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1. Introduction and background

Let K/F be a Galois extension of fields with characteristic different from 2 with (profi-
nite) Galois group G := Gal(K/F'). For a field L, let GW (L) denote the Grothendieck-
Witt ring of (formal differences of) isometry classes of regular quadratic forms over L.
The Scharlau transfer (with respect to the field trace trg/p : K — F) is the homomor-
phism of Abelian groups GW(K) — GW (F) taking q to trg,;r o g. When considered
along with the restriction (i.e., extension of scalars) homomorphism GW (F) — GW (K),
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the Grothendieck-Witt ring gains the structure of a Mackey functor in the language of
A. Dress [4].

Tambara functors [16] are elaborations of Mackey functors with multiplicative norm
maps in addition to restrictions and transfers. In [1], T. Bachmann shows that the (a
priori different but ultimately equal) norm maps of D. Ferrand [7] and M. Rost [15] turn
GW into a Tambara functor. Our aim in this work is to leverage this additional structure
in order to study Dress’s trace homomorphism between Burnside and Grothendieck-Witt
rings, the construction of which we sketch presently.

Recall that the Burnside ring A(G) of G is defined as the Grothendieck construction
applied to the semi-ring of isomorphism classes of finite G-sets under disjoint union and
Cartesian product. In [4], Dress shows that the assignment A(G) — GW (F') determined
by G/H — (z € K — trgn p(2?)) is a ring map which we call the trace homomor-
phism. The trace homomorphism is surjective precisely when K contains square roots of
all the elements of F' [4, Appendix B, Theorem 3.1], and its kernel is the trace ideal of
K/F.! Assembling the trace homomorphisms for subextensions of K/F, we get a map
of Tambara functors, whose kernel is an ideal of the Burnside Tambara functor. It is this
kernel which we will determine for cyclic Galois extensions.

In order to state our main theorem, let C'y denote the cyclic group of order N, and
for M dividing N let A(Cn/Chr) = A(Chr). For m | M, let tp/,, denote the element of
A(Cn/Cyr) corresponding to the transitive Cys-set Cy/Cyy, of cardinality M/m.

Theorem 1.1 (see Theorem 4.1, Theorem 4.5, Theorem 4.6, Theorem 4.8, and Theo-
rem 4.10). Suppose Gal(K/F) = Cn where N has prime decomposition 2¢p7* ---p%=.
Then ker(Acq, — GWE), seen as a Tambara ideal of Ac, s is generated by

(1) tp, ;1 — Pitp,jp, fori=1,...,s,

(2) a generator G which is determined by K/K®*. If u = 0, then 4 = 0 as well.
If K/K%* is quadratic, then ¢ is determined by the discriminant. Otherwise (for
p > 2), 9 depends on the discriminant of both K/K2 and K /K%, as well as
an embedding condition on K /K.

We handle the pro-cyclic case as well in Theorem 5.5 and Theorem 5.6. This allows a
Tambara-theoretic description of the trace ideal for F,/F, in Theorem 6.3. These results
permit the description of every element of the trace ideal of a (pro-)cyclic extension as
the transfer of the product of the norm of the restriction of our specified generators. See
Remark 2.6 for a precise version of this observation.

! Instead of considering the trace ideal of a fixed extension, we might first fix a group G and study the
intersection of trace ideals across all Galois extensions with this Galois group, as has been done in [5]. We
will refer to this object as the absolute trace ideal to avoid confusion, although previous literature does not
include the descriptive. Epkenhans [5,6] determines the absolute trace ideal of elementary Abelian 2-groups,
cyclic 2-groups, and the quaternion and dihedral groups of order 8.
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The homotopy theory-inclined reader will note that the Burnside and Grothendieck-
Witt functors appear as endomorphisms of the sphere spectrum in stable equivariant and
motivic homotopy theory, respectively. Moreover, the classical Galois correspondence in-
duces a symmetric monoidal functor from Galois-equivariant spectra to motivic spectra
[8, Theorem 4.6]. This functor restricts to one between highly structured normed ring
spectra [2, Proposition 10.8]. In both categories, the sphere spectrum is a normed al-
gebra, and the Dress map is the induced Tambara map between endomorphisms of the
unit object. We hope that a better understanding of this map will provide insight on
the relation between equivariant and motivic homotopy theory provided by the Galois

correspondence.
1.1. Outline

Section 2 is dedicated to discussing Tambara functors and Tambara ideals, introducing
the Burnside and Grothendieck-Witt rings as Tambara functors, and detailing the Dress
map and the trace ideal for these Tambara functors. Section 3 describes the behavior
of the Burnside Tambara functor on a cyclic group, providing explicit formulas for the
Tambara maps. In Section 4, we calculate the trace ideal when G is a cyclic group
(Theorem 4.1, Theorem 4.8, and Theorem 4.10). Building on this work, we consider the
Galois groups Z, and 7 in Section 5. We show that the trace ideal for these profinite
groups are colimits of the principal ideals of their finite cyclic counterparts (Theorem 5.5
and Theorem 5.6). Finally, Section 6 applies these calculations to specific examples,
including a complete description of the trace ideal for extensions of finite fields; in this
case the trace ideal is strongly principal (Theorem 6.3). In Appendix A, H. Chen and
X. Chen give formulas for the restriction, transfer, and norm of an arbitrary quadratic
form over a finite field (Theorem A.1 and Theorem A.5).

Acknowledgments. We extend a big thank you to Kyle Ormsby and Angélica Osorno
for their mentorship. This research was conducted as part of the 2019 Collaborative
Mathematics Research Group (CMRG) at Reed College and generously funded by NSF
grant DMS-1709302. Additional thanks goes to Jeremiah Heller and our fellow CMRG
members Nick Chaiyachakorn, Nicholas Cecil, Harry Chen, and Xinling Chen for their
suggestions and support. We would also like to thank the referee for their helpful com-
ments and suggestions that improved our exposition.

2. Background: Tambara, Burnside, Grothendieck, Witt, and Dress

In this section, we recall necessary background information on Tambara functors, the
Burnside and Grothendieck-Witt rings, and Dress’s trace homomorphism.
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2.1. Tambara functors, ideals, and generators

First introduced as TNR functors? by D. Tambara in [16], Tambara functors are
elaborations of Mackey functors which have multiplicative norm maps in addition to
restrictions and transfers. These functors were originally defined only for finite groups,
but have since been extended to the profinite case [11].

Definition 2.1. Let G be a profinite group. Let GFin and Set denote the category of
finite G-sets and the category of Sets respectively. A Tambara functor T on G is a triple
(T*, T4, T.) where T* is a contravariant functor GFin—Set and T,T. are covariant
functors GFin— Set such that

(1) (T*,T) is a Mackey functor on G,

(2) (T*,T.) is a semi-Mackey functor’ on G, and
(3) given an exponential diagram

in GFin (in the sense of [16]), the diagram

T(X) T+(p) T(A) T*(A) T(Z)
T.(f)l T.(p)
T(Y) T+(Q) T(B)

commutes.
For the sake of brevity, we use the notation fy := T4 (f), f. :=T.(f), and f* := T*(f).

