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Abstract

Granular micromechanics approach (GMA) provides a predictive theory for granular material
behavior by connecting the grain-scale interactions to continuum models. Here we have used
GMA to predict the closed-form expressions for elastic constants of macro-scale chiral granular
metamaterial. It is shown that for macro-scale chirality, the grain-pair interactions must include
coupling between normal and tangential deformations. We have designed such a grain-pair
connection for physical realization and quantified with FE model. The verification of the
prediction is then performed using a physical model of 1D bead string obtained by 3D printing.

The behavior is also verified using a discrete model of 1D bead string.

Keywords: granular micromechanics; chiral metamaterial; micromorphic continuum; micro-

macro identification; discrete element.



42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

1. Introduction

Metamaterials may be considered as materials that are conceived to achieve predetermined
behavior. Predictive theories are key for metamaterial design based upon needs and possibilities;
as are the technologies for the synthesis of the designed material. Recent developments in additive
manufacturing has opened possibilities of realizing a variety of microstructures that were
otherwise difficult to fabricate (De Angelo et al., 2019b; dell’Isola et al., 2019; Misra et al., 2018a;
Nejadsadeghi et al., 2019a). Furthermore, recent work on revealing the connections of higher
gradient continuum terms to the micro-mechanisms within a materials have led to development of
interesting predictive theories. In this regard, the pioneering work on 2™ and higher gradient
theories leading to pantographic metamaterials is particularly worthy to highlight (Abdoul-Anziz
and Seppecher, 2018; Alibert et al., 2003; dell’Isola et al., 2016; dell’Isola et al., 2018; Seppecher
et al., 2011). On the other hand, granular materials have been shown to require the introduction of
additional degrees-of-freedom predicated by their micro-mechanisms that are contributed by the
inter-play of grain-pair interactions and granular arrangement — collectively termed as mechano-
morphology, leading to higher-order theories or micromorphic continuum theories (Nejadsadeghi
and Misra, 2019b). Indeed, in a series of papers, we have shown through theoretical considerations
that for granular materials, the classical continuum model is not sufficient, and instead non-
standard enhanced continuum model based upon the granular micromechanics approach (GMA)
is generally required for representing the grain-scale deformation modes with increasing accuracy
(see for example the higher-order or micromorphic theories (Misra and Poorsolhjouy, 2016b;
Misra and Poorsolhjouy, 2017; Nejadsadeghi and Misra, 2019b; Poorsolhjouy and Misra, 2019).
The GMA provides a paradigm that bridges the discrete models to appropriate continuum model. In
this paper, we utilize the predictions of GMA to design and synthesize through additive
manufacturing granular (meta) material with specific properties. In particular, we have shown
through closed-form derived expressions for elastic constants that grain interactions that include
coupling between normal and tangential deformations result in macro-scale chiral behavior for 2D
isotropic granular media. We have then designed such a coupled grain-interaction for incorporation
into physical models. We have evaluated the behavior of 1D granular material with the designed
grain interaction through independent experiments and numerical simulations. First, finite element

(FE) model was utilized to quantify the grain-pair interaction by modeling the grains and their
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connection as classical Cauchy continua. Then 3D printing was used to realize the 1D granular
model in which the grain-pair connections are those evaluated with the FE model. Finally, to
verify the GMA prediction, we use the discrete model in which grains are modeled as rigid beads
connected via springs whose constants are specified based upon the FE model of a grain-pair

interaction.

2. Review of GMA based Micromorphic Continuum Model of Degree 1

The GMA (Misra et al., 2019; Misra and Poorsolhjouy, 2017) follows a pathway that shares
affinity with Piola’s concepts of continuum description of materials as a necessary approximation
of a molecular view (dell'Isola et al., 2014; dell’Isola et al., 2015; Eugster and dell'lsola, 2017).
At the spatial scale in which we seek the continuum description, the individual grains and their
motions are latent (concealed). However, it is these grain motions that determine the deformation
of a representative volume element (RVE) containing numerous grains, and consequently, the
mapping of a continuum material point from undeformed to deformed configuration in a macro-
body composed of such material. In GMA, the continuum description is achieved by (i) expressing
grain-scale motions in terms of continuum kinematic measures, (ii) identifying the volume average
of grain-pair interaction energies with the macro-scale deformation energy density, and finally (ii1)
applying variational approach for defining stress/force conjugates of the kinematic variables,
determining constitutive relations, and the governing Euler-Lagrange equations (Misra and
Poorsolhjouy, 2016b; Misra and Poorsolhjouy, 2017; Nejadsadeghi and Misra, 2019b;
Poorsolhjouy and Misra, 2019).

Let us consider a granular material system that is homogeneous at the continuum scale. To
describe the grain motions and the relevant continuum kinematic measures for such a granular
system, two coordinate systems are considered as shown in Figure 1. One at the micro-scale,
denoted by x’, attached to the continuum material point (RVE) with its origin set to the barycenter
of the RVE in which the grains and their motions are visible. The other at the macro-scale, denoted
by x, with its coordinate axes parallel to those of x’, in which the homogeneous macro-body is
placed. The displacement field of grain centroids, ¢, is conveniently written as (Nejadsadeghi and

Misra, 2019b)
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¢ = qzl (x,)+ l/lg (x, )xj’. + l//lfk (x, )x;.x,i , (1

where ¢ is the macro-scale displacement field, and quantities 1//5 and t//fk, functions of macro-

scale coordinates x, are termed as the second and the third rank micro-deformation tensors. In this
work, as a constitutive choice, we choose to terminate the expression at the 2"¢ order, although
additional higher-order terms can be considered as discussed in (Nejadsadeghi and Misra, 2019b).
Clearly, the assumption in Eq. 1 provides a method to capture the relative motions of grains with
respect to macro-scale displacement field, such as the experimentally reported displacement
fluctuations in granular packing subjected to homogeneous boundary displacements compatible
with a linear displacement field (Misra, 1998; Misra and Jiang, 1997; Richefeu et al., 2012).
Indeed, non-affinity of grain motion are well-known (see for example (Misra and Chang, 1993)).
The non-affinity arises due to a variety of factors, including irregularity of granular structure,
spatial variability and high contrast of grain interactions (stiff or soft), and the peculiar and non-
local nature of grain interactions. In this case, the micro-deformation tensors play the role of
enriching the kinematical description of grain motions within the RVE. Throughout the paper, the

summation convention over repeated indices is implied unless explicitly noted otherwise.

