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1. Introduction and background

Let K/F be a Galois extension of fields with characteristic different from 2 with (profi-

nite) Galois group G := Gal(K/F ). For a field L, let GW (L) denote the Grothendieck-

Witt ring of (formal differences of) isometry classes of regular quadratic forms over L. 

The Scharlau transfer (with respect to the field trace trK/F : K → F ) is the homomor-

phism of Abelian groups GW (K) → GW (F ) taking q to trK/F ◦ q. When considered 

along with the restriction (i.e., extension of scalars) homomorphism GW (F ) → GW (K), 
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the Grothendieck-Witt ring gains the structure of a Mackey functor in the language of 

A. Dress [4].

Tambara functors [16] are elaborations of Mackey functors with multiplicative norm 

maps in addition to restrictions and transfers. In [1], T. Bachmann shows that the (a 

priori different but ultimately equal) norm maps of D. Ferrand [7] and M. Rost [15] turn 

GW into a Tambara functor. Our aim in this work is to leverage this additional structure 

in order to study Dress’s trace homomorphism between Burnside and Grothendieck-Witt 

rings, the construction of which we sketch presently.

Recall that the Burnside ring A(G) of G is defined as the Grothendieck construction 

applied to the semi-ring of isomorphism classes of finite G-sets under disjoint union and 

Cartesian product. In [4], Dress shows that the assignment A(G) → GW (F ) determined 

by G/H �→ (x ∈ KH �→ trKH /F (x2)) is a ring map which we call the trace homomor-

phism. The trace homomorphism is surjective precisely when K contains square roots of 

all the elements of F [4, Appendix B, Theorem 3.1], and its kernel is the trace ideal of 

K/F .1 Assembling the trace homomorphisms for subextensions of K/F , we get a map 

of Tambara functors, whose kernel is an ideal of the Burnside Tambara functor. It is this 

kernel which we will determine for cyclic Galois extensions.

In order to state our main theorem, let CN denote the cyclic group of order N , and 

for M dividing N let A(CN /CM ) = A(CM ). For m | M , let tM/m denote the element of 

A(CN /CM ) corresponding to the transitive CM -set CM /Cm of cardinality M/m.

Theorem 1.1 (see Theorem 4.1, Theorem 4.5, Theorem 4.6, Theorem 4.8, and Theo-

rem 4.10). Suppose Gal(K/F ) = CN where N has prime decomposition 2μpσ1
1 · · · pσs

s . 

Then ker(ACN
→ GW K

F ), seen as a Tambara ideal of ACN
, is generated by

(1) tpi/1 − pitpi/pi
for i = 1, . . . , s,

(2) a generator G which is determined by K/KC2μ . If μ = 0, then G = 0 as well. 

If K/KC2μ is quadratic, then G is determined by the discriminant. Otherwise (for 

μ ≥ 2), G depends on the discriminant of both K/KC2 and KC2/KC4 , as well as 

an embedding condition on K/KC4 .

We handle the pro-cyclic case as well in Theorem 5.5 and Theorem 5.6. This allows a 

Tambara-theoretic description of the trace ideal for Fq/Fq in Theorem 6.3. These results 

permit the description of every element of the trace ideal of a (pro-)cyclic extension as 

the transfer of the product of the norm of the restriction of our specified generators. See 

Remark 2.6 for a precise version of this observation.

1 Instead of considering the trace ideal of a fixed extension, we might first fix a group G and study the 
intersection of trace ideals across all Galois extensions with this Galois group, as has been done in [5]. We 
will refer to this object as the absolute trace ideal to avoid confusion, although previous literature does not 
include the descriptive. Epkenhans [5,6] determines the absolute trace ideal of elementary Abelian 2-groups, 
cyclic 2-groups, and the quaternion and dihedral groups of order 8.
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The homotopy theory-inclined reader will note that the Burnside and Grothendieck-

Witt functors appear as endomorphisms of the sphere spectrum in stable equivariant and 

motivic homotopy theory, respectively. Moreover, the classical Galois correspondence in-

duces a symmetric monoidal functor from Galois-equivariant spectra to motivic spectra 

[8, Theorem 4.6]. This functor restricts to one between highly structured normed ring 

spectra [2, Proposition 10.8]. In both categories, the sphere spectrum is a normed al-

gebra, and the Dress map is the induced Tambara map between endomorphisms of the 

unit object. We hope that a better understanding of this map will provide insight on 

the relation between equivariant and motivic homotopy theory provided by the Galois 

correspondence.

1.1. Outline

Section 2 is dedicated to discussing Tambara functors and Tambara ideals, introducing 

the Burnside and Grothendieck-Witt rings as Tambara functors, and detailing the Dress 

map and the trace ideal for these Tambara functors. Section 3 describes the behavior 

of the Burnside Tambara functor on a cyclic group, providing explicit formulas for the 

Tambara maps. In Section 4, we calculate the trace ideal when G is a cyclic group 

(Theorem 4.1, Theorem 4.8, and Theorem 4.10). Building on this work, we consider the 

Galois groups Zp and Ẑ in Section 5. We show that the trace ideal for these profinite 

groups are colimits of the principal ideals of their finite cyclic counterparts (Theorem 5.5

and Theorem 5.6). Finally, Section 6 applies these calculations to specific examples, 

including a complete description of the trace ideal for extensions of finite fields; in this 

case the trace ideal is strongly principal (Theorem 6.3). In Appendix A, H. Chen and 

X. Chen give formulas for the restriction, transfer, and norm of an arbitrary quadratic 

form over a finite field (Theorem A.1 and Theorem A.5).

Acknowledgments. We extend a big thank you to Kyle Ormsby and Angélica Osorno 

for their mentorship. This research was conducted as part of the 2019 Collaborative 

Mathematics Research Group (CMRG) at Reed College and generously funded by NSF 

grant DMS-1709302. Additional thanks goes to Jeremiah Heller and our fellow CMRG 

members Nick Chaiyachakorn, Nicholas Cecil, Harry Chen, and Xinling Chen for their 

suggestions and support. We would also like to thank the referee for their helpful com-

ments and suggestions that improved our exposition.

2. Background: Tambara, Burnside, Grothendieck, Witt, and Dress

In this section, we recall necessary background information on Tambara functors, the 

Burnside and Grothendieck-Witt rings, and Dress’s trace homomorphism.



M. Calle, S. Ginnett / Journal of Algebra 560 (2020) 114–143 117

2.1. Tambara functors, ideals, and generators

First introduced as TNR functors2 by D. Tambara in [16], Tambara functors are 

elaborations of Mackey functors which have multiplicative norm maps in addition to 

restrictions and transfers. These functors were originally defined only for finite groups, 

but have since been extended to the profinite case [11].

Definition 2.1. Let G be a profinite group. Let GFin and Set denote the category of 

finite G-sets and the category of Sets respectively. A Tambara functor T on G is a triple 

(T ∗, T+, T
·
) where T ∗ is a contravariant functor GFin→Set and T+, T

·
are covariant 

functors GFin→ Set such that

(1) (T ∗, T+) is a Mackey functor on G,

(2) (T ∗, T
·
) is a semi-Mackey functor3 on G, and

(3) given an exponential diagram

X A Z

Y B

f

p λ

ρ

q

in GFin (in the sense of [16]), the diagram

T (X) T (A) T (Z)

T (Y ) T (B)

T·(f)

T+(p) T ∗(λ)

T·(ρ)

T+(q)

commutes.

For the sake of brevity, we use the notation f+ := T+(f), f
·

:= T
·
(f), and f∗ := T ∗(f).

Remark 2.2. As is the case for Mackey functors, it suffices to specify how a Tambara 

functor behaves on transitive G-sets. This observation prompts a second characterization 

of Tambara functors in terms of subgroups of G:

Let G be a profinite group. A Tambara functor T on G is completely specified by a ring 

T (G/H) for all open H ≤ G and the following maps for all open subgroups L ≤ H ≤ G:

(1) Restriction resH
L := q∗

2 Transfer, Norm, Restriction.
3 A semi-Mackey functor is a Mackey functor in which T (X) is assigned to a commutative monoid rather 

than an abelian group (cf. [13]).
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(2) Transfer trH
L := q+

(3) Norm NH
L := q

·

(4) Conjugation cg,H := (cg)∗

where q : G/K → G/H is the quotient map and cg : H → Hg is conjugation-by-g and 

Hg = g−1Hg. These maps must satisfy a number of compatibility conditions as specified 

M. Hill and K. Mazur in [9]. Notably, while restriction and conjugation are ring maps, 

transfer and norm only respect the additive and multiplicative structures, respectively.

There are many analogies to draw between commutative ring theory and Tambara 

functor theory; the additional Tambara structure makes the study of ideals a particularly 

rich source of information.