Remark 2.2. As is the case for Mackey functors, it suffices to specify how a Tambara
functor behaves on transitive G-sets. This observation prompts a second characterization
of Tambara functors in terms of subgroups of G:

Let G be a profinite group. A Tambara functor T on G is completely specified by a ring
T(G/H) for all open H < G and the following maps for all open subgroups L < H < G:

(1) Restriction rest := ¢*

2 Transfer, Norm, Restriction.
3 A semi-Mackey functor is a Mackey functor in which T(X) is assigned to a commutative monoid rather
than an abelian group (cf. [13]).
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(2) Transfer tr := ¢,
(3) Norm N :=¢.
(4) Conjugation cg g := (¢g)*

where ¢: G/K — G/H is the quotient map and ¢,: H — HY is conjugation-by-g and
HY9 = g~'Hg. These maps must satisfy a number of compatibility conditions as specified
M. Hill and K. Mazur in [9]. Notably, while restriction and conjugation are ring maps,
transfer and norm only respect the additive and multiplicative structures, respectively.

There are many analogies to draw between commutative ring theory and Tambara
functor theory; the additional Tambara structure makes the study of ideals a particularly
rich source of information.

Definition 2.3. Let T be a Tambara functor on G. An ideal .# of T' consists of a collection
of standard ring-theoretic ideals .#(G/H) C T(G/H) for each open H < G, such that
for all open subgroups L < H < G

(1) resf! (S (G/H)) € 7 (G/L),

(2) tr (F(G/L)) € S (G/H),

(3) N{(#(G/L)) € #(G/H) + N (0),
(4) ¢gu(F(G/L)) € F(G/?H).

Definition 2.4. Let G C [[;p;, T(X). The ideal generated by G is the intersection of
all ideals of T containing G, denoted ((G)). If G = {ay,...,a,} is finite, then we write

(9) = (a1, -, an)).

We will use the notation (a) C T'(X) to denote the ideal generated by a € T'(X) in the
standard ring-theoretic sense, whereas ((a)) C T denotes the Tambara ideal generated by
aecT(X).

Definition 2.5. Let .# be an ideal of T. We say .# is principal if % = ((a)) for some
a € T(X) where X is a G-set. We say an ideal is strongly principal if there exists an
open subgroup H < G and a € T(G/H) such that .7 = ((a)).

Nakaoka [12, Proposition 3.6] shows that every finitely generated Tambara ideal is in
fact principal, however the strongly principal condition is much more restrictive.

Just as ring-theoretic ideals can be produced by ring homomorphisms, Tambara ideals
arise as the kernels of Tambara functor morphisms (see [12, Proposition 2.10]). For more
details regarding the theory of Tambara ideals, we point the reader to Nakaoka’s paper
[12].
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Remark 2.6. There is a particularly nice description of a Tambara ideal generated by
a single element as shown in [12, Definition 1.4]. Let T be a Tambara functor and let
a € T(A) for some finite G-set A. Then ((a)) can be calculated as

(a)(X) = {us (b~ (n(w"(a)) | X = C <= D = A, b€ T(C)}
where vy = v. — v.(0).

Definition 2.7. Given two Tambara functors T and S on a profinite group G, a morphism
of Tambara functors ¢: T — S is a collection of ring homomorphisms px : T'(X) — S(X)
for all finite G-sets X which form a natural transformation of each of the three component
functors. The kernel of ¢ is given by the collection of kernels of the associated ring maps.

Remark 2.8. Just as in standard ring theory, a surjective Tambara functor morphism
p: T — S yields the presentation T/ker(y) = S. As before, it suffices to spec-
ify op: T(G/H) — S(G/H) on each open subgroup H < G. So then ker(yp) =
{ker(¢on)}u<c-

Our object of interest, the trace ideal, arises as the kernel of a Tambara functor
morphism. The details of the morphism and the functors it maps between are detailed
in the following two subsections.

2.2. The Grothendieck-Witt and Burnside rings as Tambara functors

The focus of our work is the Burnside Tambara functor on G, denoted A, and the
Grothendieck-Witt Tambara functor on a field extension K/F with Galois group G,
denoted GW X . This section recalls some basic definitions and results concerning these
two functors.

Definition 2.9 (The Burnside ring). The Burnside ring on a group G is the Grothendieck
construction on the semi-ring of finite G-sets, denoted A(G). That is, A(G) is the ring of
formal differences of isomorphism classes of finite G-sets, with addition given by disjoint
union and multiplication given by Cartesian product.

Definition 2.10 (Burnside Tambara functor). For each open H < G, define A,(G/H) to
be the Burnside ring of H. For open subgroups L < H < G, g€ G,Y € A;(G/H), and
X € A;(G/L), we define the Tambara structure maps,

rest : Aq(G/H) — Ag(G/L)
Y — Y with restricted L-action,
try : Ag(G/L) — Ag(G/H)
Xv+— Hxp X,
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N7': Ag(G/L) — Ag(G/H)
X — Map,, (H, X),
o1t Ac(G/H) — Ag(G/H?)
X — X9,

When G is Abelian, conjugation is trivial. These maps turn A, into the initial G-
Tambara functor (cf. [14,16]). We will denote A, by merely A when the group is obvious
from context.

Remark 2.11. For any L < H < G, we have a natural isomorphism (cf. [14, Remark 1.5])
Aq(G/L) = Ay (H/L), and we will often identify the two through this isomorphism.

We now turn to our second functor of interest, the Grothendieck-Witt functor. In
order to work with this functor, we use some basic notation from the theory of quadratic
forms. For a field F, let F* be the multiplicative group of units and F¥ = {22 | z €
F*} the group of squares, and so FX/F& denotes the group of square classes in F.
The diagonal F-form a;z? + ...a,22 is denoted (ay,...,a,), with dimension n and
determinant [, a;F X ¢ F*/FY. For an in-depth treatment of quadratic forms, we
point the reader to [10].

Definition 2.12 (Grothendieck- Witt ring). Let M (F) denote the set of isometry classes
of regular quadratic forms over a field F'. Equipped with the orthogonal sum and tensor
product operations, M (F') forms a semi-ring. The Grothendieck-Witt ring of F' is the
Grothendieck construction applied to this semi-ring, denoted GW (F'). A typical element
of GW(F) is a formal difference of isometry classes of quadratic forms.

Definition 2.13 (Grothendieck-Witt Tambara functor). For each open subgroup H < G,
define GW X (G/H) to be the Grothendieck-Witt ring on K*. For convenience we will
often index the Grothendieck-Witt Tambara functor by the field K instead of the G-set
G/H under the correspondence GWh (G/H) = GW K (KH) = GW (KH).

For subextensions I C L € E C K, the restriction map res¥ : GWX(L) —
GW {5 (E) is given by an extension of scalars. Equipped with the Scharlau transfer of
the field trace and the Rost norm [15], the Grothendieck-Witt ring naturally exhibits
the structure of a Galois Tambara functor (cf. [1, §3]). Again, we denote GW S by GW
when the extension is obvious from context.

2.3. The Dress map and the trace ideal
As shown in [4], there is a ring homomorphism D¢ between the Burnside ring on G

and the Grothendieck-Witt ring on F' which sends a transitive G-set G/H to the trace
form trﬁfH (1) = (K. Similarly, for each open H < G, we have a ring homomorphism
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Dy: A(G/H) — GWE(K™). We define the Dress map D : A — GW X as the collection
of these ring homomorphisms. To see that the Dress map is indeed a Tambara functor
morphism, first recall that A is the initial element in the category of Tambara functors
on G. As such, there must be a unique Tambara functor morphism ® : A, - GW I},f .
Now note that for all L < H < G we have H/L = tr¥ (L/L), and so it follows that

O(H/L) = ®(tr (L/L)) = K} (®(L/L)) = trK (1).
This shows that ® is indeed the Dress map, and hence D is a Tambara functor morphism.

