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Abstract— This study illustrates the concept of threshold
pressure sensing using the parametric resonance of an
electrostatic levitation mechanism. The electrostatic
levitation allows the oscillations in the opposite direction of
the substrate, thereby not limited to small gaps. The
pressure sensor detects the pressure drop below a threshold
value by triggering the parametric resonance with
significant peak to peak dynamic amplitude changes (~ 25
pm). This detection relies on the fact that the instability
region expands when the pressure drop forces the
amplitude jump up to the higher oscillation branch. This
significant change in the resonator amplitude can be related
to a large capacitance variation indicating the threshold
pressure. A mathematical model of the resonator is
presented to show the working principle of the sensor
through frequency response. Our experimental results
show that the threshold pressure the sensor detects, can be
adjusted by the AC voltage it receives.
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L INTRODUCTION

Micro-electromechanical systems (MEMS) have received
great attention in the last few decades with applications in the
field of energy harvesting [1], Pressure sensing [2], actuation,
and many others [3]. During early 1960’s couple of American
leading companies (Bell Labs and Honeywell research center)
demonstrated the first silicon diaphragm pressure sensor [4].
The conventional design of the MEMS pressure sensor is based
on the change of capacitance, resistance, or frequency shifts
because of variation in displacement or stiffness of a diaphragm
exposed to external pressure. Exploiting nonlinearities to
improve sensing in electrostatic MEMS have been recently
explored [5-7].

In this study, we have proposed a pressure sensor which is
based on parametric resonance using repulsive force mechanism
(fig.1) [8]. The layout of the pressure sensor consists of a
cantilever beam (green) suspended above the three fixed
electrodes (blue). Combined AC and DC voltage is applied to
the two side electrodes that creates a net upward force on the
beam. The force is in the upward direction rather than downward
because the ground center electrode acts as a shield to the bottom
surface of the beam causing the net electrostatic force to change
the directions. As a result, the sensor is capable of eliminating

the risk of pull-in allowing much higher amplitudes caused by
nonlinear effects such as parametric resonance [9]. The working
principle of the threshold pressure sensor is to trigger an action
when the pressure drops below a certain value. Various
applications that can benefit from this capability includes
switches for oxygen masks in planes, or triggers for HVAC
compressors when the pressure drops below a certain value.

Fig.1 The layout of the pressure sensor electrodes with cantilever
boundary condition.

We present the feasibility of threshold pressure sensing
through simulations and measurements. The pressure drop
directly changes the quality factor. Through simulation studies,
we have shown how the quality factor influences the frequency
response by expanding the instability region. The expansion in
the instability region forces the oscillation to jump from a low to
high branch when the pressure drops below a threshold. This
observation qualitatively explains the blow up of the amplitude
when the pressure drops that is captured by a laser vibrometer.
The organization of this paper is followed respectively: model
derivation, simulation results, experimental results, and
conclusion.

1L MODEL DERIVATION

Euler-Bernoulli beam theory is used to model the pressure
sensor. The governing partial differential equation is given by
[9],
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where w is in the z-direction beam displacement, / is the
moment of inertia, V' is the side electrode voltage, and f, is the
electrostatic force at 1V (side electrode voltage). The
electrostatic force profile is determined with 2D COMSOL



simulation [9]. Using the parameter from Table 1, Eq. (1) is
nondimensionalized, which provides equation (2). The beam

has length L =500 um elastic modulus E = 165 Gpa ,
density p =2330kg/m?® Poisson’s ratio v =0.22
respectively.
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where p;are the constants from the 5™ order polynomial fit on
the electrostatic force [9].

Table 1. Parameters for Nondimensionalization

I1I1. SIMULATION RESULTS

Because of squeeze film effect, the spring coefficient of air
will be considerable. However, to provide a qualitative
explanation of the pressure sensing concept, we ignore the air
spring effect and obtain the frequency response of the sensor.
The numerical shooting technique is used to plot the frequency
response curve to illustrate the parametric resonance. The
pressure is inversely proportional to the quality factor.
Decreasing the pressure (increasing the quality factor) causes a
considerable peak of the displacement. Time responses, as well
as steady state phase portraits of the pressure sensor, are
presented for comparison. Two Quality factors O=103 and
0=1030 have been chosen to illustrate the concept of threshold
pressure sensing.

Parameter Substitution
x-direction position X=x/L
z-direction position w =w/h
Time t =t/T

. Ak cL*
Damping ¢ o7
Time constant (s) T = \/pAL*/EI
Force constant (m/N) r, = L*/EIh

After applying Galerkin’s method, Eq. (2) gives a set of coupled
ordinary differential equations (ODE). The beam response can
be approximated by

(1) ~ Z 4O () ®)

where W(x,t) depends on a variable in space ¢;(x) (mode
shape) and a time variable g;(t) . n is the number of degrees of
freedom (DOF). The mode shapes for the cantilever are stated as
¢;(x) = cosh(a;x) — cos(a;x) — og;(sinh(a;x) — sin(a;x))

4
are the square root of nondimensional natural
frequencies and constant o; are obtained for the cantilever
boundary conditions.

where «;

Considering the first mode approximation, Eq. (2) becomes
5

myGy +c1qy + kiqy + 1 V? ij‘ﬁ =0 (5)
j=0
Where,
. 1 .
fi = pjh’f ¢/ dx (6)
0

A linear damping model is used with Eqn. (5). The damping
coefficient can be estimated by the below Eq. (7) with the
quality factor Q and the first natural frequency a?.

