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While invariants of geometric or topological objects can
be of any sort, most modern invariants are algebraic in
nature. The goal of this article is to survey some of the
ways in which categorical algebra can be utilized to mea-
sure topological phenomena. This area of mathematics is
a relatively recent outcrop on a vast landscape of interac-
tions between algebra and geometry. The critical points
of a differentiable function or the Betti numbers and Euler
characteristic of a topological space are two among many
points of interest on this landscape, and the field of alge-
braic topology has its origins nearby. Venturing further,
Betti numbers were recognized by Noether and Vietoris as
the avatars of homology groups, a perspective that was not
immediately adopted but whose advantages are now clear.
Our route begins here and leads toward higher-categorical
algebra and the topological applications thereof.

Just as the theory of groups provides an abstraction and
formalism for mathematical structures observed in many
examples (e.g., symmetry or additivity), so the theory of
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categories abstracts and formalizes mathematical structure
observed in many applications (e.g., functoriality or natu-
rality). More recently, categories with additional structure
(monoidal, tensor, fusion, enriched, etc.) have found ap-
plications in geometry, representation theory, and physics.
Some of these applications have their roots in the deep
connections between topological invariants and categori-
cal structure. Our discussion below will give an overview
of these connections, outlining several of the key ideas but
focusing on stability (in topology) and symmetric mon-
oidal structure (in category theory).
A natural history of category theory. Even before cate-
gory theory emerged as a distinct mathematical perspec-
tive, the importance of functoriality—that some construc-
tions are preserved by morphisms—had been observed in
various settings. For example, given a ring 𝑅 we can con-
struct the ring of polynomials 𝑅[𝑥] with coefficients in 𝑅,
and any ring homomorphism 𝑓 ∶ 𝑅 → 𝑆 will induce a
ring homomorphism 𝑓∗ ∶ 𝑅[𝑥] → 𝑆[𝑥] by applying 𝑓 to
the coefficients. Similarly, the construction of the dual𝑉∗
of a vector space 𝑉 applies to morphisms as well as to ob-
jects, in the sense that any linear transformation 𝑇∶ 𝑉 →𝑊 induces a linear transformation (in the opposite direc-
tion!) 𝑇∗ ∶ 𝑊∗ → 𝑉∗.

Functoriality of the fundamental group is what proves
that there is no retraction of a disk 𝐷2 to its boundary cir-
cle 𝑆1. Such a retraction

𝑆1 → 𝐷2 → 𝑆1
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would necessarily induce a retraction on fundamental
groups ℤ → 0 → ℤ
such that the composite is equal to the identity homomor-
phism on the integers. This produces a contradiction, so
no such retraction can exist. This argument shows the util-
ity of a construction that preserves composition and iden-
tities—the very definition of functoriality.

Eilenberg and Mac Lane introduced category theory per
se to formalize the notion of natural transformation between
functors. Recall that a category C has objects and mor-
phisms, which we draw as vertices and directed edges, to-
gether with a composition law for morphisms and identity
morphisms satisfying associativity and unit axioms. Func-
tors are maps between categories, consisting of a function
sending objects to objects and a function sending mor-
phisms to morphisms, preserving composition and iden-
tities. Natural transformations are then morphisms be-
tween functors. One early motivation was to codify the
properties of the suspension isomorphism for generalized
(co)homology theories (see (2)), but natural transforma-
tions appear in every domain that functors do. For exam-
ple, there is always a ring homomorphism including 𝑅
into𝑅[𝑥] as the subring of constant polynomials. This ho-
momorphism is constructed “naturally” in the sense that
it commutes with all ring homomorphisms: the two com-
posites around the left square in Figure 1 are equal.

Likewise, there is an injective linear transformation
from a vector space to its double dual, which is an isomor-
phism if the vector space is finite-dimensional. This trans-
formation is “naturally” constructed in a way that is uni-
form for any vector space and independent of any choice
of basis. Concretely, this means that the two composites
around the right square in Figure 1 are always equal for
any linear transformation 𝑇.

Category theory provides a language, a context, and in-
deed amathematical theory that abstracts the general prop-
erties of such constructions from their specific instances.
Thus, category theory is sometimes called “the mathemat-
ics of mathematics” for its role in organizing general fea-
tures across mathematical disciplines.

Another point of view on category theory emphasizes
its algebraic nature, by which we mean that it involves data
(objects, morphisms, functors, transformations), rules for
combining that data (identities, composition, etc.), and ax-
ioms such as the associativity of composition or the
equalities in naturality squares. For example, a group 𝐺
can be considered as a category consisting of a single object
whose set of endomorphisms is given precisely by𝐺. Thus,
we can think of categories as generalizations of monoids
or groups and hence as algebraic objects in their own right.

