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Originality-Significance Statement 26	
This paper presents three novel findings about the interaction of sunlight and microbes during the 
degradation of terrigenous dissolved organic matter (DOM) in aquatic systems. First, it shows 28	
that sunlight can replace the function of certain microbial enzymes, which provides an energy 
savings for microbes and increases their investment in growth. Second, differential gene 30	
expression provides a new, genomics-based line of evidence for the mechanisms of photo-
alteration of DOM and demonstrates the effects of these mechanisms on microbes and specific 32	
metabolic functions (through metatranscriptomics). Third, it provides the first evidence of how 
decarboxylation of DOM by sunlight impacts microbes.  34	
 
Summary 36	
Microbes and sunlight convert terrigenous dissolved organic matter (DOM) in surface waters to 
greenhouse gases. Prior studies show contrasting results about how biological and photochemical 38	
processes interact to contribute to the degradation of DOM. In this study, DOM leached from the 
organic layer of tundra soil was exposed to natural sunlight or kept in the dark, incubated in the 40	
dark with the natural microbial community, and analyzed for gene expression and DOM 
chemical composition. Microbial gene expression (metatranscriptomics) in light and dark 42	
treatments diverged substantially after 4 hours. Gene expression suggested that sunlight exposure 
of DOM initially stimulated microbial growth by (a) replacing the function of enzymes that 44	
degrade higher molecular weight DOM such as enzymes for aromatic carbon degradation, 
oxygenation, and decarboxylation, and (b) releasing low molecular weight compounds and 46	
inorganic nutrients from DOM. However, growth stimulation following sunlight exposure of 
DOM came at a cost. Sunlight depleted the pool of aromatic compounds that supported microbial 48	
growth in the dark treatment, ultimately causing slower growth in the light treatment over 5 days. 
These first measurements of microbial metatranscriptomic responses to photo-alteration of DOM 50	
provide a mechanistic explanation for how sunlight exposure of terrigenous DOM alters 
microbial processing and respiration of DOM. 52	
 
Introduction 54	

Inland waters, despite their modest surface area, process a substantial fraction of terrestrial 
carbon (C) and release this carbon to the atmosphere as CO2 (~1-2 Pg C y-1) (Cole et al., 2007; 56	
Raymond et al., 2013). Much of the CO2 emitted from inland waters comes from microbial 
respiration of terrigenous dissolved organic matter (DOM) that is flushed from soils to streams 58	
and lakes (Cory and Kaplan, 2012; Mann et al., 2012; Ward et al., 2013; Sleighter et al., 2014). 
Thus, DOM is a critical intermediate between soil organic carbon and CO2 in the atmosphere. 60	
Understanding the controls on DOM conversion to CO2 in inland waters is necessary to constrain 
local to global carbon budgets, and to forecast CO2 emission from inland waters under future 62	
climate conditions. For example, thawing permafrost soils may release tremendous stores of 
DOM to inland waters of the Arctic, but we know too little about the controls on microbial 64	
respiration of this carbon to predict whether it will end up in the atmosphere as CO2 or in the 
oceans as DOM (Vonk and Gustafsson, 2013; Herlemann et al., 2014). 66	

The controls on microbial respiration of DOM in surface waters are poorly defined, but 
likely include the interactions between (a) initial DOM chemistry, (b) modification of DOM 68	
chemistry by sunlight (i.e., photo-alteration), and (c) the genomic potential of the microbial 
community (Cory and Kling, 2018). Terrestrial DOM consists of thousands of organic molecules 70	
derived from plant and soil matter, many of which are high molecular weight (HMW), aromatic 
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molecules derived from lignin and tannins (Stenson et al., 2003). Although these molecules are 72	
costly for microbes to degrade (Wetzel et al., 1995; Vallino et al., 1996; Buchan et al., 2000), 
recent evidence suggests that HMW, aromatic, and carboxylic-acid rich DOM likely fuels the 74	
majority of microbial respiration in inland waters (Cory and Kaplan, 2012; Mann et al., 2012; 
Ward et al., 2013; Sleighter et al., 2014). 76	