Remark 2.14. A Tambara functor morphism is said to be surjective if the ring maps at
each level are surjective. The conditions for the Dress map to be surjective at each level
are given by [4, Appendix B, Theorem 3.1]. It follows that the Dress map is a surjective
Tambara functor morphism if and only if K is quadratically closed.

Definition 2.15. The trace ideal, denoted TZ g, is the Tambara ideal ker(D: A5 —
GW? ). When the extension is clear, we drop the decoration.

Remark 2.16. If G is a finite group, then TZg, ¢ (G/e) = (0).

Note that Remark 2.6 allows us to calculate the classical trace ideal just in case
TZk/r is principal. To gain insight into the trace ideal, we observe that for every sub-
extension F' C E C K, we have the ring homomorphism dimg: GW(E) — Z which
sends a quadratic form to its dimension over E. These maps naturally assemble into the
Tambara functor morphism dim: G_Wﬁf — Z given by dim = {dimg=}y<g. Here Z
denotes the constant Tambara functor on Z given by Z(G/H) = Z and

res? (a) = a,
trf (a) = |H : L|a,
N¥ (@) = alf"H,
cgu(a) =a

for all open L < H < G, a € Z, and g € G. Similarly, for all H < G there is a ring
homomorphism cardy : A(H) — Z sending a finite H-set to its cardinality. We then have
the Tambara functor morphism card: A, — Z given by card = {cardy } n<¢. Note that
card = dim oD, which implies that TZ g, is a sub-ideal of the kernel of card. When the
order of G is odd, we have a stronger result.

Theorem 2.17. If the order of G is odd,

TIk/r = ker(card).
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Proof. When the order of G is odd, it is well-known that tr& (1) = |K : F|(1) (cf. [10]).
For H < G, an arbitrary element of A(G/H) is of the form X =3, myH/L. Since
every sub-extension of an odd degree extension is itself an odd degree extension, we have

H
Du(X) =Y mutri. (1)
L<H

(X malrr )y

L<H

for all H < G, implying

X € TIx/p(G/H) <= > my|H:L|=card(X)=0. O
L<H

Remark 2.18. In this case, TZ g/ is a prime ideal of A, as defined in [12]. This obser-
vation follows from [12, Corollary 4.29] and the fact that Z is a domain-like Tambara
functor.

With reference to Footnote 1, we also define the absolute trace ideal of the Dress
Tambara functor morphism.

Definition 2.19. Let G be a (profinite) group. The absolute trace ideal is the Tambara
ideal given by

Ta =(\TZx/r,

where the intersection (in the sense of [12, §3.1]) ranges over all Galois extensions K/F
with Galois group G.

3. The Burnside Tambara functor for a cyclic group

For N € N, let Cy denote the cyclic group of order N. To establish some preliminary
results for the Burnside Tambara functor on C, we introduce the following notation.

Definition 3.1. Let Cx < Cy < Cn, and k = |Cys : Ck|. Define ¢y 1, to be the transitive
Cr-set with cardinality k,

tmr = Cm/Ck € Acy (Cn/Cur).
We will drop the first index when it can be inferred from context.

Adopting this notation, multiplication of C; sets is given by the formula

tktj = ng(k7j)thm(k,j)7 (32)
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as can be derived by considering the pullback diagram over Cj;/Ck and Cp;/C;. The
element t; is the multiplicative identity and so will be written as 1.

The formulas for the restriction and transfer maps are relatively straight-forward
upon consideration of the maps given in Definition 2.10. For arbitrary elements X =
Zi|K a;t; € A(CN/CK) and Y = Ez|M b;it; € A(CN/CM)7 we have

resy (V) i=resg (V) = Y bid;t ¢, (3.3)
i\M ’

trif (X) s=trg (X) = > aitax, (3.4)
i|K

where d; = ged(i, k). Conjugation is trivial. By an application of [14, Definition 7.2 and
Corollary 7.6], we obtain the formula for the norm

C’@

N (X) :=Ng¥(X) =) ——t;, (3.5)

i M

where

ged(4,k)
O(z‘)( > j%-) - Y. Ci).
|

j lcm](:,k) jli, j<i

Note that we always have C'(1) = ay. Using these explicit formulas, we can establish
some useful lemmas regarding an arbitrary ideal % C Aq .

Lemma 3.6. Let Cx < Cy; < Cy and suppose that n(t, —p) € I (Cn/Ck) for some odd
prime p and n € N. Let p? be the largest power of p dividing % Then for all0 <1 < j,
n(tyier —p*) € I (Cn/Cur). In particular we always have n(t, —p) € Z(Cn/Cum).

Proof. We proceed by induction on i. For the base case ¢« = 0, we wish to show that
n(t, —p) € F(Cn/Cn). One can easily perform induction on the number of prime

M

divisors of 4, so it suffices to prove the base case for % = q for some prime ¢. In the

K
case ¢ = p, an application of Equation (3.5) gives

N (n(t, — p)) = nPpP 2t — (nPpP~* — n)t, — np.
Hence
NE (n(ty — p))=n"p"~?tril (n(t, — p)) = n(t, —p) € 7 (Cn/Chr),

as desired. When ¢ # p, applying Equation (3.5) yields
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ni(—p)i=t —n —pn)? +np
Nty — ) = Ly PN,

Therefore

ni(—p)? ' —n

. tr (n(tp = p)) = n(tp — p) € S (Cn/Cur),

N (n(tp = p)) —

which proves the base case. Now let 1 < ¢ < j and assume the claim holds for all £ < i—1.
Then in particular we have that n(t, —p) € .#(Cn/Cu) and n(t, —p') € A(Cn/Chryp)-
Thus we have

trir/p(n(ty —p') +p'n(ty —p) = nl(tyn —p'™*') € S(Cn/Cu)
for all 1 <14 < j, which completes the proof. 0O

Lemma 3.7. Let Cx < Cpr < Cx and suppose thatty—ta—2 € F(Cn/Cr). Let 27 be the
largest power of 2 dividing % Then for all1 < i < j+2, tgi+ta—(2+2) € I (Cn/Chr)-
Furthermore, 2ty — 2 € .7 (Cn/Ci2).

Proof. To see that 2t, —2 € #(Cn/Ck/2), we observe that resgi/2 (tg—ta—2) = 2ty —2.
The rest of the claim follows by induction on ¢. For Cj; = Ck, note that

(2 —tg)(t4 — 19 — 2) =2t —2¢€ f(CN/CK),
and therefore
(t4—t2—2)+2t2 —2=t4+1t;—8¢€ j(CN/CK)

As before, induction on the number of prime divisors of % renders it sufficient to show
that the base case holds for M /K = ¢ prime. Moreover, the above arguments imply that
we need only show ¢4 —ty — 2 € A(Cn/Chu).