Such a generalization is the start of what is sometimes
called higher-dimensional algebra. Thinking of a set as a col-

𝑅 𝑆
𝑅[𝑥] 𝑆[𝑥]

𝑓

𝑓∗

𝑉 𝑊
𝑉∗∗ 𝑊∗∗

𝑇

𝑇∗∗
Figure 1. Naturality squares.

lection of 0-dimensional elements, the multiplication of
group elements or the addition of vectors is thought of as 0-
dimensional algebra. A category has both 0-dimensional
and 1-dimensional aspects—the objects andmorphisms—
so any algebraic structure on a category is inherently 1-
dimensional. For example, the direct sum of vector spaces
is additive on dimension and thus provides a higher-
dimensional analogue of the sum of natural numbers.

The pattern of organizational framework repurposed as in-
dependent theory leading to higher-dimensional invariants re-
peats within category theory itself. Much of the power of
basic category theory arises from the use of natural trans-
formations. In turn, many of those arguments can be ab-
stracted and formalized in the context of 2-categories, in
which we have 2-dimensional arrows betweenmorphisms.

This process can be continued indefinitely and indeed
has spawned the entire subject of higher-dimensional cate-
gory theory: the study of structures that have objects
(thought of as 0-dimensional points), morphisms between
them (thought of as 1-dimensional arrows), 2-dimension-
al morphisms between those, and so on, together with
composition and identity operations. Like 1-dimensional
category theory, themotivations for developing this higher-
dimensional version come from topology, algebraic geom-
etry, logic, physics, computer science, and the subject it-
self.
An analogy with the theory of groups. Our two perspec-
tives on category theory—as an organizing abstraction and
as a higher-dimensional algebra—are themselves general-
izations of two perspectives on group theory. From one
point of view, groups are an abstraction of symmetries.
Homomorphisms between symmetry groups give compar-
isons between symmetries of one object and those of an-
other. Permutations of polynomial roots (Galois theory)
and symmetries of manifolds (Klein’s Erlangen program)
are two early and formative examples of this perspective.
But we also understand groups as useful algebraic invari-
ants in their own right. Mathematical invariants that are
groups instead of mere numbers will detect more subtle
phenomena.

Example 1. For each natural number 𝑛 we have a sym-
metric group 𝑆𝑛. This can be thought of as a 1-object cat-
egory, where the object is an 𝑛-element set and 𝑆𝑛 is the
set of automorphisms of it. When we put all of these ob-
jects together in a single category, 𝐒, we have an object for
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𝐒 ∅ { } { } { } { } { } ⋯
𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

Figure 2. The category 𝐒 has objects given by the natural
numbers and automorphisms given by symmetric groups.

each 𝑛 ≥ 0 and each object has automorphisms given by
its symmetric group. See Figure 2.

This category has further structure given by the disjoint
union of sets and the block sum of permutations. This
endows 𝐒 with an additive structure that, on objects, is
given by the addition of natural numbers. In this way 𝐒
is a higher-dimensional analogue of the natural numbers,
encoding both cardinality and permutations of elements.

The category 𝐒 is an example of a symmetric monoidal
category using the addition defined above, a structure we
will focus on in the latter sections. Symmetric monoidal
categories abound; the category of sets, Sets , with cartesian
product is one, and the category of vector spaces, Vect , with
tensor product is another.

The purpose of this note is to explain how symmetric
monoidal structure in higher category theory corresponds
to stability in topology. We begin with a description of
some classical invariants in algebraic topology and explain
how these are encoded in the categorical algebra of weak𝑛-groupoids. Then we explain stabilization in topology
and how the corresponding categorical objects arise from
symmetrization. We describe several ways that interesting
topological invariants motivate natural and equally inter-
esting categorical incarnations, focusing on the data aris-
ing from Postnikov towers in topology. The mathemat-
ics we explain here falls under the broad umbrella of the
stable homotopy hypothesis, which we outline over the
course of the article and detail in the section “Low-
Dimensional Examples of the Stable Homotopy Hypoth-
esis.”

The Fundamental Group(oid) and Classifying
Space
The fundamental group(oid). The fundamental group of a
topological space was introduced in 1895 by Poincaré in
Analysis Situs. For a space𝑋 and a basepoint 𝑥 ∈ 𝑋, this is
the group 𝜋1(𝑋, 𝑥) formed by homotopy classes of paths
in 𝑋 beginning and ending at 𝑥. The fundamental group
measures holes of a certain type in a space, as Example 2
demonstrates.

Example 2. The fundamental group of the circle 𝑆1 is iso-
morphic to the group of integers, as is that of an annulus𝑆1×[0, 1]. A loop is characterized by its (signed) winding
number around the circle. The fundamental group of the
torus 𝑆1 × 𝑆1 is ℤ × ℤ, and a loop is characterized by its
winding numbers around the two coordinate circles. The

Figure 3. Left: a loop with winding number 3 in the annulus;
Middle: a loop with winding number (1,5) in the torus; Right:
contractible loops in the 2-sphere.

fundamental group of the 2-sphere 𝑆2 is trivial because
any loop there can be contracted to a point. See Figure 3
for these examples.

