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Abstract. We show that the edgewise subdivision of a 2-Segal object is al-
ways a Segal object, and furthermore that this property characterizes 2-Segal
objects.

1. Introduction

The edgewise subdivision of a simplicial space is a construction which leaves the
geometric realization unchanged but has the effect of decomposing the simplicial
space into more simplices. It first appeared in the literature in work of Segal [Seg73],
although he attributes it to Quillen. Waldhausen in turn used this construction to
prove the equivalence of the S•-construction and the Q-construction in algebraic
K-theory [Wal85].

In this note, we consider the effect of applying this construction to the 2-Segal
spaces of Dyckerhoff and Kapranov [DK12] (closely related to the decomposition
spaces of Gálvez-Carrillo, Kock, and Tonks [GCKT18]), which model homotopical
categories with associative multivalued composition. A key source of examples of
such structures is the output of Waldhausen’s S•-construction when applied to an
exact category, as shown in [DK12] and [GCKT18]. In [BOO+18b] and [BOO+18a]
we show that any 2-Segal space which satisfies a unitality condition arises from
such a construction for a suitably general input.

In this paper we work in the more general context of 2-Segal objects in any
combinatorial model category. Our main result, which appears as Theorem 2.11,
characterizes 2-Segal objects in terms of their edgewise subdivision.

Theorem. Let Xbe a simplicial object in a combinatorial model category M. Then

X is a 2-Segal object if and only if its edgewise subdivision esd(X) is a Segal object.

Although we prove the result as stated, the nature of our arguments is purely
combinatorial and the statement should also hold in more general settings, such as
for 2-Segal objects in any (∞, 1)-category with finite limits.
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72 J. E. BERGNER ET AL.

This criterion will be used in forthcoming work of Gálvez-Carrillo, Kock, and
Tonks [GCKT].

Following a background section and the proof of the main theorem, we con-
clude the paper with additional examples. In particular, we prove that the S•-
construction of the Waldhausen category of retractive spaces is not a 2-Segal space.

2. The main theorem

In this section, we recall the necessary background to state our main theorem:
the definition of the edgewise subdivision of a simplicial object and an overview of
2-Segal objects.

Let Δ be the simplicial indexing category, whose objects are non-empty finite
ordered sets and whose morphisms are order-preserving maps. Recall that the join

A � B of two categories A and B is obtained by taking the disjoint union of the
two categories, then adjoining a unique additional arrow from every object of A to
every object in B [Lur09, §1.2.8].

We follow the convention of [Wal85] and denote by ε : Δ → Δ the functor de-
termined by the assignment [n] �→ [n]op � [n] ∼= [2n + 1]. The image of [n] can be
depicted as the ordered set

n′ < (n− 1)′ < · · · < 1′ < 0′ < 0 < 1 < · · · < n− 1 < n.

Definition 2.1. Let C be any category. The edgewise subdivision is the functor

esd: Fun(Δop, C) → Fun(Δop, C)

that assigns to a simplicial object X the simplicial object esd(X) = X ◦ ε, and is
therefore given in component n by esd(X)n = X2n+1.

We warn the reader of different conventions in the literature; we chose to follow
[Wal85, §1.9] and [Bar13, Example 2.5], but other references, such as [Seg73, Ap-
pendix 1] and [DK12, §10], use the opposite convention of [n] � [n]op instead. See
[Vel14] for further discussions of variants of subdivisions, some of which are funda-
mentally different, for example the one used initially in [Gra89]. The terminology
is justified by the following example.

Example 2.2. The edgewise subdivision esd(Δ[k]) of a standard simplex Δ[k] is
indeed a subdivision of Δ[k] into 2k non-degenerate k-simplices, as was shown in
Segal’s work [Seg73]. For example, the subdivision of Δ[2] given by esd(Δ[2]) is
depicted as

11

01 12

00 02 22.

