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Abstract  28 

Granular micromechanics approach (GMA) provides a predictive theory for granular material 29 

behavior by connecting the grain-scale interactions to continuum models.  Here we have used 30 

GMA to predict the closed-form expressions for elastic constants of macro-scale chiral granular 31 

metamaterial.  It is shown that for macro-scale chirality, the grain-pair interactions must include 32 

coupling between normal and tangential deformations.  We have designed such a grain-pair 33 

connection for physical realization and quantified with FE model.  The verification of the 34 

prediction is then performed using a physical model of 1D bead string obtained by 3D printing.  35 

The behavior is also verified using a discrete model of 1D bead string. 36 

 37 

Keywords: granular micromechanics; chiral metamaterial; micromorphic continuum; micro-38 
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1. Introduction 42 

Metamaterials may be considered as materials that are conceived to achieve predetermined 43 

behavior.  Predictive theories are key for metamaterial design based upon needs and possibilities; 44 

as are the technologies for the synthesis of the designed material.  Recent developments in additive 45 

manufacturing has opened possibilities of realizing a variety of microstructures that were 46 

otherwise difficult to fabricate (De Angelo et al., 2019b; dell’Isola et al., 2019; Misra et al., 2018a; 47 

Nejadsadeghi et al., 2019a).  Furthermore, recent work on revealing the connections of higher 48 

gradient continuum terms to the micro-mechanisms within a materials have led to development of 49 

interesting predictive theories.  In this regard, the pioneering work on 2nd and higher gradient 50 

theories leading to pantographic metamaterials is particularly worthy to highlight (Abdoul-Anziz 51 

and Seppecher, 2018; Alibert et al., 2003; dell’Isola et al., 2016; dell’Isola et al., 2018; Seppecher 52 

et al., 2011). On the other hand, granular materials have been shown to require the introduction of 53 

additional degrees-of-freedom predicated by their micro-mechanisms that are contributed by the 54 

inter-play of grain-pair interactions and granular arrangement – collectively termed as mechano-55 

morphology, leading to higher-order theories or micromorphic continuum theories (Nejadsadeghi 56 

and Misra, 2019b). Indeed, in a series of papers, we have shown through theoretical considerations 57 

that for granular materials, the classical continuum model is not sufficient, and instead non-58 

standard enhanced continuum model based upon the granular micromechanics approach (GMA) 59 

is generally required for representing the grain-scale deformation modes with increasing accuracy 60 

(see for example the higher-order or micromorphic theories (Misra and Poorsolhjouy, 2016b; 61 

Misra and Poorsolhjouy, 2017; Nejadsadeghi and Misra, 2019b; Poorsolhjouy and Misra, 2019).  62 

The GMA provides a paradigm that bridges the discrete models to appropriate continuum model.  In 63 

this paper, we utilize the predictions of GMA to design and synthesize through additive 64 

manufacturing granular (meta) material with specific properties.  In particular, we have shown 65 

through closed-form derived expressions for elastic constants that grain interactions that include 66 

coupling between normal and tangential deformations result in macro-scale chiral behavior for 2D 67 

isotropic granular media. We have then designed such a coupled grain-interaction for incorporation 68 

into physical models. We have evaluated the behavior of 1D granular material with the designed 69 

grain interaction through independent experiments and numerical simulations.  First, finite element 70 

(FE) model was utilized to quantify the grain-pair interaction by modeling the grains and their 71 



connection as classical Cauchy continua. Then 3D printing was used to realize the 1D granular 72 

model in which the grain-pair connections are those evaluated with the FE model.  Finally, to 73 

verify the GMA prediction, we use the discrete model in which grains are modeled as rigid beads 74 

connected via springs whose constants are specified based upon the FE model of a grain-pair 75 

interaction.   76 

 77 

2. Review of GMA based Micromorphic Continuum Model of Degree 1 78 

The GMA (Misra et al., 2019; Misra and Poorsolhjouy, 2017) follows a pathway that shares 79 

affinity with Piola’s concepts of continuum description of materials as a necessary approximation 80 

of a molecular view (dell'Isola et al., 2014; dell’Isola et al., 2015; Eugster and dell'Isola, 2017).  81 

At the spatial scale in which we seek the continuum description, the individual grains and their 82 

motions are latent (concealed).  However, it is these grain motions that determine the deformation 83 

of a representative volume element (RVE) containing numerous grains, and consequently, the 84 

mapping of a continuum material point from undeformed to deformed configuration in a macro-85 

body composed of such material.  In GMA, the continuum description is achieved by (i) expressing 86 

grain-scale motions in terms of continuum kinematic measures, (ii) identifying the volume average 87 

of grain-pair interaction energies with the macro-scale deformation energy density, and finally (iii) 88 

applying variational approach for defining stress/force conjugates of the kinematic variables, 89 

determining constitutive relations, and the governing Euler-Lagrange equations (Misra and 90 

Poorsolhjouy, 2016b; Misra and Poorsolhjouy, 2017; Nejadsadeghi and Misra, 2019b; 91 

