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Abstract— This study illustrates the concept of threshold 
pressure sensing using the parametric resonance of an 
electrostatic levitation mechanism. The electrostatic 
levitation allows the oscillations in the opposite direction of 
the substrate, thereby not limited to small gaps. The 
pressure sensor detects the pressure drop below a threshold 
value by triggering the parametric resonance with 
significant peak to peak dynamic amplitude changes (~ 25 
𝝁𝒎). This detection relies on the fact that the instability 
region expands when the pressure drop forces the 
amplitude jump up to the higher oscillation branch. This 
significant change in the resonator amplitude can be related 
to a large capacitance variation indicating the threshold 
pressure. A mathematical model of the resonator is 
presented to show the working principle of the sensor 
through frequency response. Our experimental results 
show that the threshold pressure the sensor detects, can be 
adjusted by the AC voltage it receives.  
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I. INTRODUCTION  
Micro-electromechanical systems (MEMS) have received 

great attention in the last few decades with applications in the 
field of energy harvesting [1], Pressure sensing [2], actuation, 
and many others [3]. During early 1960’s couple of American 
leading companies (Bell Labs and Honeywell research center) 
demonstrated the first silicon diaphragm pressure sensor [4]. 
The conventional design of the MEMS pressure sensor is based 
on the change of capacitance, resistance, or frequency shifts 
because of variation in displacement or stiffness of a diaphragm 
exposed to external pressure. Exploiting nonlinearities to 
improve sensing in electrostatic MEMS have been recently 
explored [5-7]. 

In this study, we have proposed a pressure sensor which is 
based on parametric resonance using repulsive force mechanism 
(fig.1) [8]. The layout of the pressure sensor consists of a 
cantilever beam (green) suspended above the three fixed 
electrodes (blue). Combined AC and DC voltage is applied to 
the two side electrodes that creates a net upward force on the 
beam. The force is in the upward direction rather than downward 
because the ground center electrode acts as a shield to the bottom 
surface of the beam causing the net electrostatic force to change 
the directions. As a result, the sensor is capable of eliminating 

the risk of pull-in allowing much higher amplitudes caused by 
nonlinear effects such as parametric resonance [9]. The working 
principle of the threshold pressure sensor is to trigger an action 
when the pressure drops below a certain value. Various 
applications that can benefit from this capability includes 
switches for oxygen masks in planes, or triggers for HVAC 
compressors when the pressure drops below a certain value. 

 
Fig.1 The layout of the pressure sensor electrodes with cantilever 

boundary condition. 
 

We present the feasibility of threshold pressure sensing 
through simulations and measurements. The pressure drop 
directly changes the quality factor. Through simulation studies, 
we have shown how the quality factor influences the frequency 
response by expanding the instability region. The expansion in 
the instability region forces the oscillation to jump from a low to 
high branch when the pressure drops below a threshold. This 
observation qualitatively explains the blow up of the amplitude 
when the pressure drops that is captured by a laser vibrometer. 
The organization of this paper is followed respectively: model 
derivation, simulation results, experimental results, and 
conclusion. 

II. MODEL DERIVATION 
 

Euler-Bernoulli beam theory is used to model the pressure 
sensor. The governing partial differential equation is given by 
[9],  
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where 𝑤  is in the 𝑧 -direction beam displacement, I is the 
moment of inertia, V is the side electrode voltage, and 𝑓𝑒 is the 
electrostatic force at 1 𝑉  (side electrode voltage). The 
electrostatic force profile is determined with 2D COMSOL 



simulation [9]. Using the parameter from Table 1, Eq. (1) is 
nondimensionalized, which provides equation (2). The beam 
has length  𝐿 = 500 𝜇𝑚  elastic modulus  𝐸 = 165 𝐺𝑝𝑎 , 
density  𝜌 = 2330 𝑘𝑔 𝑚3⁄ Poisson’s ratio 𝜈 = 0.22 
respectively. 
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where 𝑝𝑗are the constants from the 5th order polynomial fit on 
the electrostatic force [9]. 
 

Table 1. Parameters for Nondimensionalization 
 
Parameter   Substitution 

𝑥-direction position   𝑥̂ = 𝑥 𝐿⁄  
𝑧-direction position   𝑤̂  = 𝑤 ℎ⁄  
Time     𝑡̂  = 𝑡 𝑇⁄  
Damping    𝑐̂∗ =

𝑐𝐿4

𝐸𝐼𝑇
 

Time constant (s)   𝑇 = √𝜌𝐴𝐿4 𝐸𝐼⁄  
Force constant (𝑚 𝑁)⁄    𝑟1 = 𝐿

4 𝐸𝐼ℎ⁄  
 
After applying Galerkin’s method, Eq. (2) gives a set of coupled 
ordinary differential equations (ODE). The beam response can 
be approximated by 

                   𝑤̂(𝑥, 𝑡) ≈ ∑𝑞𝑖(𝑡)𝜙𝑖

𝑛
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where 𝑤̂(𝑥, 𝑡)  depends on a variable in space 𝜙𝑖(𝑥)   (mode 
shape) and a time variable 𝑞𝑖(𝑡) . n is the number of degrees of 
freedom (DOF). The mode shapes for the cantilever are stated as 

 
𝜙𝑖(𝑥) = cosh(𝛼𝑖𝑥) − cos(𝛼𝑖𝑥) − 𝜎𝑖(sinh(𝛼𝑖𝑥) − sin(𝛼𝑖𝑥)) 
                            (4)  
where  𝛼𝑖   are the square root of nondimensional natural 
frequencies and constant 𝜎𝑖  are obtained for the cantilever 
boundary conditions. 