Definition 2.3. Let T be a Tambara functor on G. An ideal I of T consists of a collection 

of standard ring-theoretic ideals I (G/H) ⊆ T (G/H) for each open H ≤ G, such that 

for all open subgroups L ≤ H ≤ G

(1) resH
L (I (G/H)) ⊆ I (G/L),

(2) trH
L (I (G/L)) ⊆ I (G/H),

(3) NH
L (I (G/L)) ⊆ I (G/H) + NH

L (0),

(4) cg,H(I (G/L)) ⊆ I (G/gH).

Definition 2.4. Let G ⊆ ∐
GF in T (X). The ideal generated by G is the intersection of 

all ideals of T containing G, denoted ( (G) ). If G = {a1, . . . , an} is finite, then we write 

( (G) ) = ( (a1, . . . , an) ).

We will use the notation (a) ⊆ T (X) to denote the ideal generated by a ∈ T (X) in the 

standard ring-theoretic sense, whereas ( (a) ) ⊆ T denotes the Tambara ideal generated by 

a ∈ T (X).

Definition 2.5. Let I be an ideal of T . We say I is principal if I = ( (a) ) for some 

a ∈ T (X) where X is a G-set. We say an ideal is strongly principal if there exists an 

open subgroup H ≤ G and a ∈ T (G/H) such that I = ( (a) ).

Nakaoka [12, Proposition 3.6] shows that every finitely generated Tambara ideal is in 

fact principal, however the strongly principal condition is much more restrictive.

Just as ring-theoretic ideals can be produced by ring homomorphisms, Tambara ideals 

arise as the kernels of Tambara functor morphisms (see [12, Proposition 2.10]). For more 

details regarding the theory of Tambara ideals, we point the reader to Nakaoka’s paper 

[12].
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Remark 2.6. There is a particularly nice description of a Tambara ideal generated by 

a single element as shown in [12, Definition 1.4]. Let T be a Tambara functor and let 

a ∈ T (A) for some finite G-set A. Then ( (a) ) can be calculated as

((a))(X) = {u+(b · (v!(w
∗(a))) | X

u←− C
v←− D

w−→ A, b ∈ T (C)}

where v! = v
·
− v

·
(0).

Definition 2.7. Given two Tambara functors T and S on a profinite group G, a morphism 

of Tambara functors ϕ : T → S is a collection of ring homomorphisms ϕX : T (X) → S(X)

for all finite G-sets X which form a natural transformation of each of the three component 

functors. The kernel of ϕ is given by the collection of kernels of the associated ring maps.

Remark 2.8. Just as in standard ring theory, a surjective Tambara functor morphism 

ϕ : T → S yields the presentation T/ ker(ϕ) ∼= S. As before, it suffices to spec-

ify ϕH : T (G/H) → S(G/H) on each open subgroup H ≤ G. So then ker(ϕ) =

{ker(ϕH)}H≤G.

Our object of interest, the trace ideal, arises as the kernel of a Tambara functor 

morphism. The details of the morphism and the functors it maps between are detailed 

in the following two subsections.

2.2. The Grothendieck-Witt and Burnside rings as Tambara functors

The focus of our work is the Burnside Tambara functor on G, denoted AG, and the 

Grothendieck-Witt Tambara functor on a field extension K/F with Galois group G, 

denoted GW K
F . This section recalls some basic definitions and results concerning these 

two functors.

Definition 2.9 (The Burnside ring). The Burnside ring on a group G is the Grothendieck 

construction on the semi-ring of finite G-sets, denoted A(G). That is, A(G) is the ring of 

formal differences of isomorphism classes of finite G-sets, with addition given by disjoint 

union and multiplication given by Cartesian product.

Definition 2.10 (Burnside Tambara functor). For each open H ≤ G, define AG(G/H) to 

be the Burnside ring of H. For open subgroups L ≤ H ≤ G, g ∈ G, Y ∈ AG(G/H), and 

X ∈ AG(G/L), we define the Tambara structure maps,

resH
L : AG(G/H) −→ AG(G/L)

Y �−→ Y with restricted L-action,

trH
L : AG(G/L) −→ AG(G/H)

X �−→ H ×L X,
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NH
L : AG(G/L) −→ AG(G/H)

X �−→ MapL(H, X),

cg,H : AG(G/H) −→ AG(G/Hg)

X �−→ Xg.

When G is Abelian, conjugation is trivial. These maps turn AG into the initial G-

Tambara functor (cf. [14,16]). We will denote AG by merely A when the group is obvious 

from context.

Remark 2.11. For any L ≤ H ≤ G, we have a natural isomorphism (cf. [14, Remark 1.5]) 

AG(G/L) ∼= AH(H/L), and we will often identify the two through this isomorphism.

We now turn to our second functor of interest, the Grothendieck-Witt functor. In 

order to work with this functor, we use some basic notation from the theory of quadratic 

forms. For a field F , let F × be the multiplicative group of units and F� = {x2 | x ∈
F ×} the group of squares, and so F ×/F� denotes the group of square classes in F . 

The diagonal F -form a1x2
1 + . . . anx2

n is denoted 〈a1, . . . , an〉, with dimension n and 

determinant 
∏n

i=1 aiF
� ∈ F ×/F�. For an in-depth treatment of quadratic forms, we 

point the reader to [10].

Definition 2.12 (Grothendieck-Witt ring). Let M(F ) denote the set of isometry classes 

of regular quadratic forms over a field F . Equipped with the orthogonal sum and tensor 

product operations, M(F ) forms a semi-ring. The Grothendieck-Witt ring of F is the 

Grothendieck construction applied to this semi-ring, denoted GW (F ). A typical element 

of GW (F ) is a formal difference of isometry classes of quadratic forms.

Definition 2.13 (Grothendieck-Witt Tambara functor). For each open subgroup H ≤ G, 

define GW K
F (G/H) to be the Grothendieck-Witt ring on KH . For convenience we will 

often index the Grothendieck-Witt Tambara functor by the field KH instead of the G-set 

G/H under the correspondence GW K
F (G/H) = GW K

F (KH) = GW (KH).

For subextensions F ⊆ L ⊆ E ⊆ K, the restriction map resE
L : GW K

F (L) −→
GW K

F (E) is given by an extension of scalars. Equipped with the Scharlau transfer of 

the field trace and the Rost norm [15], the Grothendieck-Witt ring naturally exhibits 

the structure of a Galois Tambara functor (cf. [1, §3]). Again, we denote GW K
F by GW

when the extension is obvious from context.

2.3. The Dress map and the trace ideal

As shown in [4], there is a ring homomorphism DG between the Burnside ring on G

and the Grothendieck-Witt ring on F which sends a transitive G-set G/H to the trace 

form trKH

F 〈1〉 = 〈KH〉. Similarly, for each open H ≤ G, we have a ring homomorphism 
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DH : A(G/H) → GW K
F (KH). We define the Dress map D : AG → GW K

F as the collection 

of these ring homomorphisms. To see that the Dress map is indeed a Tambara functor 

morphism, first recall that AG is the initial element in the category of Tambara functors 

on G. As such, there must be a unique Tambara functor morphism Φ : AG → GW K
F . 

Now note that for all L ≤ H ≤ G we have H/L = trH
L (L/L), and so it follows that

Φ(H/L) = Φ(trH
L (L/L)) = trKH

KL (Φ(L/L)) = trKH

KL 〈1〉.

This shows that Φ is indeed the Dress map, and hence D is a Tambara functor morphism.

Remark 2.14. A Tambara functor morphism is said to be surjective if the ring maps at 

each level are surjective. The conditions for the Dress map to be surjective at each level 

are given by [4, Appendix B, Theorem 3.1]. It follows that the Dress map is a surjective 

Tambara functor morphism if and only if K is quadratically closed.

Definition 2.15. The trace ideal, denoted T IK/F , is the Tambara ideal ker(D : AG →
GW K

F ). When the extension is clear, we drop the decoration.

Remark 2.16. If G is a finite group, then T IK/F (G/e) = (0).

Note that Remark 2.6 allows us to calculate the classical trace ideal just in case 

T IK/F is principal. To gain insight into the trace ideal, we observe that for every sub-

extension F ⊆ E ⊆ K, we have the ring homomorphism dimE : GW (E) → Z which 

sends a quadratic form to its dimension over E. These maps naturally assemble into the 

Tambara functor morphism dim: GW K
F → Z given by dim = {dimKH }H≤G. Here Z

denotes the constant Tambara functor on Z given by Z(G/H) = Z and

resH
L (a) = a,

trH
L (a) = |H : L|a,

NH
L (a) = a|H:L|,

cg,H(a) = a

for all open L ≤ H ≤ G, a ∈ Z, and g ∈ G. Similarly, for all H ≤ G there is a ring 

homomorphism cardH : A(H) → Z sending a finite H-set to its cardinality. We then have 

the Tambara functor morphism card: AG → Z given by card = {cardH}H≤G. Note that 

card = dim ◦D, which implies that T IK/F is a sub-ideal of the kernel of card. When the 

order of G is odd, we have a stronger result.

