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Abstract—Tendon actuated multisection continuum arms
have high potential for inspection applications in highly con-
strained spaces. They generate motion by axial and bending
deformations. However, because of the high mechanical coupling
between continuum sections, variable length-based kinematic
models produce poor results. A new mechanics model for
tendon actuated multisection continuum arms is proposed in this
paper. The model combines the continuum arm curve parameter
kinematics and concentric tube kinematics to correctly account
for the large axial and bending deformations observed in the
robot. Also, the model is computationally efficient and utilizes
tendon tensions as the joint space variables thus eliminating the
actuator length related problems such as slack and backlash. A
recursive generalization of the model is also presented. Despite
the high coupling between continuum sections, numerical results
show that the model can be used for generating correct forward
and inverse kinematic results. The model is then tested on a thin
and long multisection continuum arm. The results show that the
model can be used to successfully model the deformation.

I. INTRODUCTION

Continuum (continuous backbone) robots possess theoret-
ically infinite DoF (Degrees of Freedom) with respect to
their flexible and smooth bending capability which would
require large number of DoF to approximate with discrete
rigid-linked arms [1]. But continuum arms achieve bending
only with a finite number of DoF. Therefore, along with their
flexibility, active bending along the entire length of the arm,
straightforward down-scalability, and availability of various
actuation methods continuum arms appear particularly suit-
able for navigation in congested environments.

There have been many continuum arm prototypes proposed
over the years [2], [3], [4], [5], [6] and they successfully
proved their versatility in field applications including inspec-
tion tasks [7], [8], [9]. Continuum arm designs and various
actuation principles have found their way into minimally
invasive surgical applications [10], [11], [12], [13], [14].

One of the most prominent types of continuum robot fea-
tures remotely actuated tendons [15], [16], [17]. A long thin
example of the tendon-actuated type featured in this paper,
intended for inspection tasks in outer-space applications, was
designed and developed [18] and is shown in Fig. 1b.

In contrast to rigid robotic arms (i.e., no link deformation
during motion), modeling continuum arms is challenging and
there are two main approaches; lumped approximation, and

P.S Gonthina, M.B Wooten, and I.D. Walker are with the Dept. of
Electrical & Computer Engineering, Clemson University, Clemson, SC-
29634-0915 ({pgonthi, mbwoote, iwalker}@clemson.edu)

I. S. Godage is with the School of Computing, DePaul University,
Chicago, IL 60604 USA (e-mail: igodage@depaul.edu).

(a) (b)

Ti
p 

er
ro

r

(c)

Figure 1: (a) Tendon-actuated continuum arm, (b) Long thin continuum
robotic cable developed at Clemson University for inspection operations in
highly constrained spaces, and (c) The coupling effect of tendon actuated
continuum arms results in errors when modeled with length based models.

“true” continuum shape modeling [1]. Lumped approaches
such as [5], [19] denote the natural transition from rigid-
linked to continuum arm modeling but they require many
virtual DoF to accurately represent continuum sections. Be-
cause of the redundancy, this poses computational problems
particularly for inverse kinematics employing iterative meth-
ods. Chirikjian [20] and Mochiyama [21] pioneered the use of
shape functions to parameterize spatial orientations of hyper-
redundant robots. The curve parametric kinematic model
in [22] formulates multisection continuum arm kinematics
but does not account for the tendon length coupling. Tendon
driven robot mechanics models in [3] considered both axial
and bending deformations but the work was limited to planar,
single continuum sections. Cosserat beam mechanics based
models reported in [6], [23] also considered single continuum
sections with no axial deformation. Further, applying length
based models to robotic arms that exhibit significant passive
axial deformations produces incorrect results because of the
unaccounted backbone compression [18]. Additionally, due
to force and kinematic coupling, i.e., when a distal section
is actuated, the reaction forces in preceding sections affect
the lengths and bending angles. This will not be reflected in
length based models as shown in Fig. 1c1 and cause tendon

1Note that this error is resulting from a small bending angle. This error
grows proportional to the bending angle.