)

Frequency [kHz]

'E 25

U It Q=103
= — Q=1030
c 201

2 Ty

8151 D

2 AN

2 - e e et ¢
@210~ : : - :

o 234 23.6 23.8 24 242 24.4

Fig.2 Frequency response at about 160 Vpc and 16.3 Vc.
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Fig.3 Displacement time response (a) and phase portrait (b) at about 160 V¢
and 16.3 V¢, 23.58 kHz and Q=103 showing a considerable drop of
displacement.
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Fig.4 Displacement time response (a) and phase portrait (b) at about 160 Vpc
and 16.3 V¢, 23.58 kHz and 0=1030 showing parametric resonance with
large amplitude.
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The frequency response curve (fig.2) indicates for a
frequency range, there are two stable branches (high and low).
The increase in the quality factor shortens this range. That means
if the operating frequency is chosen in that range and initially
the response lies on the low stable branch, certain increase in the
quality factor (drop of the pressure) can cause the low oscillation
to become unstable. This instability pushes the beam to jump up
to its higher branch oscillation. The frequency of 23.58 kHz



(twice the natural frequency ~12 kHz) is chosen as the excitation
frequency to compare the time responses and phase portraits for
the two different quality factors (fig. 3-4). When we drive the
system at high pressure (Q =103 ) there is a stable oscillation near
the static position (fig. 3). But if the pressure drops below to a
certain threshold value (in our modeling O =1030) the system
loses its stability in the lower branch and the system will jump
up to the higher branch (~25 um) of the frequency response
curve and shows parametric resonance (fig. 4). This blow up of
amplitude causes a large change in capacitance that can be
detected or can trigger an action (open/close switch) for different
safety purposes. It is noted that this large amplitude is achieved
despite the anchor height of 2 um. This travel range is possible
because the large DC voltage of 160 V on the side electrodes
causes the beam to travel 14 um above the bottom electrode that
enables the peak to peak dynamic amplitude as high as 28 um.

V. EXPERIMENTAL RESULTS

Fig. 5 shows the schematic diagram of the experimental setup.
MSA-500 laser vibrometer was used for the dynamic
measurement. MATLAB data acquisition toolbox and a
National Instrument USB 6366 Data acquisition tool were used
for signal processing and acquiring data from the vibrometer.
Krohn-Hite 7600 Wideband Power Amplifier is used to apply
superimposed DC offset voltage and for the amplification of the
AC voltage. The fabrication of the resonator was done by
MEMSCAP [10].
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Fig.5 Experimental setup of the MEMS pressure sensor.

To demonstrate the tunability of the threshold pressure,
at a fixed excitation frequency 23.58 kHz and at the fixed Vpc
=160V, we have varied the pressure and the AC voltage to find
the threshold pressure where parametric resonance is triggered
(fig. 6a). The figure shows how the sensor can be set to detect
drop of pressure below a certain pressure value. For example, if
the pressure of interest is 400 Pa, the AC voltage of the sensor
should be set to 24 V to activate the parametric resonance at
pressures equal to or below 400 Pa. Qualitative validation of
activation of parametric resonance can be observed in
experiments (fig. 6b) and simulations (fig. 4a). When AC=16.3
V, in the experiments, the pressure drop below 133.322 Pa
causes the blow up in the amplitude, while the simulation shows
the quality factor in excess of 1030 leads to the sudden
amplitude increase. Both of these observations indicate the
expansion of instability region when the pressure drops that is
used to illustrate the threshold pressure sensing concept. In order
to obtain a quantitative agreement between the experiments and
simulations, more in depth analysis must be done on the fluid-
solid interactions that can cover small as well as large oscillation
ranges.
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Fig.6 (a) AC voltage vs pressure curve from activation of parametric
resonance (b) beam tip velocity time series measured by a laser vibrometer
showing parametric resonance at 133.322 Pa pressure and 160 Vpc and 16.3
VA(.

V. CONCLUSION

In conclusion, we illustrated the concept of pressure
sensing based on parametric resonance for an electrostatic
levitation MEMS device. The electrostatic levitation
mechanism enables large oscillations without the danger of
pull-in and hitting the lower electrode. The parametric
resonance with significant oscillation amplitude is activated at
twice the natural frequency when the pressure drops below a
threshold. This large amplitude oscillation can create a jump in
the capacitance and its detection can create alarm or trigger an
action. The threshold pressure is tuned by varying the AC
voltage of the sensor to offer a versatile pressure sensor for
different applications.
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