Example 2.3. The edgewise subdivision of the nerve of a category A is isomorphic
to the nerve of an associated familiar category. Recall that, given a category A,
its twisted arrow category Tw(A) is the category whose objects are the morphisms
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THE EDGEWISE SUBDIVISION CRITERION FOR 2-SEGAL OBJECTS 73

f : a → b in A, and whose morphisms from f to g are given by commutative squares

a c

b d.

f g

Then there is an isomorphism of simplicial sets

esd(NA) ∼= NTw(A),

as explained by Barwick in [Bar13, §2.6], specializing some of the ideas and con-
structions from the proof of Quillen’s Theorem A [Qui73].

This example serves as inspiration for the definition of a twisted arrow quasi-
category (see [Lur17, §5.2.1] and [Bar13, §2.6], with some differing conventions),
which is defined precisely as the simplicial set esd(Q) for any quasi-category Q.

In particular, the previous example shows that the edgewise subdivision of the
nerve of a category is always given by the nerve of a category. An example exhibiting
a similar phenomenon, due to Segal, is that of partial topological monoids, which
we now recall.

Example 2.4. In [Seg73], Segal introduced partial topological monoids and their
classifying spaces to relate configuration spaces and iterated loop spaces. Recall
that a partial topological monoid is a space M together with a subspace M2 ⊂
M × M and a map M2 → M , written as (m1,m2) �→ m1 · m2, which we think
of as a multiplication when it is defined. This partially defined multiplication is
assumed to be unital and associative whenever both sides of the usual associativity
condition are defined.

Segal defines the nerve of M to be the simplicial space BM = M• where M0 = ∗
and

Mn = {(m1, . . . ,mn) ∈ M×n : for 1 ≤ i < n, (m1 · · ·mi,mi+1) ∈ M2}

with faces and degeneracies given by partial multiplication and insertions of the
unit, respectively. Moreover, he defines a topological category C (M) whose ob-
jects are the elements of M and whose morphisms m → m′ are given by pairs
of elements m1,m2 ∈ M such that m1 · m · m2 = m′. In particular, every mor-
phism can be identified with a triple (m1,m,m2) ∈ M3. Using this formulation,
we can express composition of morphisms (m1,m,m2) and (n1,m1 · m · m2, n2)
by (n1 ·m1,m,m2 · n2). Note that triple is a well-defined element in M3 since
(n1 ·m1) ·m · (m2 · n2) = n1 · (m1 ·m ·m2) · n2 ∈ M . Associativity of composition
follows from associativity of the partial multiplication in the monoid.

One can verify that these two constructions are related precisely by edgewise
subdivision, via an isomorphism

(2.5) esd(BM) ∼= NC (M).

Again, we see that in this case the output of the edgewise subdivision functor is
the nerve of a category. Note after that taking geometric realization on both sides
this is precisely the statement in [Seg73, Proposition 2.5].

Our main result is that this feature of both examples, that the edgewise sub-
division can be described as a nerve of a (possibly topological) category, is not a
coincidence. To state this result, however, we need to describe the appropriate
structure for the input of the edgewise subdivision functor, that of 2-Segal objects.
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74 J. E. BERGNER ET AL.

We now review this structure, referring the reader to [DK12] for more detailed
constructions and proofs.

Segal and 2-Segal objects are often considered in the category of simplicial sets
with its original model structure, due to Quillen (Theorem 3 in [Qui67, §II.3]).
However, since our main result holds in more generality, we recall the definitions
of Segal and 2-Segal objects in a combinatorial model category M as, e.g., in
[Lur09, A.2.6]. We choose to work in this setting to simplify technical arguments,
but we could instead work in a more general setting, such as in an (∞, 1)-category
M with finite limits; see Remark 3.4.

The definitions which we give here are not those from the original sources, namely
[Rez01, §4] and [DK12, Definition 2.3.1], respectively, but they are equivalent and
are better suited for the purposes of this paper.