Theorem 2.17. If the order of G is odd,

T IK/F = ker(card).
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Proof. When the order of G is odd, it is well-known that trK
F 〈1〉 = |K : F |〈1〉 (cf. [10]). 

For H ≤ G, an arbitrary element of A(G/H) is of the form X =
∑

L≤H mLH/L. Since 

every sub-extension of an odd degree extension is itself an odd degree extension, we have

DH(X) =
∑

L≤H

mLtrKH

KL 〈1〉

=

( ∑

L≤H

mL|H : L|
)

〈1〉

for all H ≤ G, implying

X ∈ T IK/F (G/H) ⇐⇒
∑

L≤H

mL|H : L| = card(X) = 0. �

Remark 2.18. In this case, T IK/F is a prime ideal of AG as defined in [12]. This obser-

vation follows from [12, Corollary 4.29] and the fact that Z is a domain-like Tambara 

functor.

With reference to Footnote 1, we also define the absolute trace ideal of the Dress 

Tambara functor morphism.

Definition 2.19. Let G be a (profinite) group. The absolute trace ideal is the Tambara 

ideal given by

TG =
⋂

T IK/F ,

where the intersection (in the sense of [12, §3.1]) ranges over all Galois extensions K/F

with Galois group G.

3. The Burnside Tambara functor for a cyclic group

For N ∈ N, let CN denote the cyclic group of order N . To establish some preliminary 

results for the Burnside Tambara functor on CN , we introduce the following notation.

Definition 3.1. Let CK ≤ CM ≤ CN , and k = |CM : CK |. Define tM,k to be the transitive 

CM -set with cardinality k,

tM,k := CM /CK ∈ ACN
(CN /CM ).

We will drop the first index when it can be inferred from context.

Adopting this notation, multiplication of CM sets is given by the formula

tktj = gcd(k, j)tlcm(k,j), (3.2)
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as can be derived by considering the pullback diagram over CM/CK and CM /CJ . The 

element t1 is the multiplicative identity and so will be written as 1.

The formulas for the restriction and transfer maps are relatively straight-forward 

upon consideration of the maps given in Definition 2.10. For arbitrary elements X =∑
i|K aiti ∈ A(CN /CK) and Y =

∑
i|M biti ∈ A(CN /CM ), we have

resM
K (Y ) :=resCM

CK
(Y ) =

∑

i|M
bidit i

di

, (3.3)

trM
K (X) :=trCM

CK
(X) =

∑

i|K
aitik, (3.4)

where di = gcd(i, k). Conjugation is trivial. By an application of [14, Definition 7.2 and 

Corollary 7.6], we obtain the formula for the norm

NM
K (X) := NCM

CK
(X) =

∑

i|M

C(i)

i
ti, (3.5)

where

C(i) =

(
∑

j| lcm(i,k)
k

jaj

)gcd(i,k)

−
∑

j|i, j<i

C(j).

Note that we always have C(1) = a1. Using these explicit formulas, we can establish 

some useful lemmas regarding an arbitrary ideal I ⊆ ACN
.

Lemma 3.6. Let CK ≤ CM ≤ CN and suppose that n(tp −p) ∈ I (CN /CK) for some odd 

prime p and n ∈ N. Let pj be the largest power of p dividing M
K . Then for all 0 ≤ i ≤ j, 

n(tpi+1 − pi+1) ∈ I (CN /CM ). In particular we always have n(tp − p) ∈ I (CN /CM ).

Proof. We proceed by induction on i. For the base case i = 0, we wish to show that 

n(tp − p) ∈ I (CN /CM ). One can easily perform induction on the number of prime 

divisors of M
K , so it suffices to prove the base case for M

K = q for some prime q. In the 

case q = p, an application of Equation (3.5) gives

NM
K (n(tp − p)) = nppp−2tp2 − (nppp−1 − n)tp − np.

Hence

NM
K (n(tp − p))−nppp−2trM

K (n(tp − p)) = n(tp − p) ∈ I (CN /CM ),

as desired. When q �= p, applying Equation (3.5) yields
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NM
K (n(tp − p)) =

nq(−p)q−1 − n

q
tqp +

(−pn)q + np

q
tq + ntp − np.

Therefore

NM
K (n(tp − p)) − nq(−p)q−1 − n

q
trM

K (n(tp − p)) = n(tp − p) ∈ I (CN /CM ),

which proves the base case. Now let 1 ≤ i ≤ j and assume the claim holds for all k < i −1. 

Then in particular we have that n(tp −p) ∈ I (CN /CM ) and n(tpi −pi) ∈ A(CN /CM/p). 

Thus we have

trM
M/p(n(tpi − pi)) + pin(tp − p) = n(tpi+1 − pi+1) ∈ I (CN /CM )

for all 1 ≤ i ≤ j, which completes the proof. �

Lemma 3.7. Let CK ≤ CM ≤ CN and suppose that t4−t2−2 ∈ I (CN /CK). Let 2j be the 

largest power of 2 dividing M
K . Then for all 1 ≤ i ≤ j+2, t2i +t2−(2i+2) ∈ I (CN /CM ). 

Furthermore, 2t2 − 2 ∈ I (CN /CK/2).

Proof. To see that 2t2 −2 ∈ I (CN /CK/2), we observe that resCK

CK/2
(t4 −t2 −2) = 2t2 −2. 

The rest of the claim follows by induction on i. For CM = CK , note that

(2 − t2)(t4 − t2 − 2) = 2t2 − 2 ∈ I (CN /CK),

and therefore

(t4 − t2 − 2) + 2t2 − 2 = t4 + t2 − 8 ∈ I (CN /CK).

As before, induction on the number of prime divisors of M
K renders it sufficient to show 

that the base case holds for M/K = q prime. Moreover, the above arguments imply that 

we need only show t4 − t2 − 2 ∈ A(CN /CM ).

If q = 2, an application of Equation (3.5) gives

NM
K (t4 − t2 − 2) = 2t8 − t4 + 3t2 − 2.

Thus

NM
K (t4 − t2 − 2) − 2trM

K (t4 − t2 − 2) = t4 − t2 − 2 ∈ A(CN /CM ),

as desired. When q �= 2, we have

NM
K (2t2 − 4) = 2t2 − 4 +

4q − 4

q
tq − 4q − 4

2q
t2q,

and so
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2t2 − 4 = NM
K (2t2 − 4) − 4q−1 − 1

q
trM

K (2t2 − 4) ∈ I (CN /CM )

and

NM
K (t4 − t2 − 2) = t4 − t2 − 2 +

−2q + 2

q
tq +

−4q + 2q + 2

2q
t2q +

4q − 4

4q
t4q.

Thus t4 − t2 − 2 ∈ I (CN /CM ) if and only if

X :=
−2q + 2

q
tq +

−4q + 2q + 2

2q
t2q +

4q − 4

4q
t4q ∈ I (CN /CM )

Furthermore, X ∈ I (CN /CM ) if and only if

Y := X − 4q − 4

4q
trM

K (t4 − t2 − 2)

=
−4q + 2 · 2q

4q
t4q +

2 · 4q − 4 · 2q

4q
t4q

=
−2q

4

2q−1 − 1

q
tq(2t2 − 4) ∈ I (CN /CM ).

However, we know this element is in I (CN /CM ) since we have already shown that the 

factor 2t2 − 4 ∈ I (CN /CM ). Hence t4 − t2 − 2 ∈ I (CN /CM ) and the case i = 0 holds.

Now let 1 ≤ i ≤ j + 2 and suppose the claim holds for all k < i − 1. We need 

to show that t2i + t2 − (2i − 2) ∈ I (CN /CM ). By the inductive hypothesis, we know 

t2i−1 + t2 − (2i−1 − 2) ∈ I (CN /CM/2) and t4 − t2 − 2 ∈ I (CN /CM ). Therefore

trM
M/2(t2i−1+t2 − (2i−1 + 2)) − (t4 − t2 − 2) + (2i−2 + 1)(2t2 − 4)

= t2i + t2 − 2i − 2 ∈ I (CN /CM ),

completing the proof. �

4. The trace ideal

The following section calculates the trace ideal T IK/F for finite cyclic extensions 

and their profinite counterparts. In particular, we prove that finite extensions produce 

a principal trace ideal, and the profinite cases are colimits of these principal ideals. Our 

results coincide with those given by Epkenhans [5, Proposition 5], who calculates the 

classical absolute trace ideal T (G/G) for cyclic 2-groups.