We proceed by considering the relative displacement of two (contacting) neighboring grains, n
and p. Using Eq. 1, the displacement of the grain p centroid is expressed in terms of the

displacement of the neighbor grain, n, centroid as follows

5 =4~ =vil VT @

np o_ . Ip o o o e s . .
where [/” =x" —x'" is a grain-pair branch vector joining the centroids of grains n and p, the tensor
product J ~[}"[” /2 is the gyration tensor. To clarify the meaning of the micro-deformation

tensors, we now introduce the following relative deformation tensors

$ _ & ¢ ¢ 9 ¢
Vi =@, —yy and yy =y —yg
3)
where comma in the subscript denotes differentiation with respect to the spatial coordinates. In Eq.

3, the differentiation is with respect to the macro-scale coordinates x, and defines the macro-scale

gradients of the macro displacement field ¢ , and micro-deformation tensor l//f. We further
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assume that the 3" rank relative deformation tensor 7/;’,{ vanishes, such that 1//3,{ = 1)//5,,c . In this
case, the micro-deformation tensor t//lfk is no longer independent, but depends upon the micro-

deformation tensor 1//5 . The assumption is similar to that introduced in Euler beam model, wherein
the rotational degree of freedom is related to the gradient of vertical deflection. Furthermore,
considering the smallness of the RVE in the continuum view, we exploit Taylor’s expansion to
identify the micro-deformation tensors in Eq. 2 as the gradients of ¢ with respect to micro-scale

coordinates, x’, such that

A
vy £ and yj “
where ¢, . and ¢, , are termed as micro-gradients.

In view of Eq. 3 and the identification in Eq. 4, we can say that the micro-gradient field, ¢, ;, is

decomposed into a part identical to the macro-gradient, ¢ ., (where gradient is with respect to x)
whose symmetric components form the classical infinitesimal strain tensor, and a second part
called relative micro-gradient, ]/5, representing the micro-scale fluctuations from the macro-
gradient. The described decomposition bears similarity to that introduced in micro-structural
elasticity of (Mindlin, 1964) as well as in micromorphic mechanics (Eringen, 1999; Germain,

1973). It is evident that for this micromorphic model, the relative micro-gradient, 7/5, is
independent of x’ (constant within the RVE). Furthermore, the micro-gradient field, ¢, , , which

represents the 2™ gradient (with respect to x’) of the grain displacement field, is given as the

macro-gradient (with respect to x) of the micro-deformation tensor field l//;’k . These assumptions,

which lead to a micromorphic model of degree 1 according to (Germain, 1973), implies that the
grain displacement field within the RVE must be estimated by a function twice differentiable in x’
(such as a polynomial of degree 2). For further discussions of GMA based higher-order models,
the reader is directed to (Nejadsadeghi and Misra, 2019b) which describes the kinematics of
micromorphic model of degree n as well as its devolution to micromorphic models of degrees 2

and 1, and to micro-polar modes and 2" gradient models.
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Combining Egs. 2 and 3 along with the assumption 1//5,c = g//;’k , the relative displacement of two

neighbor grains, 7 and p, is found as

5nP:¢ip_¢n_(é]_yl])lnp_l_l//yk.]np é‘lM_é‘lm_'_é:g (5)
Where the components related to the macro-gradient, ¢ , the relative micro-gradient, 7, , and

the macro-gradients of the micro-deformation tensor field l//f . » are, respectively

S =g AT S =y S =y Iy ©)

T i l/]’

Further, the relative rotation of grains within the granular assembly can be related to the rotation
field within the material point defined as the curl of displacement field (Misra and Poorsolhjouy,
2016b). Now using this definition of rotation and applying Taylor series expansion, the relative

rotation of two neighbor grains, n and p, denoted as @ is obtained as (using Eq. 3)

0 =K/ —Ki —’Qplfp—( Uk¢k1) I =eupf I ™)

where x/ is the vector of rotation of p™ grain. The grain-pair relative rotation between two
interacting grains is, thus, related to the second gradient term, ¢k, or equivalently the macro-
gradients of the micro-defromation tensor field t//;,k . Thus, Egs. 6 and 7 provide an identification
of the macro-micro kinematic variables. It is noted here that the relative rotation in Eq. 7 does not
consider grain spins which could be significant in some granular systems (Poorsolhjouy and Misra,
2019) and are known from measurements of kinematic fields in grain assembles (Misra, 1998;

Misra and Jiang, 1997) as well as simulation using discrete granular models (Misra et al., 2018b;

Turco et al., 2019).