Note that the definition of 𝜋1 depends on a choice of
basepoint for the loops. A path between two points gives
rise to an isomorphism between the fundamental groups
based at those points, but different paths can produce dif-
ferent isomorphisms and different path components can
have different fundamental groups. Thus, the fundamen-
tal group fails to be a functor on the category of topological
spaces. One can either work with based spaces or track the
dependence on basepoints with a higher-categorical struc-
ture. One such structure is the fundamental groupoidΠ1𝑋
of a space 𝑋.

The objects of the fundamental groupoidΠ1𝑋 are given
by the points of𝑋, and themorphisms between two points𝑥 and 𝑦 are the homotopy classes of paths between them.
The term groupoid is used for a category in which everymor-
phism is invertible, and Π1𝑋 is a groupoid because paths
are reversible. The fundamental group based at a point 𝑥
is recovered as the group of endomorphisms of 𝑥 (all of
which are automorphisms) in the fundamental groupoid.
Moreover, the change-of-basepoint isomorphisms are en-
coded as morphisms in Π1𝑋, and the set of isomorphism
classes of objects is the set𝜋0(𝑋) of path-connected com-
ponents of 𝑋. At first sight, this may seem to be merely
a clever reframing of elementary notions, but the key fea-
ture is that it allows these two invariants—the set of com-
ponents and the fundamental group(s) thereof—to be en-
coded as a single algebraic object. Unfortunately this is all
the informationΠ1𝑋 carries, so we will need more sophis-
ticated invariants to carry additional topological informa-
tion.
The classifying space. Whereas the fundamental group-
oid makes a category out of a space, taking paths for mor-
phisms, the classifying space constructs a space from a cat-
egory. Given a category 𝐶, the classifying space 𝐵𝐶 (Fig-
ure 4) is constructed as a CW complex with 0-cells given
by the objects of 𝐶, 1-cells given by morphisms, 2-cells
given by composable pairs of morphisms, and, in general,𝑛-cells given by composable 𝑛-tuples of morphisms. In
particular, every morphism in 𝐶 gives a path in 𝐵𝐶. This
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Figure 4. The classifying space of a category is constructed as
a CW complex with cells given by composable morphisms.

construction generalizes the notion of classifying space for
a group, where a group is regarded as a 1-object category.

The set𝜋0(𝐵𝐶) of connected components of 𝐵𝐶 is iso-
morphic to the set of connected components of the un-
derlying graph of objects and arrows in 𝐶. For an object 𝑥
in𝐶, the fundamental group𝜋1(𝐵𝐶, 𝑥) has elements that
are represented by equivalence classes of zigzags of mor-
phisms that start and end at 𝑥,

𝑥 𝑓1→ 𝑥1 𝑓2← 𝑥2 𝑓3→ ⋯ 𝑓𝑛← 𝑥𝑛 𝑓𝑛+1→ 𝑥,
with relations induced by composition. A crucial distinc-
tion between 𝐶 and 𝐵𝐶 is that the latter loses the notion
of directionality of morphisms. If 𝐶 is a groupoid, then
zigzags of morphisms can be replaced by composites in 𝐶
using the inverses of the “wrong way” morphisms. Such a
replacement procedure proves that, for a groupoid, the fun-
damental group 𝜋1(𝐵𝐶, 𝑥) is isomorphic to 𝐶(𝑥, 𝑥), the
group of automorphisms of 𝑥.

This connection can be expressed more clearly in cate-
gorical language. For a general category 𝐶, there is a natu-
ral transformation 𝐶 → Π1𝐵𝐶 known as groupoid comple-
tion, the universal way to invert all morphisms in 𝐶. If 𝐶
is a groupoid, then 𝐶 → Π1𝐵𝐶 is an equivalence of cate-
gories.

The reader might wonder now about the relationship
between𝑋 and 𝐵Π1𝑋 since they share𝜋0 and𝜋1. Spaces
have more homotopy groups than these two, and more-
over they are assembled in complicated ways. This addi-
tional topological information is all controlled by the Post-
nikov tower, which we explain in the next section. To cap-
ture more data in the tower using categorical tools, we ex-
plore in the section “Higher Groupoids, More Subtle Alge-
bra” a higher-dimensional analogue of Π1 that faithfully
reflects more of the Postnikov tower.

Higher Homotopy Groups, More Subtle
Invariants
Loop spaces and higher homotopy groups. Further topo-
logical information beyond the set of connected compo-
nents and their fundamental groups is encoded in the high-
er homotopy groups of a space.

Definition 3. For based spaces𝑋,𝑌, we let [𝑋,𝑌] denote
the set of based homotopy classes of continuous based

maps 𝑋 → 𝑌.

The group 𝜋𝑛(𝑋) is given by the set of based homo-
topy classes of maps from the 𝑛-sphere 𝑆𝑛 into𝑋, written[𝑆𝑛,𝑋]. As with 𝜋1, this involves a choice of basepoint
that is often suppressed in the notation; paths between
different basepoints induce isomorphisms on𝜋𝑛 as in the
case 𝑛 = 1. We restrict to path-connected spaces for the
remainder of this section.