4.1. Odd degree extensions

In the case of odd degree cyclic extensions, we can give a very nice presentation of the 

trace ideal. Taking advantage of the Tambara structure of the trace ideal allows us to 
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greatly simplify our presentation. In particular, seen as a Tambara ideal of ACN
, T IK/F

is strongly principal.

Theorem 4.1. Let G = CN , where N is odd with prime decomposition pe1
1 · · · pes

s . Then 

the trace ideal has the level-wise description

T IK/F (CN /CM ) = (ti − i : i | M)

= (tpk − pk : p prime, pk | M),

for all CM ≤ CN . Moreover, T IK/F is generated as a Tambara ideal by the element

X :=
s∑

i=1

(tpi
− pi) ∈ A(CN /Cn̂)

where n̂ = p1 · · · ps

Proof. First note that any divisor i | M must be odd. By Theorem 2.17,

T IK/F (CN /CM ) =

⎧
⎨
⎩X =

∑

i|M
aiti :

∑

i|M
iai = 0

⎫
⎬
⎭ .

Clearly then ti − i ∈ T IK/F (CN /CM ) for any i | M . Moreover, for any X =
∑

i|M aiti ∈
T IK/F (CN /CM ), we have

X −
∑

i|M
i�=1

ai(ti − i) = a1 +
∑

i|M
i�=1

iai = 0,

which proves the first equality. The second equality follows from the fact that tjtk = tjk

for j, k relatively prime. To show T IK/F = ( (X) ) first note that for all 1 ≤ i ≤ s we have 

resn̂
pi

(X) = tpi
− pi. Applying Lemma 3.6 gives us the rest of the generators from the 

second equality. �

4.2. Cyclic 2-extensions

Having determined a single generator for the trace ideal for odd degree cyclic exten-

sions, we will now consider cyclic 2-extensions. We find that the trace ideal for these 

extensions is still principal, but not always strongly principal. Nor is the ideal prime, as 

can be observed by comparing our result with the spectrum of cyclic p-groups calculated 

by Nakaoka [14].
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Definition 4.2. Let F be a field and α ∈ F ×. Define τF (α) as

τF (α) =

⎧
⎪⎨
⎪⎩

0 α not a sum of squares

1 α ∈ F�

2n α ∈ DF (2n) \ DF (2n−1), n ≥ 1

where DF (m) is the set of sums of m squares in F . Hence τF (α) is the least power of 2

such that α is a sum of that many squares in F .

Remark 4.3. The notation DF (m) is a derivative of the notation D(q) for the set of all 

elements represented by a quadratic form q. Thus, we will use DF (m) and D(m〈1〉F )

interchangeably.

Note that τF (α) = 0 if and only if there is an ordering of F such that α is negative 

(cf. [10, p. 378]).

Proposition 4.4. If τF (α) �= 0, then τF (α) is the additive order of 〈1〉 − 〈α〉 in GW (F ). 

Moreover, τF (α) is zero if and only if 〈1〉 − 〈α〉 has infinite order.

Proof. It is well known that the torsion of GW is 2-primary. Therefore, the additive 

order of 〈1〉 − 〈α〉 is a power of 2 or infinite. Clearly the order of 〈1〉 − 〈α〉 is 1 precisely 

when τF (α) = 1. Otherwise, suppose o(〈1〉 − 〈α〉) = 2n for some n ≥ 1. That is, 2n is the 

least power of two such that 2n〈α〉 = 2n〈1〉, so α ∈ D(2n〈1〉). Further, if α ∈ D(2m〈1〉)
for m < n, then α is a similarity factor of 2m〈1〉 as Pfister forms are round forms (see 

[10, Appendix to §X.1]). But then 2m〈α〉 = 〈α〉 ⊗ 2m〈1〉 = 2m〈1〉, contradicting the 

minimality of n. �

Theorem 4.5. If G = C2, then T IK/F = ( (τF (∆)(t2,2 − 2)) ) where ∆ is the discriminant 

of K/F .

Proof. Since T IK/F (C2/e) = (0) (see Remark 2.16), it only remains to investigate 

T IK/F (C2/C2). For X = mt2 + n ∈ T IK/F (C2/C2), we must have n = −2m by 

requirements on the dimension of D(X). It is well known that trK
F (〈1〉) = 〈2, 2∆〉 for 

quadratic extensions (see [10, Lemma VII.6.17]), so applying the Dress map yields

D(X) = m(〈2, 2∆〉 − 〈1, 1〉) = m〈2〉(〈∆〉 − 〈1〉) = 0.

Since 〈2〉 is a unit, the order of D(X) is the same as that of 〈∆〉 −〈1〉 and hence τF (∆) | m. 

Therefore every element of T IK/F (C2/C2) is an integer multiple of τF (∆)(t2 − 2). �

Before examining the trace ideal for a general cyclic 2-extension, it is useful to calculate 

the case for a C4 extension. Recall that a quadratic extension F ⊆ E := F (
√

∆) embeds 

into a C4 extension K/F if and only if ∆ = a2 + b2 for some a, b ∈ F ×. Moreover, we 



128 M. Calle, S. Ginnett / Journal of Algebra 560 (2020) 114–143

can write K = F (
√

δ) where δ = x(∆ − a
√

∆) for some x ∈ F × (cf. [10, §VII.6 and 

§VIII.5]).

Theorem 4.6. Suppose G = C4 and let E = KC2 . Let ∆, a, b, x and δ be given as above. 

If K/F embeds into a cyclic extension of degree 8, then

T IK/F = ((t4,4 − t4,2 − 2)).

Otherwise,

T IK/F = ((2t4,2 − 4, πF (x)(t4,4 − 4), τE(δ)(t2,2 − 2))),

where

πF (x) =

⎧
⎪⎨
⎪⎩

0 τF (x) = 0;

2 τF (x) = 1, 2;
τF (x)

2 τF (x) ≥ 4.

Proof. Since E/F is a quadratic Galois extension, Theorem 4.5 tells us that

T IK/F (C4/e) = (0) and T IK/F (C4/C2) = (τE(δ)(t2 − 2)).

Now let X ∈ T IK/F (C4/C4). Since card(X) = 0, X is of the form mt4+nt2−(4m +2n)

for some m, n ∈ Z. The Dress map takes this element to

D(X) = m〈1, ∆, x, x〉 + n〈2, 2∆〉 − (4m + 2n)〈1〉,

since DC4
(1) = 〈1〉, DC4

(t2) = 〈2, 2∆〉, and DC4
(t4) = 〈1, ∆, x, x〉 (by [10, Corollary 

VII.6.19]).

When m = 0, our work on quadratic extensions implies D(X) = 0 if and only if 

τF (∆) | n. Hence any such X is a multiple of τF (∆)(t2 − 2) = 2t2 − 4.

If instead n = 0, then D(X) = m(〈∆, x, x〉 − 〈1, 1, 1〉). If τF (x) ≤ 2, D(X) becomes 

m(〈∆〉 − 〈1〉) and so D(X) = 0 if and only if 2 | m. Otherwise, if τF (x) ≥ 4, then 

D(X) = 2m(〈x〉 − 〈1〉) and so τF (x) | 2m is equivalent to τF (X)
2 | m. In either case, 

πF (x) | m and hence all such elements are integer multiples of πF (x)(t4 − 4).

Now suppose both m, n are non-zero. Note that m and n must have the same parity 

since the determinant of D(X) must be 1 for X ∈ T IK/F . Any element of the ideal with 

even m and n can be obtained from the two generators already given, so it just remains 

to investigate the case where both m and n are odd. We claim that for such an X,

X ∈ T IK/F (C4/C4) ⇐⇒ t4 − t2 − 2 ∈ T IK/F (C4/C4).

We first show that πF (x) = 0 implies that there can be no such X ∈ T IK/F . Suppose 

otherwise. Then by the ideal properties of the trace ideal, we get
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t2X + 2m(2t2 − 4) = 2mt4 − 8m ∈ T IK/F .

But then 0 | 2m by the previous paragraph, which is a clear contradiction. Now suppose 

πF (x) �= 0. Then since gcd(πF (x), m) = 1, there are some a, b ∈ Z such that am +

bπF (x) = 1. Thus X ∈ T IK/F if and only if

aX + bπF (x)(t4 − 4) − (n + 1)(t2 − 2) = t4 − t2 − 2 ∈ T IK/F ,

which proves the claim.

Further, by [3, Section 4, Proposition 9], K/F embeds into a C8 extension if and 

only if D(t4 − t2 − 2) = 〈1, ∆, x, x〉 − 〈2, 2∆, 1, 1〉 is zero. That is, if there is no such 

embedding, the trace ideal is generated by πF (x)(t4 − 4), 2t2 − 4 ∈ A(C4/C4) and 

τE(δ)(t2 − 2) ∈ A(C4/C2) as claimed.

