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Abstract

This work studies the sensitivity of neural networks to weight
perturbations, firstly corresponding to a newly developed
threat model that perturbs the neural network parameters. We
propose an efficient approach to compute a certified robust-
ness bound of weight perturbations, within which neural net-
works will not make erroneous outputs as desired by the ad-
versary. In addition, we identify a useful connection between
our developed certification method and the problem of weight
quantization, a popular model compression technique in deep
neural networks (DNNs) and a ‘must-try’ step in the design
of DNN inference engines on resource constrained computing
platforms, such as mobiles, FPGA, and ASIC. Specifically,
we study the problem of weight quantization – weight per-
turbations in the non-adversarial setting – through the lens
of certificated robustness, and we demonstrate significant im-
provements on the generalization ability of quantized networks
through our robustness-aware quantization scheme.

Introduction
Although deep neural networks (DNNs) have achieved
human-level performance in many learning tasks, intri-
cate adversarial examples have been shown to exist in
DNNs (Szegedy et al. 2014; Moosavi-Dezfooli, Fawzi, and
Frossard 2016; Chen et al. 2018; Zhao et al. 2019a). An ever-
increasing amount of research effort has been devoted to im-
plementing adversarial attacks in various applications (Atha-
lye, Carlini, and Wagner 2018; Carlini and Wagner 2017;
Papernot et al. 2016a; Song et al. 2018; Carlini and Wag-
ner 2018), developing defense methods ranging from heuris-
tic methods to provable defenses (Papernot et al. 2016b;
Liu et al. 2018; Madry et al. 2018; Kolter and Wong 2018;
Liu et al. 2019), as well as efficient verification of neu-
ral networks against adversarial examples (Hein and An-
driushchenko 2017; Weng et al. 2018b; 2018a; Gehr et al.
2018; Boopathy et al. 2019) and random noises (Weng et
al. 2019) in image classification as well as in natural lan-
guage processing (Ko et al. 2019) and reinforcement learn-
ing (Wang, Weng, and Daniel 2019). Different from above
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work on studying the problem of robustness against input
perturbations, this work aims to evaluate the sensitivity of
DNNs to weight perturbations.

Weight perturbations of DNNs are of realistic significance.
First, a new threat model of weight perturbations was pro-
posed by (Liu et al. 2017; Zhao et al. 2019b), which showed
that the so-called fault sneaking/injection attack can enforce
DNN to misclassify some natural input images into target
labels by slightly modifying weights at a single layer, while
maintaining the classification of unspecified input images in-
tact. This implies that the outputs of DNNs are also sensitive
to weight perturbations. Moreover, there also exist weight
perturbations in the non-adversarial setting. For example,
weight quantization (Zhou et al. 2017; Leng et al. 2018;
Ren et al. 2019), a major DNN model compression tech-
nique commonly utilized by industry for DNN accelera-
tion/implementation, induces weight perturbations by re-
placing full floating-point precision weights with fixed-point
lower precision weights. It is even well supported in GPUs
and mobile devices, e.g., PyTorch (Paszke et al. 2017) in
NVIDIA GPUs and TensorFlow Lite (Abadi et al. 2016) for
mobile devices. However, such direct mapping from full pre-
cision weights of DNNs into quantized weights could result
in significant generalization error (Sheng et al. 2018).

Different from the robustness issue caused by input per-
turbations, weight perturbations focus on DNN models for
natural (unperturbed) examples rather than adversarial ex-
amples. If training and testing samples stem from the same
distribution, evaluating the model robustness against weight
perturbations in the training dataset (namely, sensitivity of
training accuracy to weight perturbations) is able to provide
informative guidelines on the generalization ability of the
weight-perturbed network (e.g., weight-quantized network).
Thus, both fault injection attack and weight quantization mo-
tivate us to study the problem of model robustness against
weight perturbations.

Contributions. First, we formulate the certificate problem
of model robustness against weight perturbations. The solu-
tion to this problem provides the certified weight perturbation
region such that DNNs will maintain the accuracy if weight
perturbations are within that region.

Second, we find provable non-trivial lower bounds on the



exact certified weight perturbation region in two scenarios:
a) single-layer perturbation and b) multi-layer perturbation.
We empirically show that the certified lower bound provides
a reasonable assessment on the practical model robustness
against fault injection (Liu et al. 2017; Zhao et al. 2019b).

Third, we propose a new design of weight quantization by
leveraging the statistics obtained from the certified weight
perturbation region. This leads to a robust-aware quantization
scheme, for which we show it can be efficiently achieved via
alternating direction method of multipliers (ADMM) (Boyd
et al. 2011). The resulting quantized network yields a sig-
nificant improvement on its generalization ability compared
to other quantization methods which neglect the effect of
weight perturbations on the training procedure.