Poorsolhjouy and Misra, 2019).   92 

Let us consider a granular material system that is homogeneous at the continuum scale.  To 93 

describe the grain motions and the relevant continuum kinematic measures for such a granular 94 

system, two coordinate systems are considered as shown in Figure 1.  One at the micro-scale, 95 

denoted by x’, attached to the continuum material point (RVE) with its origin set to the barycenter 96 

of the RVE in which the grains and their motions are visible. The other at the macro-scale, denoted 97 

by x, with its coordinate axes parallel to those of x’, in which the homogeneous macro-body is 98 

placed.  The displacement field of grain centroids, i, is conveniently written as (Nejadsadeghi and 99 

Misra, 2019b) 100 



( ) ( ) ( )i i m ij m j ijk m j kx x x x x x         ,       (1) 101 

where i  is the macro-scale displacement field, and quantities 
ij

  and ijk

 , functions of macro-102 

scale coordinates x, are termed as the second and the third rank micro-deformation tensors. In this 103 

work, as a constitutive choice, we choose to terminate the expression at the 2nd order, although 104 

additional higher-order terms can be considered as discussed in (Nejadsadeghi and Misra, 2019b). 105 

Clearly, the assumption in Eq. 1 provides a method to capture the relative motions of grains with 106 

respect to macro-scale displacement field, such as the experimentally reported displacement 107 

fluctuations in granular packing subjected to homogeneous boundary displacements compatible 108 

with a linear displacement field (Misra, 1998; Misra and Jiang, 1997; Richefeu et al., 2012). 109 

Indeed, non-affinity of grain motion are well-known (see for example (Misra and Chang, 1993)).  110 

The non-affinity arises due to a variety of factors, including irregularity of granular structure, 111 

spatial variability and high contrast of grain interactions (stiff or soft), and the peculiar and non-112 

local nature of grain interactions. In this case, the micro-deformation tensors play the role of 113 

enriching the kinematical description of grain motions within the RVE. Throughout the paper, the 114 

summation convention over repeated indices is implied unless explicitly noted otherwise.   115 

We proceed by considering the relative displacement of two (contacting) neighboring grains, n 116 

and p.  Using Eq. 1, the displacement of the grain p centroid is expressed in terms of the 117 

displacement of the neighbor grain, n, centroid as follows 118 

np p n np np

i i i ij j ijk jkl J                 (2) 119 

where 
np p n

j j jl x x    is a grain-pair branch vector joining the centroids of grains n and p, the tensor 120 

product / 2np np np

jk j kJ l l  is the gyration tensor. To clarify the meaning of the micro-deformation 121 

tensors, we now introduce the following relative deformation tensors  122 

, ,  and    ij i j ij ijk ij k ijk

                    123 

 (3) 124 

where comma in the subscript denotes differentiation with respect to the spatial coordinates. In Eq. 125 

3, the differentiation is with respect to the macro-scale coordinates x, and defines the macro-scale 126 

gradients of the macro displacement field i , and micro-deformation tensor ij

 . We further 127 



assume that the 3rd rank relative deformation tensor 
ijk

 vanishes, such that 
,  ijk ij k

   . In this 128 

case, the micro-deformation tensor ijk

  is no longer independent, but depends upon the micro-129 

deformation tensor 
ij

 . The assumption is similar to that introduced in Euler beam model, wherein 130 

the rotational degree of freedom is related to the gradient of vertical deflection.  Furthermore, 131 

considering the smallness of the RVE in the continuum view, we exploit Taylor’s expansion to 132 

identify the micro-deformation tensors in Eq. 2 as the gradients of i with respect to micro-scale 133 

coordinates, x’, such that  134 

,ij i j

   and ,ijk i jk

            (4) 135 

where ,i j  and ,i jk  are termed as micro-gradients.   136 

In view of Eq. 3 and the identification in Eq. 4, we can say that the micro-gradient field, ,i j , is 137 

decomposed into a part identical to the macro-gradient, ,i j  (where gradient is with respect to x) 138 

whose symmetric components form the classical infinitesimal strain tensor, and a second part 139 

called relative micro-gradient, ij

 , representing the micro-scale fluctuations from the macro-140 

gradient. The described decomposition bears similarity to that introduced in micro-structural 141 

elasticity of (Mindlin, 1964) as well as in micromorphic mechanics (Eringen, 1999; Germain, 142 

1973). It is evident that for this micromorphic model, the relative micro-gradient, ij

 , is 143 

independent of x’ (constant within the RVE). Furthermore, the micro-gradient field, ,i jk , which 144 

represents the 2nd gradient (with respect to x’) of the grain displacement field, is given as the 145 

macro-gradient (with respect to x) of the micro-deformation tensor field ,ij k

 .  These assumptions, 146 

which lead to a micromorphic model of degree 1 according to (Germain, 1973), implies that the 147 

grain displacement field within the RVE must be estimated by a function twice differentiable in x’ 148 

(such as a polynomial of degree 2).  For further discussions of GMA based higher-order models, 149 

the reader is directed to (Nejadsadeghi and Misra, 2019b) which describes the kinematics of 150 

micromorphic model of degree n as well as its devolution to micromorphic models of degrees 2 151 

and 1, and to micro-polar modes and 2nd gradient models.  152 



Combining Eqs. 2 and 3 along with the assumption 
,  ijk ij k

   , the relative displacement of two 153 

neighbor grains, n and p, is found as 154 

 . ,

np p n np np M m g

i i i i j ij j ij k jk i i il J                      (5) 155 

Where the components related to the macro-gradient, ,i j , the relative micro-gradient, ij