For a based space 𝑋, we denote by Ω𝑛𝑋 the space of
based maps from 𝑆𝑛 to 𝑋. When 𝑛 = 1 this is called the
loop space of 𝑋 and is simply denoted Ω𝑋. The elements
of the group 𝜋𝑛(𝑋) are the path components of Ω𝑛𝑋,
and the group structure on 𝜋𝑛(𝑋) (abelian if 𝑛 > 1) is
induced by an up-to-homotopy group structure on Ω𝑛𝑋.
One can show, using the loop-suspension adjunction (1)
below, that the loop space shifts homotopy groups:𝜋𝑛(Ω𝑋) ≅ 𝜋𝑛+1(𝑋).
These elementary observations are the first signs of a deeper
theory that we will introduce in the sections “Stabilization
in Topology” and “The Algebra of Iterated Loop Spaces.”

A map 𝑓 that is a homotopy equivalence induces iso-
morphisms on homotopy groups.1 A homotopy type is an
equivalence class of spaces under the relation of homotopy
equivalence; i.e.,𝑋 and𝑌 have the same homotopy type if
there is a homotopy equivalence between them. Although
the homotopy type of a space𝑋 determines its homotopy
groups, the converse is generally not true; an abstract iso-
morphism of homotopy groups does not necessarily in-
duce a homotopy equivalence. One also needs attaching
information, akin to extension classes in group theory. As
we now explain, one can approach the classification of ho-
motopy types from the point of view of basic blocks, the
Eilenberg–Mac Lane spaces, and attaching data known as
Postnikov invariants.

Definition 4. For 𝑛 ≥ 0 and a group 𝐴 (abelian if 𝑛 ≥2), the 𝑛th Eilenberg–Mac Lane space 𝐾(𝐴,𝑛) is a space
whose homotopy groups are zero except in dimension 𝑛,
and 𝜋𝑛(𝐾(𝐴,𝑛)) ≅ 𝐴.

There aremany ways to construct such a space, but all of
them result in homotopy equivalent spaces. Note that be-
cause the loop space construction shifts homotopy groups,Ω𝐾(𝐴,𝑛+1) is an Eilenberg–Mac Lane space for𝐴 in di-
mension 𝑛. Uniqueness therefore implies that𝐾(𝐴,𝑛) ≃Ω𝐾(𝐴,𝑛 + 1).

Given a space𝑍, we say that a space𝑊 is a delooping of𝑍
if there is a homotopy equivalence 𝑍 ≃ Ω𝑊. Note that
both the space𝑊 and the homotopy equivalence may not
be unique. The previous paragraph explains that𝐾(𝐴,𝑛+1) is a delooping of 𝐾(𝐴,𝑛).
1The converse is not true in general but does hold for CW complexes.
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Eilenberg–Mac Lane spaces are closely connected with
ordinary cohomology, as described in the following theo-
rem.2

Theorem 5. Cohomology is represented by homotopy classes of
maps into Eilenberg–Mac Lane spaces. More precisely, for each
natural number 𝑛 > 0, based space 𝑋, and abelian group 𝐴
there are isomorphisms

𝐻𝑛(𝑋;𝐴) ≅ [𝑋,𝐾(𝐴,𝑛)]
natural in 𝑋 and 𝐴.

One can use Eilenberg–Mac Lane spaces to construct a
space with any given sequence of homotopy groups𝐴𝑖 pro-
vided 𝐴𝑖 is abelian for 𝑖 ≥ 2. Indeed, the product

𝑃 = ∏𝑖 𝐾(𝐴𝑖, 𝑖)
has 𝜋𝑖(𝑃) ≅ 𝐴𝑖. Given a space 𝑋, one can ask whether it
is different from a product of Eilenberg–Mac Lane spaces.
For example, if𝑋 has just two nontrivial homotopy groups,𝜋1 = 𝐴1 and 𝜋2 = 𝐴2, then 𝑋 sits in a fiber sequence

𝐾(𝐴2, 2) → 𝑋 → 𝐾(𝐴1, 1)
where the first of these maps is an isomorphism on 𝜋2,
and the second is an isomorphism on 𝜋1.

There is an action of 𝜋1(𝑋) = 𝐴1 on 𝜋2(𝑋) = 𝐴2 in-
duced by the fibration structure, and the homotopy type
of 𝑋 depends subtly on this action. However, in the con-
text we study below, this action is necessarily trivial, and
therefore for the remainder of this section we assume that𝜋1(𝑋) acts trivially on all homotopy groups of 𝑋. Such
spaces are called simple.

The general theory of fibrations then gives a continua-
tion of this sequence to the right:

𝐾(𝐴2, 2) → 𝑋 → 𝐾(𝐴1, 1) 𝑘1→ 𝐾(𝐴2, 3).
The map denoted 𝑘1 corresponds to a cohomology class
in 𝐻3(𝐴1; 𝐴2) ≅ [𝐾(𝐴1, 1),𝐾(𝐴2, 3)],
which we also denote 𝑘1, and it classifies spaces with two
nontrivial homotopy groups in the following sense.