Suppose K/F embeds into a C8 extension. Then τE(δ) = 2 and t4 − t2 − 2 ∈
T IK/F (C4/C4) (so πF (x) �= 0). Lemma 3.7 implies that this element generates the 

entire ideal. �

Lemma 4.7. Suppose G = C2n for n ≥ 2. Then for all 1 ≤ m ≤ n,

T IK/F (C2n/C2m) ⊆ (t2i + t2 − 2i − 2 | 1 ≤ i ≤ m),

and hence

T IK/F ⊆ ((t4,4 − t4,2 − 2)).

Proof. Suppose X =
∑n−m

i=0 ait2i ∈ T IK/F (C2n/C2m) for ai ∈ Z. Then 
∑n−m

i=0 2iai = 0

since card(X) = 0. Now, from basic Galois and quadratic form theory we know that the 

determinant d(D(ti)) has the same square class as the discriminant of KC2m ⊆ KC2m−i

and therefore d(D(ti)) = d(D(tj)) for all 1 ≤ i, j ≤ n − m. Thus the condition that 

d(D(X)) = 1F� implies that 
∑n−m

i=1 ai ≡2 0. One can easily check that any X satisfying 

these two conditions can be written as a sum of the generators listed in the theorem. 

The second part of the theorem follows directly from Lemma 3.7. �

Now let G = C2n for some n ≥ 3, E = KC2 , and L = KC4 . Since K/L is a C4

extension, we can write E = L(
√

∆) for some ∆ = a2 + b2 ∈ L and K = E(
√

δ) where 

δ = x(∆ + a
√

∆).

Theorem 4.8. Adopting the notation above, we have the following presentation of the 

trace ideal:

(1) If K/L embeds into a C8 extension,

T IK/F = ((t4,4 − t4,2 − 2)).
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(2) If τE(δ) = 0,

T IK/F = ((t8,4 − t8,2 − 2)).

(3) Suppose neither of the above hold. Let m be the minimal index (with 3 ≤ m ≤ n) such 

that trKC2m

L (〈∆, x, x〉 − 〈2, 2∆, 1〉) = 0. Then T IK/F is the Tambara ideal generated 

by

(a) t2m,2m − t2m,2m−1 − 2t2m,2m−2 ,

(b) t8,4 − t8,2 − 2,

(c) ai(t2i,2i − 2i)

for some ai ∈ N where i ranges from 0 to n − 1. If there is no such m, then take 

(a) to be 0. Furthermore, each ai = o(trKCi

K (〈1〉) − 2i〈1〉) is a power of two (ai �= 1) 

with ai+1 | ai | 2ai+1.

Remark 4.9. It is worth noting that, for (3), we are unsure as to whether such a minimal 

index m ever exists. That is, it could be that (a) should always be taken to be 0.

Proof. (1) By considering the sub-extension K/L, Theorem 4.6 tells us that tk,4 − tk,2 −
2 ∈ T IK/F . Combining this observation with Lemma 4.7 yields the desired result.

(2) Consider the sub-extension KC8/E. Then t4 − t2 − 2 ∈ T IK/F (C2n/C8), and since 

the restriction of this element to C4 is 2t2−4, Theorem 4.6 tells us that T IK/F (C2n/C2i)

is as desired for i = 0, 1, 2.

Now let i ≥ 3 and consider

X =

i∑

j=0

mjt2j ∈ T IK/F (C2n/C2i).

Then res2i

2 (X) = mi(t2 −2), but the fact that T IK/F (C2n/C2i) = (0) implies mi = 0. So 

we have X =
∑i−1

j=0 mjt2j . The conditions on the determinant and dimension of D(X)

imply that 
∑i−1

j=0 mj = 0 and 
∑i−1

j=1 mj ≡2 0. Thus

T IK/F (C2n/C2i) ⊆ (tj
2 + t2 − (2j + 1))

where j ranges from 1 to i − 1. Since tl,4 − tl,2 − 2 ∈ T IK/F , Lemma 3.7 implies that 

each of these generators is in T IK/F . Therefore T IK/F = ( (tl,4 − tl,2 − 2) ) as desired.

(3) Supposing that τE(δ) �= 0, let a1 = τE(δ) and a2 = πL(x). First suppose there is no i

for which trKCm

L (〈D, x, x〉 − 〈2, 2D, 1〉) = 0. Then T IK/F (C2n/C2i) is clearly as claimed 

for i = 0, 1, 2.

Now let 3 ≤ i ≤ n and suppose T IK/F (C2n/C2i−1) is as claimed. By Lemma 3.7, 

we have t2j + t2 − (2j + 2) ∈ T IK/F for all 1 ≤ j < i. Consider X =
∑i

j=0 mjt2j ∈
T IK/F (C2n/C2i). Supposing mi is even, the condition on the determinant of D(X)
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implies that 
∑i−1

j=0 mj ≡2 0. Therefore X is in the trace ideal if and only if mi(t2i −2i) ∈
T IK/F . Taking

ai = o(trK
C

2i

K 〈1〉 − 2i〈1〉)

shows that X ∈ T IK/F if and only if ai | mi, which is to say that X is in the ideal 

generated as claimed. Observing that res2i

2i−1(ai(t2i − 2i)) = 2ai(t2i−1 − 2i) ∈ T IK/F

implies ai−1 | 2ai. Furthermore, tr2i

2i−1(ai−1(t2i−1 −2i−1)) +2i−1(t2 −2) = ai−1(t2i −2i) ∈
T IK/F implies that ai | ai−1. Since tF (δ) = a1 �= 0 by assumption, these relations imply 

that ai �= 0, and the condition on the determinant implies that ai �= 1.

Now suppose that mi is odd. Since gcd(mi, ai) = 1 there is some integer combination 

of X and ai(t2i −2i) for which the coefficient of t2i is 1. Since we have shown ai(t2i −2i) ∈
T IK/F and moreover t2j +t2 −2j −2 ∈ T IK/F for all 1 ≤ j < i, we see that X ∈ T IK/F

if and only if Y := t2i −t2i−2 −2t2i−3 is in the trace ideal as well. But Y = trCi

C4
(t4−t2−2), 

and so D(Y ) = trKCi

L (〈∆, x, x〉 − 〈2, 2∆, 1〉). Since we have supposed there is no i for 

which D(Y ) = 0, we have no such X in the trace ideal.

Otherwise, let m be the minimal such index. Then the arguments above apply for 

all indices i < m, so we assume i = m. By the arguments above, it suffices to take Y

as an additional generator and hence T IK/F (C2n/C2m) is as claimed. Furthermore, an 

obvious adaptation of the argument from Lemma 3.7 shows that the level-wise ideals are 

as claimed for all i > m. �

4.3. General cyclic extensions

Combining the results from the previous two subsections allows us to consider an 

arbitrary cyclic group CN . Theorem 4.1 determines the trace ideal when N is odd, so 

we examine N even.

Theorem 4.10. Let G = CN where N has prime decomposition 2μpσ1
1 · · · pσs

s for μ, σi ≥ 1. 

Then T IK/F is generated by

(1)
∑s

i=1(tpi
− pi) ∈ A(CN /Cp1···ps

) and

(2) G , where G generates T IK/KC2μ as in Theorem 4.8.

Proof. Let I denote the ideal generated by the elements from the theorem statement 

and let X =
∑s

i=1(tp − p) ∈ I(CN /Cp1···ps
). Note that resp1...ps

pi
(X) = tpi

− pi for all 

1 < i < s, so by Lemma 3.6, tpj
i
−pj

i is in each level of I where this element makes sense. 

Furthermore, this shows that tm −m for m odd is in each level of I where it makes sense. 

Multiplying this element by t2j , we obtain t2jm − mt2j .

Let X =
∑

i|M miti ∈ T IK/F (CN /CM ) for some M | N . We wish to show that X ∈ I
as well. Let 2k be the largest power of two dividing M and let m′ = M

2k . Since all divisors 

of m′ will be odd, we can consider the element
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Y := X −
k∑

j=0

∑

i|m′

m2ji(t2ji − it2j ) ∈ T IK/F (CN /CM ).

Since each summand is in I(CN /CM ), it is sufficient to show that we have Y ∈
I(CN /CM ). Write Y =

∑k
i=0 nit2i for some ni ∈ Z. Thus we need to show that 

Y ∈ I(CN /Cm). We know that resM
2k (Y ) =

∑k
i=0 nit2i ∈ T IK/F (CN /C2k ), and since 

T IK/F (CN /C2k ) = I(CN /C2k ) by definition, this element is some combination of the 

generators in G . Hence we need only show that the element 
∑j

i=0 ajtN/2jm′,2i is in I for 

each generator 
∑j

i=0 ajtN/2j ,2i .