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 3896



slack, tangling, and introduce backlash [3], [24].
Webster and Jones presented a detailed review on the

specifics of both multisection and concentric tube robots in
[25]. Concentric tube continuum robots use translational and
rotational DoF to cover their work-spaces. Also they have
the advantage of being able to produce in small profiles
especially to suit minimally invasive surgical requirements.
Concentric tube robot translation is an active DoF and
therefore offers limited to no axial compliance. In addition,
the desired bending angle is achieved by matching the
bending stiffnesses of adjacent pre-curved concentric tubes
(by bending in different directions). Therefore, the model as
is not directly applicable to continuum robots with active
bending and passive axial compliance.

This paper proposes a new mechanics model for tendon
driven multisection continuum arms. It combines the estab-
lished, tendon length based, curve parametric formulation for
continuum arms with the concentric tube mechanics models
to derive an efficient, tendon force based, mechanics model.
In order to realize this, the curve parameters are derived
in tendon forces thus eliminating the length related issues.
The model is then generalized and extended in recursive
formulation. The numerical results show that the proposed
model produces good results efficiently. Despite the high
coupling observed in the manipulator, results also show that
the model can be used successfully for robot shape control
to achieve task-space operations. The experimental results
conducted on a long and thin continuum arm show that the
model can be used to successfully model the deformation.

II. PROTOTYPE DESCRIPTION

A. Design Objectives

The development of the proposed inspection robot in Fig.
1b was guided by the following set of design objectives. The
robot was intended to help equipment inspection tasks in the
international space station where the instrument cabinets are
tightly arranged with depths exceeding 1 m with inter-cabinet
spacing less than 0.02 m. Hence, high length/diameter ratio
was required to reach farther within the constrained spaces
with dimensional limits; diameter ≤0.015 m and length
≥1.2 m. The reliability and portability of the robot is another
prime concern. Therefore mature electromechanical actuation
was employed for the reasons of high weight to power
ratio and compactness. To enhance reliability, the mechanical
design needs to be simple. This criteria ensures the possible
on-board repairs in an unlikely event of equipment failure.

B. Mechanical Design

The continuum robot design used herein has a tendon
actuated, concentric tube backbone. The core of the backbone
consists of three carbon fiber tubes the thinnest of which is
in the tip section, and the thickest supports the base section.
These placements allow for telescopic movement of the tip
and middle sections relative to the base. On each section
there are several 3D-printed spacers, which have at least 9
holes for the tendons and are spaced as evenly as possible.

(a) (b)

Figure 2: (a) Spacer arrangement to guide the tendons to corresponding
continuum sections, (b) Actuation package: Each tendon is operated by a
high-torque servo motor.

Three tendons terminate at the tips of each section. This
allows for two tendon-driven degrees-of-freedom per section,
plus the telescopic degrees-of-freedom. The section lengths
of the device shown are 0.219, 0.346, and 0.894 m for the
tip, middle, and base sections respectively with a maximum
spacer diameter of 0.016 m. The spacer and the tendon
routing is shown in Fig. 2a.

C. Actuation Mechanism

The actuation package of the continuum arm is shown in
Fig. 2b. It has nine DC motors controlled by a simple pd-
controller based on encoder counts for those motors. They
are connected to the microcontroller via motor driver and
speed controlled using a PWM signal. Each motor rests on
a load cell used to infer tension values in the tendons based
on pressure on the load cell.

III. METHODOLOGY

In this section, the modeling challenges presented by the
above design is first discussed through a single section model.
The model is then generalized and extended to multisection
continuum arms.

A. Mechanics of a Single Continuum Section

Continuum arm modeling via the curve parametric kine-
matics [22], [26] has the advantage over the lumped models
because they use only the actual (local) DoF to model a
continuum arm. This markedly improves the computational
burden a lumped method has to encounter. A schematic of a
single continuum section is shown in in Fig. 3a. Employing
curve parametric kinematics it can be described by a varying
curvature circular arc using following parameters; radius of
curvature λ ∈ (0,∞), angle subtended by the bending arc
φ ∈ [0, 2πmax], and angle of the bending plane with respect
to the +X axis, θi ∈ [−π, π]. They are derived in variable
length parameters as
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Figure 3: (a) Schematic of a single continuum section. Both tensile forces
and length change variables are annotated for ease of reference, (b) Moment
contribution from the Nth and (N − 1)th continuum sections. Nth section
effects are illustrated in dotted lines.