These same HMW, aromatic, and carboxylic-acid rich molecules that fuel microbial 
respiration of DOM also absorb sunlight, and as a result can undergo photochemical 78	
mineralization to CO2 or photochemical alteration to new compounds. For example, photo-
alteration of terrestrial DOM breaks down HMW, aromatic molecules through the destabilization 80	
and cleavage of aromatic rings, oxidation of DOM, and removal of carboxyl groups (Gonsior et 
al., 2009; Ward and Cory, 2016). This process produces lower molecular weight acids and 82	
alcohols (Kieber and Mopper, 1987; Bertilsson and Tranvik, 1998; Cory et al., 2007; Gonsior et 
al., 2009, 2014; Ward and Cory, 2016), and may release nutrients bound to DOM such as 84	
phosphorus or iron (Cotner and Heath, 1990). In turn, photochemical production of nutrients and 
low molecular weight (LMW) acids and alcohols can stimulate microbial growth and respiration 86	
(Wetzel et al., 1995). However, stimulation of microbial activity due to production of labile 
carbon and nutrients may come at a cost to microbes, given that photo-alteration of DOM can 88	
also remove HMW, aromatic substrates that fuel respiration (Kaiser and Sulzberger, 2004). Thus, 
it follows that microbial responses to photo-alteration of DOM may be the net of the costs and 90	
benefits associated with the photochemical production and removal of important DOM substrates 
for microbes (Tranvik and Bertilsson, 2001; Cory et al., 2013; Ward et al., 2017). Consistent 92	
with this idea, prior studies have found both positive and negative effects on microbial activity 
when microbes are fed photo-altered DOM (Bertilsson and Tranvik, 2000; Judd et al., 2006; 94	
Cory et al., 2010; Reader and Miller, 2014; Ward et al., 2017). 

This balance of costs and benefits to microbes when DOM is altered by light is also 96	
determined by the interaction between DOM chemistry and microbial genomic potential. 
Genomic potential, or the gene pool of a microbial community, determines the enzymatic 98	
reactions that a microbial community is capable of performing. Interactions between genomic 
potential and altered DOM can be categorized into two main types: rapid changes in metabolic 100	
gene expression as individual cells retool their metabolic machinery (McCarren et al., 2010; 
Beier et al., 2015), and longer-term changes in community composition that shift the genomic 102	
potential of a community as certain populations gain selective advantage (Judd et al., 2007; 
Logue et al., 2016; Cory and Kling, 2018). To understand the controls on microbial respiration 104	
of DOM in inland waters, it is necessary to track both shorter-term transcriptomic responses and 
longer-term community composition responses caused by sunlight-driven changes to DOM.  106	

Our previous research detailed the chemical changes to terrigenous DOM caused by 
photochemical and microbial degradation (Ward and Cory, 2016; Ward et al., 2017). This 108	
research showed that sunlight broke down HMW DOM to lower molecular weight compounds, 
degraded aromatics, and decarboxylated and oxidized DOM (Ward and Cory, 2016), and that 110	
these photo-alterations of DOM impacted microbial activity and community composition (Ward 
et al., 2017). However, these studies provided no evidence for the mechanisms linking 112	
photochemical and microbial degradation of DOM. Here we use new high-resolution chemical 
and genomic analyses of samples from this previous experiment to provide mechanistic 114	
explanations for why photo-alteration of DOM to lower molecular weight, less aromatic, less 
carboxylated, and more oxidized formulas affects microbial activity rates and community 116	
composition. We also show that photo-alteration of DOM caused global shifts in microbial 
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community gene expression and active taxonomic groups. These shifts suggest that photo-118	
alteration of DOM initially stimulated microbial growth by replacing key steps in DOM 
metabolism pathways, but ultimately suppressed microbial activity by removing DOM 120	
compounds that native microbial communities were adapted to use. 
  122	
Results and Discussion  

We conducted a replicated experiment in which natural microbial communities were 124	
incubated with DOM that had been exposed to 24 h of natural sunlight or kept in the dark (i.e., 
light and dark treatments). Gene expression is highly responsive to the chemical composition of 126	
DOM (McCarren et al., 2010; de Menezes et al., 2012; Shi et al., 2012), and microbial 
communities in this experiment adjusted to photo-altered DOM with both rapid changes in gene 128	
expression and longer-term changes in community composition. Short-term changes, assessed 
with metatranscriptomics after 4 h incubations, showed that 27% of genes annotated to KEGG 130	
orthologs (KOs) were differentially expressed (False discovery rate or FDR < 0.05) between 
light and dark treatments (Fig. 1A, Dataset S1). These differences caused metatranscriptomes 132	
from each treatment to cluster separately on a principle coordinates diagram (Adonis 
PERMANOVA, p = 0.1; Fig. S1), and caused lower Shannon alpha diversity of 134	
metatranscriptomes in the light treatment (Fig. S1). Photo-altered DOM also caused a shift in the 
composition of taxa with active expression (Fig. 1B), most notably causing increased expression 136	
by Gammaproteobacteria and reduced expression by Bacteroidetes. These changes in expression 
were consistent with small initial shifts (4 h) in microbial community composition (assessed with 138	
16S rRNA gene amplicon sequencing), and may have led to substantial longer-term shifts in 
community composition after 5 d (Fig. S2; Dataset S6) (Ward et al., 2017).  140	