Definition 2.6. A Segal object in M is a simplicial object in M such that, for
every m ≥ j ≥ 1, the Segal map

βm
j : Xm → Xj

h
×
X0

Xm−j ,

induced by the maps αj
m : [j] → [m], given by i �→ i for all 0 ≤ i ≤ j, and

α̃j
m : [m− j] → [m], given by i �→ i+ j, for all 0 ≤ i ≤ m− j, is a weak equivalence.

Graphically, this map corresponds to the decomposition of the interval [0,m]
with m segments into the intervals [0, j] and [j,m],

(2.7)
0 1 m.m− 1

· · ·
j − 1 j j + 1

· · ·

In [DK12], Dyckerhoff and Kapranov generalized this notion to that of 2-Segal
objects, for which the maps above are generalized to ones induced by polygonal
decompositions of polygons. Given any (n + 1)-gon and any decomposition T of
that polygon by a single diagonal between vertices indexed by i and j, as depicted
in

2
1

0

n

n− 1
n− 2

i

j

· · · · · ·

· · · · · ·

m− 2 ,
m− 1

m

m+ 1

m+ 2
m+ 3

there is a natural inclusion of simplicial sets

Δ[0, . . . , i, j, . . . , n] �
∆[i,j]

Δ[i, . . . , j] ↪→ Δ[n].

We make use of the following definition of a 2-Segal space, which is proven to be
equivalent to the original one in [DK12].

Definition 2.8. A 2-Segal object in M is a simplicial object such that, for every
n ≥ 3 and 0 ≤ i < j ≤ n, the induced map

γn
i,j : Xn → X{0,...,i,j,...,n}

h
×

X{i,j}

X{i,...,j}

is a weak equivalence.
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THE EDGEWISE SUBDIVISION CRITERION FOR 2-SEGAL OBJECTS 75

An inductive argument can be used to show that it suffices that these maps be
weak equivalences in the special cases when i = 0 or j = n (see [DK12, Proposition
2.3.2]).

Remark 2.9. The morphisms in Δ which induce the inclusions Δ[0, . . . , i, j, . . . , n]
↪→ Δ[n] and Δ[i, j] ↪→ Δ[i, . . . , j] are often called active (or generic) morphisms,
whereas the morphisms Δ which induce the inclusions Δ[i, . . . , j] ↪→ Δ[n] and
Δ[i, j] ↪→ Δ[0, . . . , i, j, . . . , n] are referred to as inert (or free). The 2-Segal maps
γn
i,j can hence be thought of as arising from the active-inert pushout square in Δ,

(2.10)

[1] [n− j + i+ 1]

[j − i] [n] .

An equivalent reformulation of the 2-Segal condition is to require all active-inert
pushouts in Δ to be sent to homotopy pullbacks; for a discussion see also [GCKT18,
Sections 2, 3].

We can observe that the inputs to edgewise subdivision in the above examples
have the common structure of 2-Segal objects. We can now state our main result
precisely.

Theorem 2.11. Let Xbe a simplicial object in a combinatorial model category M.

Then X is 2-Segal if and only if esd(X) is Segal.

The “if” direction of this theorem is straightforward. However, the “only if”
direction is more surprising. Note that it is similar to the Path Space Criterion
([DK12, Theorem 6.3.2] or [GCKT18, Proposition 4.9]). We devote the next section
to the proof, after revisiting one of our examples.

Example 2.12. The nerve of any category internal to topological spaces is a Segal
object in topological spaces, so in particular NC (M) is. We showed in [BOO+18b,
Example 2.1] that BM is a 2-Segal topological space. Thus (2.5) can be regarded
as a special case of Theorem 2.11.

3. Proof of the main theorem

We now give the proof of Theorem 2.11. Our strategy is to exhibit the 2-Segal
condition for X in terms of the Segal condition for esd(X) and, conversely. Our
proof is geometric in nature.