λ =
(3L+ l1 + l2 + l3) r

2
√
l21 + l22 + l23 − l1l2 − l1l3 − l2l3

(1)

φ =
2
√
l21 + l22 + l23 − l1l2 − l1l3 − l2l3

3r
(2)

θ = arctan
{√

3 (l3 − l2) , l2 + l3 − 2l1

}
(3)

where L ∈ R+ is the original length and r ∈ R+ is the radius
of the continuum section. lj ∈ R are the variable lengths of
actuators and j ∈ {1, 2, 3}.

The length based model cannot be applied to the problem
at hand because of the compression parameter missing among
(1)-(3) [18]. To derive the compression, the tensile forces
have to be measured. Therefore, it is justified to utilize
the tendon tensile forces as the joint space for any tendon
actuated continuum robot. Note that, it is straightforward
to maintain the tendons in a desired tension (≥ 0) during
operation employing simple force feedback mechanism [3].

Transforming the curve parameters from length variables
to force variables is discussed in this section. Following
reasonable assumptions are made without losing generality;
(1) backbones follow circular arcs (verified in [3]), (2) linear
elasticity in both axial and bending, (3) axial and bend-
ing strain are uniformly distributed across springs/backbone,
(4) negligible friction between spacer discs and backbones,
(5) and no gravity (the arm is intended to operate in outer-
space). Note that, the last assumption also partially holds in
terrestrial applications as the forces exerted in the lightweight
arm are comparably smaller than the forces/moments applied
by tendons to realize motion.

Let the corresponding force vector be q = [f1, f2, f3] ∈
R3. Without losing generality, we consider a tendril arm
section that undergoes both linear and bending deformation.
When tendons are actuated, let the length change and tension
of any ith tendon is related as

c (q) + li (q) = αfi (4)

where c is the compression of the backbone, l is the length
change, and α is some proportional coefficient. Note that, if
the backbone length remain unchanged, c (q) = 0.

Substituting (4) into (3) yields

θ (q) = arctan
{√

3 (f3 − f2) , f2 + f3 − 2f1

}
(5)

Figure 4: Arbitrarily long multisection continuum arm schematic.

Note that c and α get canceled indicating θ is independent
from the compression.

Considering the cumulative tensile forces acting on the
continuum section and curve parametric kinematics [26], the
arc length, s ∈ R+, can be derived as

s (q) = L+ 1
3K (f1 + f2 + f3) (6)

where L ∈ R+ is the original length of the section and
K ∈ R+ is the linear stiffness coefficient. For fixed-length
continuum arms, K will be very high.

The bending deformation is proportional to φ, s, and the
bending stiffness coefficient, B. If the resultant torque acting
on the arm tip is τ , then

φ (q) = η
sτ

B
(7)

where η is some proportional coefficient.
The resultant moment in θ direction can be related to

individual tensile forces as

τ

r
= f1 cos (−θ) + f2 cos

(
2π
3 − θ

)
+ f2 cos

(
4π
3 − θ

)
(8)

Deriving sin (θ) and cos (θ) from (5) and substituting in
(8) results in |τ | = r

√
f21 + f22 + f23 − f1f2 − f1f3 − f2f3.

Applying τ in (7) gives

φ (q) = η
rs

B

√
f21 + f22 + f23 − f1f2 − f1f3 − f2f3 (9)

Finally, from circular arc geometry, λ is computed as

λ (q) =
s (q)

φ (q)
(10)

Now, the curve parameters derived herein in tensile forces
(i.e q) can be used to derive the homogeneous transformation
matrix (HTM), T ∈ SE (3), of the continuum section as

T (q) = Rz (θ)Px (λ)RT
y (−φ)Px (−λ)RT

z (θ) (11)

where Rz ∈ SO (2), Ry ∈ SO (2) are rotational matrices
about the Z and Y axes. Px ∈ R is the translation matrix
along the +X axis [26].