Theorem 6. The total space 𝑋 above decomposes as a prod-
uct 𝐾(𝐴1, 1) × 𝐾(𝐴2, 2) if and only if 𝜋1(𝑋) acts trivially
on 𝜋2(𝑋) and 𝑘1 = 0 in 𝐻3(𝐴1; 𝐴2). More generally, the
homotopy type of such a space is determined by the two groups
and the cohomology class 𝑘1.
2We state this theorem only for 𝑛 > 0 so as to avoid the distinction between
reduced and unreduced cohomology, which agree in positive degrees. It is the
reduced cohomology groups that are represented by Eilenberg–Mac Lane spaces,
and we implicitly take reduced cohomology throughout this article.

𝑋1

𝑋2

𝑋3
⋮

𝐾(𝐴2, 3)
𝐾(𝐴3, 4)
𝐾(𝐴4, 5)

𝐾(𝐴2, 2)
𝐾(𝐴3, 3)

𝑘1

𝑘2

𝑘3

Figure 5. Postnikov tower for a connected space 𝑋. The
highlighted region connecting two different layers is a
homotopy fibration sequence.

Postnikov towers. This map 𝑘1 is called the Postnikov in-
variant at level 1, and our discussion above can be extended
for higher homotopy groups as in Figure 5. For each 𝑛,
we have a map 𝑋 → 𝑋𝑛 inducing an isomorphism on
homotopy groups 𝜋𝑘 for 𝑘 ≤ 𝑛. The space 𝑋𝑛 is called
the 𝑛th Postnikov truncation or the homotopy 𝑛-type of 𝑋.
The homotopy groups 𝜋𝑘(𝑋𝑛) are zero for 𝑘 > 𝑛, so𝑋1 ≃ 𝐾(𝐴1, 1). The sequence of spaces 𝑋𝑛 and coho-
mology classes 𝑘𝑛 determines this entire diagram, called
the Postnikov tower of 𝑋. The central result of Postnikov
theory can be summed up by the following slogan.

Slogan 7. The homotopy type of a space𝑋 is determined by its
homotopy groups and Postnikov invariants.

The Postnikov tower presents a connected topological
space in terms of its homotopy groups and the cohomol-
ogy classes along which they are attached. This is dual to
the cellular construction of a space, which proceeds by at-
taching disks and thus presents a space in terms of its ho-
mology groups and the homotopy classes along which el-
ements are attached.

Higher Groupoids, More Subtle Algebra
For a space𝑋, the fundamental groupoidΠ1(𝑋) provides
an algebraic model for the homotopy 1-type of 𝑋. More
precisely, the first Postnikov truncation 𝑋1 and 𝐵Π1𝑋 are
homotopy equivalent. Moving up the Postnikov tower, we
seek algebraicmodels for the higher homotopy groups and
Postnikov invariants.

There is a striking result by Thomason that every homo-
topy type can be constructed as the classifying space 𝐵𝐶
for some category 𝐶. However, the higher Postnikov data
of 𝐵𝐶 is difficult to extract from𝐶 itself. If𝐶 is a groupoid
this is easily done, because 𝜋𝑛(𝐵𝐶, 𝑥) = 0 for all 𝑛 ≥ 2
and all basepoints 𝑥. In this section we discuss notions
of higher groupoid which provide algebraic models for
higher-dimensional Postnikov data, but still in a finite
range.
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Figure 6. An example of composition formed by attaching
disks and intervals, respectively, along intervals and points.

The fundamental 𝑛-groupoid Π𝑛. Recall that the group-
oidΠ1𝑋 has morphisms given by the homotopy classes of
paths in𝑋, and these are classes of continuous maps from
the 1-dimensional disk 𝐷1 to 𝑋. Evaluation at the end-
points gives the source and target of a morphism. Thus,
we seek a higher-dimensional analogue of the fundamen-
tal groupoid that includes the data of maps 𝐷𝑖 → 𝑋 for
higher-dimensional disks 𝐷𝑖.
Desideratum 8. The fundamental 𝑛-groupoid Π𝑛𝑋 of a
space 𝑋 has as data• all continuous maps 𝐷𝑖 → 𝑋 for 0 ≤ 𝑖 < 𝑛,• all homotopy classes of maps 𝐷𝑛 → 𝑋 (relative

to the boundary), and• information for how thesemaps or classes ofmaps
glue together along compatible boundaries.

These compatible boundaries are given by the two in-
clusions 𝜎,𝜏 ∶ 𝐷𝑖−1 → 𝐷𝑖 as the northern and southern
hemispheres of the boundary of 𝐷𝑖 and their iterates. We
can extract from this some basic features of an algebraic
structure we would like to call an 𝑛-groupoid. Letting 𝐺𝑖
denote the set of all continuous maps 𝐷𝑖 → 𝑋 for 𝑖 < 𝑛
and the set of homotopy classes of maps 𝐷𝑛 → 𝑋 relative
to the boundary when 𝑖 = 𝑛, there are source and target
maps 𝑠, 𝑡 ∶ 𝐺𝑖 → 𝐺𝑘 induced by the iterations of𝜎 and 𝜏.
Abstracting this structure leads to the following.