Proof of Theorem 2.11. Assume that X is 2-Segal. We need to show that esd(X)
satisfies the Segal condition, namely, that for all m ≥ 2 and 0 < j < m, the map

βm
j : esd(X)m −→ esd(X)j

h
×

esd(X)0

esd(X)m−j

induced by αj
m and α̃j

m is a weak equivalence.
Using the definition of ε, we can represent the maps

[2j + 1] ∼= ε([j])
ε(αj

m)
−−−−→ ε([m]) ∼= [2m+ 1], and

[2(m− j) + 1] ∼= ε([m− j])
ε(α̃j

m)
−−−−→ ε([m]) ∼= [2m+ 1]
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76 J. E. BERGNER ET AL.

as

j′ < · · · < 0′ < 0 < · · · < j �−→ j′ < · · · < 0′ < 0 < · · · < j and

(m− j)′ < · · · < 0′ < 0 < · · · < m− j �−→ m′ < · · · < j′ < j < · · · < m,

respectively. Thus, βm
j is exactly the 2-Segal map γ2m+1

m−j,m+j+1 for the following

polygonal decomposition of the (2m+2)-gon, which arises as a “cylinder” over the
one-dimensional decomposition of the interval from (2.7):

2
1

0

0′

1′
2′.

j

j′

· · ·· · ·

· · ·· · ·

m− 2
m− 1

m

m′

(m− 1)′
(m− 2)′

Conversely, suppose esd(X) is Segal. Thus, we know that for subdivisions of the
(2m+ 2)-gon as above

2
1

0

2m+ 1

2m
2m− 1

m− j

m+ j + 1

· · · · · ·

· · · · · ·

m− 2
m− 1

m

m+ 1

m+ 2
m+ 3

the 2-Segal map

γ2m+1
m−j,m+j+1 : X2m+1

�
−→ X2m−2j+1

h
×
X1

X2j+1

is indeed a weak equivalence.
It remains to check the 2-Segal condition for subdivisions of an arbitrary (n+1)-

gon into two polygons by adding a new edge that involves one of the vertices labeled
with 0 or n. Since the other situation is symmetric, it is enough to check the cases
when the new edge starts at 0. Fix n ≥ 3 and 1 < k < n, and consider the addition
of the edge between 0 and k:

· · · · · ·
n− 2

n− 1

n

0 ,

1

2
3k

i.e., we need to show that the induced map

γn
0,k : Xn −→ Xn−k+1

h
×
X1

Xk

is a weak equivalence.
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Consider the following embedding of this polygon into a larger polygon together
with a decomposition which is of the above form:

2

1

0

2n− 1

2n− 2

2n− 3

n− k

n+ k − 1

· · · · · ·

· · · · · ·

n− 3 .

n− 2

n− 1

n

n+ 1

n+ 2

n− 2

n− 1
n

0

1
2

3k

This decomposition determines the following commutative diagram in Δ, where
the bottom face is given by the decomposition of the smaller polygon, the top face
is given by the decomposition of the larger polygon by the red edge (from n− k to
n + k − 1), and the vertical maps describe precisely the embedding of the smaller
polygon into the larger one and their decompositions

(3.1)

[2n− 1] [2k − 1]

[2n− 2k + 1] [1]

[n] [k]

[n− k + 1] [1].

δ

The map δ is a composite of faces explicitly given by

δ(i) =

{
n− k if i = 0,

i+ n− 1 if i > 0.

The other vertical maps are given by similar inclusions. There is another cube
with the same top and bottom faces, coming from the collapse of the non-dashed
polygon edges in the inclusion:

(3.2)

[2n− 1] [2k − 1]

[2n− 2k + 1] [1]

[n] [k]

[n− k + 1] [1].

σ

Here σ is a composite of degeneracy maps given by

σ(i) =

{
0 if i ≤ n− 1,

i− n+ 1 if i ≥ n.