If ¢ = 2, an application of Equation (3.5) gives

N¥(ty —ty —2) = 2tg — ty + 3ty — 2.
Thus
NM(ty —ty—2) —2trM(ty —ta —2) =t4 —ty —2 € A(Cn/Cnr),
as desired. When ¢ # 2, we have

49 —4 494
NY(2ty —4) =2ty — 4+ ty — t2g
q

and so
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4a-1 1
2y —4=NM(2ty —4) - ———tx}(2t, — 4) € #(Cn/Cur)
q
and
—20 42 —49 42949 49 — 4
NM(ty—tg—2) =1ty —ty—2 t t tag.
K (t4 t2 ) t4 t2 + q q + 2q 2q + 4q 4q

Thus ty —ty — 2 € Z(Cn/C)) if and only if

2049 4942042 494
= t, + tog + ——1tsg € I (Cn OM)
q q 2q q 4q q ( /

X :

Furthermore, X € .#(Cx/C)y) if and only if

Y =X — trdl (ty —ty — 2)
_ _4q+2.2qt +2.4q_4.2¢1t
- 4(] 4q 4q 4q
—92499-1 _ 1
- TTt"(QtQ —4) € S(Cn/Cur).

However, we know this element is in & (Cx/Chy) since we have already shown that the
factor 2ty —4 € S (Cn/Chy). Hence ty —to — 2 € #(Cn/Chr) and the case i = 0 holds.

Now let 1 < 4 < 7+ 2 and suppose the claim holds for all £ < ¢ — 1. We need
to show that ty +ta — (2° — 2) € #(Cn/Cur). By the inductive hypothesis, we know
tyi-1 4+t — (2071 = 2) € F(Cn/Chrij2) and ty — ty — 2 € I (Cn/Chr). Therefore

0] o (taim1 2 — (2071 +2)) = (ts — ta — 2) + (272 +1)(2tp — 4)
=t9i + 1o — 2 _92¢ f(ON/CM),

completing the proof. O

4. The trace ideal

The following section calculates the trace ideal TZg,p for finite cyclic extensions
and their profinite counterparts. In particular, we prove that finite extensions produce
a principal trace ideal, and the profinite cases are colimits of these principal ideals. Our
results coincide with those given by Epkenhans [5, Proposition 5], who calculates the
classical absolute trace ideal T(G/G) for cyclic 2-groups.

4.1. Odd degree extensions

In the case of odd degree cyclic extensions, we can give a very nice presentation of the
trace ideal. Taking advantage of the Tambara structure of the trace ideal allows us to
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greatly simplify our presentation. In particular, seen as a Tambara ideal of Ax, , TZk/F
is strongly principal.

Theorem 4.1. Let G = Cy, where N is odd with prime decomposition pi* ---pS:. Then
the trace ideal has the level-wise description

TIk/r(Cn/Cy) = (ti—i @ i| M)

= (tyx —p" : p prime, p* | M),

for all Cpy < Cn. Moreover, Ty p is generated as a Tambara ideal by the element

X = 2(7% —pi) € A(Cn/Cy)

where . = py - - - P

Proof. First note that any divisor ¢ | M must be odd. By Theorem 2.17,

TIk/r(Cn/Cyp) =X = Zaiti : Ziai =0

i|M i|M

Clearly then t; —i € T2 p(Cn/Cn) for any i | M. Moreover, for any X =3, 5, ait; €
TIK/F(CN/CM), we have

X—Zai(ti—i) :al—&—Zz’ai:O,

i|M i\M

i#1 i#1
which proves the first equality. The second equality follows from the fact that ¢;t, =t
for j, k relatively prime. To show TZg,r = (X)) first note that for all 1 <i < s we have
resgi (X) = tp, — pi- Applying Lemma 3.6 gives us the rest of the generators from the
second equality. O

4.2. Cyclic 2-extensions

Having determined a single generator for the trace ideal for odd degree cyclic exten-
sions, we will now consider cyclic 2-extensions. We find that the trace ideal for these
extensions is still principal, but not always strongly principal. Nor is the ideal prime, as
can be observed by comparing our result with the spectrum of cyclic p-groups calculated
by Nakaoka [14].



M. Calle, S. Ginnett / Journal of Algebra 560 (2020) 114—-143 127

Definition 4.2. Let F' be a field and o € F'*. Define 74 («) as

0 a not a sum of squares
Tr(a)=¢ 1 ac F¥
2" € Dp(2")\ Dp(2"7Y), n > 1

where Dp(m) is the set of sums of m squares in F. Hence 7 («) is the least power of 2
such that « is a sum of that many squares in F'.

Remark 4.3. The notation Dp(m) is a derivative of the notation D(q) for the set of all
elements represented by a quadratic form ¢. Thus, we will use Dp(m) and D(m(1)p)
interchangeably.

Note that 7r(a) = 0 if and only if there is an ordering of F' such that « is negative
(cf. [10, p. 378]).

Proposition 4.4. If 7p(«) # 0, then Tr(«) is the additive order of (1) — (a) in GW(F).
Moreover, Tr () is zero if and only if (1) — («) has infinite order.

Proof. It is well known that the torsion of GW is 2-primary. Therefore, the additive
order of (1) — (o) is a power of 2 or infinite. Clearly the order of (1) — («) is 1 precisely
when 77 (a) = 1. Otherwise, suppose o({1) — («)) = 2" for some n > 1. That is, 2" is the
least power of two such that 2™(a) = 27(1), so a € D(2"(1)). Further, if o € D(2™(1))
for m < n, then « is a similarity factor of 2 (1) as Pfister forms are round forms (see
[10, Appendix to §X.1]). But then 2™(a) = (a) ® 2™(1) = 2™(1), contradicting the
minimality of n. O

Theorem 4.5. If G = Cy, then TZi/p = (Tr(A)(t2,2 —2))) where A is the discriminant
of K/F.

Proof. Since TZg/p(C2/e) = (0) (see Remark 2.16), it only remains to investigate
TIk/p(C2/Cs). For X = mts +n € TLg/p(C2/Cs), we must have n = —2m by
requirements on the dimension of D(X). It is well known that trf ((1)) = (2,2A) for
quadratic extensions (see [10, Lemma VII.6.17]), so applying the Dress map yields

D(X) = m((2,24) = (1,1)) = m(2)((4) — (1)) = 0.

Since (2) is a unit, the order of D(X) is the same as that of (A)—(1) and hence 7p(A) | m.
Therefore every element of TZg/r(C2/C2) is an integer multiple of 77 (A)(t2 —2). O

Before examining the trace ideal for a general cyclic 2-extension, it is useful to calculate
the case for a C, extension. Recall that a quadratic extension ' C E := F(\/Z) embeds
into a Cy extension K/F if and only if A = a? + b? for some a,b € F*. Moreover, we
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can write K = F(v/§) where § = (A — aV/A) for some x € F* (cf. [10, §VIL6 and
§VIIL)).

Theorem 4.6. Suppose G = Cy and let E = K. Let A,a,b,x and § be given as above.
If K/F embeds into a cyclic extension of degree 8, then

TIK/F - ((t4,4 - t4,2 - 2))

Otherwise,
TIkp=(2ts2—4,7mr(x)(tsa —4),7E(0)(t22 — 2))),
where
0 () = 0;
mr(x) = 2 7p(z)=1,2;
TFQ(‘T) Tr(z) > 4.

Proof. Since F/F is a quadratic Galois extension, Theorem 4.5 tells us that
TZk/p(Cafe)=(0) and TZIg/p(Cs/Co)= (T8(6)(t2—2)).

Now let X € TZyp(Cy/Cy). Since card(X) = 0, X is of the form mt,+nto—(4m-+2n)
for some m,n € Z. The Dress map takes this element to

D(X) =m(l,A z,x) +n(2,2A) — (4m + 2n)(1),

since De, (1) = (1), D¢, (t2) = (2,2A), and D¢, (t4) = (1,A,z,x) (by [10, Corollary
VIL6.19]).