Desideratum 9. An 𝑛-groupoid 𝐺 has• sets 𝐺𝑖 of 𝑖-cells for 𝑖 = 0,… ,𝑛;• maps 𝑠, 𝑡 ∶ 𝐺𝑖 → 𝐺𝑖−1 assigning to each 𝑖-cell
both a source and a target (𝑖 − 1)-dimensional
cell;• maps 𝐺𝑖 → 𝐺𝑖+1 that assign to each 𝑖-cell 𝛼 an
identity (𝑖 + 1)-cell with 𝛼 as both source and
target; and• a variety of composition laws ∘𝑘, subject to fur-
ther associativity, invertibility, and unit axioms.

The composition laws are the most complicated feature
of such a definition, but also themost interesting. They are
of the form ∘𝑘 ∶ 𝐺𝑖×𝑘𝐺𝑖 → 𝐺𝑖, where𝐺𝑖×𝑘𝐺𝑖 is the sub-
set of𝐺𝑖×𝐺𝑖 in which the 𝑘-dimensional target of the first
cell matches the 𝑘-dimensional source of the second cell.
Topologically, these functions show the different ways to
attach two disks together along some lower-dimensional
boundary disk; see for example Figure 6.

The homotopy hypothesis. What we have described so
far is not a rigorously defined structure, only some basic
desiderata. The simplest definition fulfilling these yields
the notion of strict 𝑛-groupoid, in which the associativity
and unit axioms for composition hold in each dimension
separately. The definition of strict 𝑛-groupoid is most suc-
cinctly stated using the theory of enriched categories: a
strict 𝑛-groupoid is a groupoid enriched in strict (𝑛 − 1)-
groupoids. We will not give further details here, as this
definition has a serious defect, first described by Carlos
Simpson.

Theorem 10. Topological spaces that correspond to strict 3-
groupoids have trivial Whitehead products. In particular, strict3-groupoids fail to model all homotopy 3-types.

In order to understand the statement of this theorem,
note that the homotopy groups of a space are not just a
sequence of independently defined groups but have oper-
ations between them. One such operation arises from a
canonical map 𝑆𝑘+𝑗−1 → 𝑆𝑘 ∨𝑆𝑗.
This yields a bilinear function 𝜋𝑘(𝑋) × 𝜋𝑗(𝑋) →𝜋𝑘+𝑗−1(𝑋) known as theWhitehead product.

Taking 𝑘 = 𝑗 = 2, we have a function𝜋2(𝑋)×𝜋2(𝑋)→ 𝜋3(𝑋), and this function is related to the coherence
constraint for the composition operation∘0 ∶ 𝐺2×0𝐺2 →𝐺2. The axioms for a strict 𝑛-groupoid imply a unique-
ness result for composition operations, while the White-
head product can be interpreted in the categorical setting
as the difference between two such operations. Unique-
ness means that there is no difference, so the Whitehead
products are all zero. Of course there are spaces with non-
vanishing Whitehead products; the sphere 𝑆2 is a primary
example. Therefore, to define a fundamental 𝑛-groupoidΠ𝑛𝑋 that correctly models the homotopy 𝑛-type of an ar-
bitrary space, we require a weak notion of 𝑛-groupoid in-
stead of a strict one. One of the guiding principles for no-
tions of weak 𝑛-groupoid is summed up in Grothendieck’s
homotopy hypothesis, formulated in his letter Pursuing
Stacks.

Homotopy Hypothesis. The theory of weak 𝑛-groupoids
is equivalent3 to that of homotopy 𝑛-types.

The homotopy hypothesis states a desired property of
a proposed definition. It can be viewed through different
lenses and has been the inspiration behind many lines of
research in higher-dimensional category theory. On one
end of the spectrum, the homotopy hypothesis can be the
basis for a definition of weak 𝑛-groupoid, leading to some-
thing obviously tautological (“a weak 𝑛-groupoid is a ho-
motopy 𝑛-type”) but which yields little to no categorical

3In modern treatments, this is interpreted to mean an equivalence of homotopy
theories, a notion we will not explain here.
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insight. At the other end of the spectrum, one can give
a fully algebraic definition4 of weak 𝑛-categories (such as
those in work of Batanin [Bat98] and Leinster [Lei04]) us-
ing the internal logic of category theory and then see if it
satisfies the homotopy hypothesis.

The less like a topological space one defines a weak 𝑛-
groupoid to be, the harder it is to verify the homotopy hy-
pothesis and, as a consequence, the more interesting the
methods involved are likely to be. There is currently no
proof of the homotopy hypothesis for a fully algebraic def-
inition of weak 𝑛-groupoid that is valid in all dimensions.
There are proofs in the literature for some low-dimension-
al cases of fully algebraic definitions and systematic proofs
valid across all dimensions for more topological defini-
tions.