The other vertical maps are similarly given by composites of degeneracies. As
can be seen geometrically, σ ◦ δ is equal to the identity map, and similarly for
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78 J. E. BERGNER ET AL.

the corresponding composites of the other vertical maps. Thus stacking the two
commutative cubes in Δ we obtain a commutative diagram in M,

(3.3)

Xn Xn−k+1

h
×
X1

Xk

X2n−1 X2n−2k+1

h
×
X1

X2k−1

Xn Xn−k+1

h
×
X1

Xk.

γn
0,k

σ∗

id id
γ
2n−1

n−k,n+k−1

�

δ∗

γn
0,k

Hence γn
0,k is a retract of the map γ2n−1

n−k,n+k−1 which is an equivalence by assump-
tion. It follows from the axioms of a model category that γn

0,k is a weak equivalence,
as desired. �

Remark 3.4. Note that the argument relies on the fact that stacking the diagrams
(3.1) and (3.2) leads to a cube in Δ whose vertical maps are identities. Therefore,
we can interpret (3.3) for an (∞, 1)-category M with finite limits and arrive at the
same conclusion by using that retracts of limits are limits.

Remark 3.5. We obtained the retract diagram (3.3) using the more geometric ap-
proach to 2-Segal objects. Thinking of 2-Segal objects in terms of active and inert
maps, as described in Remark 2.9, suggests another strategy for getting this di-
agram. Any inert map can be written as a composite of top and bottom coface
maps, and such a factorization could be used to find the vertical maps in (3.1). In
a similar way, we could write the vertical maps in (3.2) in terms of codegeneracies.

4. Further examples

In this section we give some examples which showcase our main theorem. The
first two examples, which are well known to experts, precisely identify both sides
and illustrate the statement. We conclude with a non-example arising from the
category of retractive spaces.

Example 4.1. Given an exact category C = (C,M, E), as in [Qui73, §2] or [Wei13,
IV], Quillen’s Q-construction is a category Q(C) whose objects are the objects of
C and whose morphisms from an object a to an object c are given by equivalence
classes of spans

a

b

c,

∈ ME �
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THE EDGEWISE SUBDIVISION CRITERION FOR 2-SEGAL OBJECTS 79

where two such spans are identified if there is an isomorphism of middle objects
both over a and over c. Composition of two equivalence classes of spans along a
common object is given by pulling back, as displayed

a

b

c

d

e .

b×
c
d

In [Wal85], Waldhausen defines his S•-construction for exact categories and
shows in [Wal85, §1.9] that the Q-construction is compatible with edgewise subdi-
vision in that there is a levelwise weak equivalence of simplicial spaces

esd(S•C) 
 NQ(C),

where N denotes what today is called Rezk’s classifying diagram for categories
from [Rez01, §3.5], which is a Segal space. Thus, S•C is a 2-Segal space, which
was proven directly in [DK12] and was the original motivation for the definition of
2-Segal spaces.

Edgewise subdivision also recovers the complete Segal spaces of spans and co-
spans in a stable quasi-category.

Example 4.2. Given a quasi-category with finite limits Q, there are several con-
structions for an (∞, 1)-category of spans in Q, such as the quasi-category of spans
as constructed in [DK12, §10], and the complete Segal space of spans Span(Q),
of [BR, Definition 3.3] which is also used in [Hau17, Theorem 1.2]. One can de-
fine analogous constructions for cospans in a quasi-category with finite colimits,
denoted by coSpan(Q). If S• denotes Waldhausen’s construction for stable quasi-
categories (as in [Bar13], [Bar16], [BGT13], or [Lur17]), Barwick and Rognes show
in [BR, Proposition 3.7] that these constructions are compatible with edgewise
subdivision, in that there are levelwise equivalences of simplicial spaces

Span(Q) 
 esd(S•Q) 
 coSpan(Q).

This gives an alternative proof that S•Q is 2-Segal, and hence recovers the result
from [DK12].