Related works. A line of work relevant to ours is formal
verification of neural networks (Liu et al. 2019), which pro-
vides robustness guarantee that any input perturbation within
a neighborhood of the natural example cannot fool the clas-
sifier’s top-1 prediction. In (Katz et al. 2017; Ehlers 2017;
Bunel et al. 2018; Dutta et al. 2017), satisfiability modulo the-
ory (SMT) or mixed-integer programming (MIP) based meth-
ods provided exact robustness certificate with respect to the
input perturbation strength. However, these approaches suffer
from the scalability issue due to high computational com-
plexity. Moreover, the work (Raghunathan, Steinhardt, and
Liang 2018; Dvijotham et al. 2018; Wong and Kolter 2017;
Weng et al. 2018a; 2018b; Wong et al. 2018) relaxed the exact
verification problem by over-approximating the output space
of a network given a neighborhood near the natural input.
Such a relaxation leads to fast computation in the verification
process but only proves a lower bound of exact robustness
guarantees. Our paper is extended from the second line of
work on certification of networks but with the main differ-
ence on the threat model: weight perturbations rather than
input perturbations. Besides rigorously certifying network
robustness, the work (Cheney, Schrimpf, and Kreiman 2017)
empirically showed the robustness of convolutional neural
networks (CNNs) against weight perturbations.

Different from existing literature, our work on certified
robustness extended from input to weight perturbations is
non-trivial, since the latter could be coupled at multiple layers.
Most importantly, we provide a use case, design of weight
quantization scheme, showing that robustness against weight
perturbations matters even in the non-adversarial setting. It is
worth mentioning that different from existing weight quanti-
zation work (Leng et al. 2018; Park, Ahn, and Yoo 2017;
Zhou et al. 2017; Lin, Talathi, and Annapureddy 2016;
Wu et al. 2016; Rastegari et al. 2016; Hubara et al. 2016), our
work provides a solution through the leans of formal verifica-
tion of model robustness and has the potential to be integrated
with well-developed weight quantization frameworks (Paszke
et al. 2017; Abadi et al. 2016).

Problem Setup
Notations. Throughout the paper, unless specified other-
wise we use the following notations. Let (x, c) denote a pair
of example x and class label c. For a K-layer neural network,
let nk, W(k) ∈ Rnk×nk−1 , b(k) ∈ Rnk denote the number of

neurons, the weight matrix and the bias vector at layer k, re-
spectively. We use the superscript (k) to indicate the variable
associated with layer k. We also define W := {W(k)}Kk=1

and b := {b(k)}Kk=1 to denote the vector/matrix/set contain-
ing all variables indexed by k. And we use [K] to denote the
integer set {1, 2, . . . ,K}. Let f(x; W,b) ∈ RnK be a neu-
ral network function with respect to the input x for nK output
classes. Here we refer f as the logit layer. The softmax layer
can be safely discarded in our analysis due to its monotonic-
ity. We use fj(x; W,b) (or simply fj) to denote the j-th
class output of the neural network. Let Φ̃(k)(x) ∈ Rnk and
Φ(k)(x) ∈ Rnk denote the pre-activation and post-activation
values of the k-th layer, respectively. And let σ(·) denote a
non-linear element-wise activation function.

Neural network model. We focus on the K-layer fully-
connected (FC) feedforward neural network with ReLU ac-
tivation functions but the results can also be generalized to
convolutional neural networks and general activations. The
input-output relationship of the network is given by

Φ(k)(x) = σ
(

Φ̃(k)(x)
)
,

Φ̃(k)(x) = W(k)Φ(k−1)(x) + b(k), k ∈ [K],
(1)

where Φ(0)(x) := x, and f(x; W,b) = Φ(K)(x). In the
classification setting, the predicted class c is the class that
has the largest output value: arg maxj fj .

Weight perturbations. The problem of our interest is to
provide a robustness certificate for a neural network when its
weight parameters are perturbed. We define `∞-norm based
weight perturbations as

B(W, ε) =
{

Ŵ |Ŵ = {Ŵ(k)},

‖Ŵ(k) −W(k)‖∞ ≤ ε,∀k ∈ [K]
}
, (2)

where ε is the perturbation radius, and Ŵ(k) denotes the
perturbed weights against the original weights W(k) at each
layer. Given ε, verifying the neural network robustness (at
input x with the true label c) against weight perturbation can
be cast as the following optimization problem

minimize
Ŵ

fc(Ŵ)−maxj 6=c fj(Ŵ)

subject to Ŵ ∈ B(W, ε),
(3)

where we use the simplified notation fj(W) to highlight the
dependency of classification on model weights by omitting x
and b. If the optimal value of problem (3) is positive, then the
robustness of the neural network is certified under ε-tolerant
weight perturbation at input x.

Goal of robustness certification under weight perturbation:
Finding the largest ε such that problem (3) has the positive
optimal value.