B. Multisection Manipulator Model

As mentioned in Section I, the forces and moments of
distal continuum sections affect the bending angles and
compression in preceding sections. As a result, the single
section curve parameters derived in Section III-A cannot
be directly employed to model the curve parameters of
proximal sections of a multisection continuum arm. Rather,
the cumulative force and moments need to be considered in
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the model to obtain the correct spatial orientations. In this
section, a recursive formulation is proposed to compute the
curve parameters for all the sections of an arbitrarily long
general tendon operated continuum arm. Each section adopts
the 3 DoF tendon mechanism to which the curve parameters
were derived in Section III-A.

Figure 4 shows the schematic of an N > 0 section long
continuum arm. The base section of the arm coincides with
the task-space coordinate frame {O}. Any ith continuum
section is attached to the preceding (i− 1)

th section rigidly
with a βi angle offset to facilitate tendon routing without
crowding. The corresponding force joint space vector is
qi = [fi1, fi2, fi3] ∈ R3 and qi ≤ 0 to denote tensile forces
being applied. The tendons are mechanically constrained
to actuate at a distance ri, parallel to the backbone (i.e.,
by using spacers). The actuator original length is Li0 and
fmax ≤ fij ≤ 0; j ∈ {1, 2, 3} is the actuator number. Note
that Li > 0 and ri > 0 are constant design parameters. The
linear and bending stiffness coefficients are respectively Ki

and Bi. Let the curve parameters of each section without
considering the coupling effects be λi, φi, and θi. The same
with the coupling effects incorporated are Λi, Φi, Θi.

The distal most N th section is only subjected to forces
resulting from qi. Hence the curve parameters can be directly
derived from the single section formulation given in section
III-A. Continuum section N − 1 is subjected to axial and
bending deformation resulting from both qi and qi−1. Taking
qi exerting on N th section, the arc length of the (N − 1)

th

section is given by

sN−1
(
qN , qN−1

)
= LN−1 +

FN +
∑3
j=1 f(N−1)j

3KN−1
(12)

where qi = [qi, · · · , qN ] ∈ R3(N−i) and Fi =∑N
k=i

∑3
j=1 fkj . Note that qi denotes the cumulative force

variables from successive sections to the ith section to
account for the force and moment coupling.

Consider the schematic shown in Fig. 3b depicting the
N th and (N − 1)

th section moments. From (7) the moment
MN = ΦNBN . The vector addition of moments gives the
resultant torque, MN−1 and bending angle ΘN−1 as

BN−1ΦN−1 cos ΘN−1 = ηN−1sN−1rN−1GN−1 cos θN−1

+BNΦN cos (ΘN − βN ) (13)

BN−1ΦN−1 sin ΘN−1 = ηN−1sN−1rN−1GN−1 sin θN−1

+BNΦN sin (ΘN − βN ) (14)

where Gi =
√
f2i1 + f2i2 + f2i3 − fi1fi2 − fi1fi3 − fi2fi3.

The ΦN−1 is now computed from (13) and (14) by apply-
ing to the trigonometric identity cos2 ΘN−1+sin2 ΘN−1 ≡ 1.
By applying the resulting ΦN−1 into either (13) or (14),
ΘN−1 can be derived. Utilizing ΦN−1, sN−1 and the arc
geometry, now ΛN−1 is computed as

ΛN−1
(
qN , qN−1

)
=

sN−1
(
qN , qN−1

)
ΦN−1

(
qN , qN−1

) (15)

Table I: Parameter values used in numerical computations

L r K B β
[cm] [mm]

[
Nm−1

] [
Nmrad−1

]
[rad]

Base 60 5 1× 106∗ 2.2 0
Mid 46 3 2× 103 1.2 2π

9

End 34 2 6× 102 0.12 2π
9

* The base section has no springs and therefore shows no axial deformation

These results can be generalized to implement a recursive
scheme to compute the curve parameters of tendon actuated
continuum arms with any number of sections. The compu-
tation is initiated at the N th section with initial parameters
FN =

∑3
j fNj , sN = LN + FN

KN
from (6), ΦN = φN from

(9), and ΘN = θN from (5).