When m = 0, our work on quadratic extensions implies D(X) = 0 if and only if
7r(A) | n. Hence any such X is a multiple of 7p(A)(te — 2) = 2ty — 4.

If instead n = 0, then D(X) = m((A, z,z) — (1,1,1)). If 7p(z) < 2, D(X) becomes
m((A) — (1)) and so D(X) = 0 if and only if 2 | m. Otherwise, if 7p(z) > 4, then
D(X) = 2m({z) — (1)) and so 7r(z) | 2m is equivalent to # | m. In either case,
mr(x) | m and hence all such elements are integer multiples of 7 (z)(t4 — 4).

Now suppose both m,n are non-zero. Note that m and n must have the same parity
since the determinant of D(X) must be 1 for X € TZg /. Any element of the ideal with
even m and n can be obtained from the two generators already given, so it just remains
to investigate the case where both m and n are odd. We claim that for such an X,

XETIK/F(C4/C4) <— t4—t2—2€TIK/F(C4/C4).

We first show that mp(2) = 0 implies that there can be no such X € TZg,p. Suppose
otherwise. Then by the ideal properties of the trace ideal, we get
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to X + 2m(2t2 — 4) =2mty — 8m € TZK/F.

But then 0 | 2m by the previous paragraph, which is a clear contradiction. Now suppose
mp(x) # 0. Then since ged(np(x), m) = 1, there are some a,b € Z such that am +
brp(xz) = 1. Thus X € TZg p if and only if

G,X+b7TF(.13)(t4 —4) - (n—|— 1)(t2 - 2) =t4—ty—2¢€ TIK/Fa

which proves the claim.

Further, by [3, Section 4, Proposition 9], K/F embeds into a Cys extension if and
only if D(ty —ta — 2) = (1,A,z,2) — (2,2A,1,1) is zero. That is, if there is no such
embedding, the trace ideal is generated by wp(x)(ts — 4), 2ts — 4 € A(Cy4/C,) and
TE(0)(t2 — 2) € A(C4/Cs) as claimed.

Suppose K/F embeds into a Cg extension. Then 7g(d) = 2 and t4 —to — 2 €
TIZk r(Cy/Cy) (so mp(xz) # 0). Lemma 3.7 implies that this element generates the
entire ideal. O

Lemma 4.7. Suppose G = Con for n > 2. Then for all1 < m <mn,
TIr/r(Con/Com) C (toi +ta—2" =21 <i<m),
and hence
TIk/r C (taa—ta2—2).

Proof. Suppose X = Y71 " a;tyi € TZg p(Con/Com) for a; € Z. Then >/ " 2'a; = 0
since card(X) = 0. Now, from basic Galois and quadratic form theory we know that the
determinant d(D(t;)) has the same square class as the discriminant of K> C K%m—i
and therefore d(D(t;)) = d(D(t;)) for all 1 < 4,5 < n —m. Thus the condition that
d(D(X)) = 1F® implies that /" a; =2 0. One can easily check that any X satisfying
these two conditions can be written as a sum of the generators listed in the theorem.
The second part of the theorem follows directly from Lemma 3.7. O

Now let G = Can for some n > 3, E = K%, and L = K. Since K/L is a Oy
extension, we can write E = L(V/A) for some A = a?> +b?> € L and K = E(V/) where
§=xz(A+aVA).

Theorem 4.8. Adopting the notation above, we have the following presentation of the
trace ideal:

(1) If K/L embeds into a Cy extension,

TIK/F = ((t4,4 - t4,2 - 2))
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(2) If Tr(d) =0,
TIk/r = (tga—ts2—2).

(3) Suppose neither of the above hold. Let m be the minimal index (with 3 < m < n) such
that trfczm (A, z,z) — (2,2A,1)) = 0. Then TZkp is the Tambara ideal generated
by
(a) tom om — tym gm—1 — 2lgm gm-2,

(b) t874 — t&g — 2,

() ailtar o — 2

for some a; € N where i ranges from 0 to n — 1. If there is no such m, then take
(a) to be 0. Furthermore, each a; = o(trﬁci ((1)) — 2¥(1)) is a power of two (a; # 1)
with Ai+1 ‘ a; | 2ai+1.

Remark 4.9. It is worth noting that, for (3), we are unsure as to whether such a minimal
index m ever exists. That is, it could be that (a) should always be taken to be 0.

Proof. (1) By considering the sub-extension K /L, Theorem 4.6 tells us that 5 4 —tg 2 —
2 € TZk/p- Combining this observation with Lemma 4.7 yields the desired result.

(2) Consider the sub-extension K¢ /E. Then ty —ty — 2 € TZ/r(Can/Cs), and since
the restriction of this element to Cy is 2t —4, Theorem 4.6 tells us that TZ g /g (Can /Coi)
is as desired for 1 = 0,1, 2.

Now let 4 > 3 and consider

X = Zm_]tgj S TIK/F(CQn/CQ'i).
j=0

Then res%i (X) Z.mi(tg —2), but the fact that 7Z g, p(Can /Cai) = (0) implies m; = 0. So
we have X = Z;;g m;ta;. The conditions on the determinant and dimension of D(X)
imply that Z;ft m; = 0 and Z;;ll m; =2 0. Thus

TZr/r(Con/Coi) C (th +ta — (27 4+ 1))

where j ranges from 1 to ¢ — 1. Since t;4 —t;2 — 2 € TZg,r, Lemma 3.7 implies that
each of these generators is in TZg /. Therefore TZx/p = (t14 — t12 — 2)) as desired.

(3) Supposing that 75(0) # 0, let a1 = 75(d) and az = (). First suppose there is no ¢
for which trX " ((D, z, z) — (2,2D,1)) = 0. Then TZkp(Can/Cyi) is clearly as claimed
fort=0,1,2.

Now let 3 < i < n and suppose TZg/p(Can/Cai-1) is as claimed. By Lemma 3.7,
we have to; + 1ty — (27 +2) € TIkr forall 1 < j <. Consider X = Z;":o mjta; €
TZk/r(Con/Cy:i). Supposing m; is even, the condition on the determinant of D(X)
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implies that Z;;g m; =5 0. Therefore X is in the trace ideal if and only if m;(ty: —2°) €

TIk/r. Taking
Kczi .
a; = o(trg ~ (1) —2%(1))

shows that X € TZg,p if and only if a; | m;, which is to say that X is in the ideal
generated as claimed. Observing that resgz,l(ai(tzi —2Y)) = 2a;(tyi-r — 2') € TIg/r
implies a;_1 | 2a;. Furthermore, trngl(aifl(tgi—l — 207 4207 (49 —2) = a1 (tei —2%) €
TZIk,r implies that a; | a;—1. Since tp(d) = a; # 0 by assumption, these relations imply
that a; # 0, and the condition on the determinant implies that a; # 1.

Now suppose that m; is odd. Since ged(m;, a;) = 1 there is some integer combination
of X and a;(ty: —2%) for which the coefficient of ¢, is 1. Since we have shown a;(ty —2°) €
TZk/r and moreover ty; +t,—21 -2 ¢ TZg pforalll <j <i, weseethat X € TZk/p
if and only if Y := t9: —tgi—2 —2t9i—s is in the trace ideal as well. But Y = tlrgj1 (ta—ta—2),
and so D(Y) = trfci«A,x,x) —(2,2A,1)). Since we have supposed there is no 4 for
which D(Y') = 0, we have no such X in the trace ideal.