We remark that problem (3) maintains the similar formu-
lation of verifying neural network’s robustness against input
perturbation, e.g., recent works (Wong and Kolter 2017;
Weng et al. 2018a; 2018b; Wong et al. 2018). However, none
of them investigated the direction of certifying robustness
against weight perturbation. Different from the input per-
turbation that generates an adversarial example, the effect



of weight perturbation on network robustness is measured
under the original input. At this sense, the certified perturba-
tion region in terms of ε in (3) offers the new perspective on
how sensitive the prediction accuracy of a well-trained net-
work could be against weight perturbation. Moreover, since
weights can be perturbed at multiple layers, the problem of
weight perturbation suffers from a more complicated layer-
wise coupling issue than that of certifying input perturbation.

Towards Certified Sensitivity of Weight
Perturbations

In this section, we formally describe the idea of certified
lower bound when the weights of neural networks are per-
turbed. We start from a simple 2-layer MLP example and
provide general results in Theorem 3.1. Based on Theorem
3.1, we illustrate how to further generalize our results to
multi-layer perturbation setting.

Certified lower bound: Single-layer weight
perturbation
When the weight perturbation only occurs at a single layer
(e.g. the N -th layer, N ≤ K), we have the constraint:

‖Ŵ(N) −W(N)‖∞ ≤ ε, Ŵ(k) = W(k), if k 6= N , k ∈ [K].
(4)

Ideally, we would like to solve problem (3) exactly to get
the maximum possible (exact) tolerance ε on the weight per-
turbation such that the top-1 prediction of a neural network
classifier will not change. However, it has been shown that
there does not exist a polynomial time algorithm to compute
the exact robustness of neural networks (Katz et al. 2017).
Hence, our goal is to find a non-trivial ε efficiently and this
problem can be formulated as follows.

Let fLc (Ŵ) and fUc (Ŵ) be two linear functions of Ŵ

such that fLc (Ŵ) ≤ fc(Ŵ) ≤ fUc (Ŵ) for all Ŵ, and let

γLc = min
Ŵ∈B(W,ε)

fLc (Ŵ), γUc = max
Ŵ∈B(W,ε)

fUc (Ŵ). (5)

We can compute ε by solving the following problem:

maximize
ε

ε

subject to γLc − γUj > 0, ∀j 6= c.
(6)

Note that the constraint set γLc −maxj 6=c γ
U
j > 0 (namely,

γLc − γUj > 0,∀j 6= c) is more restricted than fc(Ŵ) −
maxj 6=c fj(Ŵ) > 0. Thus, the solution to problem (6) pro-
vides a certified lower bound on the maximum ε to ensure
the positive objective value of problem (3). In fact, in the
following, we will show that γLc and γUc can be computed an-
alytically, and hence we are able to find the solution of (6) ef-
ficiently through bi-section on ε. Note that in the work (Weng
et al. 2018a), the authors proposed an efficient algorithm
Fast-Lin to compute a certified lower bound for neural net-
works with input perturbation, whereas in this work, we
focus on weight-perturbation on the neural networks and
show that it is also possible to derive certified lower bound
for this problem setting. Furthermore, we show in Sec 4 and 5
that our technique are beneficial to developing a new weight
quantization scheme with better generalization.

Neural network f is bounded by two linear functions
fLc (Ŵ) and fUc (Ŵ). The core idea to deriving the lin-
ear bounds fLc (Ŵ), fUc (Ŵ) of a K-layer feed-forward neu-
ral network f is to apply linear upper and lower bound on
each neuron’s activation and consider the signs of associ-
ated weights. We start with a 2-layer network (K = 2) and
then extend it to the general case. Suppose that the first layer
weights are perturbed and we have (4) with K = 1. The j-th
output of the network (with respect to Ŵ(1)) is then given by

fj(Ŵ
(1)) =

∑
r∈[n1]

W
(2)
j,r σ

(
Ŵ(1)

r,: x + b(1)r

)
+ b

(2)
j , (7)

where Wj,r denotes the (j, r)-th entry of W, and Ŵr,: de-

notes the r-th row of Ŵ. Since W
(1)
r,: − ε ≤ Ŵ

(1)
r,: ≤

W
(1)
r,: + ε, the pre-activation y(1)r := Ŵ

(1)
r,: x + b

(1)
r at the

1-st layer is bounded by some constants l(1)r , and u(1)r , which
are determined by the signs of x and the bounds of Ŵ

(1)
r,: .

Given y(1)r ∈ [l
(1)
r , u

(1)
r ], the non-linear activation function

σ(y
(1)
r ) has explicit linear bounds (Zhang et al. 2018) with

slope and bias parameters {α(1)
L,r, α

(1)
U,r} and {β(1)

L,r, β
(1)
U,r} as

follows:

α
(1)
L,r(y

(1)
r + β

(1)
L,r) ≤ σ(y(1)r ) ≤ α(1)

U,r(y
(1)
r + β

(1)
U,r). (8)

If l(1)r < 0 < u
(1)
r , then α(1)

L,r = α
(1)
U,r =

u(1)
r

u
(1)
r −l(1)r

, β(1)
L,r = 0,

and β(1)
U,r = −l(1)r ; if l(1)r ≤ u

(1)
r ≤ 0, then all parameters

are zeros; if 0 ≤ l
(1)
r ≤ u

(1)
r , then α(1)