Using the micro-macro identification in Egs. 5 through 7, the deformation energy density, W, of a
granular RVE can be expressed in terms of both the macro-scale kinematic measures, and the

micro-scale kinematic measures as follows:
W:W(¢(l )’ 711"//111() Z W< (50{M é'am 5ag eau) (8)

where W is the grain-pair deformation energy and the summation runs over all grain-pair contacts,

a. Strain rate tensors as those introduced in (Altenbach and Eremeyev, 2014) could be used to
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extend the analysis to finite deformations. Macro-scale objective energy, particularly for the large
deformation problems of granular materials, is discussed with respect to material symmetry group
for micromorphic media in (Eremeyev, 2018). The micro-macro identification of kinematical
quantities in Egs. 5 and 6 along with those of the deformation energies given in Eq. 8, leads to a
micromorphic continuum model of degree 1 whose governing equations and constitutive
relationships are given in (Misra and Poorsolhjouy, 2016b). In this regard, a set of micro-scale
constitutive equations that link the micro-scale kinematics measures to their conjugate force and
moment measures have been introduced where following the D’ Alembertian viewpoint, as also
those of Lagrange, Piola and Hellinger among others (see for example (Oliveira, 2017) and

(Eugster and dell'Tsola, 2017, 2018a, b)), the grain-pair forces and moments are defined as,

ow* ow«

“ =_——  where &M, m, g; and m™ = 9
f; 86‘;15 5 g i 6@051; ( )
such that

aé aé gcaé aé nau .

S5 =K70" + D0, where &M, m, g (10)

au __ aé caé au nau ,
m" =D=67" + GO

Further the macro-scale stress measures can be defined as conjugates to each of the continuum
kinematic variables, such that the following macro-scale constitutive equations are obtained (see

for example (Misra and Poorsolhjouy, 2016a))

W:;Zf WALV ( ZK“MZ“’“J =Ciidhe) (11a)
z] a a
ow 1
O-U- A _Zfamla _ Z(Kitlyczm(sl:zml? +Di¢zm8;ul;z)
o F (11b)

1 amjoja 1 am aja
{;ZK% l lj jylg +(;2Dip plklmlj jl//lgm = yk17k1 + Dy, klml//klm

a a

/uijk a—¢=—2( D%Jjo;{ +ml eﬂ,l“)

ljk

1 am ajo 1 (24 a 1 u ajoa
:(VZDPI el lmjj/ffn (VngJmn‘]ﬂf ;ZGPqem,qe”plk [ jy/l]k (11c)

a a

— 7 u ¢ _
- Z . Ayklmn Ayklmn )l//lm,n ljklm J/Im + A klmnl//lm n
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In Eq. 11,7, is the Cauchy stress with symmetry imposed (not explicitly expressed in Eq. 11a),
and o, is the asymmetric relative stress, and g, is the double stress tensor. The fourth rank

constitutive tensors C and C”

i ;u represent stiffness relating to macro-strain and relative micro-

gradient, respectively, the fifth rank tensor Dy, ~couples relative micro-gradient and macro-gradients

)

of the micro-deformation, and the sixth rank tensor 4., —represent stiffness corresponding to the second

ijklmn

gradient of micro-displacements.
3. Predicted 2D Isotropic Chiral Granular Material

As is standard in GMA, the grain-pair interactions can be defined in a local Cartesian coordinate
system formed of the unit vector along the axis joining the centroids of the two grains, termed as
the normal direction, and unit vector along two arbitrarily chosen orthogonal axes lying on the
plane orthogonal to the normal direction, termed as the tangential plane. For the case of 2D
granular systems, in which the interactions is between disk-like objects, the grain-pair interactions
are defined in the local coordinate system composed of a unit normal vector, #;, and the tangential
unit vector, s;, given as

n, =(cos0,sin 0)

12
s, =(—sin®,cos 6) (12)

where 6 is the polar angle of the 2D polar coordinate system.

3.1 Grain-pair elasticity

We now consider the following grain-pair elastic deformation energy in terms of the grain-scale

kinematic quantities defined in Egs. 5 and 6, given as

1 KrzlxM (5:(M )2 +K;1M (é‘SaM )2 +K’;xm (é:zm )2 +K;1m (5;”” )2 " 2K:Sm (5:m§;xm)+ ( 3)
W =— 1
2| ko (67¢) + Ko (57 ) +2D (570 ) + 2D (50 )+ G (62 )
Where the subscripts are used to denote the quantities along the local coordinate axes (these
subscripts do not follow tensor summation convention). In Eq. 13 the coupling terms have been
retained only for the grain-pair relative displacement components related to the relative micro-

gradient, and those with the grain-pair relative rotations. This choice of deformation energy will
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lead to a desired particular form of continuum model. Using the assumed energy expression in

Eq. 13, the grain-pair (micro-scale) constitutive relations can be written as follows

aM KaM 0 5aM
M
{j}z:} - I;a: ]Ija::Hgam} l:l;a::| 00’“} (14b)
ag Kag O
et e

=L 1| 2o e 40

For further derivation, the above constitutive relations can be rotated to the RVE coordinate system

to result in the following stiffness tensor (as in Eq. 10)

o KM KM n's || K0 n’ ny (158)

i = = " a

’ KM KN nysy |0 K| . s sy
Kam Kam na Saf Kam Kam na na

K;zm — 11 12 — 1 *~1 n 1 2 (lsb)
Kla2ﬂl chtzﬂ‘l n;‘( Sza Knagm Ka"l Sl S2

We note that the stiffness tensor K* has the same structure as Eq. 15a, and for the 2D case the

stiffness tensors D" and G;* will reduce as follows since the only relevant rotation is ;"

Dau na S(Z Dau
DY =" = " | and G3 =[G3“"] (15¢)

n, s,

3.2 Directional averaging of constitutive behavior

We further note that the quantities within the summations in Eq. 11 are functions of the orientations
of the branch vector and the product of grain-pair stiffness and branch length. In this case, the
average value of product of branch vector length and stiffness coefficients and its directional
distribution can be used as the micromechanical model parameter (see for a discussion (Misra and