 , and 156 

the macro-gradients of the micro-deformation tensor field ,ij k

 , are, respectively  157 

, ,;    ;    M np m np g np

i i j j i ij j i ij k jkl l J                (6) 158 

Further, the relative rotation of grains within the granular assembly can be related to the rotation 159 

field within the material point defined as the curl of displacement field (Misra and Poorsolhjouy, 160 

2016b).  Now using this definition of rotation and applying Taylor series expansion, the relative 161 

rotation of two neighbor grains, n and p, denoted as θ is obtained as (using Eq. 3) 162 

 , , ,,

u p n n np np np

i i i i p j ijk k j j ijk kj p jp
l e l e l                (7) 163 

where 
p

i  is the vector of rotation of pth grain.  The grain-pair relative rotation between two 164 

interacting grains is, thus, related to the second gradient term, i,jk, or equivalently the macro-165 

gradients of the micro-defromation tensor field ,ij k

 .  Thus, Eqs. 6 and 7 provide an identification 166 

of the macro-micro kinematic variables.  It is noted here that the relative rotation in Eq. 7 does not 167 

consider grain spins which could be significant in some granular systems (Poorsolhjouy and Misra, 168 

2019) and are known from measurements of kinematic fields in grain assembles (Misra, 1998; 169 

Misra and Jiang, 1997) as well as simulation using discrete granular models (Misra et al., 2018b; 170 

Turco et al., 2019).  171 

 172 

Using the micro-macro identification in Eqs. 5 through 7, the deformation energy density, W, of a 173 

granular RVE can be expressed in terms of both the macro-scale kinematic measures, and the 174 

micro-scale kinematic measures as follows:   175 

    ,,

1
, , , , ,M m g u

ij ij k i i i ii j
W W W

V

      


              (8) 176 

where Wα is the grain-pair deformation energy and the summation runs over all grain-pair contacts, 177 

α.  Strain rate tensors as those introduced in (Altenbach and Eremeyev, 2014) could be used to 178 



extend the analysis to finite deformations. Macro-scale objective energy, particularly for the large 179 

deformation problems of granular materials, is discussed with respect to material symmetry group 180 

for micromorphic media in (Eremeyev, 2018). The micro-macro identification of kinematical 181 

quantities in Eqs. 5 and 6 along with those of the deformation energies given in Eq. 8, leads to a 182 

micromorphic continuum model of degree 1 whose governing equations and constitutive 183 

relationships are given in (Misra and Poorsolhjouy, 2016b).  In this regard, a set of micro-scale 184 

constitutive equations that link the micro-scale kinematics measures to their conjugate force and 185 

moment measures have been introduced where following the D’Alembertian viewpoint, as also 186 

those of Lagrange, Piola and Hellinger among others (see for example (Oliveira, 2017) and 187 

(Eugster and dell'Isola, 2017, 2018a, b)), the grain-pair forces and moments are defined as, 188 

,   where  : M, m, ;   and   u

i i u

i i

W W
f g m

 
 

 


 

 
 
 

     (9) 189 

such that  190 

;        where  : M, m, g

;      

u

i ij j ij j

u u u

i ij j ij j

f K D

m D G

    

    

  

 

 

 
      (10) 191 

Further the macro-scale stress measures can be defined as conjugates to each of the continuum 192 

kinematic variables, such that the following macro-scale constitutive equations are obtained (see 193 

for example (Misra and Poorsolhjouy, 2016a)) 194 

 
   , ,

,

1 1 1M M M M

ij i j ik k j ik l j ijkli j i j

i j

W
f l K l K l l C

V V V

       

  

   


  
     
  

     (11a) 195 

 

, ,

1 1

1 1
               

m m m m u

ij i j ik k j ik k j

ij

m m m m

ik l j kl ip plk m j kl m ijkl kl ijklm kl m

W
f l K l D l

V V

K l l D e l l C D
V V

       


 

         

 
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

   


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

   
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 
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  (11b) 196 
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,

1
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pl jip k m lm il mn jk pq mlq jip k n ij k

m g u
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W
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 (11c) 197 



In Eq. 11, ij , is the Cauchy stress with symmetry imposed (not explicitly expressed in Eq. 11a), 198 

and ij  is the asymmetric relative stress, and ijk  is the double stress tensor.  The fourth rank 199 

constitutive tensors  and M m

ijkl ijklC C  represent stiffness relating to macro-strain and relative micro-200 

gradient, respectively, the fifth rank tensor 
m

ijklmD  couples relative micro-gradient and macro-gradients 201 

of the micro-deformation, and the sixth rank tensor ijklmnA  represent stiffness corresponding to the second 202 

gradient of micro-displacements.   203 

3. Predicted 2D Isotropic Chiral Granular Material 204 

As is standard in GMA, the grain-pair interactions can be defined in a local Cartesian coordinate 205 

system formed of the unit vector along the axis joining the centroids of the two grains, termed as 206 

the normal direction, and unit vector along two arbitrarily chosen orthogonal axes lying on the 207 

plane orthogonal to the normal direction, termed as the tangential plane.  For the case of 2D 208 

granular systems, in which the interactions is between disk-like objects, the grain-pair interactions 209 

are defined in the local coordinate system composed of a unit normal vector, ni, and the tangential 210 

unit vector, si, given as  211 

cos ,sin

sin ,cos

i

i

n

s

 

