489 187.609 0.448 12.064 13.055

Shafter Donovan MLR 13.205 0.373 6.385 321.685 −0.639 13.259 16.624

El Cajon Donovan NN-2 10.910 0.305 4.597 231.519 −0.184 13.095 14.476

El Cajon Shafter NN-2 8.799 0.358 0.850 138.822 0.659 11.204 11.562

Donovan El Cajon NN-2 11.993 0.492 −5.201 300.587 0.088 14.488 15.944

Donovan Shafter NN-2 12.644 0.547 −4.902 276.752 0.186 14.168 15.888

Shafter El Cajon NN-2 14.346 0.630 −7.165 565.238 −0.780 17.245 19.883

Shafter Donovan NN-2 16.290 0.447 0.309 533.943 −1.188 15.973 20.250

El Cajon Donovan NN-4 11.144 0.311 5.321 233.599 −0.182 13.149 14.506

El Cajon Shafter NN-4 9.151 0.376 1.102 148.600 0.623 11.621 12.024

Donovan El Cajon NN-4 12.290 0.506 −5.953 294.927 0.099 14.143 16.031

Donovan Shafter NN-4 17.186 0.773 −10.780 597.851 −0.945 17.224 21.627

Shafter El Cajon NN-4 11.177 0.480 −3.281 271.195 0.156 14.606 15.313

Shafter Donovan NN-4 13.084 0.372 3.730 325.781 −0.556 15.852 17.251

El Cajon Donovan RF 10.679 0.302 6.487 189.558 0.051 11.079 13.496

El Cajon Shafter RF 9.739 0.401 1.367 157.403 0.601 11.999 12.406

Donovan El Cajon RF 11.458 0.469 −4.232 206.904 0.381 12.335 13.735

Donovan Shafter RF 14.236 0.608 −4.891 300.792 0.165 14.834 17.082

Shafter El Cajon RF 8.610 0.364 −1.488 120.284 0.640 10.315 10.841

Shafter Donovan RF 11.045 0.311 6.332 182.582 0.156 11.390 13.459

Table C9. Level 2 train results for NO2 (train and test on the same data set).

Train sites Method MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, Shafter MLR 5.277 0.416 0.046 56.139 0.400 7.429 7.429

Donovan, El Cajon MLR 4.480 0.326 0.042 44.649 0.585 6.559 6.559

El Cajon, Shafter MLR 4.829 0.332 0.021 43.007 0.514 6.531 6.531

Donovan, Shafter NN-2 2.935 0.231 0.212 23.237 0.755 4.755 4.765

Donovan, El Cajon NN-2 2.629 0.192 0.178 19.636 0.820 4.327 4.338

El Cajon, Shafter NN-2 2.665 0.183 −0.014 15.152 0.829 3.871 3.877

Donovan, Shafter NN-4 2.026 0.159 0.079 12.776 0.865 3.531 3.537

Donovan, El Cajon NN-4 1.763 0.129 0.077 10.645 0.901 3.192 3.195

El Cajon, Shafter NN-4 1.823 0.126 0.070 8.225 0.906 2.857 2.860

Donovan, Shafter RF 1.284 0.101 −0.044 7.900 0.918 2.741 2.743

Donovan, El Cajon RF 1.154 0.084 −0.030 6.068 0.945 2.370 2.371

El Cajon, Shafter RF 1.102 0.076 −0.039 4.081 0.954 2.017 2.017
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Table C10. Level 2 test results for NO2.

Train sites Test site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, Shafter El Cajon MLR 5.880 0.408 1.644 65.552 0.202 7.514 7.901