Note that Lemma 3.6 and Lemma 3.7 imply the desired result when G is given 

by case (1) or (2) of Theorem 4.8. Therefore we need only consider (3). However, 

Lemma 3.6 and Lemma 3.7 imply the desired result for all generators other than 

t2m,2m − t2m,2m−1 − 2t2m,2m−2 where m is as in Theorem 4.8. But a straightforward 

adaptation of the argument from Lemma 3.7 applies to this case as well, which com-

pletes the proof. �

Corollary 4.11. For N given as above, the absolute trace ideal can be calculated as

TCN
= ((X))

where X =
∑

p odd(tn̂,p − p) + Y , n̂ = 2λp1 · · · ps, λ = min{3, μ} and

Y =

⎧
⎪⎨
⎪⎩

0 λ = 0;

2t2,2 − 4 λ = 1;

t4 − t2 − 2 otherwise.

Proof. A theorem of Epkenhans says that the absolute trace ideal is an intersection of 

finitely many trace ideals [6]. This, along with our computations of the trace ideal and 

Epkenhans computation of T (G/G) imply the desired result. �

5. The trace ideal for profinite extensions

Let Zp and Ẑ denote the p-adic integers and the profinite completion of the integers, 

respectively. By our work in the previous section, we can compute the trace ideal for 

K/F where Gal(K/F ) is either of these profinite groups.

5.1. Tambara maps in the Burnside functor

For K | M ∈ Z, let k = M
K . We denote the M Ẑ-set M Ẑ/KẐ by tM,k, and again the 

first index will be dropped when it can be inferred from context. With this identification, 

we clearly obtain the same formula for multiplication

tktj = gcd(k, j)tlcm(k,j). (5.1)
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The Tambara maps given in Equations (3.3)–(3.5) follow analogously. Specifically, for 

arbitrary elements X =
∑n1

i=1 aiti ∈ A(Ẑ/N Ẑ) and Y =
∑n2

i=1 biti ∈ A(Ẑ/M Ẑ) for some 

n1, n2 ∈ N, we have

resM
N (Y ) := resMẐ

NẐ
(Y ) =

n2∑

i=1

bidit i
di

, (5.2)

trM
N (X) := trMẐ

NẐ
(X) =

n1∑

i=1

aitik, (5.3)

NM
N (X) := NMẐ

NẐ
(X) =

n2∑

i=1

C(i)

i
ti, (5.4)

where di = gcd(i, k) and

C(i) =

(
∑

j| lcm(i,k)
k

jaj

)gcd(i,k)

−
∑

j|i, j<i

C(j)

as before. Conjugation is again trivial.

Identifying the pnZp-set pnZp/pmZp with tpn,pm−n allows us to similarly adapt these 

formulas for the p-adic integers. Multiplication carries over exactly, while the restriction, 

transfer and norm formulas translate by summing over powers of p.

5.2. The trace ideal for profinite groups

Before examining Ẑ, it is enlightening to examine the p-adic case. By the identi-

fication given above, we get an analogous description of the trace ideal for p odd as 

in Theorem 4.1. When p = 2, our description is comparable to that of case (1) from 

Theorem 4.8.

Theorem 5.5. Let G = Zp for some prime p. If p is odd, the trace ideal has level-wise 

description given by

T IK/F (Zp/pnZp) = (tpm − pm : m ∈ N),

which implies

T IK/F = ((tpi,p − p : i ∈ N)).

For p = 2, the trace ideal has the level-wise description

T IK/F (Z2/2nZ2) = (t2m + t2 − 2m − 2 : m ∈ N),
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which implies

T IK/F = ((t2i,4 − t2i,2 − 2 : i ∈ N)).

Proof. When p is an odd prime, the proof of the level-wise description is analogous to 

the one given in Theorem 4.1. The second description follows from Lemma 3.6. When 

p = 2, let I be the ideal claimed in the theorem statement. By the same arguments 

as in Lemma 4.7 we have that T IK/F ⊆ I. To show the other inclusion note that for 

all j, K2jZ2/K2j+2Z2 embeds into a C8 extension. Thus by Theorem 4.6 we have that 

t4 − t2 − 2 ∈ T IK/F (Z2/2jZ2). An application of Lemma 3.7 shows that the rest of the 

generators are in T IK/F . �

Theorem 5.6. Let K/F be a Galois extension with G = Ẑ. Then T IK/F is generated by 

t2n,4 − t2n,2 − 2 ∈ A(Ẑ/2nẐ) and tpn,p − p ∈ A(Ẑ/pnẐ) for odd primes p and all n ∈ N.

Proof. Let I be the Tambara ideal generated by the elements from the theorem state-

ment. For a prime p, the p-adic extensions are sub-extensions of the algebraic closure, so 

Theorem 5.5 tells us we have tpm,pn − pn ∈ I(Ẑ/pmẐ) for all odd p and n ≥ 1, m ∈ N. 

Note that this includes I(Ẑ/Ẑ), the case where m = 0. To show that tpn −pn ∈ I(Ẑ/mẐ), 

let k be the largest power of p dividing m. Then m
pk is relatively prime to p, so the restric-

tion is respkZ

mZ
(tm,pn − tm,p) = tpk,pn − tpk,p. The same argument works for the generators 

associated with p = 2. �

The trace ideal for these profinite groups is clearly not finitely generated, as t4 − t2 −2

must be in each level of the trace ideal yet is not in the image of the restriction map. 

However, if we define In to be the ideal generated by tn,4 − tn,2 − 2 for G = Z2 and 

the ideal generated by tn,p − p for G = Zp, we see that I1 ⊆ I2 · · · ⊆ In ⊆ · · ·
and T IK/F =

⋃
In. For the case of G = Ẑ, let n ≥ 4, m = n!, and take In be the 

ideal generated by the element tm,4 − tm,2 − 2 +
∑

p<n tm,p − p. Then we similarly have 

I4 ⊆ I5 · · · ⊆ In ⊆ · · · and T IK/F =
⋃

In. So in all cases considered, T IK/F is the 

union of an ascending chain of strongly principal ideals.

6. Some applications and examples

We can apply our computations to some examples of interest. In particular, Theo-

rem 4.5 allows us to determine the trace ideal for common quadratic extensions. We can 

also use the trace ideal of a quadratic extension to gain insight into the structure of the 

base field. Finally, we can apply our results to completely describe the trace ideal for 

both finite and profinite extensions of finite fields.
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6.1. Quadratic extensions

Recall that our characterization of the trace ideal for a cyclic 2-extension F (
√

α)/F

depends on the number such that α is a sum of that many squares. We thus get the 

following direct corollaries of Theorem 4.5:

Corollary 6.1. We have the following computations:

(1) T IC/R = ( (0) ) implying by Remark 2.14 that AC2

∼= GW C
R.

(2) For r = a
b ∈ Q a non-square with a, b ∈ Z,

T IQ(
√

r)/Q =

⎧
⎪⎨
⎪⎩

((0)) r < 0;

((2t2,2 − 4)) ab = x2 + y2, x, y ∈ Z;

((4t2,2 − 8)) otherwise.

(3) For a finite field Fq,

T IFq2 /Fq
= ((2t2,2 − 4)).

Proof. Part (1) is immediate by noting that −1 is negative and therefore not a sum of 

squares. Part (2) follows from the fact that any positive rational a
b is the sum of four 

squares, and a
b is a sum of two squares if and only if ab is as well. Finally, (3) follows 

from recalling that every element of a finite field is the sum of two squares. �

This result also yields a characterization of Pythagorean and formally real fields in 

terms of the trace ideals they admit for quadratic extensions.

Corollary 6.2. Let F be a field. Then

(1) F is formally real if and only if T IK/F = ( (0) ) for some quadratic extension K/F .

(2) F is Pythagorean if and only if T IK/F = ( (0) ) for all quadratic extensions K/F .

Proof. (1) The trace ideal is zero for an extension F (
√

α)/F when α is not a sum of 

squares in F . If there is such an α, then F is formally real. If instead we suppose that F

is formally real, we can take α = −1.

(2) Recall that in a Pythagorean field, any sum of squares is itself a square. Hence if 

we have a quadratic extension of a Pythagorean field, the discriminant cannot be a sum 

of squares. Similarly, if T IF (
√

α)/F = ( (0) ) for every quadratic extension F (
√

α)/F , then 

every non-square α ∈ F × is not a sum of squares. �
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6.2. Finite fields

The work of the previous sections allows us to give a complete description of the 

trace ideal for extensions of finite fields. We let Fq denote the finite field with q elements, 

where q is a power of an odd prime. The Grothendieck-Witt ring on Fq has a particularly 

unique structure, which makes this family of fields a rich source of study.