 



 
          (12) 212 

where θ is the polar angle of the 2D polar coordinate system.   213 

3.1 Grain-pair elasticity  214 

We now consider the following grain-pair elastic deformation energy in terms of the grain-scale 215 

kinematic quantities defined in Eqs. 5 and 6, given as 216 

         

         

2 2 2 2

2 2 2

3 3 3 3

21

2 2 2

M M M M m m m m m m m

n n s s n n s s ns n s

g g g g u m u u m u u u
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K K K K K
W
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

           

     

      

     
 
 

     

 (13) 217 

Where the subscripts are used to denote the quantities along the local coordinate axes (these 218 

subscripts do not follow tensor summation convention).  In Eq. 13 the coupling terms have been 219 

retained only for the grain-pair relative displacement components related to the relative micro-220 

gradient, and those with the grain-pair relative rotations.  This choice of deformation energy will 221 



lead to a desired particular form of continuum model.  Using the assumed energy expression in 222 

Eq. 13, the grain-pair (micro-scale) constitutive relations can be written as follows 223 

0
       

0

M M M

n n n

M M M

s s s

f K

f K

  

  





    
    

     
        (14a) 224 
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       (14b) 225 
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For further derivation, the above constitutive relations can be rotated to the RVE coordinate system 228 

to result in the following stiffness tensor (as in Eq. 10) 229 

11 12 1 1 1 2

12 22 2 2 1 2

0
    

0

M M M

M n

ij MM M
s
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K

KK K n s s s

     


     

      
       
           

     (15a) 230 
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      (15b) 231 

We note that the stiffness tensor 
g

ijK
 has the same structure as Eq. 15a, and for the 2D case the 232 

stiffness tensors 
u

ijD
 and 

u

ijG
 will reduce as follows since the only relevant rotation is 3

u  233 

1 1 1

3 33 3

2 2 2
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      (15c) 234 

 235 

3.2 Directional averaging of constitutive behavior 236 

We further note that the quantities within the summations in Eq. 11 are functions of the orientations 237 

of the branch vector and the product of grain-pair stiffness and branch length.  In this case, the 238 

average value of product of branch vector length and stiffness coefficients and its directional 239 

distribution can be used as the micromechanical model parameter (see for a discussion (Misra and 240 

Poorsolhjouy, 2016c)).  For the 2D format of the GMA, an identification process of the constitutive 241 



relationships were presented in (Misra and Poorsolhjouy, 2015, 2016a).  As an example, the 242 

summation in Eq. 11a over all grain-pairs can be rewritten using Eq. 15a as  243 

    2 2

1

1 1
       , , , 1,2

N
M M M M

ijkl ik l j l j n i k s i kC K l l n n l K n n l K s s i j k l
V V

            

 

       (16) 244 

which can be further sorted and binned according to grain-pair orientations and recast as 245 

summation over the polar angle θ as 246 

   
2 21

       , , , 1, 2
N N

M M M

ijkl n l j i k s l j i kC l K n n n n l K n n s s i j k l
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  

   
     

   
     (17) 247 

where  N    is the total number of grain-pair for a given polar angle bin θ, such that 248 

 N  N 



           (18) 249 

where N is the count of grain-pairs in the RVE and the summation over  is the sum of the product 250 

of branch length square and the grain-pair stiffness (for example  
2

M

nl K  ) for all grain-pairs in that 251 

bin.  For granular material systems with many different grain-sizes, grain shapes and types of 252 

grain-pair interactions (which as combination can be termed as micro-scale mechano-253 

morphology), these sums will be different for different polar angles.  This variation with polar 254 

angles can be treated by defining directional distribution functions. Since branch length and 255 

stiffnesses appear as products, their directional distribution density cannot be defined 256 

independently, therefore, we introduce the directional density distribution function, ( )  , defined 257 

as 258 

 
 

 

 

 

2 2

2 2

1 1

M M

n s
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 

 

 
       (19) 259 

where, for simplicity, we have assumed that grain-pair behavior in the normal and shear directions 260 

follow the same distribution.  It is evident that the directional density distribution function, ( )  , 261 

represents the relative measure of material stiffness in a given direction resulting from a 262 

combination of grain-size, the number of grain-pair interactions and the grain-pair stiffness.  263 

Further, it is useful to define an average product of branch length square and the grain-pair 264 

stiffness, 
2

nl K ,as  265 



   
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      (20) 266 

where l may be regarded as the average branch length, M

nK and M

sK  as the average grain-pair 267 

stiffnesses for the material, and /c V N   is the number density of grain-pair interactions.  Thus, 268 

using Eqs. 19 and 20, the following integral form of Eq. 17 can be obtained 269 

 
2

2

0

M c M

ijkl ik j lC l K n n d


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

           (21a) 270 

Similar considerations for Eqs. 11b-11d will yield the following 271 
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2
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where we have assumed that all types of grain-pair mechanisms follow the same directional 275 

distributions. For isotropic materials (or for randomly grain assemblies of various grain sizes, grain 276 

shapes and grain-pair interactions) the density distribution function in 2D domains is simply 277 

 
1 1

2 1;       
2 2

d


    
 