Poorsolhjouy, 2016¢)). For the 2D format of the GMA, an identification process of the constitutive
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relationships were presented in (Misra and Poorsolhjouy, 2015, 2016a). As an example, the

summation in Eq. 11a over all grain-pairs can be rewritten using Eq. 15a as
M 1 aM jaja lNaa azaMaa azaMaa ..
Clly =3 S KL = S i ((z ) K nene +(17) KMsese) i jki=12 (16)
a=1

which can be further sorted and binned according to grain-pair orientations and recast as
summation over the polar angle 6 as

cl =%Z(i(zp)z K,fM]nf‘nj’ni“n,f {i(ﬁ ) KM ]nfnjsf’s,f i,j. k=12 (17)

0 4 p

where N” (9) is the total number of grain-pair for a given polar angle bin #, such that

N=> N"(0) (18)

where N is the count of grain-pairs in the RVE and the summation over p is the sum of the product
of branch length square and the grain-pair stiffness (for example (Z L )2 K**") for all grain-pairs in that

bin. For granular material systems with many different grain-sizes, grain shapes and types of
grain-pair interactions (which as combination can be termed as micro-scale mechano-
morphology), these sums will be different for different polar angles. This variation with polar
angles can be treated by defining directional distribution functions. Since branch length and
stiffnesses appear as products, their directional distribution density cannot be defined

independently, therefore, we introduce the directional density distribution function, &(&) , defined

as

Sy ke X () K
£(0)==% = (19)

() ke D) K

1 a=1

where, for simplicity, we have assumed that grain-pair behavior in the normal and shear directions
follow the same distribution. It is evident that the directional density distribution function, £(6),
represents the relative measure of material stiffness in a given direction resulting from a
combination of grain-size, the number of grain-pair interactions and the grain-pair stiffness.

Further, it is useful to define an average product of branch length square and the grain-pair

stiffness, I’K, ,as



266

267

268
269

270

271

272

273

274

275
276
277

278

279

280

281

282
283

284

N 2 N 2
(1) K (1) K
PKY == PRV =l (20)
N ‘ N
where [ may be regarded as the average branch length, K and K as the average grain-pair

stiffnesses for the material, and p° =¥/ N is the number density of grain-pair interactions. Thus,

using Egs. 19 and 20, the following integral form of Eq. 17 can be obtained

Cy, =I"p° zj (Ky'nn)Edo (21a)

6=0

Similar considerations for Egs. 11b-11d will yield the following

27
Cp=0p° [ (Kiinn,)édo (21b)
6=0
2
Dy, =Ip° [ (Dheyn,n,)Edo (2lc)
0=0
27 2
A = I*p° I ) (Kfnjnknmnn ) + (G;‘Se,mewnknn ) Edo (21d)
6=0

where we have assumed that all types of grain-pair mechanisms follow the same directional
distributions. For isotropic materials (or for randomly grain assemblies of various grain sizes, grain

shapes and grain-pair interactions) the density distribution function in 2D domains is simply
1

0)=—=|&Ed0=—2r =] 22
£(0)=- I £do=— (22)
3.3 Expressions for the constitutive coefficients and nature of chirality
As a result, the predicted 2D form of constitutive relationship and corresponding stiffness tensor
for the macro-strain, 5([,_,-) =¢&;, is obtained in an explicit form by integrating Eq. 21a. The
resultant 3x3 stiffness matrix can be written using the Vogt notation by explicitly considering the
symmetry of the strain tensor, and thus that of the conjugate Cauchy stress tensor as follows:

i Clﬂf Cg 0 &
,r=|CYh CY 0 |3ey s (23a)
T, 0 0 Cg 2¢,
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cM :lzgc (3K +K)); ¢ =128pc (K} -K!"); and (23b)

12 c CM _ CM
C;;: p(K:l"‘KYM): 11 12
8 ‘ 2
The obtained stiffness matrix in Eq. 23 is invariant to rotation and reflection transformations

cos@ —sinf

generated by the rotation matrix R(6) :( jand reflection, say about the y-axis

sind cosd

-1
y =( 0 1). Based upon the macro-scale stiffnesses, the material belongs to symmetry class

[O(2)], and the stiffness matrix is characterized by only 2 independent constants as expected for

2D isotropic materials (Auffray et al., 2015; He and Zheng, 1996).

The predicted 2D form of constitutive relationship and corresponding stiffness tensor for the

relative stress and micro-gradient, 7/;’.j = 5” — l//;’.j , is obtained from Eq. 21b as follows

Vi
Vi
m m m m
0y, Chn Cln Gl G |7 Vioa
m m m m
On| _ Cln G Gl Gy |72 +( m ) Vizo (24)
- m m m m ijklm 4x8
Oy C1112 C1112 C1212 C1122 Y12 LS
m m m m
0y C1121 C1121 C1|22 sz V2 l//21,2
Vi
Voo
where
12pc lch
m m m\. m _ m m\.
Cllll_ 8 (3Kn +K, )» C1122_ 8 (Kn —K, )’ (25)

c

m lzp m m m m
C1212 :T(Kn +3Ks ): C1111 -2C

1122°

m m _lzp
C1112 = _CIIZI = 4

The stiffness matrix in Eq. 24 has 3 independent constants and is invariant to rotation
transformation, and is therefore, classified as isotropic. The stiffness matrix, however, does not
satisfy the mirror invariance. On the basis of this micro-scale stiffness matrix, the material could

be said to belong to symmetry class [SO(2)]. In this type of isotropic material, chirality is present
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due to the anti-symmetric coupling between the normal and the shear terms given by C}},, =-C/},,
, which are concerned with the first-order phenomena.