L,r = α
(1)
U,r = 1 and

β
(1)
L,r = β

(1)
U,r = 0. The equations (7) and (8) of the 2-layer

network example imply two general rules:

1. The pre-activation bounds at the N -th layer are known a
priori (since no weight prior to theN -th layer is perturbed),
and thus we only need to perform bound propagation for
k > N layers;

2. The final layer bounds fLc (Ŵ) and fUc (Ŵ) can be com-
puted via bound propagation. The idea is to compute the
pre-activation bounds layer by layer (which is so-called
bound propagation) analytically via Theorem 0.1. In The-
orem 0.1, we show the analytic output bounds of neural
networks when there exists single-layer `p-norm weight
perturbation with p ≥ 1.

Theorem 0.1 Suppose that the N -th layer weights are per-
turbed in a K-layer neural network. Let f : RnN×nN−1 →
RnK denote the mapping from perturbed weights Ŵ(N) at
the single layer N to predicted outputs at the final layer K.
Then there exist two explicit functions fLj : RnN×nN−1 → R
and fUj : RnN×nN−1 → R for class ∀j ∈ [nK ], such that
the following inequality holds

fLj (Ŵ(N)) ≤ fj(Ŵ(N)) ≤ fUj (Ŵ(N)), (9)

where ‖Ŵ(N)
s,: −W

(N)
s,: ‖p ≤ ε and Ŵ(k) = W(k) for ∀k 6=

N , and p ≥ 1. The closed forms of lower and upper bounds



in (9) are given by

fUj (Ŵ(N)) =Λ
(N−1)
j,: Ŵ(N)Φ(N−1)(x)

+

K∑
k=N

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ), (10)

fLj (Ŵ(N)) =Ω
(N−1)
j,: ŴΦ(N−1)(x)

+

K∑
k=N

Ω
(k)
j,: (b(k) + Θ

(k)
:,j ), (11)

where

Λ
(k−1)
j,: =


e>j if k = K + 1,

Λ
(k)
j,: � λ

(k−1)
j,: if k = N,

(Λ
(k)
j,: W(k))� λ(k−1)

j,: otherwise.

Ω
(k−1)
j,: =


e>j if k = K + 1,

Ω
(k)
j,: � ω

(k−1)
j,: if k = N,

(Ω
(k)
j,: W(k))� ω(k−1)

j,: otherwise.

Here the matrices λ(k), ω(k),∆(k),Θ(k) are functions of the
linear bounding parameters {α(k)

L,i, α
(k)
U,i} and {β(k)

L,i , β
(k)
U,i}

on each neuron i at layer k:

λ
(k)
j,i =


α
(k)
U,i if k 6= N − 1, Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0,

α
(k)
L,i if k 6= N − 1, Λ

(k+1)
j,: W

(k+1)
:,i < 0,

1 if k = N − 1.

ω
(k)
j,i =


α
(k)
L,i if k 6= N − 1, Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0,

α
(k)
U,i if k 6= N − 1, Ω

(k+1)
j,: W

(k+1)
:,i < 0,

1 if k = N − 1.

∆
(k)
i,j =


β
(k)
U,i if k 6= N − 1, Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0,

β
(k)
L,i if k 6= N − 1, Λ

(k+1)
j,: W

(k+1)
:,i < 0,

0 if k = N − 1.

Θ
(k)
i,j =


β
(k)
L,i if k 6= N − 1, Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0,

β
(k)
U,i if k 6= N − 1, Ω

(k+1)
j,: W

(k+1)
:,i < 0,

0 if k = N − 1.

where � is the Hadamard product and ej ∈ RnK is a j-th
basis vector.

Proof. The proof on the input perturbation (Weng et al.
2018a; Zhang et al. 2018; Boopathy et al. 2019) can be
adapted to weight perturbation in our case, where we have
fj(Ŵ

(N)) ≤ fU,K−1
j (Ŵ(N)) ≤ fU,K−2

j (Ŵ(N)) ≤ . . . ≤
fU,N+1
j (Ŵ(N)) = W̃

(N+1)
j,: σ(Ŵ(N)Φ(N−1) + b(N)). The

derivation of Λ
(k−1)
j,: ,Ω

(k−1)
j,: from layers N + 1 to K − 1 is

the same except for the N -th layer. For N -th layer, since
the perturbation is now on Ŵ(N) rather than x, we let
Λ

(N−1)
j,: = Λ

(N)
j,: � λ

(N−1)
j,: . By using the same trick to de-

compose σ(y) by the inequality (8) with associated sign of
the equivalent matrix W̃

(N+1)
j,: , we get the final upper bound

(10). The lower bound fLj (Ŵ(N)) can be derived similarly.
�

Global output bounds γUj and γLj . Based on (10)
and (11), we can further derive the global output bounds
γUj and γLj , which are constants, determined by (5). Since
fLj and fUj are two linear functions and Ŵ ∈ B(W, ε) is a
convex norm constraint, the optimal value of problem (5) can
be obtained by Holder’s inequalities:

γUj = ε‖Λ(N−1)
j,: ‖1 · ‖Φ(N−1)(x)‖q

+ Λ
(N−1)
j,: W(N)Φ(N−1)(x) +

K∑
k=N

Λ
(k)
j,: (b(k) + ∆

(k)
:,j ),

(12)

γLj = −ε‖Ω(N−1)
j,: ‖1 · ‖Φ(N−1)(x)‖q

+ Ω
(N−1)
j,: W(N)Φ(N−1)(x) +

K∑
k=N

Ω
(k)
j,: (b(k) + Θ

(k)
:,j ),

(13)

where 1/q = 1 − 1/p. As γUj and γLc are monotonically
increasing and decreasing with respect to ε, respectively, we
can solve problem (6) by the bisection search over ε, which
renders the certified lower bound on network’s robustness
against weight perturbation.

As a final remark, our work is different from adversarial
robustness against input perturbation in that f is a func-
tion of perturbed weight matrix Ŵ(N) bounded by two
linear functions fUj (Ŵ(N)), fLj (Ŵ(N)) as opposed to a
function of perturbed input x. Interestingly, once the neu-
ron’s activation are linearly bounded, we can directly apply
the similar idea in (Weng et al. 2018a; Zhang et al. 2018;
Boopathy et al. 2019) to compute the bounds layer-by-layer
with Theorem 0.1. Our results can also be directly extended
to convolutional layers following (Boopathy et al. 2019).

Certified lower bound: Multi-layer perturbation
When there exists multi-layer weights perturbations, deriving
the certified lower bound becomes much more involved as the
weight perturbations will be coupled across layers. However,
computing layer-wise bound for each neuron is still possible
– we can integrate previous single-layer results with interval
bound propagation as demonstrated below. Without loss of
generality, assume that the weight matrices at the S-th layer
and the N -th layer are both perturbed with S < N < K.
Equations (12) and (13) can be directly used to compute the
perturbation bounds at each neuron of layer S by viewing the
N − 1-th layer as the output layer. For N − 1 ≤ i ≤ K, we
have l̂(i)r ≤ Φ

(i)
r ≤ û(i)r , where û(i)r = σ(u

(i)
r ), l̂

(i)
r = σ(l

(i)
r ).

Let k = N − 1, p =∞ and q = 1, we then have:
• if i = k,

u
(i+1)
j = |W(i+1)

j,: | û
(i) − l̂(i)

2
+ W

(i+1)
j,:

û(i) + l̂(i)

2

+ b
(k+1)
j + ε‖ û

(i) − l̂(i)

2
‖q + ε‖ û

(i) + l̂(i)

2
‖q

l
(i+1)
j = −|W(i+1)

j,: | û
(i) − l̂(i)

2
+ W

(i+1)
j,:

û(i) + l̂(i)

2

+ b
(k+1)
j − ε‖ û

(i) − l̂(i)

2
‖q + ε‖ û

(i) + l̂(i)

2
‖q



• if i > k,
u
(i+1)
j = |W(i+1)

j,: | û
(i)−l̂(i)

2 + W
(i+1)
j,:

û(i)+l̂(i)

2 + b
(i+1)
j

l
(i+1)
j = −|W(i+1)

j,: | û
(i)−l̂(i)

2 + W
(i+1)
j,:

û(i)+l̂(i)

2 + b
(i+1)
j

and the network output f(Ŵ(S),Ŵ(N)) is bounded by
l
(K)
j ≤ fj(Ŵ(S),Ŵ(N)) ≤ u(K)

j . For simplicity, we present
the above analysis with same ε and without bias perturba-
tion, but our analysis can be extended to the case where εi
associated to the i-th layer and when biases b are perturbed.

Weight Quantization with Perturbation
Certificate

In this section, we revisit the problem of weight quantiza-
tion, commonly used for network compression, through the
lens of certificated robustness against weight perturbation.
We propose a unified quantization framework with perturba-
tion certificate by leveraging alternating direction method of
multipliers (ADMM).

Weight quantization. Given a finite number of bits, the
goal is to discretize a model’s weights but to preserve its
accuracy. At dk-bit quantization of layer k, we use 1 bit
to represent zero value, and the remaining dk − 1 bits to
represent at most 2dk−1 different values with distance q(k)
(here we follow the convention from (Zhou et al. 2017; Leng
et al. 2018)).The quantization of continuous weights W(k) =
C(k) is given by

Ŵ(k) ∈ { − 2dk−2q(k), . . . ,−2q(k),−q(k), 0,

q(k), 2q(k), . . . , 2dk−2q(k)}, ∀k ∈ [K] (14)

Here we use the notation of perturbed weights Ŵ(k) to rep-
resent the weights after quantization. We remark that the
set of quantized values in (14) can easily be encoded using
binary bits and implemented in hardware. For example, by
storing q(k), we can express {−2q(k),−q(k), 0, q(k), 2q(k)}
as {−2,−1, 0, 1, 2}.