Unlike the flavors of S•-contructions discussed so far, the Waldhausen construc-
tion of an arbitrary Waldhausen category need not be a 2-Segal space. Let us look
at a specific example.

Example 4.3. Our criterion can be used to show that the S•-construction of the
Waldhausen category of retractive spaces over X need not be a 2-Segal space, since
its edgewise subdivision is not always a Segal space. Let us look more closely at
what goes wrong in this situation.

Given a space X, its category of retractive spaces is the category Rf (X) whose
objects are retractive spaces (Z, i : X → Z, r : Z → X) over X, subject to the rel-
ative finiteness condition that (Z, i(X)) is a finite relative CW-complex, and maps
that preserve the structure. As proven in [Wal85], the category Rf (X) can be
given the structure of a Waldhausen category where cofibrations and weak equiv-
alences are created in the underlying category of CW-complexes. In the special
case when X is a singleton, we get the category Rf (∗) of retractive spaces over
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80 J. E. BERGNER ET AL.

a point, which is just the category of finite pointed CW-complexes and pointed
cellular maps, with cellular embeddings as cofibrations and homotopy equivalences
as weak equivalences.

In the context of the S•-construction for Waldhausen categories from [Wal85],
one can conclude from Theorem 2.11 that S•Rf (X) is a 2-Segal space if and only
if its edgewise subdivision Y (X) := esd(S•Rf (X)) is a Segal space. We claim that
if X is a finite CW-complex, then the simplicial space Y (X) is never a Segal space.
Here, we demonstrate that one of the Segal maps for Y (∗) is not an equivalence;
the argument can be adapted for more general spaces X.

Let P be a finite two-dimensional CW-complex which is not contractible but
whose suspension is contractible (for example, the classifying space of the perfect
group from [Hat02, Example 2.38]). Using the notation CP for the cone on P ,
consider the following diagrams in Rf (∗), which we denote by D and D′:

∗ P

∗ ∗

P

∗

P

∗

∗

∗

CP

ΣP

ΣP

ΣP

∗

CP

ΣP

ΣP

ΣP

∗

∗

∗ P

∗ ΣP

CP

∗

CP

ΣP

∗

∗

CP

ΣP

∗

∗

∗

CP

ΣP

∗

∗

∗

∗.

They define elements of S5(Rf (∗)) = esd(S2(Rf (∗))) = Y (∗)2. Consider their
classes in π0(Y (∗)2). We observe that, since P is not contractible, D and D′

cannot define the same class in π0(Y (∗))2, i.e.,

[D] �= [D′] ∈ π0(Y (∗))2.

Their images under the π0 of the Segal map of Y (∗),

π0

(
β2
1

)
: π0(Y (∗)2) → π0

(
Y (∗)1

h
×

Y (∗)0

Y (∗)1

)
,

can be computed as the classes of the diagrams

∗ P

∗ ∗

∗

∗

∗

∗

CP

ΣP

ΣP

ΣP

∗

CP

ΣP

∗

∗

∗ P

∗ ΣP

∗

ΣP

∗

∗

CP

ΣP

∗

∗

∗

CP

ΣP

∗

∗.
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THE EDGEWISE SUBDIVISION CRITERION FOR 2-SEGAL OBJECTS 81

Since the suspension of P is contractible, the diagrams β2
1(D) and β2

1(D
′) define

the same class as the class of the constant diagram at a point, i.e.,

π0(β
2
1)([D]) = [β2

1(D)] = [β2
1(D

′)] = π0(β
2
1)([D

′]) ∈ π0

(
Y (∗)1

h
×

Y (∗)0

Y (∗)1

)
.

As a consequence, the function π0(β
2
1) is not injective, so the Segal map

β2
1 : Y (∗)2 → Y (∗)1

h
×

Y (∗)0

Y (∗)1

cannot be an equivalence, and therefore Y (∗) cannot be a Segal space.
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