Interestingly, the 5-th rank tensor, D,

m » 18 1dentically zero. It is remarked, however, that the 5-
th rank tensor is, in general, non-zero for non-centro symmetric 2D structure and could be non-
zero for 2D structures that yield isotropic classical (Cauchy) elasticity for either chiral or achiral
structures. The symmetry classes for the 5-th rank stiffness tensor as well as for 2" gradient

elasticity has been discussed in (Auffray et al., 2015). An experimental evaluation of particular

microstructure that leads to a material of symmetry class [Zg ] with non-zero 5-th rank tensor as

well as possible chirality has been shown in (Poncelet et al., 2018)). Finally, the predicted 2D form

of constitutive relationship and corresponding stiffness tensor for the (macro-) gradient of the

micro-gradient tensor, l/lg’k, can be obtained from Eq. 21d as give in (Misra and Poorsolhjouy,

2016a). Chiral behavior for materials of symmetry class [SO(2)] can originate from certain
coupling within this higher-order stiffness matrix as discussed in (Auffray et al., 2015). Indeed,
the stiffness matrix reported in (Misra and Poorsolhjouy, 2016a) shows the possibility of these
coupling, however, the mechanisms that give rise to the relevant non-zero terms need further
considerations and will be discussed in a future paper. The 6-th rank stiffness tensor will not be

discussed further in this paper, and for this reason, its expression is not repeated here.

3.4 Micro-scale mechanism of chirality and relation to classical micropolar continuum

It is noteworthy that the two stiffness tensors, Cj, and Cj,

o » bear formal similarity. The

differences arise from the nature of grain-pair deformation mechanism the two represent (as noted

by the different grain-pair stiffness coefficients). Since the relative micro-gradient is, in general

¢

asymmetric, it is instructive to rewrite Eq. 24 in terms of the symmetric, y(;,, and antisymmetric,

}/[f/] , parts of the micro-gradient tensor as:

_m o8
i = Caan? G + Conn?in (262)

_m no 4
i1 = Ginan Y + Qi ?in (26b)

Or alternatively

O

o
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O-(U) C(’Z)(kl) (¢(k»1) - l//(téd) ) + C(’Z)[kl (¢[k /] kl]) (273)
i1 = Gl (¢<k,l> - ‘//(¢/<1) ) + G (‘/h,/] - ‘/’[(i/]) (27b)
where:
c” Qﬂz + C;';kl + C;;k + C;;kl . m _ Ci;‘rlld + C;’:kl - Ci;';k C,n:kz 78
k) ) k] = (28a)
4 4
m C:n;d - C,";kl + qn;k - Cr";kl m qn;d - C":lkl q”llk + C’:lkl
qy (k[) _ Yy J Yy J ’ qy m Yy J y J (28]3)
4 4
Which, using matrix notation, can be written as
Oy G G 0 Vet 0 0 C; —Cj 7
Oy =|C, G 0 V2 +0 0 CF —Cj V2 (29a)
0, 0, 0 0 Clnll Ch |2tV 00 0 0 Vi2 =7
2 2 V"2
0 0 0
0 0 0 0 0 0 0
Oy 0 0 0 71 e Y
(o2 = +
» c” oo Y 0 0 5 0 Y (29b)
O, =0y V2 T Yio =7
2 B3 B 0 0 0 % V=2
0, —0p
2
where the 3 independent constants are
2 ¢ 2 ¢
Ch = li(sK,;" +K"); Ch= e g’ (K7 -K?); and C] = l 4’0 K" (29¢)

In the classical micropolar elastic model, only the 1% part of Eq. 26a, 27a and 29a, and the 2™ parts

of Egs. 26b, 27b and 29b survive where the antisymmetric o, , is the eponymous micropolar stress

[3/]
(Germain, 1973). The antisymmetric term, 7/[?].] , can be written in terms of rotation (interpreted as
micro-rotation in classical micropolar elasticity). Thus a part of the grain-pair relative
displacement given by the micro-macro identification in Eq. 4, could be possibly interpreted as

that contributed by grain rotations. It is noteworthy, however, that at the micro-scale, the

deformation energy associated to the micro-rotation of micropolar elasticity is stored in the shear
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and shear-normal coupling between the grain-pairs as the grains displace. Indeed, it is not
surprising that grain-scale mechanisms give rise to what appears as grain rotations from a macro-

scale viewpoint. We particularly focus here on the shear and normal coupling terms in the grain-

m
ns’

pair deformation energy in Eq. 13 (that is K, where superscript a has been dropped since we

consider here an averaged quantity). This shear-normal coupling at the grain-pair implies that the
micro-structural and the mechanical principal axes of grain-pair interactions are not coincident.
At macro-scale, this non-coincidence manifests as rotational degrees-of-freedom. Therefore, to
model a beam (1D) composed of this material, it is necessary to introduce the coupling between
the axial and rotational deformation (De Angelo et al., 2019a). In the 2D model derived here, the
coupling component of the grain-scale deformation energy leads to the non-zero non-classical

components that relate the symmetric part of the relative stress o, to the antisymmetric relative

i)
micro-gradient, ;/[‘Z.]. Since the handedness of the local coordinate system (n, s) determines the

m
ns 2

sign of the coupling stiffness, K, a reflection transformation will change the sign of C;, thus

endowing the material with a chiral nature. Chirality in planar micro-polar elasticity has also been
expounded through chiral lattice structures (see for example (Bahaloo and Li, 2019; Chen et al.,
2014; Liu et al., 2012)) and also in 3D micro-polar elasticity through 3D lattices (Fernandez-
Corbaton et al., 2019; Frenzel et al., 2017). Further, it could be interesting to examine and
highlight chirality in the experimental observations in (Poncelet et al., 2018). It will also be
interesting to investigate the chiral behavior of swarm robots, which also consider rather complex
material particle interactions (Wiech et al., 2018).