Given the training loss f and the number of bits {dk}, the
problem of weight quantization determines {q(k),Ŵ(k)} by
solving the optimization problem

minimize
{q(k),Ŵ(k)}

f({Ŵ(k)}), subject to (14). (15)

Note that a quantized network may suffer from the gener-
alization issue. However, any weight perturbation within the
certified region found by Theorem 0.1 will not cause misclas-
sification. Thus, from the perspective of weight perturbation,
one can integrate the certified region with problem (15) to
reduce the generalization error caused by quantization. We
call the resulting quantization problem certified weight quan-
tization, which is given by

minimize
{q(k),Ŵ(k)}

f({Ŵ(k)})

subject to (14), ‖Ŵ(k) −C(k)‖∞ ≤ ε(k)c , ∀k,
(16)

where ε(k)c is a threshold chosen by the radius of the certified
perturbation region with respect to (w.r.t.) continuous weights
C(k) at layer k. Given a training sample x, the solution
to problem (6) provides ε(k)c (x). The sample-independent

threshold ε(k)c can then be set as the average or other per-
centiles of {ε(k)c (x)} over multiple samples. Our experiments
will show that the empirical improvement on the generaliza-
tion error of quantized networks is significant by incorporat-
ing the certification constraints on weight perturbation.

We finally remark that at the first glance, one may think
that problem (16) would yield worse training loss compared
to problem (15), since the former has additional constraints.
However, due to non-convexity, it is difficult to solve prob-
lem (15) and (16) at the global optimality. The story is then
different when comparing a local optimal solution to problem
(16) with a local optimal solution to problem (15). Suppose
that training and testing samples obey the same underlying
data distribution, then the proposed robustness certificate can
drive the designed sub-optimal quantizer toward better gen-
eralization capability. Indeed, our experiments show that the
introduction of certificate constraints reduces both training
and generalization errors; see Figure 2.

Certified weight quantization via ADMM. Upon defin-
ing Ŵk = q(k)V̂k, problem (16) can be rewritten as

minimize
{q(k),V̂(k)}

f({q(k)V̂(k)})

subject to V̂(k) ∈ D(k), ∀k,
‖q(k)V̂k −C(k)‖∞ ≤ ε(k)c , ∀k

(17)

where D(k) := {−2dk−2, . . . ,−2,−1, 0, 1, 2, . . . , 2dk−2}.
Note that solving problem (17) is challenging since certificate
constraints involve bilinear terms {q(k)V̂k}. We propose an
ADMM-based problem formulation and optimization algo-
rithm to obtain a solution.

We begin by introducing an auxiliary variable Ĝk together
with Ĝk = V̂k and reformulate (17) by lending itself to the
application of ADMM,

minimize
{q(k),V̂(k),Ĝ(k)}

f({q(k)Ĝ(k)}) + I1({V̂(k)})

+I2({q(k)Ĝ(k)})
subject to Ĝ(k) = V̂(k), ∀k,

(18)

where I1 and I2 are indicator functions encoding the con-
straints a) V̂(k) ∈ D(k) for all k, and b) ‖q(k)Ĝ(k) −
C(k)‖∞ ≤ ε(k)c for all k. The key difference from the ADMM
formulation in (Leng et al. 2018) is that we impose the auxil-
iary variable w.r.t. V̂(k) rather than Ŵ(k) so that the variable
q(k) is explicitly included in our formulation.

We then introduce the augmented Lagrangian function of
(18) that will be alternatively minimized in ADMM,

L({q(k)}, {V̂(k)}, {Ĝk}, {Û(k)})

= f({q(k)Ĝ(k)}) + I1({V̂(k)}) + I2({q(k)Ĝ(k)})

+

K∑
k=1

(Û(k))T (Ĝ(k) − V̂(k)) +
ρ

2

K∑
k=1

‖Ĝ(k) − V̂(k)‖2F , (19)

where ρ > 0 is a regularization parameter, Û(k) are La-
grangian multipliers w.r.t. equality constraints of (18), and
‖ · ‖F denotes the Frobenius norm.

For ease of notation, let Ĝ, q, V̂ and U denote the set
of variables {Ĝ(k)}, {q(k)}, {V̂(k)} and {Û(k)}. The main



steps of ADMM are alternatively minimizing (19) over two
blocks of variables, Ĝ and {q, V̂}. That is, ADMM at the
t-th iteration is given by

Ĝ(t+ 1) = arg min
Ĝ

L(q(t), V̂(t), Ĝ,U(t)), (20)

{q(t+ 1), V̂(t+ 1)} = arg min
q,V̂

L(q, V̂, Ĝ(t+ 1),U(t)), (21)

where U(t+ 1) = U(t) + ρ(Ĝ(t+ 1)− V̂(t+ 1)), and we
initialize ADMM with specified q(0),V̂(0) and U(0). We
note that problem (21) is decomposable w.r.t. q and V̂; see
equivalent ADMM steps in Proposition 1.