Donovan, El Cajon Shafter MLR 7.243 0.547 −2.411 90.821 −0.153 8.164 9.373

El Cajon, Shafter Donovan MLR 7.312 0.759 −2.242 101.530 −0.043 8.570 9.915

Donovan, Shafter El Cajon NN-2 7.881 0.513 −1.165 243.984 −1.583 11.727 12.331

Donovan, El Cajon Shafter NN-2 5.013 0.380 0.434 47.193 0.402 6.699 6.829

El Cajon, Shafter Donovan NN-2 5.786 0.592 −0.804 77.869 0.242 8.167 8.693

Donovan, Shafter El Cajon NN-4 8.579 0.554 −1.420 281.996 −1.869 12.447 12.951

Donovan, El Cajon Shafter NN-4 5.864 0.445 0.069 62.582 0.203 7.721 7.883

El Cajon, Shafter Donovan NN-4 5.991 0.606 −0.629 92.061 0.068 9.122 9.332

Donovan, Shafter El Cajon RF 5.510 0.376 −0.670 61.713 0.255 7.271 7.561

Donovan, El Cajon Shafter RF 5.312 0.402 −0.096 47.764 0.396 6.733 6.863

El Cajon, Shafter Donovan RF 5.533 0.567 −0.883 74.962 0.255 8.271 8.562

Table C11. Level 2 train results for O3 (train and test on the same data set).

Train sites Method MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, Shafter MLR 6.396 0.249 −0.034 73.967 0.785 8.493 8.494

Donovan, El Cajon MLR 6.702 0.227 0.005 75.618 0.788 8.640 8.640

El Cajon, Shafter MLR 6.312 0.271 0.006 71.620 0.811 8.385 8.385

Donovan, Shafter NN-2 3.857 0.150 −0.050 30.588 0.911 5.487 5.493

Donovan, El Cajon NN-2 3.721 0.127 0.169 28.691 0.919 5.332 5.344

El Cajon, Shafter NN-2 3.508 0.150 0.082 25.892 0.934 5.041 5.048

Donovan, Shafter NN-4 2.447 0.096 0.046 14.251 0.959 3.763 3.765

Donovan, El Cajon NN-4 2.355 0.080 0.116 13.973 0.961 3.716 3.721

El Cajon, Shafter NN-4 2.210 0.094 0.104 11.863 0.969 3.408 3.412

Donovan, Shafter RF 1.499 0.059 0.069 6.184 0.982 2.480 2.482

Donovan, El Cajon RF 1.466 0.050 0.041 5.897 0.984 2.421 2.422

El Cajon, Shafter RF 1.325 0.057 0.023 4.921 0.987 2.216 2.216

Table C12. Level 2 test results for O3.

Train sites Test site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, Shafter El Cajon MLR 8.981 0.362 −1.747 136.139 0.607 10.070 11.263

Donovan, El Cajon Shafter MLR 10.436 0.447 6.596 195.691 0.452 10.844 13.384

El Cajon, Shafter Donovan MLR 11.842 0.332 8.646 234.924 −0.168 10.887 14.470

Donovan, Shafter El Cajon NN-2 8.585 0.353 −0.863 142.215 0.581 10.743 11.402

Donovan, El Cajon Shafter NN-2 8.227 0.338 −0.202 120.049 0.694 10.390 10.844

El Cajon, Shafter Donovan NN-2 9.896 0.278 5.069 180.978 0.103 11.353 12.892

Donovan, Shafter El Cajon NN-4 9.708 0.391 −1.786 187.381 0.466 12.179 12.983

Donovan, El Cajon Shafter NN-4 9.019 0.374 −0.536 139.776 0.638 11.293 11.721

El Cajon, Shafter Donovan NN-4 9.802 0.274 4.557 159.778 0.249 11.398 12.544

Donovan, Shafter El Cajon RF 7.892 0.327 −1.715 100.997 0.702 9.286 9.875

Donovan, El Cajon Shafter RF 9.568 0.397 0.597 150.607 0.613 11.533 12.148

El Cajon, Shafter Donovan RF 9.133 0.259 4.811 135.414 0.351 9.986 11.571
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Table C13. Level 3 train results for NO2 (train and test on the same data set).

Train sites Method MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, El Cajon, Shafter MLR 5.505 0.478 −0.585 66.057 0.257 7.474 7.805

Donovan, El Cajon, Shafter NN-2 3.205 0.276 0.024 26.908 0.711 4.929 4.967

Donovan, El Cajon, Shafter NN-4 1.916 0.164 0.006 10.234 0.883 3.083 3.095

Donovan, El Cajon, Shafter RF 0.971 0.090 −0.102 3.344 0.961 1.628 1.648

Table C14. Level 3 test results for NO2.