Further, investigations are needed for unraveling the complex grain-scale mechanisms that give
rise to higher-order or higher-gradient terms in the continuum models of granular systems. This
is indeed the case if we consider that the grain displacements are coupled to grain rotations as
introduced in (Misra and Poorsolhjouy, 2017; Poorsolhjouy and Misra, 2019) where the grain
displacements are related to grain translation (rotation free) and grain spin (displacement free).
The interrelationships between grain displacement, translation, rotation, and spin, in general,
depends upon the complex micro-mechano-morphology of the granular material. For continuum
modeling, however, the two fields of displacements, ¢, and rotations, x, may be sufficient to

describe the coupled kinematics of the material (Poorsolhjouy and Misra, 2019). It is also clear
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that the grain rotations can result in both normal and shear components of relative displacements

for a grain-pair (Turco et al., 2019).
4. Experiments and Discrete Model Verification — the case of 1D Bead String

It is remarkable that the GMA predicts chirality in 2D granular media tied to the grain interactions.
To verify these predictions, we have evaluated the behavior of a prototypical 1D granular material
through independent numerical simulations and experimental method. A 1D bead string system
was chosen over a 2D system due to the simplicity of the unitary granular string structure and the
ability to experimentally characterize a 1D system. Different 2D structures and 3D structures will
be synthesized and experimentally investigated in the future. It is also noteworthy that such a 1D
system living in a 2D space does not possess centro-symmetry. Therefore, in this case, the terms
that couple grain-pair relative rotations to the normal (axial) or shear (transverse) displacement
could also have an effect. In other words, the continuum model for such a directed structure cannot
be strictly isotropic belonging to symmetry class [SO(2)] and we could have coupling between the
orders, such that the 5-th rank tensor has a role. In the present work, we highlight the effect pf
coupling between grain-pair normal and shear displacements, and focus upon the chiral coupling
discussed in the previous section. The effect of shear-normal-rotational coupling will be discussed
briefly via a discrete model to indicate future possibilities. To this end, we have conceived a
simple grain-pair interaction that exhibits shear-normal-rotational coupling. The grain-pair
interaction behavior was computed using FE model in which each grain and grain-pair connection
are treated as composed of classical Cauchy continua. This grain-pair interaction was then
implemented into a 1D granular string and simulated using a discrete granular (DEM) model. The
chiral nature was verified by evaluating the coupling between imposed axial loading and computed
response in the transverse direction. Further, the 1D model results were validated with similar

physical experiments on the exact geometry realized through 3D printing.

4.1 Grain-pair with coupled shear-normal-rotational interaction

Figure 2 shows the schematic representation of the conceived grain-pair interaction exhibiting
shear-normal-rotational coupling. The set of solid bars and beams connecting two grains in Figure
2 may be considered as the mechanical (rheological) analog of grain-pair interactions. Such

interactions can be possibly realized at the micro-scales through precision 3D printing or
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lithography(Ngo et al., 2018) or even through molecular or atomistic means using peptide
engineering (Sarikaya et al., 2003). As a prototype of materials with such granular interactions that
can be easily fabricated and realized through readily accessible technology, and one whose
behavior can be precisely controlled within the sensitivities of the technology, we have directly
implemented the designed analog. The geometrical parameters indicated in Figure 2(a) are
provided in Table 1 for the fabricated system. The mechanical analog was analyzed using
COMSOL, subjected to a series of boundary conditions to identify the grain-pair stiffness
parameters in Eq. 13 (De Angelo et al., 2019a). An appropriate number of analyses by applying a
combination of boundary condition indicated in Figure 2(b) were performed to identify all the
grain-pair stiffnesses. The properties of the thermosetting printing material were assumed as
follows: Young’s modulus of 1.6 GPa and Poisson’s ratio of 0.3. The resulting identified stiffness

parameters are given in Table 2.

4.3 Experimental verification of Chirality in Bead String

A 3D computer generated model in CAD software SolidWorks (Dassault Systems SolidWorks
Corporation, Waltham, MA, USA) was used to design the bead string geometry. This model has
the dimensions reported in Table 1, and comprises 11 grains. The out of plane thickness of the
system was taken as 4 mm. This value was chosen to be small enough to allow a 2D assumption,
and large enough to prevent warpage of the sample in the fabrication process. Two small equally-
sized cylinders (which we refer to as dots) were printed on each grain to facilitate the image
processing used for tracking grain movements. The CAD model was printed using a Fused
Deposition Modeling (FDM) Stratasys Mojo 3D printer using as constituent material an
acrylonitrile butadiene styrene (ABS) thermoplastic material. An ElectroForce 3200 (TA
Instruments) testing machine was used to conduct tensile test on the printed specimen. Figure 3
shows the experimental setup indicating also the clamped boundary conditions, such that on the
top grain of the string a vertical displacement is applied while the lateral displacement is
constrained, and on the bottom grain both vertical and lateral displacements are constrained. Figure
3(a) gives the initial (undeformed) configuration of one of the specimen, while Figure 3(b) shows

the deformed configuration.