Otherwise, let m be the minimal such index. Then the arguments above apply for
all indices ¢ < m, so we assume i = m. By the arguments above, it suffices to take Y
as an additional generator and hence TZg,p(Can/Cam) is as claimed. Furthermore, an
obvious adaptation of the argument from Lemma 3.7 shows that the level-wise ideals are
as claimed for all i > m. O

4.8. General cyclic extensions

Combining the results from the previous two subsections allows us to consider an
arbitrary cyclic group Cy. Theorem 4.1 determines the trace ideal when N is odd, so
we examine N even.

Theorem 4.10. Let G = Cn where N has prime decomposition 2FpJ* - - - pZ= for p,o; > 1.
Then TZy r is generated by

(1) 2201 (tp, — pi) € A(CN/Cpyep,) and
(2) ¢, where ¥ generates TLg koo as in Theorem 4.8.

Proof. Let Z denote the ideal generated by the elements from the theorem statement
and let X = Y7 (t, —p) € Z(CN/Cp,...p,)- Note that resblP«(X) = t,, — p; for all
1 <i < s, s0 by Lemma 3.6, tpgf —pJ is in each level of 7 where this element makes sense.
Furthermore, this shows that t¢,, —m for m odd is in each level of Z where it makes sense.
Multiplying this element by t;, we obtain tg;,, — mty;.

Let X =37, 3y miti € TZx/r(Cn/Cur) for some M | N. We wish to show that X € 7
as well. Let 2% be the largest power of two dividing M and let m/ = QMk Since all divisors
of m’ will be odd, we can consider the element
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k
Yi=X—- Z ZmjS(tQJi —ity;) € TIk)r(CN/Cur)-

§=0 i|m/

Since each summand is in Z(Cxn/Cyy), it is sufficient to show that we have Y €
Z(Cn/Chrr). Write Y = Zf:o nitei for some n; € Z. Thus we need to show that
Y € I(Cn/Cy,). We know that res){ (V) = Zf:o nityi € TLg p(Cn/Car), and since
TIk/p(Cn/Cor) = I(Cn/Csx) by definition, this element is some combination of the
generators in ¢. Hence we need only show that the element Zzzo a;tn/2ims 2 18 in T for
each generator Zg:o ajtn/oi 2i-

Note that Lemma 3.6 and Lemma 3.7 imply the desired result when ¢ is given
by case (1) or (2) of Theorem 4.8. Therefore we need only consider (3). However,
Lemma 3.6 and Lemma 3.7 imply the desired result for all generators other than
tgm gm — tom gm-1 — 2tym om-2 Where m is as in Theorem 4.8. But a straightforward
adaptation of the argument from Lemma 3.7 applies to this case as well, which com-
pletes the proof. O

Corollary 4.11. For N given as above, the absolute trace ideal can be calculated as

where X = Zp Odd(tﬁvp *p) + Y, n = 2>‘p1 D, A= min{3’ /’L} and

0 A=0;
Y = 215272 —4 A = 1,
ty —ta — 2 otherwise.

Proof. A theorem of Epkenhans says that the absolute trace ideal is an intersection of
finitely many trace ideals [6]. This, along with our computations of the trace ideal and
Epkenhans computation of 7(G/G) imply the desired result. O

5. The trace ideal for profinite extensions
Let Z,, and 7, denote the p-adic integers and the profinite completion of the integers,

respectively. By our work in the previous section, we can compute the trace ideal for
K/F where Gal(K/F') is either of these profinite groups.

5.1. Tambara maps in the Burnside functor

For K | M € Z, let k = % We denote the MZ-set MZ/KZ by tar,k, and again the
first index will be dropped when it can be inferred from context. With this identification,
we clearly obtain the same formula for multiplication

tktj = ng(k7j)tlcm(k,j)- (51)
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The Tambara maps given in Equations (3.3)—(3.5) follow analogously. Specifically, for
arbitrary elements X = Y™ a;t; € A(Z/NZ) and Y = Y1, bit; € A(Z/MZ) for some
ni,ny € N, we have

res¥ (V) := resj‘vJZZ(Y) = Z bidit i, (5.2)
i=1 ¢
ol (X) o= M2 (X) = 3 asta, (5.3)
=1
j L C(i
NN (X):=NVE(X) =" E)ti, (5.4)
i=1

where d; = ged(i, k) and

ged(,k)
o5 a)" s
jlemGak) Jjli, g<i

as before. Conjugation is again trivial.

Identifying the p"Z,-set p"Z,/p™Z, with t,n ,m-» allows us to similarly adapt these
formulas for the p-adic integers. Multiplication carries over exactly, while the restriction,
transfer and norm formulas translate by summing over powers of p.

5.2. The trace ideal for profinite groups

Before examining 7, it is enlightening to examine the p-adic case. By the identi-
fication given above, we get an analogous description of the trace ideal for p odd as
in Theorem 4.1. When p = 2, our description is comparable to that of case (1) from
Theorem 4.8.

Theorem 5.5. Let G = Z,, for some prime p. If p is odd, the trace ideal has level-wise
description given by

TZi/p(Zyp/p"Lp) = (tpm —p™ : m€N),
which implies
TTir = (typ—p i€ N).
For p = 2, the trace ideal has the level-wise description

TIK/F(ZQ/QnZQ) = (tgm + iy — 2M _ 92 + m € N),
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which implies

TZi/p=(tra—taip—2 : i€N).

Proof. When p is an odd prime, the proof of the level-wise description is analogous to
the one given in Theorem 4.1. The second description follows from Lemma 3.6. When
p = 2, let Z be the ideal claimed in the theorem statement. By the same arguments
as in Lemma 4.7 we have that TZg,r C Z. To show the other inclusion note that for
all j, K222 /K% 22 embeds into a Cs extension. Thus by Theorem 4.6 we have that
ty —ty—2€ TIK/F(Z2/2ng). An application of Lemma 3.7 shows that the rest of the
generators are in TZg/p. O

Theorem 5.6. Let K/F be a Galois extension with G = 7. Then TIk/r is generated by
ton g —tong—2 € 4(2/2"2) and tyn p —D € A(Z/p”Z) for odd primes p and alln € N.

Proof. Let Z be the Tambara ideal generated by the elements from the theorem state-
ment. For a prime p, the p-adic extensions are sub-extensions of the algebraic closure, so
Theorem 5.5 tells us we have t,m ,n — p" € Z(Z/p™Z) for all odd p and n > 1,m € N.
Note that this includes Z(Z/Z), the case where m = 0. To show that t,n —p" € Z(Z/mZ),
let k be the largest power of p dividing m. Then 2% is relatively prime to p, so the restric-

k
tion is resfnZZ; (tm,pr —tm,p) = tpr pn — tpk . The same argument works for the generators
associated with p =2. O

The trace ideal for these profinite groups is clearly not finitely generated, as t4 —to —2
must be in each level of the trace ideal yet is not in the image of the restriction map.
However, if we define .%, to be the ideal generated by ¢, 4 —t,2 — 2 for G = Z3 and
the ideal generated by t,, — p for G = Z,, we see that /3 C SH--- C ¥, C ---
and TZg/p = |JFn. For the case of G = Z, let n > 4, m = n!, and take .#, be the
ideal generated by the element ¢,,, 4 — ¢, 2 — 2+ Zp<n tm,p — p. Then we similarly have
Iy CIs-- C Iy C---and TLgp = |JFn. So in all cases considered, TZg p is the
union of an ascending chain of strongly principal ideals.