           (22) 278 

3.3 Expressions for the constitutive coefficients and nature of chirality 279 

As a result, the predicted 2D form of constitutive relationship and corresponding stiffness tensor 280 

for the macro-strain, ( , )i j ij  , is obtained in an explicit form by integrating Eq. 21a.  The 281 

resultant 3×3 stiffness matrix can be written using the Vogt notation by explicitly considering the 282 

symmetry of the strain tensor, and thus that of the conjugate Cauchy stress tensor as follows: 283 

11 11 12 11

22 12 11 22
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     (23b) 285 

The obtained stiffness matrix in Eq. 23 is invariant to rotation and reflection transformations 286 

generated by the rotation matrix 
cos sin

( )
sin cos

R
 


 

 
  
 

and reflection, say about the y-axis 287 

1 0

0 1
yM

 
  
 

. Based upon the macro-scale stiffnesses, the material belongs to symmetry class 288 

[O(2)], and the stiffness matrix is characterized by only 2 independent constants as expected for 289 

2D isotropic materials (Auffray et al., 2015; He and Zheng, 1996).  290 

 291 

The predicted 2D form of constitutive relationship and corresponding stiffness tensor for the 292 

relative stress and micro-gradient, .ij i j ij

     , is obtained from Eq. 21b as follows 293 
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The stiffness matrix in Eq. 24 has 3 independent constants and is invariant to rotation 296 

transformation, and is therefore, classified as isotropic.  The stiffness matrix, however, does not 297 

satisfy the mirror invariance.  On the basis of this micro-scale stiffness matrix, the material could 298 

be said to belong to symmetry class [SO(2)]. In this type of isotropic material, chirality is present 299 



due to the anti-symmetric coupling between the normal and the shear terms given by 1112 1121

m mC C 300 

, which are concerned with the first-order phenomena.   301 

Interestingly, the 5-th rank tensor, 
m

ijklmD , is identically zero.  It is remarked, however, that the 5-302 

th rank tensor is, in general, non-zero for non-centro symmetric 2D structure and could be non-303 

zero for 2D structures that yield isotropic classical (Cauchy) elasticity for either chiral or achiral 304 

structures.  The symmetry classes for the 5-th rank stiffness tensor as well as for 2nd gradient 305 

elasticity has been discussed in (Auffray et al., 2015). An experimental evaluation of particular 306 

microstructure that leads to a material of symmetry class 2Z    with non-zero 5-th rank tensor as 307 

well as possible chirality has been shown in (Poncelet et al., 2018)). Finally, the predicted 2D form 308 

of constitutive relationship and corresponding stiffness tensor for the (macro-) gradient of the 309 

micro-gradient tensor, ,ij k

 , can be obtained from Eq. 21d as give in (Misra and Poorsolhjouy, 310 

2016a).  Chiral behavior for materials of symmetry class [SO(2)] can originate from certain 311 

coupling within this higher-order stiffness matrix as discussed in (Auffray et al., 2015).  Indeed, 312 

the stiffness matrix reported in (Misra and Poorsolhjouy, 2016a) shows the possibility of these 313 

coupling, however, the mechanisms that give rise to the relevant non-zero terms need further 314 

considerations and will be discussed in a future paper.  The 6-th rank stiffness tensor will not be 315 

discussed further in this paper, and for this reason, its expression is not repeated here.   316 

 317 

3.4 Micro-scale mechanism of chirality and relation to classical micropolar continuum 318 

It is noteworthy that the two stiffness tensors, M

ijklC  and m

ijklC , bear formal similarity.  The 319 

differences arise from the nature of grain-pair deformation mechanism the two represent (as noted 320 

by the different grain-pair stiffness coefficients).  Since the relative micro-gradient is, in general 321 

asymmetric, it is instructive to rewrite Eq. 24 in terms of the symmetric, ( )ij

 , and antisymmetric, 322 

[ ]ij

 , parts of the micro-gradient tensor as:  323 

( ) ( )( ) ( ) ( )[ ] [ ]

m m
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Or alternatively 326 
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Which, using matrix notation, can be written as 332 

11 11 12 11 13 13 11

22 12 11 22 13 13 22

12 21 12 21 12 2111 12

21 12

0 0 0

0 0 0  

0 0 0 0
0 0

2 2

m m m m

m m m m

m m

C C C C

C C C C

C C

  

  

     

 

 
        
       

                                   
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where the 3 independent constants are 335 
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In the classical micropolar elastic model, only the 1st part of Eq. 26a, 27a and 29a, and the 2nd parts 337 

of Eqs. 26b, 27b and 29b survive where the antisymmetric [ ]ij  is the eponymous micropolar stress 338 

(Germain, 1973).  The antisymmetric term, [ ]ij

 , can be written in terms of rotation (interpreted as 339 

micro-rotation in classical micropolar elasticity).  Thus a part of the grain-pair relative 340 

displacement given by the micro-macro identification in Eq. 4, could be possibly interpreted as 341 

that contributed by grain rotations.  It is noteworthy, however, that at the micro-scale, the 342 

deformation energy associated to the micro-rotation of micropolar elasticity is stored in the shear 343 



and shear-normal coupling between the grain-pairs as the grains displace.  Indeed, it is not 344 

surprising that grain-scale mechanisms give rise to what appears as grain rotations from a macro-345 

scale viewpoint.  We particularly focus here on the shear and normal coupling terms in the grain-346 

pair deformation energy in Eq. 13 (that is m

nsK , where superscript α has been dropped since we 347 

consider here an averaged quantity).  This shear-normal coupling at the grain-pair implies that the 348 

micro-structural and the mechanical principal axes of grain-pair interactions are not coincident.  349 