Over a finite field, every quadratic form is universal [10, Proposition II.3.4] and so 

is completely specified in GW (Fq) by its dimension and determinant [10, Theorem 

II.3.5(1)]. Recall that the determinant is determined up to square class F ×/F�, and 

moreover |F×
q /F�

q | = 2 (cf. [10, §II.3]). We denote the two square classes by 1 and α. 

Note that α is a sum of two squares, and we may take α = −1 if and only if q ≡ 3

(mod 4). In any case, we have GW (Fq) ∼= Z ⊕ F×
q /F�

q where the isomorphism is given 

by 〈a1, . . . , an〉 �→ (n,
∏

i aiF
�
q ).

This simplified presentation of the Grothendieck-Witt ring permits an explication of 

the Tambara structure of GW on a finite field, the details of which are worked out in 

Appendix A by H. Chen and X. Chen. These computations help us describe the Dress 

map and the trace ideal for finite fields. In particular, any finite extension FqN /Fq will 

have Galois group CN . The Dress map sends

X =
∑

i|M
aiti ∈ A(CN /CM ) �−→

( ∑

i

iai,
∏

i even

αai

)
∈ GW (FqM )

where α generates the non-square class of FqM , and applying Theorem 4.10 then gives 

us a complete description of the trace ideal. In particular, we find that the trace ideal is 

strongly principal in this case.

Now consider Fq inside of its quadratic or algebraic closure, which have Galois groups 

Z2 and Ẑ, respectively. The Dress map is described by a similar formula as given above, 

and we can apply the work of Section 5 to describe the trace ideal. In both these profinite 

cases, the top field is clearly quadratically closed, so Remark 2.14 applies.

Theorem 6.3. Let Q and K denote the quadratic and algebraic closure of Fq, respectively. 

Then we have the following calculations:

(1) Suppose N has prime decomposition 2μpσ1
1 · · · pσm

m and take N̂ = 2μ̂p1 · · · ps with

μ̂ =

{
μ μ = 0, 1;

2 μ ≥ 2.

Then

T IFqN /Fq
=

((
X2 +

s∑

i=1

(tN̂,pi − pi)

))
,
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where

X2 =

{
2μ(tN̂,2 − 2) μ = 0, 1;

tN̂,4 − tN̂,2 − 2 μ ≥ 2.

(2) T IQ/Fq
= ( (t2i,4 − t2i,2 − 2) ) where i ranges over all of N.

(3) T IK/Fq
is the ideal given in Theorem 5.6.

Proof. Part (1) follows from Theorem 4.10 and taking appropriate restrictions of the 

stated generator (as in the proof of Theorem 4.1). Note that if μ ≥ 2, we are in case 

(1) of Theorem 4.8 since we can always embed FqN /Fq appropriately. Parts (2) and (3) 

follow directly from Theorem 5.5 and Theorem 5.6, respectively. �

Appendix A. Norms of quadratic forms over finite fields (by Harry Chen and Xinling 

Chen)

Restriction, Scharlau transfer (with respect to field trace), and the Rost norm give 

the Grothendieck-Witt ring the structure of a Tambara functor [1]. Working over a finite 

base field, the values of GW and its restriction and transfer maps are known classically. 

Meanwhile the Rost norm has only been computed explicitly relative to quadratic exten-

sions [17]. Leveraging the Dress map and the structure of the Burnside Tambara functor 

for cyclic groups, we completely determine the Rost norm for any extension of finite 

fields with odd characteristic in Theorem A.5 below. Since the absolute Galois group of 

Fq is Ẑ, one may view this result as complementary to Theorem 5.6.

Let F = Fq be the finite field with q = pk odd. Recall that dimension and determinant 

form a ring isomorphism

GW (F ) ∼= Z ⊕ F ×/F�,

where the right-hand side has trivial multiplication on F ×/F�. As such, every n-

dimensional form in GW (F ) can be written as either n〈1〉 or (n −1)〈1〉⊕〈α〉, where α is 

a generator of F ×. Following, e.g., [10], it is easy to write down the effect of restriction 

and transfer on these classes.

Theorem A.1 (Restriction and transfer for finite fields). Let F = Fq ⊆ Fqm = E and fix 

generators α ∈ F ×, β ∈ E×. Then

resE
F 〈1〉 = 〈1〉,

resE
F 〈α〉 =

{
〈1〉 if m is even,

〈β〉 if m is odd,

trE
F 〈1〉 =

{
(m − 1)〈1〉 ⊕ 〈α〉 if m even,

m〈1〉 if m is odd,
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trE
F 〈β〉 =

{
m〈1〉 if m is even,

(m − 1)〈1〉 ⊕ 〈α〉 if m is odd.

The Rost norm is a multiplicative map NE
F : GW (E) → GW (F ) that takes any unary 

form 〈a〉 to NE
F (〈a〉) = 〈NE/F (a)〉 where NE/F : E× → F × is the classical field norm. 

In order to determine the value of NE
F on higher-dimensional forms, we need to know 

how it interacts with summation. The following theorem of M. Hill and K. Mazur gives 

a general formula for this interaction when the group of equivariance is finite Abelian.

Theorem A.2 (Tambara reciprocity for finite Abelian groups [9, Theorem 2.5]). Let G be a 

finite Abelian group and let S be a G-Tambara functor, for all H < G and a, b ∈ S(G/H)

NG
H(a + b) = NG

H(a) + NG
H(b) +

∑

H<K<G

trG
K

( iK∑

k=1

NK
H((ab)K

k )

)
+ trG

H(gH(a, b))

where iK is the number of orbits of functions from G/H to {a, b} with stabilizer exactly 

K, and (ab)K
k is a monomial in some of the WG(K)-conjugates of a and b, and gH(a, b)

is a polynomial in some of the WG(H)-conjugates of a and b.

This leads to a far more explicit formula for S = GW for an odd prime extension of 

finite fields.

Lemma A.3. Let F = Fq ⊆ Fq� = E where 
 > 2 is prime. Then for all a, b ∈ GW (E),

NE
F (a + b) = NE

F (a) + NE
F (b) + trE

F

( �−1∑

i=1

(
�
i

)



aib�−i

)
.

Proof. Let G = Gal(E/F ) = 〈ϕ〉 ∼= C� where ϕ is the Frobenius homomorphism. It 

suffices to determine ge(a, b) from Theorem A.2. According to [9, Corollary 2.6], we have

ge(a, b) =
∑

f∈I/G

�−1∏

i=0

ϕi(f(ϕi))

where I is the set of nonconstant functions f : G → {a, b} with the natural action of G. 

Since ϕ acts trivially on GW (E), we see that we are just adding up all degree 
 ordered 

monomials in a and b (which are not a� or b�) up to cyclic permutation of factors. 

Combining like terms, we have

ge(a, b) =

�−1∑

i=1

(
�
i

)



aib�−i

�
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Theorem A.4 (Norms for prime extensions of finite fields). Let F = Fq ⊆ Fq� = E for 


any prime and fix generators α ∈ F ×, β ∈ E×. Then

NE
F (n〈1〉) =

{
n�〈1〉 if 
 > 2,

(n2 − 1)〈1〉 ⊕ 〈α n2
−n
2 〉 if 
 = 2,

NE
F ((n − 1)〈1〉 ⊕ 〈β〉) =

{
(n� − 1)〈1〉 ⊕ 〈αn〉, if 
 > 2,

(n2 − 1)〈1〉 ⊕ 〈α n2
−3n
2 〉, if 
 = 2.

Proof. First consider the effect of NE
F on n〈1〉. The Dress map gives us the commutative 

diagram

A(C�/C�) GW (Fq)

A(C�/e) GW (Fq�)

D

D

N N

which, via the formulas in [14], has the following effect on n ∈ A(C�/e):

n + n�−n
� C�/e n〈1〉 ⊕ n�−n

� trE
F 〈1〉

n n〈1〉.

D

D

N N

As such, we know that

NE
F (n〈1〉) = n〈1〉 ⊕ n� − n



trE

F 〈1〉

We separately discuss the cases 
 > 2 and 
 = 2. When 
 > 2, we know

NE
F (n〈1〉) = n〈1〉 ⊕ n� − n



· 
〈1〉 = n�〈1〉.