Proposition 1 The ADMM subproblems (20) and (21) can
be equivalently transformed into a) Ĝ-minimization step, b)
q-minimization step and c) V̂-minimization step. That is,

Ĝ-minimization step: Ĝ(t + 1) in (20) is given by the
solution of the problem

minimize
Ĝ

f(Ĝ; q(t)) + ρ
2
‖Ĝ−A‖2F

subject to (1/q(k))Ď(k) ≤ Ĝ(k) ≤ (1/q(k))D̂(k), ∀k,
(22)

where f(Ĝ; q(t)) represents f w.r.t. variables Ĝ under given
values q(t), Ď(k) := C(k)−ε(k)c I, and D̂(k) := ε

(k)
c I+C(k).

q-minimization step: q(t+ 1) in (21) is given by the solu-
tion of the problem

minimize
q

f(q; Ĝ(t+ 1))

subject to max{â(k)1 , â
(k)
2 } ≤ q(k) ≤ min{ǎ(k)1 , ǎ

(k)
2 }, ∀k.

(23)

Let Ik,+ and Ik,− denote the index set of positive and neg-
ative elements in Ĝ(k)(t + 1), respectively. And let 1[X]I
denote the sub-matrix of X selected by the index set I , and
·/· and max{·} denote the element-wise division and maxi-
mum operation, respectively, Then â(k)1 , â(k)2 , ǎ(k)1 , and ǎ(k)2
in (23) are given by

â
(k)
1 := max{[Ď(k)]Ik,+/[Ĝ

(k)(t+ 1)]Ik,+},

â
(k)
2 := max{[D̂(k)]Ik,−/[Ĝ

(k)(t+ 1)]Ik,−},

ǎ
(k)
1 := min{[D̂(k)]Ik,+/[Ĝ

(k)(t+ 1)]Ik,+},

ǎ
(k)
2 := min{[Ď(k)]Ik,−/[Ĝ

(k)(t+ 1)]Ik,−}.

V̂-minimization step: V̂(t+ 1) in (21) is given by

V̂
(k)
ij (t+ 1) =

 bBije Bij ∈ [−2dk−2, 2dk−2]
−2dk−2 Bij < −2dk−2

2dk−2 Bij > 2dk−2,
(24)

where V̂ (k)
ij (t+1) denotes the (i, j)-th element of V̂(k)(t+1),

bxe represents the nearest integer to x, and B := Ĝ(t+1)−
(1/ρ)U(t).

Proof: See Appendix1. �

1 The appendix and code are available at https://github.com/
lilyweng/Quantization.

Comparison with (Leng et al. 2018). We note that (Leng
et al. 2018) also uses ADMM to solve a similar problem.
The key difference of the two ADMM-based solutions is
described as follows. 1) The introduced auxiliary variables
in ADMM are different. In (Leng et al. 2018), the auxiliary
variables are copies of network weights, ignoring the effect of
q(k). However, in (18), the auxiliary variables Ĝk are weights
separated from the quantization intervals qk. 2) The operator
splitting is different. We perform a two-block splitting over
the variables Ĝk and {qk, V̂k}, and show that the resulting
second-block subproblem can be further decomposed into
easier problems (23) and (24). In contrast, a sub-optimal
iterative optimization method was internally used in (Leng et
al. 2018) to solve a more involved splitting problem.

In Proposition 1, each subproblem can be efficiently han-
dled by standard optimization solvers. In (22)-(23), since the
constraint sets are simple box constraints, projected gradient
descent methods can be used to find solutions Ĝ(t+ 1) and
q(t+ 1). In (24), we have the closed-form expression of the
solution V̂(t+ 1). We also note that ADMM is convergent
and reaches a sub-linear convergence rate for nonconvex and
nonsmooth stochastic optimization (Huang and Chen 2018).

Experiments
We demonstrate the effectiveness of our approach under two
applications: a) weight quantization described in Sec. and b)
model robustness against fault sneaking attack (Zhao et al.
2019b). To align with our theoretical results, we perform ex-
periments under multilayer perceptron (MLP) models of var-
ious numbers of layers1. The performance is evaluated under
4 datasets, MNIST, MNIST-fashion, SVHN, and CIFAR-10.

Figure 1: Testing accuracy of quantized 8-layer MLP (4, 6,
and 8 bits per layer) on SVHN versus the certification con-
straint parameter chosen by different percentiles of certified
weight perturbation lower bounds over 100 training images.