To track each grain, the following image processing approach was used. Dots on the left and right

side of the grains were painted in black. A Nikon D700 camera was used to take consecutive
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pictures with fixed time intervals while the experiment was being performed with the sample set
up in front of a red background to ease image processing. The black dots were identified and their
centers of masses were labeled for each frame picture. The grain labelling was harmonized across
all the images of the deformed configurations with the labels of the reference image using a
minimum distance criterion test. This criterion works well especially when the deformation in
successive frames is comparably small. Coordinates of grain centroids were calculated using the
average of the coordinates of the black dots center of masses, with which grain centroid
displacement was captured. The grain rotation for each grain in the structure can also be calculated
by taking the vectors joining the dots at each time frame and using their inner product. The
rotations of grains have not been presented in this paper as the resolution of the images and the
experimental errors were comparable to the measurements of the rotations. Figures 4(a) through
4(f) give the results in terms of the grain vertical and lateral displacements, respectively, for the
tensile tests performed on the three samples. It is remarkable that under an overall stretch of the
1D bead string, the grains undergo significant lateral displacements. Clearly, a reflection
transformation about the vertical axis will change the sign of the lateral displacements indicating

the chiral nature of the construct.

In Figures 4(a) and 4(b) the imposed displacement is 11.40 mm in vertical direction and the
maximum lateral component of grain centroid displacement is measured as 0.34 mm. Similarly in
Figures 4(c) and 4(d) the imposed vertical displacement is 12.03 mm and the measured maximum
lateral component is 0.31 mm. Further, in Figures 4(e) and 4(f) the imposed vertical displacement
i1s 11.50 mm and the measured maximum lateral component is 0.24 mm. It is notable that the 3D
printed samples always have variability due to imperfections of the manufacturing process which
introduces some randomness to the grain-pair interactions. The effect of randomness in grain-pair
interactions is clear in the three experimental results shown in Figure 4. The variability is most
noticeable in the nonzero lateral displacement the middle grain (as opposed to the prediction of
DEM discussed in the next sub-section). We also note some nonzero lateral displacement for the
clamped top grain in the first experiment. This is likely due imperfect clamping leading to grain
slip in response to the lateral reaction that develops as expected in this type of media in which the
axial (or normal) stretch is coupled to the lateral deformation. Similar chiral coupling between
axial and transverse deformation at the macro-scale has been shown via a 1D beam model that

includes additional degrees of freedom (De Angelo et al., 2019a). We believe, therefore, the
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observed behavior is characteristic of a micromorphic (or a more restrictive micropolar) model

which includes internal degrees of freedom.

4.2 Discrete model for Chiral 1D granular material

To further verify the chiral behavior and explore the parametric space particularly with respect to
effect of the strength of coupling between the modes of grain relative motions, a quasi-static
discrete model of bead string was developed. For verification purposes, the discrete model
considers 11 grains aligned vertically, with grain-pair interaction properties given in Table 2.
Figure 5(a) shows a schematic picture of the 11-grain string system, where a 10% strain in vertical
direction was imposed on the grain on top with the bottom-most grain completely constrained
against displacements and rotations. Figure 5(b) and 5(c) give the vertical component and the
lateral components, respectively, of the displacement of the grain centroids. The maximum vertical
and horizontal component of displacement values for the imposed boundary conditions are
computed as 11.5 mm and 0.28 mm, respectively. These values are in reasonable agreement with
the experimental observations. Note that the scales of the vertical and horizontal components of
displacements shown in Figure 5(b) and 5(c), have been adjusted for better visualization. Figure
5(d) shows the deformed configuration, where only the horizontal component of displacement has
been scaled to accommodate visualization. As is seen from Figure 5(d), the rotation of grains is
negligible. The maximum rotation is found to be 0.4 degrees. Figure 5(¢) shows the energy
distribution of grains, where maximum energy density is located in the center of the system.

It is worthwhile to note that the lateral displacements of the grains closest to the boundary grains
are the largest which is also in agreement with the experiments. Indeed this aspect of the behavior
can be modulated by controlling the strength of coupling of the grain rotations and the normal and
shear displacements. In Figures 6 and 7, we show results for the case in which the coupling
stiffness have been reduced to 50% and 10% of the values in Table 2. Interestingly, the location
of grain undergoing the maximum lateral displacements shifts away from the boundaries as the
coupling stiffness decreases. In addition, the deformation energy distribution appears to become
more uniform. Further studies by varying the model parameters and using different boundary
conditions can reveal additional variations of response and the effects of the grain-pair
mechanisms. The proper continuum model that can capture these grain-scale mechanisms and

replicate the macro-scale response may need to consider the complete micromorphic model of
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belonging to the appropriate symmetry class or anisotropy. These outstanding questions need to

be pursued in future works.

5. Summary and conclusion

In the present paper, the granular micromechanics approach (GMA) has been applied to show that
2D granular systems exhibit chiral behavior at the macro-scale provided the grain-pair interactions
are designed to have a coupling between relative displacements in the normal and tangential
directions. Closed-form expressions for elastic constants of macro-scale 2D chiral granular
metamaterial have been derived within the framework of micromorphic continua predicted by
GMA. To verify the predicted chirality, 1D bead string model is conceived in which the designed
grain-pair interactions have shear-normal-rotational coupling. This 1D bead string model was
physically realized through additive manufacturing. The fabricated specimen were subjected to
tensile experiment which showed lateral deflections. These experimental results were verified with
discrete simulations for the 1D bead string in which grain-pair interactions mimic those in the
physical specimen. Further, it was shown how the rotational-normal-tangential coupling
stiffnesses (which are usually neglected in the literature when describing granular media) in grain-
pair interactions alter the mechanical response and energy density concentration of the system for
an applied load. It is clear that the GMA provides a systematic framework within which one can
seek for grain-pair interactions that lead a desired mechanical behavior. By the same token, GMA
can also be utilized to analyze a granular structure made of grains with particular (known) grain-
pair interactions. Such capabilities make GMA applicable for the design and analysis of granular
metamaterials when particular applications are sought after. Future studies are needed to further
identify the grain-scale mechanisms and their effects at the macro-scale, such that the continuum

models can be more strongly tied to the micro-scale mechanics.