6. Some applications and examples

We can apply our computations to some examples of interest. In particular, Theo-
rem 4.5 allows us to determine the trace ideal for common quadratic extensions. We can
also use the trace ideal of a quadratic extension to gain insight into the structure of the
base field. Finally, we can apply our results to completely describe the trace ideal for
both finite and profinite extensions of finite fields.
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6.1. Quadratic extensions

Recall that our characterization of the trace ideal for a cyclic 2-extension F'(v/«)/F
depends on the number such that « is a sum of that many squares. We thus get the
following direct corollaries of Theorem 4.5:

Corollary 6.1. We have the following computations:

(1) TZcr = (0) implying by Remark 2.1/ that Aq, = GWg.
(2) Forr =% € Q a non-square with a,b € Z,

(0) r<0;
TZowm@ =4 (2t22—4) ab=2?+y? z,y€Z;
(4t2,2 — 8)) otherwise.

(3) For a finite field F,,

TIrgw, = (2t22 —4).

Proof. Part (1) is immediate by noting that —1 is negative and therefore not a sum of
squares. Part (2) follows from the fact that any positive rational ¢ is the sum of four
squares, and ¢ is a sum of two squares if and only if ab is as well. Finally, (3) follows
from recalling that every element of a finite field is the sum of two squares. O

This result also yields a characterization of Pythagorean and formally real fields in
terms of the trace ideals they admit for quadratic extensions.

Corollary 6.2. Let F be a field. Then

(1) F is formally real if and only if TTk/r = ((0)) for some quadratic extension K/F'.
(2) F is Pythagorean if and only if TZi/p = ((0)) for all quadratic extensions K/F.

Proof. (1) The trace ideal is zero for an extension F(y/a)/F when « is not a sum of
squares in F. If there is such an «, then F' is formally real. If instead we suppose that F’
is formally real, we can take o = —1.

(2) Recall that in a Pythagorean field, any sum of squares is itself a square. Hence if
we have a quadratic extension of a Pythagorean field, the discriminant cannot be a sum
of squares. Similarly, if TZp( /a),r = (0)) for every quadratic extension F'(y/a)/F, then
every non-square o € F'* is not a sum of squares. O



136 M. Calle, S. Ginnett / Journal of Algebra 560 (2020) 114—143

6.2. Finite fields

The work of the previous sections allows us to give a complete description of the
trace ideal for extensions of finite fields. We let IF;, denote the finite field with ¢ elements,
where ¢ is a power of an odd prime. The Grothendieck-Witt ring on [F, has a particularly
unique structure, which makes this family of fields a rich source of study.

Over a finite field, every quadratic form is universal [10, Proposition 11.3.4] and so
is completely specified in GW(F,) by its dimension and determinant [10, Theorem
I1.3.5(1)]. Recall that the determinant is determined up to square class F*/F® and
moreover [F/F¥| =2 (cf. [10, §11.3]). We denote the two square classes by 1 and a.
Note that « is a sum of two squares, and we may take = —1 if and only if ¢ = 3
(mod 4). In any case, we have GW(F,) = Z & F/ IF,};E where the isomorphism is given
by (a1,...,a,) — (n, ], ai]Fq&).

This simplified presentation of the Grothendieck-Witt ring permits an explication of
the Tambara structure of GW on a finite field, the details of which are worked out in
Appendix A by H. Chen and X. Chen. These computations help us describe the Dress
map and the trace ideal for finite fields. In particular, any finite extension F ~ /IF, will
have Galois group Cn. The Dress map sends

XZZ(ZJZ'EA(CN/OM)I—) (Ziai, H Oéai> EG_W(IFQIVI)

i M i i even
where o generates the non-square class of IF a, and applying Theorem 4.10 then gives
us a complete description of the trace ideal. In particular, we find that the trace ideal is
strongly principal in this case.

Now consider [, inside of its quadratic or algebraic closure, which have Galois groups
Zo and Z, respectively. The Dress map is described by a similar formula as given above,
and we can apply the work of Section 5 to describe the trace ideal. In both these profinite
cases, the top field is clearly quadratically closed, so Remark 2.14 applies.

Theorem 6.3. Let Q and K denote the quadratic and algebraic closure of F,, respectively.
Then we have the following calculations:

(1) Suppose N has prime decomposition 24pJ* - --pZm and take N = 20p, - p, with

. poop=0,1;
MZ{Q
> 2.

Then

o= (50 S0 )
=1
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where

X, = Hno=2)  p=01
tNA_tN,Q_Q ,LLZ2

(2) TZqr, = ((t2i .4 — tai o — 2)) where i ranges over all of N.
(3) TZkyw, is the ideal given in Theorem 5.6.

Proof. Part (1) follows from Theorem 4.10 and taking appropriate restrictions of the
stated generator (as in the proof of Theorem 4.1). Note that if u > 2, we are in case
(1) of Theorem 4.8 since we can always embed F ~ /IF, appropriately. Parts (2) and (3)
follow directly from Theorem 5.5 and Theorem 5.6, respectively. 0O

Appendix A. Norms of quadratic forms over finite fields (by Harry Chen and Xinling
Chen)

Restriction, Scharlau transfer (with respect to field trace), and the Rost norm give
the Grothendieck-Witt ring the structure of a Tambara functor [1]. Working over a finite
base field, the values of GW and its restriction and transfer maps are known classically.
Meanwhile the Rost norm has only been computed explicitly relative to quadratic exten-
sions [17]. Leveraging the Dress map and the structure of the Burnside Tambara functor
for cyclic groups, we completely determine the Rost norm for any extension of finite
fields with odd characteristic in Theorem A.5 below. Since the absolute Galois group of
F, is i, one may view this result as complementary to Theorem 5.6.

Let F' = T, be the finite field with ¢ = p* odd. Recall that dimension and determinant
form a ring isomorphism

GW(F)~Z & F*/F¥,

where the right-hand side has trivial multiplication on F*/F X As such, every n-
dimensional form in GW (F') can be written as either n(1) or (n —1)(1) & (&), where « is
a generator of F*. Following, e.g., [10], it is easy to write down the effect of restriction
and transfer on these classes.

Theorem A.1 (Restriction and transfer for finite fields). Let F = Fy, C Fgm = E and fix
generators o € F*, B € E*. Then

resg (1) = (1),

resE (1) if mois even,
esi o) = {<B> if m is odd,

(m—1)(1) ® () if m even,
m(l) if m is odd,
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E _ m(1) if m is even,
8 {(m — (1) ®{(a) if m is odd.

The Rost norm is a multiplicative map N& : GW (E) — GW (F) that takes any unary
form (a) to NE((a)) = (Ng/r(a)) where Ng/p : E* — F* is the classical field norm.
In order to determine the value of N% on higher-dimensional forms, we need to know
how it interacts with summation. The following theorem of M. Hill and K. Mazur gives
a general formula for this interaction when the group of equivariance is finite Abelian.