At macro-scale, this non-coincidence manifests as rotational degrees-of-freedom.  Therefore, to 350 

model a beam (1D) composed of this material, it is necessary to introduce the coupling between 351 

the axial and rotational deformation (De Angelo et al., 2019a).  In the 2D model derived here, the 352 

coupling component of the grain-scale deformation energy leads to the non-zero non-classical 353 

components that relate the symmetric part of the relative stress ( )ij  to the antisymmetric relative 354 

micro-gradient, [ ]ij

 .  Since the handedness of the local coordinate system (n, s) determines the 355 

sign of the coupling stiffness, m

nsK , a reflection transformation will change the sign of 13

mC , thus 356 

endowing the material with a chiral nature.  Chirality in planar micro-polar elasticity has also been 357 

expounded through chiral lattice structures (see for example (Bahaloo and Li, 2019; Chen et al., 358 

2014; Liu et al., 2012)) and also in 3D micro-polar elasticity through 3D lattices (Fernandez-359 

Corbaton et al., 2019; Frenzel et al., 2017).  Further, it could be interesting to examine and 360 

highlight chirality in the experimental observations in (Poncelet et al., 2018). It will also be 361 

interesting to investigate the chiral behavior of swarm robots, which also consider rather complex 362 

material particle interactions (Wiech et al., 2018). 363 

Further, investigations are needed for unraveling the complex grain-scale mechanisms that give 364 

rise to higher-order or higher-gradient terms in the continuum models of granular systems.  This 365 

is indeed the case if we consider that the grain displacements are coupled to grain rotations as 366 

introduced in (Misra and Poorsolhjouy, 2017; Poorsolhjouy and Misra, 2019) where the grain 367 

displacements are related to grain translation (rotation free) and grain spin (displacement free).  368 

The interrelationships between grain displacement, translation, rotation, and spin, in general, 369 

depends upon the complex micro-mechano-morphology of the granular material. For continuum 370 

modeling, however, the two fields of displacements, ϕ, and rotations, κ, may be sufficient to 371 

describe the coupled kinematics of the material (Poorsolhjouy and Misra, 2019).  It is also clear 372 



that the grain rotations can result in both normal and shear components of relative displacements 373 

for a grain-pair (Turco et al., 2019).   374 

4. Experiments and Discrete Model Verification – the case of 1D Bead String  375 

It is remarkable that the GMA predicts chirality in 2D granular media tied to the grain interactions.  376 

To verify these predictions, we have evaluated the behavior of a prototypical 1D granular material 377 

through independent numerical simulations and experimental method.  A 1D bead string system 378 

was chosen over a 2D system due to the simplicity of the unitary granular string structure and the 379 

ability to experimentally characterize a 1D system.  Different 2D structures and 3D structures will 380 

be synthesized and experimentally investigated in the future.  It is also noteworthy that such a 1D 381 

system living in a 2D space does not possess centro-symmetry.  Therefore, in this case, the terms 382 

that couple grain-pair relative rotations to the normal (axial) or shear (transverse) displacement 383 

could also have an effect.  In other words, the continuum model for such a directed structure cannot 384 

be strictly isotropic belonging to symmetry class [SO(2)] and we could have coupling between the 385 

orders, such that the 5-th rank tensor has a role.  In the present work, we highlight the effect pf 386 

coupling between grain-pair normal and shear displacements, and focus upon the chiral coupling 387 

discussed in the previous section.  The effect of shear-normal-rotational coupling will be discussed 388 

briefly via a discrete model to indicate future possibilities.  To this end, we have conceived a 389 

simple grain-pair interaction that exhibits shear-normal-rotational coupling.  The grain-pair 390 

interaction behavior was computed using FE model in which each grain and grain-pair connection 391 

are treated as composed of classical Cauchy continua.  This grain-pair interaction was then 392 

implemented into a 1D granular string and simulated using a discrete granular (DEM) model.  The 393 

chiral nature was verified by evaluating the coupling between imposed axial loading and computed 394 

response in the transverse direction.  Further, the 1D model results were validated with similar 395 

physical experiments on the exact geometry realized through 3D printing.   396 

 397 

4.1 Grain-pair with coupled shear-normal-rotational interaction 398 

Figure 2 shows the schematic representation of the conceived grain-pair interaction exhibiting 399 

shear-normal-rotational coupling. The set of solid bars and beams connecting two grains in Figure 400 

2 may be considered as the mechanical (rheological) analog of grain-pair interactions. Such 401 

interactions can be possibly realized at the micro-scales through precision 3D printing or 402 



lithography(Ngo et al., 2018) or even through molecular or atomistic means using peptide 403 

engineering (Sarikaya et al., 2003). As a prototype of materials with such granular interactions that 404 

can be easily fabricated and realized through readily accessible technology, and one whose 405 

behavior can be precisely controlled within the sensitivities of the technology, we have directly 406 

implemented the designed analog.  The geometrical parameters indicated in Figure 2(a) are 407 

provided in Table 1 for the fabricated system. The mechanical analog was analyzed using 408 