Many mechanical metamaterials are designed with the intent to mitigate vibrations and
demonstrate frequency bandgaps where a range of frequencies are filtered and not transmitted
through the medium. In particular, granular metamaterials have an inherent length scale that
promises dispersion. Model based upon GMA has shown dispersive behavior of granular media
and has been utilized to analyze granular metamaterials for their wave propagation characteristics

(Misra and Nejadsadeghi, 2019; Nejadsadeghi and Misra, 2019a; Nejadsadeghi et al., 2019b).
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Along these lines, a dynamic response of the granular structure studied in the current paper will be

analyzed using GMA and discrete simulation techniques in future publications.
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List of Figures

Figure 1. Schematic of the continuum material point, P, and its granular microstructure magnified for
visualization, where the x’ coordinate system is attached to its barycenter.

Figure 2. A schematic representation of the grain-pair interaction possessing shear-normal-rotational
coupling between grains: (a) dimensions of the mechanical analog, and (b) boundary conditions for
determining the grain-pair stiffness constants.

Figure 3. Experimental setup for testing the 1D bead string showing the reference and deformed
configurations.

Figure 4. Experimental results for grain centroid displacements for 3 independent specimen: (a), (c) and
(e) give the vertical components, and (b), (d) and (f) give the horizontal components of the grain centroid
displacements.

Figure 5. Discrete simulations of the 1D bead string. (a) A schematic representation of the 1D bead
string. (b) Vertical component of displacement of grain centroids. (¢) Horizontal component of
displacement of grain centroids. (d) Deformed shape of 1D bead string. () Energy density distribution in
the grains.

Figure 6. Discrete simulation of the 1D bead string with grain-pair interaction properties reported in
Table 2, except for rotational-normal and rotational-shear coupling terms redefined as D" =36.39 N and
D =50.25 N. (a) A schematic representation of the 1D bead string. (b) Vertical component of

displacement of grain centroids with maximum value of 11.5 mm. (c) Horizontal component of
displacement of grain centroids with maximum value of 0.445 mm. (d) Deformed shape of 1D bead string
(the horizontal component has been magnified by 20 times). (e) Energy density distribution in the grains

Figure 7. Discrete simulation of the 1D bead string with grain-pair interaction properties reported in

Table 2, except for rotational-normal and rotational-shear coupling terms redefined as D =3.64 N and

D =5.03 N. (a) A schematic representation of the 1D bead string. (b) Vertical component of

displacement of grain centroids with maximum value of 11.5 mm. (c¢) Horizontal component of
displacement of grain centroids with maximum value of 0.734 mm. (d) Deformed shape of 1D bead string
(the horizontal component has been magnified by 20 times). (e) Energy density distribution in the grains
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Table 2. Stiffness constants corresponding to the proposed grain-pair interaction model for DEM
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Figure 1. Schematic of the continuum material point, P, and its granular microstructure magnified for
visualization, where the x’ coordinate system is attached to its barycenter.
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Figure 2. A schematic representation of the grain-pair interaction possessing shear-normal-rotational
coupling between grains: (a) dimensions of the mechanical analog, and (b) boundary conditions for
determining the grain-pair stiffness constants.
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Figure 3. Experimental setup for testing the 1D bead string showing the reference and deformed
configurations.
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716  Figure 4. Experimental results for grain centroid displacements for 3 independent specimen: (a), (c) and
717  (e) give the vertical components, and (b), (d) and (f) give the horizontal components of the grain centroid
718  displacements.
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Figure 5. Discrete simulations of the 1D bead string. (a) A schematic representation of the 1D bead
string. (b) Vertical component of displacement of grain centroids. (¢) Horizontal component of
displacement of grain centroids. (d) Deformed shape of 1D bead string. (e) Energy density distribution in
the grains.
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Figure 6. Discrete simulation of the 1D bead string with grain-pair interaction properties reported in

Table 2, except for rotational-normal and rotational-shear coupling terms redefined as D" =36.39 N and

D =50.25 N. (a) A schematic representation of the 1D bead string. (b) Vertical component of

displacement of grain centroids with maximum value of 11.5 mm. (c) Horizontal component of
displacement of grain centroids with maximum value of 0.445 mm. (d) Deformed shape of 1D bead string
(the horizontal component has been magnified by 20 times). (e) Energy density distribution in the grains
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Figure 7. Discrete simulation of the 1D bead string with grain-pair interaction properties reported in

Table 2, except for rotational-normal and rotational-shear coupling terms redefined as D =3.64 N and

D =5.03 N. (a) A schematic representation of the 1D bead string. (b) Vertical component of

displacement of grain centroids with maximum value of 11.5 mm. (c¢) Horizontal component of
displacement of grain centroids with maximum value of 0.734 mm. (d) Deformed shape of 1D bead string
(the horizontal component has been magnified by 20 times). (e) Energy density distribution in the grains.



741

742 Table 1. Geometrical parameters values corresponding to the proposed grain-pair interaction model
Model Parameter Value
/ 11.50 mm
r 2.65 mm
t 0.80 mm
b 1.15 mm
743
744 Table 2. Stiffness constants corresponding to the proposed grain-pair interaction model for DEM
Material Constant Value
KM+ K™ 51.63 KN/m
K™+ K™ 52.44 KN/m
K" 37.98 KN/m
Gy 1.672 Nm
D™ 72.78 N
D 100.51 N
745
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