C. Forward and Inverse Kinematics

Once the curve parameters in tensile force variables are
derived for each section, they can be utilized to derive the
HTM of the entire arm as

N
0 T (Q) =

N∏
i=1

(TiTJi) =

[
R p
0 1

]
(16)

where Q =
[
q1, q2, . . . , qN−1, qN

]
∈ R3N is the composite

joint space variable of the arm, TJi ∈ SE (3) are the
HTM’s of continuum section joint offsets, R ∈ SO (3) is
the rotational matrix and p ∈ R3 is position vector of the
arm tip.

Because of the redundancy of general multisection contin-
uum arms, inverse kinematics rely on iterative methods which
are based on the manipulator Jacobian matrix, J ∈ R3×3N to
relate task-space and joint space velocities [27]. The linear
velocity along the neutral axis with reference to {O}, denoted
by υ ∈ R3, is given by

υ
(
Q, Q̇

)
= J (Q) Q̇ (17)

IV. SIMULATION RESULTS

In this section, numerical results utilizing the proposed
force based mechanics model are presented. Firstly, the
results on how the new model successfully accounts for the
coupling is demonstrated. Then inverse kinematic solutions
are presented for two spatial trajectory tracking examples.
These exhibit the proposed model’s ability to generate ver-
satile spatial operation even with highly coupled tendon
actuated systems. The parameter values used in the simula-
tions are listed in Table I with proportional scalars assumed
unity for this work. Note that, when all actuation forces of
any continuum section are equal, it results in a kinematic
singularity, i.e., λ → ∞. But in this model, this can be
trivially avoided by applying a small force (i.e., 0.1N) to
one of the joint space variable of the distal section. Because
of the force coupling, this causes an insignificant bending
in all preceding sections thus eliminating possible numerical
problems.
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Figure 5: Illustration of the force and moment coupling. The distal section
is intentionally bent via applying tension forces at the respective tendons.
But the force transmitted to the preceding sections causes them to bend as
well.

A. Forward Kinematics

In this numerical result, to demonstrate the force and
moment coupling effect of cable driven multisection con-
tinuum arms, an increasing tensile force is applied to f31
joint variable. In case of an uncoupled model, only the distal
section would bend without affecting the preceding sections.
The results obtained using the proposed model is shown in
Fig. 5. It can be seen that the model correctly accounts for
the transferred forces and moments to mid and base sections.
Because of the substantial difference in bending and linear
stiffness coefficients, the effects are limited. These results are
carried out in the Matlab numerical environment.

B. Inverse Kinematics and Trajectory Tracking

The versatility of the proposed model for highly coupled,
tendon actuated continuum-style inspection robots is demon-
strated by following two spatial trajectory tracking examples.
The spatial trajectories are computed via the inverse kinemat-
ics. Closed form inverse kinematic solutions for task-space
position of multisection continuum arms are computation-
ally infeasible. Therefore iterative procedures based on the
multivariate Newton-Raphson approach are utilized to solve
inverse kinematic problems [28]. The pseudo inverse of the
Jacobian matrix, J† = JT

(
JJT

)−1
, is implemented into

the inverse kinematic algorithm due to its simplicity and
efficiency. However, because of the high coupling between
continuum sections, computing the end effector Jacobian is
not trivial. Therefore, it is numerically approximated at the
point of interest by using central differences formula with
10−3 step size and then the pseudo inverse is calculated.

In the first example, the arm tip follows a linear spatial
trajectory starting at [−.05, 0.4,−1] to [0.5,−0.4,−1.2]. The
algorithm calculates 150 intermediate trajectory points, and
the solutions for each point is found iteratively. The trajectory
following is shown in Fig. 6. This gives a smooth joint-
space solution as seen in the accompanying video. Since
the proposed model benefits from the curve parametric im-
plementation (in force-space), it is highly computationally
efficient (produce results in 10s of milliseconds) in contrast

−0.5
0

0.5
−0.5 0 0.5

−1.5

−1

−0.5

0

X
Y

Z

Y

Z

X

Figure 6: Linear spatial trajectory tracking example. Inverse mechanics solu-
tions were solved utilizing the numerical approximations of the manipulator
Jacobian.

to previous lumped models. For ease of comparison, the
trajectory is drawn in a dotted line. The simulation result
is also included in the accompanying video. For ease of
comparison, the trajectory is drawn in dotted lines.
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Y
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Figure 7: Spatial helical trajectory tracking.