COMSOL, subjected to a series of boundary conditions to identify the grain-pair stiffness 409 

parameters in Eq. 13 (De Angelo et al., 2019a). An appropriate number of analyses by applying a 410 

combination of boundary condition indicated in Figure 2(b) were performed to identify all the 411 

grain-pair stiffnesses.  The properties of the thermosetting printing material were assumed as 412 

follows: Young’s modulus of 1.6 GPa and Poisson’s ratio of 0.3.  The resulting identified stiffness 413 

parameters are given in Table 2. 414 

 415 

4.3 Experimental verification of Chirality in Bead String 416 

A 3D computer generated model in CAD software SolidWorks (Dassault Systems SolidWorks 417 

Corporation, Waltham, MA, USA) was used to design the bead string geometry. This model has 418 

the dimensions reported in Table 1, and comprises 11 grains. The out of plane thickness of the 419 

system was taken as 4 mm. This value was chosen to be small enough to allow a 2D assumption, 420 

and large enough to prevent warpage of the sample in the fabrication process. Two small equally-421 

sized cylinders (which we refer to as dots) were printed on each grain to facilitate the image 422 

processing used for tracking grain movements. The CAD model was printed using a Fused 423 

Deposition Modeling (FDM) Stratasys Mojo 3D printer using as constituent material an 424 

acrylonitrile butadiene styrene (ABS) thermoplastic material. An ElectroForce 3200 (TA 425 

Instruments) testing machine was used to conduct tensile test on the printed specimen. Figure 3 426 

shows the experimental setup indicating also the clamped boundary conditions, such that on the 427 

top grain of the string a vertical displacement is applied while the lateral displacement is 428 

constrained, and on the bottom grain both vertical and lateral displacements are constrained. Figure 429 

3(a) gives the initial (undeformed) configuration of one of the specimen, while Figure 3(b) shows 430 

the deformed configuration. 431 

To track each grain, the following image processing approach was used. Dots on the left and right 432 

side of the grains were painted in black. A Nikon D700 camera was used to take consecutive 433 



pictures with fixed time intervals while the experiment was being performed with the sample set 434 

up in front of a red background to ease image processing. The black dots were identified and their 435 

centers of masses were labeled for each frame picture. The grain labelling was harmonized across 436 

all the images of the deformed configurations with the labels of the reference image using a 437 

minimum distance criterion test. This criterion works well especially when the deformation in 438 

successive frames is comparably small. Coordinates of grain centroids were calculated using the 439 

average of the coordinates of the black dots center of masses, with which grain centroid 440 

displacement was captured. The grain rotation for each grain in the structure can also be calculated 441 

by taking the vectors joining the dots at each time frame and using their inner product. The 442 

rotations of grains have not been presented in this paper as the resolution of the images and the 443 

experimental errors were comparable to the measurements of the rotations. Figures 4(a) through 444 

4(f) give the results in terms of the grain vertical and lateral displacements, respectively, for the 445 

tensile tests performed on the three samples.  It is remarkable that under an overall stretch of the 446 

1D bead string, the grains undergo significant lateral displacements.  Clearly, a reflection 447 

transformation about the vertical axis will change the sign of the lateral displacements indicating 448 

the chiral nature of the construct. 449 

In Figures 4(a) and 4(b) the imposed displacement is 11.40 mm in vertical direction and the 450 

maximum lateral component of grain centroid displacement is measured as 0.34 mm. Similarly in 451 

Figures 4(c) and 4(d) the imposed vertical displacement is 12.03 mm and the measured maximum 452 

lateral component is 0.31 mm. Further, in Figures 4(e) and 4(f) the imposed vertical displacement 453 

is 11.50 mm and the measured maximum lateral component is 0.24 mm. It is notable that the 3D 454 

printed samples always have variability due to imperfections of the manufacturing process which 455 

introduces some randomness to the grain-pair interactions. The effect of randomness in grain-pair 456 

interactions is clear in the three experimental results shown in Figure 4. The variability is most 457 

noticeable in the nonzero lateral displacement the middle grain (as opposed to the prediction of 458 

DEM discussed in the next sub-section). We also note some nonzero lateral displacement for the 459 

clamped top grain in the first experiment. This is likely due imperfect clamping leading to grain 460 

slip in response to the lateral reaction that develops as expected in this type of media in which the 461 

axial (or normal) stretch is coupled to the lateral deformation.  Similar chiral coupling between 462 

axial and transverse deformation at the macro-scale has been shown via a 1D beam model that 463 

includes additional degrees of freedom (De Angelo et al., 2019a).  We believe, therefore, the 464 



observed behavior is characteristic of a micromorphic (or a more restrictive micropolar) model 465 

which includes internal degrees of freedom.   466 

4.2 Discrete model for Chiral 1D granular material 467 

To further verify the chiral behavior and explore the parametric space particularly with respect to 468 

effect of the strength of coupling between the modes of grain relative motions, a quasi-static 469 

discrete model of bead string was developed.  For verification purposes, the discrete model 470 

considers 11 grains aligned vertically, with grain-pair interaction properties given in Table 2. 471 