Robustness-aware weight quantization. We consider
MLP models of 2, 4, 6, 8 and 10 layers, each of which is
quantized using 4, 6, and 8 bits. Figure 1 presents the test-
ing accuracy of the quantized 8-layer MLP on SVHN versus
the choice of the certification constraint parameter ε(k)c of
problem (16). Here we set ε(k)c as a percentile of certified
robustness bounds (6) over 100 training images. For compar-
ison, we also present the performance of weight quantiza-
tion by solving problem (15) without imposing certification
constraints. We see that the use of certification bounds sig-



Figure 2: Training/testing accuracy of quantization
with/without certification constraints. left) MNIST-Fashion.
middle) SVHN. Dashed lines denote training accuracy and
solid lines represent test accuracy. Blue lines show the pro-
posed ADMM method with bounds, and green lines show the
proposed ADMM method without bounds. Red lines show
the LB method without bounds.

nificantly boosts the testing accuracy of quantized networks
(around 10% improvement) and approaches the testing ac-
curacy without quantization. Moreover, we observe that the
improved performance is insensitive to the choice of ε(k)c

except a slight degradation when ε(k)c is greater than the 90
percentile of certification bounds. This is not surprising since
the performance of weight quantization without imposing cer-
tification constraints is worst, corresponding to the extreme
case ε(k)c →∞. In the following experiments, unless speci-
fied otherwise, we choose ε(k)c as 50 percentile of certified
robustness bounds. Additional results on CIFAR-10 and other
model architectures are provided in Table A1 of Appendix.
We note that the test accuracy of quantization becomes worse
as ε(k)c becomes much larger, e.g. the use of 2,5,10 times
of 100-th percentile certification bounds yields worse test
accuracy 82.7%,78.6%,76.1% for 6 layer MLP with 6 bits
quantization, whereas the use of 0, 100th percentile gives
83.4%, 83%. More results are shown in the appendix.

In Figure 2, we compare our proposed method with the
ADMM-based low-bits (LB) quantization method (Leng et
al. 2018) in terms of training/testing accuracy versus ADMM
iterations under datasets MNIST-fashion and SVHN. Re-
call that the LB method was designed to solve problem (15)
without introducing certification constraints. All the methods
are initialized from the same pre-trained model of continu-
ous weights. It can be seen from training accuracy that our
method converges to a better local optimal solution than the
LB method even in the absence of certification constraints.
When information on certified robustness bounds is consid-
ered, both training and testing accuracy are significantly im-
proved, consistent with results in Figure 1 and Table A1.

Model robustness against fault sneaking attack (Zhao et
al. 2019b). It was shown in (Zhao et al. 2019b) that slightly
perturbing model weights at a single layer is capable of mis-
classfying a specific set of natural images toward target labels
but keeping classification of unspecified input images intact.
The corresponding threat model is called fault sneaking at-
tack (FSA). It is worth mentioning that such an attack is
commonly performed at deep layers of a network due to its
stealthyness requirement. We refer readers to Appendix for

Table 1: Certified perturbation bounds and `∞-norm of
weight perturbations caused by FSA. Here FAS perturbs the
last 4 layers of a 10-layer MLP under 4 datasets.

dataset layer index 7 8 9 10

MNIST

original Acc (%) 97.8 97.8 97.8 97.8
Acc after attack (%) 94 93.9 93.6 94.3

certified bound 2× 10−6 2.6× 10−5 0.0003 0.0083
attack perturbation 0.042 0.048 0.052 0.073

MNIST-Fashion

original Acc (%) 88.6 88.6 88.6 88.6
Acc after attack (%) 84.6 84.3 84.0 84.3

certified bound 2× 10−6 2.4× 10−5 0.00033 0.0117
attack perturbation 0.025 0.0306 0.0351 0.11

SVHN

original Acc (%) 82.6 82.6 82.6 82.6
Acc after attack (%) 80.5 80.1 80.3 80.6

certified bound 4× 10−6 5.6× 10−5 0.0008 0.035
attack perturbation 0.023 0.027 0.036 0.102

CIFAR-10

original Acc (%) 56.7 56.7 56.7 56.7
Acc after attack (%) 50.2 51.1 51.5 51.2

certified bound 4× 10−6 5× 10−5 0.0007 0.027
attack perturbation 0.036 0.04 0.056 0.15

the detailed setting of attack generation and our experiment.
Table 1 shows the original accuracy (Acc), Acc after FSA,

certified lower bound on weight perturbation, and the `∞
norm of weight perturbations caused by FSA. We see that the
certified lower bound decreases as the layer index decreases
since the linear bound approximation becomes looser when it
needs to propagate over more layers prior to the output layer.
Moreover, the certified lower bound shares the same pattern
of FSA against the layer index. The indicates the intrinsic
robustness of networks against FSA: A shallower layer is
more vulnerable to FSA, which is also verified by Figure A1.
Additional results on ImageNet are shown in the appendix.

Conclusion
In this paper, we take the first step to study the sensitivity of
neural networks to weight perturbations and propose an effi-
cient algorithm for computing a certified robustness bound.
Our study on weight perturbation could be useful in both non-
adversarial (weight quantization with certified robustness)
and adversarial environments (robustness indicator against
weight perturbation).
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