If 
 = 2, then

NE
F (n〈1〉) = n〈1〉 ⊕ n2 − n

2
trE

F 〈1〉

= n〈1〉 ⊕ n2 − n

2
(〈1〉 ⊕ 〈α〉)

= (n2 − 1)〈1〉 ⊕ 〈α n2
−n
2 〉

We now analyze the effect of NE
F on terms of the form (n − 1)〈1〉 ⊕ 〈β〉, assuming that 


 > 2. By Lemma A.3, we have
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NE
F ((n − 1)〈1〉 ⊕ 〈β〉) = NE

F ((n − 1)〈1〉) ⊕ NE
F (〈β〉) ⊕ trE

F

( �−1∑

i=1

(
�
i

)



(n − 1)�−i〈βi〉

)

= (n − 1)�〈1〉 ⊕ 〈α〉 ⊕
�−1∑

i=0

(



i

)
(n − 1)i〈αi〉

=
�∑

i=0

(



i

)
(n − 1)�−i〈αi〉

The isometry class of this quadratic form is determined by its dimension, n�, and 

determinant. The latter quantity is

�∑

i odd

(



i

)
(n − 1)�−i ≡

{∑�
i odd

(
�
i

)
≡ 2�−1 ≡ 0 if n ≡ 0 (mod 2),

(
�
�

)
(n − 1)0 ≡ 1 if n ≡ 1 (mod 2).

We conclude that when 
 is odd, the norm map is given by

NE
F (n〈1〉) = n�〈1〉,

NE
F ((n − 1)〈1〉 ⊕ 〈β〉 = (n� − 1)〈1〉 ⊕ 〈αn〉.

It remains to determine NE
F ((n − 1)〈1〉 ⊕ 〈β〉) when 
 = 2. In this case, we have

NE
F ((n − 1)〈1〉 ⊕ 〈β〉) = NE

F ((n − 1)〈1〉) ⊕ NE
F (〈β〉) ⊕ trE

F (ge((n − 1)〈1〉, 〈β〉))

= ((n − 1)2 − 1)〈1〉 ⊕ 〈α
(n−1)2

−n+1
2 〉 ⊕ 〈α〉 ⊕ trE

F ((n − 1)〈β〉)

= ((n − 1)2 − 1)〈1〉 ⊕ 〈α
(n−1)2

−n+1
2 〉 ⊕ 〈α〉 ⊕ 2(n − 1)〈1〉

= (n2 − 1)〈1〉 ⊕ 〈α n2
−3n
2 〉

This covers the final case and concludes the proof. �

Theorem A.5 (Norms for extensions of finite fields). Let F = Fq ⊆ Fqm = E and fix 

generators α ∈ F ×, β ∈ E×. Then

NE
F (n〈1〉) =

⎧
⎪⎪⎨
⎪⎪⎩

nm〈1〉 m odd,

(nm − 1)〈1〉 ⊕ 〈α n2
−n
2 〉 m = 2,

(nm − 1)〈1〉 ⊕ 〈α n3
−n2

2 〉 m > 2 even,

NE
F ((n − 1)〈1〉 ⊕ 〈β〉) =

⎧
⎪⎪⎨
⎪⎪⎩

(nm − 1)〈1〉 ⊕ 〈αn〉 m odd,

(nm − 1)〈1〉 ⊕ 〈α n2
−3n
2 〉 m = 2,

(nm − 1)〈1〉 ⊕ 〈α n3
−3n2

2 〉 m > 2 even.
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Proof. We use functoriality and Theorem A.4 to inductively determine the norms. 

Firstly, we test the composition of norm for two odd prime extensions. Let L ⊆ F ⊆ E

be finite fields of odd prime s, t extension. Take some generator α ∈ L×, γ ∈ F ×, and 

β ∈ E×. Then we know that

NF
L ◦ NE

F (n〈1〉) = NF
L (nt〈1〉)

= nst〈1〉
NF

L ◦ NE
F ((n − 1)〈1〉 ⊕ 〈β〉) = NF

L ((nt − 1)〈1〉 ⊕ 〈γn〉)

=

{
(nst − 1)〈1〉 ⊕ 〈αnt〉 n odd

nst〈1〉 n even

= (nst − 1)〈1〉 ⊕ 〈αn〉.

Inductively, we know that for any odd m extension,

NE
F (n〈1〉) = nm〈1〉

NE
F ((n − 1)〈1〉 ⊕ 〈β〉) = (nm − 1)〈1〉 ⊕ 〈αn〉.

Similarly, we discuss the cases when s = 2 and t is odd. The computation gives us the 

result that for such extension,

NF
L ◦ NE

F (n〈1〉) = NF
L(nt〈1〉)

= (nst − 1)〈1〉 ⊕ 〈α
(nt)2

−nt

2 〉

=

{
(nst − 1)〈1〉 ⊕ 〈α〉 n ≡ 3 (mod 4)

nst〈1〉 n ≡ 0, 1, 2 (mod 4)

= (nst − 1)〈1〉 ⊕ 〈α n3
−n2

2 〉
NF

L ◦ NE
F ((n − 1)〈1〉 ⊕ 〈β〉) = NF

L((nt − 1)〈1〉 ⊕ 〈γn〉)

=

{
NF

L((nt − 1)〈1〉 ⊕ 〈α〉) n ≡ 1, 3 (mod 4)

NF
L(nt〈1〉) n ≡ 0, 2 (mod 4)

=

{
(nst − 1)〈1〉 ⊕ 〈α〉 n ≡ 1 (mod 4)

nst〈1〉 n ≡ 0, 2, 3 (mod 4)

= (nst − 1)〈1〉 ⊕ 〈α n3
−3n2

2 〉

For s = t = 2, we again compute that

NF
L ◦ NE

F (n〈1〉) = NF
L((nt − 1)〈1〉 ⊕ 〈γ n2

−n
2 〉)
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=

{
NF

L ((nt − 1)〈1〉 ⊕ 〈γ〉) n ≡ 2, 3 (mod 4)

NF
L (nt〈1〉) n ≡ 0, 1 (mod 4)

=

{
(nst − 1)〈1〉 ⊕ 〈α〉 n ≡ 3 (mod 4)

nst〈1〉 n ≡ 0, 1, 2 (mod 4)

= (nst − 1)〈1〉 ⊕ 〈α n3
−n2

2 〉

NF
L ◦ NE

F ((n − 1)〈1〉 ⊕ 〈β〉) = NF
L((nt − 1)〈1〉 ⊕ 〈γ n2

−3n
2 〉)

=

{
NF

L ((nt − 1)〈1〉 ⊕ 〈γ〉) n ≡ 1, 2 (mod 4)

NF
L (nt〈1〉) n ≡ 0, 3 (mod 4)

=

{
(nst − 1)〈1〉 ⊕ 〈α〉 n ≡ 1 (mod 4)

nst〈1〉 n ≡ 0, 2, 3 (mod 4)

= (nst − 1)〈1〉 ⊕ 〈α n3
−3n2

2 〉

Therefore, for a m extension where m = 4 or m = 2t, t odd, the following result holds.

NE
F (n〈1〉) = (nm − 1)〈1〉 ⊕ 〈α n3

−n2

2 〉

NE
F ((n − 1)〈1〉 ⊕ 〈β〉) = (nm − 1)〈1〉 ⊕ 〈α n3

−3n2

2 〉

Moreover, when compositing such m, k extension,

NF
L ◦ NE

F (n〈1〉) = NF
L((nk − 1)〈1〉 ⊕ 〈γ n3

−n2

2 〉)

=

{
NF

L ((nk − 1)〈1〉 ⊕ 〈γ〉) n ≡ 3 (mod 4)

NF
L (nk〈1〉) n ≡ 0, 1, 2 (mod 4)

=

⎧
⎨
⎩

(nst − 1)〈1〉 ⊕ 〈α n3k
−3nk

2 〉 n ≡ 3 (mod 4)

(nst − 1)〈1〉 ⊕ 〈α n3k
−nk

2 〉 n ≡ 0, 1, 2 (mod 4)

= (nst − 1)〈1〉 ⊕ 〈α n3
−n2

2 〉

NF
L ◦ NE

F ((n − 1)〈1〉 ⊕ 〈β〉) = NF
L((nt − 1)〈1〉 ⊕ 〈γ n2

−3n
2 〉)

=

{
NF

L ((nt − 1)〈1〉 ⊕ 〈γ〉) n ≡ 1 (mod 4)

NF
L (nt〈1〉) n ≡ 0, 2, 3 (mod 4)

=

⎧
⎨
⎩

(nst − 1)〈1〉 ⊕ 〈α n3k
−3nk

2 〉 n ≡ 1 (mod 4)

(nst − 1)〈1〉 ⊕ 〈α n3k
−nk

2 〉 n ≡ 0, 2, 3 (mod 4)

= (nst − 1)〈1〉 ⊕ 〈α n3
−3n2

2 〉
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Inductively, for any even m extension other then 2, the following result holds.

NE
F (n〈1〉) = (nm − 1)〈1〉 ⊕ 〈α n3

−n2

2 〉

NE
F ((n − 1)〈1〉 ⊕ 〈β〉) = (nm − 1)〈1〉 ⊕ 〈α n3

−3n2

2 〉

This proves the theorem. �
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