The theory of higher groupoids is situated within the
larger theory of higher categories. As with weak 𝑛-group-
oid, there is no single, all-purpose definition of weak 𝑛-
category, and different authors have used a myriad of mo-
tivating principles for various applications. However, all
current notions ofweak 𝑛-category have the same sort of un-
derlying data and composition laws as in Desideratum 9
but drop the requirement that all 𝑖-cells be invertible. We
will return to this topic in the section “Stabilization in Cat-
egory Theory” after establishingmore of the relevant topol-
ogy in the intervening sections.

Stabilization in Topology
For the remainder of this article we shift focus to stable
phenomena in topology and category theory. In his book
Infinite Loop Spaces, Adams writes, “A phenomenon is said
to be stable if it occurs in any dimension, or any sufficiently
large dimension, in a waywhich is essentially independent
of the dimension.” As we will see, the algebra of stable ho-
motopy is closely connected with higher category theory.
Topological suspension. In order to study phenomena
that are independent of dimension, we need to understand
the basic construction that shifts dimension.

Definition 11. Given a based space (𝑋,∗), the suspension
of𝑋 is the based space Σ𝑋 constructed by taking the cylin-
der𝑋×𝐼 and identifying the subspaces𝑋×{0},𝑋×{1},
and {∗} × 𝐼 to a single point, which then becomes the
basepoint (see Figure 7).

Suspension increases the dimension of a space by 1. In
particular, one can check that there is a homeomorphismΣ𝑆𝑛 ≅ 𝑆𝑛+1. Suspension is a functor from the category of
based spaces to itself and is left adjoint to the loop space

4By fully algebraic, we mean a definition that is equivalent to the category of
algebras for a finitary monad on (𝑛−)globular sets. Defining the monad on
globular sets as opposed to some other, more geometric, presheaf category en-
sures that all of the higher-categorical structure is encoded in the monad and
not via some property of the objects in the underlying category/shapes involved.

Figure 7. Cylinder and suspension; the subspace {∗} × 𝐼 is
drawn as a line and is identified to a point in Σ𝑋.

functor. That is, there is a natural correspondence between
continuous maps Σ𝑋 → 𝑌 and continuous maps 𝑋 →Ω𝑌, giving an isomorphism known as the loop-suspension
adjunction [Σ𝑋,𝑌] ≅ [𝑋,Ω𝑌]. (1)

Moreover, suspension is compatible with homotopies, so
it induces a function [𝑋,𝑌] → [Σ𝑋,Σ𝑌].

A fundamental theorem in stable homotopy theory is
that homotopy groups eventually stabilize, a corollary of
the Freudenthal suspension theorem.

Theorem12 (Freudenthal suspension theorem). Let𝑋 and𝑌 be based CW-complexes and suppose 𝑋 has dimension 𝑛 ≥1. Then the map
[Σ𝑘𝑋,Σ𝑘𝑌] → [Σ𝑘+1𝑋,Σ𝑘+1𝑌]

is a bijection if 𝑘 ≥ 𝑛+ 2.
Letting 𝑋 = 𝑆𝑛, one obtains an isomorphism

𝜋𝑛+𝑘(Σ𝑘𝑌) ≅ 𝜋𝑛+𝑘+1(Σ𝑘+1𝑌)
for 𝑘 ≥ 𝑛+ 2. Thus, the sequence

𝜋𝑛(𝑌) → 𝜋𝑛+1(Σ𝑌) → 𝜋𝑛+2(Σ2𝑌) → ⋯
eventually stabilizes.

Definition 13. The stable term in the sequence above is
the 𝑛th stable homotopy group of 𝑌, denoted 𝜋𝑠𝑛(𝑌).

Stable phenomena appear in cohomology, topological𝐾-theory, and a host of other examples. In the 1950s,
Spanier and Whitehead emphasized the study of stable
topology by defining a stable homotopy category. The ob-
jects were defined to be finite CW complexes, and the set
of maps from 𝑋 to 𝑌, called the stable maps, was given by
the direct limit

lim𝑚→∞[Σ𝑚𝑋,Σ𝑚𝑌].
Modern approaches to the stable homotopy category use
one of the many equivalent notions of spectrum, which
we now discuss.
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Topological spectra. A (topological) spectrum5 𝐸 consists
of a sequence {𝐸0, 𝐸1,…} of based spaces together with
structure maps 𝜎∶ Σ𝐸𝑛 → 𝐸𝑛+1.
For example, given a based space 𝑋, the suspension spec-
trum Σ∞𝑋 is given by the sequence {𝑋,Σ𝑋,Σ2𝑋,…},
with the structure maps given by identity maps. When𝑋 = 𝑆0, we obtain the sphere spectrum, whose 𝑛th space is𝑆𝑛.

A spectrum is an Ω-spectrum if the structure maps’ ad-
joints 𝐸𝑛 → Ω𝐸𝑛+1
are homotopy equivalences for all𝑛. We say that a space𝑋
is an infinite loop space if it is the zeroth space of an Ω-
spectrum. Suspension spectra are generally not Ω-spectra,
but every spectrum is equivalent in a suitable sense to anΩ-spectrum. The classical example of anΩ-spectrum is the
Eilenberg–Mac Lane spectrum 𝐻𝐴 of an abelian group 𝐴.
The 𝑛th space of 𝐻𝐴 is given by the Eilenberg–Mac Lane
space 𝐾(𝐴,𝑛), and the adjoint structure maps are given
by the homotopy equivalences 𝐾(𝐴,𝑛) ≃ Ω𝐾(𝐴,𝑛 + 1)
we discussed above.