 
Considering the first mode approximation, Eq. (2) becomes 
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Where, 
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A linear damping model is used with Eqn. (5). The damping 
coefficient can be estimated by the below Eq. (7) with the 
quality factor Q and the first natural frequency 𝛼12. 
      

             𝑐 =
𝛼1
2

𝑄
                                                                               (7) 

 

III. SIMULATION RESULTS 
Because of squeeze film effect, the spring coefficient of air 

will be considerable. However, to provide a qualitative 
explanation of the pressure sensing concept, we ignore the air 
spring effect and obtain the frequency response of the sensor. 
The numerical shooting technique is used to plot the frequency 
response curve to illustrate the parametric resonance. The 
pressure is inversely proportional to the quality factor. 
Decreasing the pressure (increasing the quality factor) causes a 
considerable peak of the displacement. Time responses, as well 
as steady state phase portraits of the pressure sensor, are 
presented for comparison. Two Quality factors Q=103 and 
Q=1030 have been chosen to illustrate the concept of threshold 
pressure sensing.  

 

 

Fig.2 Frequency response at about 160 VDC and 16.3 VAC. 

 
       a)                                                b) 

Fig.3 Displacement time response (a) and phase portrait (b) at about 160 VDC 
and 16.3 VAC, 23.58 kHz and Q=103 showing a considerable drop of 

displacement. 
 

 
a)                                          b) 

Fig.4 Displacement time response (a) and phase portrait (b) at about 160 VDC 
and 16.3 VAC, 23.58 kHz and Q=1030 showing parametric resonance with 

large amplitude. 
 

The frequency response curve (fig.2) indicates for a 
frequency range, there are two stable branches (high and low). 
The increase in the quality factor shortens this range. That means 
if the operating frequency is chosen in that range and initially 
the response lies on the low stable branch, certain increase in the 
quality factor (drop of the pressure) can cause the low oscillation 
to become unstable. This instability pushes the beam to jump up 
to its higher branch oscillation. The frequency of 23.58 kHz 



(twice the natural frequency ~12 kHz) is chosen as the excitation 
frequency to compare the time responses and phase portraits for 
the two different quality factors (fig. 3-4). When we drive the 
system at high pressure (Q =103) there is a stable oscillation near 
the static position (fig. 3). But if the pressure drops below to a 
certain threshold value (in our modeling Q =1030) the system 
loses its stability in the lower branch and the system will jump 
up to the higher branch (~25 𝜇𝑚)  of the frequency response 
curve and shows parametric resonance (fig. 4). This blow up of 
amplitude causes a large change in capacitance that can be 
detected or can trigger an action (open/close switch) for different 
safety purposes. It is noted that this large amplitude is achieved 
despite the anchor height of 2 𝜇𝑚. This travel range is possible 
because the large DC voltage of 160 V on the side electrodes 
causes the beam to travel 14 𝜇𝑚 above the bottom electrode that 
enables the peak to peak dynamic amplitude as high as 28 𝜇𝑚.  

IV. EXPERIMENTAL RESULTS 
Fig. 5 shows the schematic diagram of the experimental setup. 
MSA-500 laser vibrometer was used for the dynamic 
measurement. MATLAB data acquisition toolbox and a 
National Instrument USB 6366 Data acquisition tool were used 
for signal processing and acquiring data from the vibrometer. 
Krohn-Hite 7600 Wideband Power Amplifier is used to apply 
superimposed DC offset voltage and for the amplification of the 
AC voltage. The fabrication of the resonator was done by 
MEMSCAP [10]. 

 
Fig.5 Experimental setup of the MEMS pressure sensor. 

 To demonstrate the tunability of the threshold pressure, 
at a fixed excitation frequency 23.58 kHz and at the fixed VDC 
=160V, we have varied the pressure and the AC voltage to find 
the threshold pressure where parametric resonance is triggered 
(fig. 6a). The figure shows how the sensor can be set to detect 
drop of pressure below a certain pressure value. For example, if 
the pressure of interest is 400 Pa, the AC voltage of the sensor 
should be set to 24 V to activate the parametric resonance at 
pressures equal to or below 400 Pa.  Qualitative validation of 
activation of parametric resonance can be observed in 
experiments (fig. 6b) and simulations (fig. 4a). When AC= 16.3 
V, in the experiments, the pressure drop below 133.322 Pa 
causes the blow up in the amplitude, while the simulation shows 
the quality factor in excess of 1030 leads to the sudden 
amplitude increase. Both of these observations indicate the 
expansion of instability region when the pressure drops that is 
used to illustrate the threshold pressure sensing concept. In order 
to obtain a quantitative agreement between the experiments and 
simulations, more in depth analysis must be done on the fluid-
solid interactions that can cover small as well as large oscillation 
ranges. 

 

 
a)                                b) 

Fig.6 (a) AC voltage vs pressure curve from activation of parametric 
resonance (b) beam tip velocity time series measured by a laser vibrometer 
showing parametric resonance at 133.322 Pa pressure and  160 VDC and 16.3 
VAC.   
 

V. CONCLUSION 
In conclusion, we illustrated the concept of pressure 

sensing based on parametric resonance for an electrostatic 
levitation MEMS device. The electrostatic levitation 
mechanism enables large oscillations without the danger of 
pull-in and hitting the lower electrode. The parametric 
resonance with significant oscillation amplitude is activated at 
twice the natural frequency when the pressure drops below a 
threshold. This large amplitude oscillation can create a jump in 
the capacitance and its detection can create alarm or trigger an 
action. The threshold pressure is tuned by varying the AC 
voltage of the sensor to offer a versatile pressure sensor for 
different applications. 
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