Train sites Test site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, El Cajon, Shafter El Cajon MLR 4.458 0.296 0.560 37.307 0.585 6.001 6.060

Donovan, El Cajon, Shafter Donovan MLR 6.819 0.707 −2.001 91.429 0.074 8.431 9.428

Donovan, El Cajon, Shafter Shafter MLR 5.156 0.390 −0.060 48.853 0.381 6.928 6.961

Donovan, El Cajon, Shafter El Cajon NN-2 2.595 0.175 −0.063 13.555 0.845 3.655 3.669

Donovan, El Cajon, Shafter Donovan NN-2 4.108 0.420 0.050 47.008 0.556 6.660 6.765

Donovan, El Cajon, Shafter Shafter NN-2 3.064 0.231 0.120 20.686 0.742 4.473 4.486

Donovan, El Cajon, Shafter El Cajon NN-4 1.837 0.123 −0.041 7.837 0.912 2.772 2.782

Donovan, El Cajon, Shafter Donovan NN-4 3.167 0.335 −0.075 38.583 0.542 5.784 5.812

Donovan, El Cajon, Shafter Shafter NN-4 2.108 0.159 0.016 10.459 0.868 3.220 3.225

Donovan, El Cajon, Shafter El Cajon RF 1.079 0.072 −0.039 3.634 0.959 1.885 1.886

Donovan, El Cajon, Shafter Donovan RF 2.583 0.277 −0.302 20.818 0.768 4.453 4.495

Donovan, El Cajon, Shafter Shafter RF 1.358 0.103 −0.035 5.324 0.933 2.281 2.287

Table C15. Level 3 train results for O3 (train and test on the same data set).

Train sites Method MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, El Cajon, Shafter MLR 7.893 0.277 1.474 117.623 0.509 9.553 10.226

Donovan, El Cajon, Shafter NN-2 4.547 0.157 0.426 43.025 0.834 6.216 6.309

Donovan, El Cajon, Shafter NN-4 2.509 0.088 0.174 14.705 0.938 3.611 3.660

Donovan, El Cajon, Shafter RF 1.379 0.044 0.308 5.251 0.976 1.865 1.936

Table C16. Level 3 test results for O3.

Train sites Test site Method MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, El Cajon, Shafter El Cajon MLR 6.859 0.278 −0.920 81.607 0.764 8.628 8.865

Donovan, El Cajon, Shafter Donovan MLR 9.870 0.276 5.047 169.555 0.141 10.236 12.282

Donovan, El Cajon, Shafter Shafter MLR 6.727 0.275 0.400 82.576 0.796 8.831 8.891

Donovan, El Cajon, Shafter El Cajon NN-2 3.732 0.148 −0.018 28.075 0.920 5.208 5.224

Donovan, El Cajon, Shafter Donovan NN-2 5.826 0.162 1.373 65.155 0.690 7.610 7.934

Donovan, El Cajon, Shafter Shafter NN-2 4.210 0.168 −0.039 36.454 0.914 5.843 5.855

Donovan, El Cajon, Shafter El Cajon NN-4 2.375 0.095 −0.069 13.066 0.963 3.552 3.572

Donovan, El Cajon, Shafter Donovan NN-4 4.541 0.126 1.132 46.867 0.757 6.182 6.402

Donovan, El Cajon, Shafter Shafter NN-4 2.669 0.109 −0.106 15.932 0.961 3.937 3.945

Donovan, El Cajon, Shafter El Cajon RF 1.391 0.056 0.019 5.064 0.985 2.233 2.234

Donovan, El Cajon, Shafter Donovan RF 3.504 0.096 1.142 28.621 0.849 4.594 4.837

Donovan, El Cajon, Shafter Shafter RF 1.853 0.072 0.105 8.391 0.980 2.775 2.783
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Appendix D: Raw results for the split neural network
models

The following tables are error results for the split-NN models

of size 3 and size 9. The error measures are labeled as MAE

for mean absolute error, CvMAE for coefficient of varia-

tion of the mean absolute error, MBE for mean bias error,

MSE for mean standard error, R2 for the coefficient of deter-

mination, cRMSE for centered root mean square error, and

RMSE for root mean squared error. The results are disaggre-

gated by train and test sites and averaged across the sensor

packages. However, because these are split models, both the

global model and the board-specific models are trained on

all the sites. However, the trained board was not placed at the

test site during training.

Table D1. Test results for split-NN Level 1, size 3 (NO2).