The second example depicts the arm tip follow-
ing a helical path given by the parametric equation
[0.7 cos (4πt) , 0.7 sin (4πt) ,−1.2 + 0.4t] and t ∈ [0, 1].
Similar to the previous example, 150 equidistant points were
generated between the starting and termination points to
which the inverse kinematic solutions were computed uti-
lizing MATLAB®’s “fmincon” constrained optimization
routine.. The results are illustrated in Fig. 7. For ease of
comparison, the trajectory is drawn in dotted lines. The full
simulation is included in the supplementary video. The results
show that the arm tip successfully tracks the given trajectory.

V. EXPERIMENT RESULTS

In this section the model was utilized to perform a re-
cursive scheme to compute the curve parameters of the thin
long continuum robot with 3 sections detailed in Section II. A
single Base section tendon was actuated with varying tension
values. The position and tension values for three different
configurations shown in Fig. 8 were recorded. The position
data calculated by using 2 cameras on the X and Y axis
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Figure 8: (a) Configuration-1 (b) Configuration-2 (c) Configuration-3

Table II: Results

B1 B2 B3 B4 offset RMS error[
Nmrad−1

] [
Nmrad−1

] [
Nmrad−1

] [
Nmrad−1

]
[rad] meters

Congif 1 0.3433 0.4549 0.0782 0.7044 0.3883 0.0171
Config 2 0.3778 0.4158 0.0272 0.6643 0.2732 0.0125
Congif 3 0.3396 0.4421 0.0179 0.6482 0.247 0.0173

and 36 points were selected manually (one on each spacer
in the image) and converted from pixel to meters using a
pre-calculated conversion factor.

Known parameters such as the section radii, length, tension
and position were substituted to define the static model in
terms of bending stiffness and offset values. The offset value
is the difference between the nominal angle and the actual
bending plane angle calculated by the position data from the
experiment. This offset was added to (5) to generate (18).

θ (q) = tan−1
{√

3 (f3 − f2) , f2 + f3 − 2f1

}
+ offset (18)

An optimization routine using MATLAB®’s
“GlobalSearch” and “fmincon” was then performed
to find the stiffness and offset to give us the optimal
agreement.

An initial cost function was calculated using three tip
position values of each section. Torsion and non-constant
curvature were observed and a 2-segment model for base
section was implemented. A 3D polynomial curve of order 3
was fit to these four points using MATLAB®’s “polyfit”
function and 25 points were generated. A cost function was
thus implemented to calculate the RMS error of 15 points on
the Base section, 6 on the Mid and 4 on the Tip section. The
top and side view of the model fit for the three configurations
in Fig. 8 are shown in Fig. 9, 10 and 11.

The numerical results for the three configurations are
shown Table II. The bending stiffness values of the 4 seg-
ments are denoted by B1, B2, B3 and B4. B1 and B2 are for
the first and second segments of the Base section, B3 for the
Mid section and B4 for the Tip section. The bending stiffness
and offset values are consistent for varying tension values.

VI. CONCLUSIONS

Tendon length, force, and torque coupling in tendon-driven
multisection continuum arms complicates the formulation of
accurate mechanics models. Without accurate models, there

Figure 9: Top view (left) and Side view (right) of model fit for Configuration-
1. Experiment data shown in black.

Figure 10: Top view (left) and Side view (right) of model fit for
Configuration-2. Experiment data shown in black.

Figure 11: Top view (left) and Side view (right) of model fit for
Configuration-3. Experiment data shown in black.

can be slack cables and backlash. This can lead to tendon
twisting, tangling and deviation from the intended shape.
Motivated by these problems, this paper proposed a new gen-
eral mechanics model for multisection continuum arms. The
model was formulated recursively for easy extension to any
continuum arm configuration. The model uses the actuation
tensile forces as the joint space and marries length curve
parametric and concentric arm models. The model was able to
incorporate the coupled force and torque effects. Experiments
were carried out to simulate the coupling effects in forward
kinematics and trajectory following in inverse kinematics.
Despite the high coupling, the model was able to produce
results efficiently and to generate smooth trajectories.
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