Figure 5(a) shows a schematic picture of the 11-grain string system, where a 10% strain in vertical 472 

direction was imposed on the grain on top with the bottom-most grain completely constrained 473 

against displacements and rotations. Figure 5(b) and 5(c) give the vertical component and the 474 

lateral components, respectively, of the displacement of the grain centroids. The maximum vertical 475 

and horizontal component of displacement values for the imposed boundary conditions are 476 

computed as 11.5 mm and 0.28 mm, respectively.  These values are in reasonable agreement with 477 

the experimental observations.  Note that the scales of the vertical and horizontal components of 478 

displacements shown in Figure 5(b) and 5(c), have been adjusted for better visualization. Figure 479 

5(d) shows the deformed configuration, where only the horizontal component of displacement has 480 

been scaled to accommodate visualization. As is seen from Figure 5(d), the rotation of grains is 481 

negligible. The maximum rotation is found to be 0.4 degrees. Figure 5(e) shows the energy 482 

distribution of grains, where maximum energy density is located in the center of the system. 483 

It is worthwhile to note that the lateral displacements of the grains closest to the boundary grains 484 

are the largest which is also in agreement with the experiments.  Indeed this aspect of the behavior 485 

can be modulated by controlling the strength of coupling of the grain rotations and the normal and 486 

shear displacements.  In Figures 6 and 7, we show results for the case in which the coupling 487 

stiffness have been reduced to 50% and 10% of the values in Table 2.  Interestingly, the location 488 

of grain undergoing the maximum lateral displacements shifts away from the boundaries as the 489 

coupling stiffness decreases. In addition, the deformation energy distribution appears to become 490 

more uniform.  Further studies by varying the model parameters and using different boundary 491 

conditions can reveal additional variations of response and the effects of the grain-pair 492 

mechanisms.  The proper continuum model that can capture these grain-scale mechanisms and 493 

replicate the macro-scale response may need to consider the complete micromorphic model of 494 



belonging to the appropriate symmetry class or anisotropy.  These outstanding questions need to 495 

be pursued in future works. 496 

 497 

5. Summary and conclusion 498 

In the present paper, the granular micromechanics approach (GMA) has been applied to show that 499 

2D granular systems exhibit chiral behavior at the macro-scale provided the grain-pair interactions 500 

are designed to have a coupling between relative displacements in the normal and tangential 501 

directions.  Closed-form expressions for elastic constants of macro-scale 2D chiral granular 502 

metamaterial have been derived within the framework of micromorphic continua predicted by 503 

GMA.  To verify the predicted chirality, 1D bead string model is conceived in which the designed 504 

grain-pair interactions have shear-normal-rotational coupling.  This 1D bead string model was 505 

physically realized through additive manufacturing.  The fabricated specimen were subjected to 506 

tensile experiment which showed lateral deflections. These experimental results were verified with 507 

discrete simulations for the 1D bead string in which grain-pair interactions mimic those in the 508 

physical specimen. Further, it was shown how the rotational-normal-tangential coupling 509 

stiffnesses (which are usually neglected in the literature when describing granular media) in grain-510 

pair interactions alter the mechanical response and energy density concentration of the system for 511 

an applied load. It is clear that the GMA provides a systematic framework within which one can 512 

seek for grain-pair interactions that lead a desired mechanical behavior. By the same token, GMA 513 

can also be utilized to analyze a granular structure made of grains with particular (known) grain-514 

pair interactions. Such capabilities make GMA applicable for the design and analysis of granular 515 

metamaterials when particular applications are sought after.  Future studies are needed to further 516 

identify the grain-scale mechanisms and their effects at the macro-scale, such that the continuum 517 

models can be more strongly tied to the micro-scale mechanics. 518 

Many mechanical metamaterials are designed with the intent to mitigate vibrations and 519 

demonstrate frequency bandgaps where a range of frequencies are filtered and not transmitted 520 

through the medium. In particular, granular metamaterials have an inherent length scale that 521 

promises dispersion. Model based upon GMA has shown dispersive behavior of granular media 522 

and has been utilized to analyze granular metamaterials for their wave propagation characteristics 523 

(Misra and Nejadsadeghi, 2019; Nejadsadeghi and Misra, 2019a; Nejadsadeghi et al., 2019b). 524 



Along these lines, a dynamic response of the granular structure studied in the current paper will be 525 

analyzed using GMA and discrete simulation techniques in future publications. 526 
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Figure 4. Experimental results for grain centroid displacements for 3 independent specimen: (a), (c) and 716 
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Table 2, except for rotational-normal and rotational-shear coupling terms redefined as 
u

nD
=3.64 N and 735 

u

sD
=5.03 N. (a) A schematic representation of the 1D bead string. (b) Vertical component of 736 

displacement of grain centroids with maximum value of 11.5 mm. (c) Horizontal component of 737 

displacement of grain centroids with maximum value of 0.734 mm. (d) Deformed shape of 1D bead string 738 
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Table 1. Geometrical parameters values corresponding to the proposed grain-pair interaction model 742 

Model Parameter Value 

l 11.50 mm 

r 2.65 mm 

t 0.80 mm 

b 1.15 mm 

 743 

Table 2. Stiffness constants corresponding to the proposed grain-pair interaction model for DEM 744 

Material Constant Value 

M m

n nK K   51.63 KN/m 

M m

s sK K   52.44 KN/m 

m

nsK 
 37.98 KN/m 

3

uG
 1.672 Nm 

u

nD
 72.78 N 

u

sD
 100.51 N 
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