Train site Test site MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon Donovan 5.838 0.601 −0.775 90.006 0.054 8.787 9.123

El Cajon Shafter 5.246 0.397 0.284 51.872 0.345 6.909 7.142

Donovan El Cajon 7.177 0.484 −0.676 118.001 −0.311 9.916 10.295

Donovan Shafter 6.515 0.497 0.941 87.773 −0.143 8.652 9.130

Shafter El Cajon 7.544 0.484 0.452 183.866 −0.923 10.592 11.094

Shafter Donovan 7.516 0.736 −0.530 155.259 −0.307 10.295 11.056

Table D2. Test results for split-NN Level 1, size 9 (NO2).

Train site Test site MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon Donovan 5.713 0.590 −1.012 78.898 0.206 8.326 8.800

El Cajon Shafter 5.011 0.379 0.007 48.441 0.390 6.726 6.896

Donovan El Cajon 6.426 0.436 0.016 88.722 −0.018 8.797 9.180

Donovan Shafter 6.272 0.478 −0.493 78.929 −0.028 8.441 8.760

Shafter El Cajon 6.333 0.410 0.961 77.864 0.168 7.881 8.569

Shafter Donovan 6.924 0.681 −1.288 110.268 0.039 9.319 10.083

Table D3. Test results for split-NN Level 1, size 3 (O3).

Train site Test site MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon Donovan 10.278 0.287 4.704 188.996 0.060 11.801 13.266

El Cajon Shafter 8.280 0.336 0.862 125.486 0.692 10.668 10.982

Donovan El Cajon 10.706 0.420 −3.206 225.276 0.355 13.079 14.170

Donovan Shafter 11.369 0.486 −3.829 230.534 0.351 13.619 14.783

Shafter El Cajon 10.857 0.480 −3.101 380.840 −0.227 14.472 15.351

Shafter Donovan 12.195 0.343 4.319 302.175 −0.297 14.332 15.918
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Table D4. Test results for split-NN Level 1, size 9 (O3).

Train site Test site MAE CvMAE MBE MSE R2 cRMSE RMSE

El Cajon Donovan 10.414 0.291 6.012 187.446 0.057 10.945 13.250

El Cajon Shafter 8.234 0.335 1.909 123.068 0.696 10.482 10.872

Donovan El Cajon 10.244 0.394 −2.838 192.420 0.459 12.167 13.186

Donovan Shafter 9.980 0.416 −0.463 177.129 0.534 12.147 13.237

Shafter El Cajon 9.709 0.423 −2.282 211.003 0.344 12.567 13.295

Shafter Donovan 11.240 0.317 5.503 216.113 −0.003 12.947 14.428

Table D5. Test results for split-NN Level 2, size 3 (NO2).

Train sites Test site MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, Shafter El Cajon 5.915 0.392 −1.035 91.805 −0.013 8.458 8.739

Donovan, El Cajon Shafter 4.884 0.370 0.576 46.812 0.406 6.558 6.793

El Cajon, Shafter Donovan 5.362 0.543 −0.373 73.628 0.302 8.108 8.411

Table D6. Test results for split-NN Level 2, size 9 (NO2).

Train sites Test site MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, Shafter El Cajon 4.923 0.337 −0.648 48.985 0.424 6.500 6.795

Donovan, El Cajon Shafter 4.749 0.360 0.676 43.165 0.453 6.221 6.497

El Cajon, Shafter Donovan 5.301 0.538 −0.330 69.482 0.352 7.881 8.198

Table D7. Test results for split-NN Level 2, size 3 (O3).

Train sites Test site MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, Shafter El Cajon 8.285 0.336 −1.515 139.473 0.596 10.573 11.204

Donovan, El Cajon Shafter 8.079 0.331 −0.189 115.897 0.708 10.153 10.577

El Cajon, Shafter Donovan 9.356 0.262 4.033 155.842 0.250 11.020 12.172

Table D8. Test results for split-NN Level 2, size 9 (O3).

Train sites Test site MAE CvMAE MBE MSE R2 cRMSE RMSE

Donovan, Shafter El Cajon 7.434 0.297 −0.910 105.619 0.695 9.443 9.977

Donovan, El Cajon Shafter 7.819 0.320 0.372 110.537 0.723 9.774 10.314

El Cajon, Shafter Donovan 9.022 0.253 4.190 141.869 0.313 10.427 11.654
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