Theorem A.2 (Tambara reciprocity for finite Abelian groups [9, Theorem 2.5]). Let G be a
finite Abelian group and let S be a G-Tambara functor, for all H < G and a,b € S(G/H)

NG(a+b) =NG(@) + NGB+ 3 (ZN§<<a_b>§ )) T 0 (g12(a, b))
k=1

H<K<G

where i s the number of orbits of functions from G/H to {a,b} with stabilizer exactly
K, and (ab)¥ is a monomial in some of the W¢ (K )-conjugates of a and b, and g (a,b)
is a polynomial in some of the Wg(H)-conjugates of a and b.

This leads to a far more explicit formula for § = GW for an odd prime extension of
finite fields.

Lemma A.3. Let ' =F, C Fy . = E where £ > 2 is prime. Then for all a,b € GW(E),

=1 ¢
NE(a +b) = NE(a) + NE(b) + trE <Z %aib‘)—i).
i=1
Proof. Let G = Gal(E/F) = () = Cy; where ¢ is the Frobenius homomorphism. It
suffices to determine g.(a,b) from Theorem A.2. According to [9, Corollary 2.6], we have

-1
> TIeG@)

fE€I/G i=0

where 7 is the set of nonconstant functions f: G — {a, b} with the natural action of G.
Since ¢ acts trivially on GW(E), we see that we are just adding up all degree ¢ ordered
monomials in a and b (which are not a’ or b*) up to cyclic permutation of factors.
Combining like terms, we have

z1e
%abZl

i=1
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Theorem A.4 (Norms for prime extensions of finite fields). Let F = Fq C Fpe = E for {
any prime and fix generators o € F*, B € E*. Then

nf(1) if € > 2,
(n? —1)(1) & (@™5") if =2,

NE(n(1)) = {

(n* —1)({1) @ (a™), if > 2,

> -1D{(1)d{a = ), ifl=2.

NE((n = 1)(1) @ (8) = {

Proof. First consider the effect of N% on n(1). The Dress map gives us the commutative
diagram

A(Cy/Cy) —2— GW (F,)

N I

A(Cz/e) T> GW(]FQZ)
which, via the formulas in [14], has the following effect on n € A(Cy/e):

n+ "Z["C’g/e 2 (1) @ # trf (1)

NT IN
n 5 n(l).

As such, we know that

né —-—n
NE(n(1)) = n(l) ® —7 tr7 (1)

We separately discuss the cases ¢ > 2 and ¢ = 2. When ¢ > 2, we know

nl—n

NE(n(1)) = n(l) @ 1) = nf(1).
If £ =2, then
NE(n(1)) = n(1) @ = trf: (1)
Tl2 —n
=n{l) &~ (1) & ()

= (n? — 1)) @ (™)

We now analyze the effect of N on terms of the form (n—1)(1) @ (8), assuming that
¢ > 2. By Lemma A.3, we have
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-1 (¢
NE((n — (1) ® (9) = NE(n - D) @ NEGa) @ rf (3 W - s
—1
—m-Dhe ey (f) (n — 1)i(a)

=0

-3 (o v
> ()

The isometry class of this quadratic form is determined by its dimension, nf, and
determinant. The latter quantity is

L

Z <£> (n—1)"= {Zf odd (f) =271=0 ifn=0 (mod 2),

= \i (ﬁ)(n -1)0=1 ifn=1 (mod 2).

We conclude that when ¢ is odd, the norm map is given by

NE(n(1) = n(1),
NE((n=1)(1) & (8) = (n" — 1)(1) @ (a").

It remains to determine N2((n — 1)(1) @ (8)) when ¢ = 2. In this case, we have

NE((n = 1)(1) @ (8)) = NE((n — 1){1)) @ NE((8)) @ tri(ge((n — 1)(1), (8)))

(n—1)2—n+1
2

=((n =1 = 1){1) & (a ) @ () @ tri((n - 1)(B))

Y@ (o) @ 2(n — 1)(1)

(n—12—n+41
2

=((n—=1)* =1)(1) @ (o

n?2_3n
3

=(n* = 1)(1) & (a )

This covers the final case and concludes the proof. 0O

Theorem A.5 (Norms for extensions of finite fields). Let F' = F; C Fgm = E and fix
generators a € F*, 3 € E*. Then

n™(1) m odd,
NE((1) = — (W (0" T7) m=2,
(n™ —1){1) ® (a#) m > 2 even,
(n™ —1)(1) & (a™) m odd,
Ne((n =10 (8) = ™ - 1))@ (@) m=2,
(n™ —1)(1) @ ( n373"’2> m > 2 even.
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Proof. We use functoriality and Theorem A.4 to inductively determine the norms.
Firstly, we test the composition of norm for two odd prime extensions. Let L C F C E
be finite fields of odd prime s,t extension. Take some generator « € L*, v € F*, and
B € E*. Then we know that

N[ oNE(n(1)) = NL (n'(1))

NL oNE((n—1)(1) @ (8)) = NL ((n* = 1)(1) & ("))
(

Inductively, we know that for any odd m extension,

NE(n(1)) = n™(1)
NE((n=1)(1) @ () = (™ = 1){1) @ (™).

Similarly, we discuss the cases when s = 2 and ¢ is odd. The computation gives us the
result that for such extension,

N[ oNE(n(1)) = NE (n'(1))

(nt)2_nt
2

— (' - 1)(1) & (a

0 - )(1) @) n=3 (mod4)
nst(1) n=0,1,2 (mod 4)

C[NE((nt — 1)) @ () n=1,3 (mod 4)
N¥(nt(1)) n=0,2 (mod 4)

_ (n¥ —1){(1) ®(a) n=1 (mod 4)
nst(1) n=0,2,3 (mod 4)

n3—3n2
—2

=" -1 &a )

For s =t = 2, we again compute that

2_n

N[ oNp(n{1)) = Np((n* = 1){1) & (y"=))
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N =D(M) @ (7)) n=2,3 (mod 4)
NE(nt(1)) n=0,1 (mod 4)

_ (n* —1)(1) & (a) n=3 (mod 4)
n**(1) n=0,1,2 (mod 4)

= (0" —1){1) & (@™ 2)

7L2 —

N oNE((n—1)(1) @ (8) = NF (! = 1)(1) @ (7" =)

NE( - D @ ) n=1,2 (mod 4
NE(nt(1)) n=0,3 (mod 4)

(n* —1){(1)® {a) n=1 (mod 4)
nst(1) n=0,2,3 (mod 4)

3_3n2

=@ D)@ =)

Therefore, for a m extension where m = 4 or m = 2t, t odd, the following result holds.

W3 —n2

NE((1) = (0" - 1)(1) @ (a” =)

NE((n =D)L @ (F) =™ - 1)) & (@™ =)

Moreover, when compositing such m, k extension,

2

NF oNE(n(1)) = NE((n — 1)(1) & (y"2>))

_ NE(mF = 1)(1) @ (7)) n =3 (mod 4)
NE k(1)) n=0,1,2 (mod 4)

_ (”St*1)<1>®<aﬁ> n=3 (mod 4)
(nt—1)()@ (a2 ) n=0,1,2 (mod 4)

N¥(nt(1)) n=0,2,3 (mod 4)

n’%®—n

-1 @ {a =2 ) n=0,2,3 (mod 4)

B {(nst “ D)) e (a;> n=1 (mod 4)
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Inductively, for any even m extension other then 2, the following result holds.

n°—n

NE(n(1) = (" = 1){1) @ (@™ =)

n3—3n2

NE((n =11 @ (B) = (" = 1){1) @ (@™ =)

This proves the theorem. O
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