We have noted previously that the 𝑛th cohomology
group of a space𝑋with coefficients in the abelian group𝐴
is isomorphic to the group of homotopy classes of maps
from 𝑋 into 𝐾(𝐴,𝑛):𝐻𝑛(𝑋;𝐴) ≅ [𝑋,𝐾(𝐴,𝑛)].
Using the loop-suspension adjunction (1), we recover the
suspension isomorphism in cohomology: for 𝑛 > 0 we
have𝐻𝑛(𝑋;𝐴) ≅ [𝑋,𝐾(𝐴,𝑛)]≅ [𝑋,Ω𝐾(𝐴,𝑛 + 1)] (2)≅ [Σ𝑋,𝐾(𝐴,𝑛 + 1)] ≅ 𝐻𝑛+1(Σ𝑋;𝐴).
In fact, the most important features of cohomology with
coefficients in𝐴 can be recovered from the structure of the
spaces 𝐾(𝐴,𝑛), particularly as an Ω-spectrum.

These properties characterize the groups𝐻∗(𝑋;𝐴) and
were originally written down by Eilenberg and Steenrod as
a set of seven axioms, the first two of which constitute func-
toriality of 𝐻∗(−;𝐴). The final axiom is the dimension
axiom, stating that the cohomology of a point is the co-
efficient group in dimension zero and vanishes elsewhere.
Dropping the dimension axiom results in what are called
generalized cohomology theories. The Brown representabili-
ty theorem implies that all generalized cohomology theo-
ries are represented by Ω-spectra just as 𝐻∗(−;𝐴) is rep-
resented by 𝐻𝐴.

5The term “spectrum” in this sense is not motivated by any historical or math-
ematical relationship to its use in operator theory, ring theory, or algebraic
geometry.

Spectra, as we have defined them, form a category Sp,
and Ω-spectra form a full subcategory Ω Sp. While indi-
vidual spectra are generally more complicated than indi-
vidual spaces, the category Sp has many attractive features.
In particular, there is a notion of homotopy betweenmaps
of spectra, leading to analogues of homotopy groups. Tak-
ing suspension spectra defines a functor from the category
of based topological spaces to Sp, and the stable maps be-
tween spaces are given precisely by maps in the category Sp

between their suspension spectra. The stable homotopy
groups of a based space are the homotopy groups in Sp of
its suspension spectrum. Thus Sp generalizes the stable ho-
motopy category constructed by Spanier and Whitehead.

We can reproduce the theory of Postnikov towers in this
context, but now building the layers up using Eilenberg–
Mac Lane spectra and obtaining Postnikov invariants as sta-
ble maps. Stable Postnikov theory is simpler in some ways
than its unstable predecessor: all groups are abelian, and
the action of𝜋1 on higher homotopy is necessarily trivial.
Yet it still contains a wealth of information, as we will see
below.

The Algebra of Iterated Loop Spaces
Infinite loop space machines. One of the standard ways
to construct cohomology theories with specific character-
istics is to construct Ω-spectra using one of the so-called
“infinite loop space machines.” A first step in constructing
such an object is to determine when a space 𝐸0 is homo-
topy equivalent to the space of loops on another space 𝐸1.
Example 14. Let 𝐺 be a discrete group and let 𝐵𝐺 be its
classifying space. Then 𝐺 ≃ Ω(𝐵𝐺). Thus, the classi-
fying space is a construction of the Eilenberg–Mac Lane
space 𝐾(𝐺,1). One can construct further deloopings𝐵2𝐺 = 𝐾(𝐺,2), etc., only under the further hypothesis
that 𝐺 is abelian.

The equivalence 𝐸0 ≃ Ω𝐸1 implies that 𝐸0 has addi-
tional structure inherited from the algebra of loops. We
can isolate the precise algebraic structure present on a loop
space and use that to recognizewhen a given space has a de-
looping. For example, Ω𝐸1 has a product induced by con-
catenation of loops. Although this product is not strictly
associative, there is a canonical homotopy—for loops 𝑎, 𝑏,
and 𝑐—between (𝑎𝑏)𝑐 and 𝑎(𝑏𝑐). This is the proof that
multiplication in 𝜋1(𝑋, 𝑥) is associative. These homo-
topies that witness associativity are themselves coherent;
i.e., there is a family of homotopiesmediating between the
two composite homotopies and thus filling the pentagon
in Figure 8 for any four loops 𝑎,𝑏, 𝑐, 𝑑 ∈ Ω𝐸1.

In the case of a loop space, one can continue to fill with
homotopies of higher dimensions, meaning that the prod-
uct in Ω𝐸1 is associative “up to all higher homotopies.”
Stasheff made this precise by constructing a family of
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