The differences in microbial community responses between light and dark treatments were 
driven by changes in DOM chemistry (see Ward and Cory, 2016, for a description of 142	
photochemical processes that affected DOM composition). For example, sunlight exposure 
removed about 5% of DOC by converting it to CO2 via photo-decarboxylation or other photo-144	
oxidation processes (Fig. S5; Ward and Cory, 2016). Figure 2 shows that of the 375 formulas 
removed by sunlight (region II), 20% were aromatic, consistent with photochemical removal of 146	
aromatic C (quantified by 13C-NMR; Ward and Cory, 2016), and 74% were classified as tannin-
like (corresponding with the high average molecular weight and O/C ratio of these formulas 148	
shown in region II, Fig. 2). Tannin-like formulas represent a fraction of DOM likely rich in 
carboxylic acid functional groups (Ritchie and Perdue, 2003; Ward and Cory, 2016). 150	
Photochemical removal of carboxyl carbon (detected by 13C NMR as shown in Fig. S5) 
concurrent with removal of tannin-like DOM is consistent with photo-decarboxylation of DOM 152	
(Ward and Cory, 2016). Compared to the formulas removed by sunlight, the formulas produced 
by sunlight were of lower molecular weight and less oxygen rich (region III, Fig. 2). These 154	
results demonstrate that sunlight degraded HMW, aromatic, and carboxyl-containing DOM into 
LMW, less aromatic, and less carboxylated DOM (Ward and Cory, 2016). Although the 156	
formulas produced by sunlight were less oxygen rich on average compared to formulas removed 
by sunlight (region III vs. region II in Fig. 2; consistent with decarboxylation of oxygen-rich 158	
formulas), a substantial fraction of formulas produced by sunlight exposure of DOM are 
oxidation products (i.e., produced by photo-oxidation of DOM; Cory et al., 2010; Ward and 160	
Cory, 2020). Thus, sunlight exposure simultaneously degraded HMW and aromatic DOM via 
decarboxylation and oxidation pathways (Ward and Cory, 2016, 2020; Fig. S5; Fig. 2). 162	



	 5	

This DOM produced and removed by sunlight was similar in composition to DOM degraded 
by microbes in the dark treatment. For example, of the formulas produced by sunlight, 98 of 164	
these were identical to formulas degraded by microbes (region IV in Fig. 2). Of the formulas 
removed by sunlight, 148 of these were identical to formulas degraded by microbes (region V in 166	
Fig. 2). Thus, of the total 383 formulas degraded by microbes (region I, Fig. 2), there was 
substantial overlap of chemical formulas between the pool of DOM altered by sunlight and the 168	
pool of DOM degraded by microbes in the dark treatment (98 formulas produced by sunlight 
plus 148 removed by sunlight results in 246 formulas identical to those degraded by microbes; 170	
thus 64% of the 383 formulas degraded by microbes were identical to those altered by sunlight; 
Fig. 2). This result suggests that sunlight produced and removed formulas that microbes were 172	
metabolically equipped to degrade in the dark (Ward et al., 2017). To identify which sunlight-
driven changes to DOM chemistry are relevant to microbial communities, and to understand the 174	
mechanisms by which microbes adjust to these changes, we investigated differential expression 
in light and dark treatments of (a) major gene categories, (b) specific DOM metabolism genes, 176	
and (c) membrane transport genes responsible for the supply of external nutrients and substrates. 
 178	
Global Gene Expression Patterns 

First, expression patterns across all major gene categories suggested that in the dark 180	
treatment, microbial communities were invested in scavenging – that is, finding and using DOM 
and inorganic nutrients. In contrast, light-treatment microbial communities were more invested 182	
in growth. Microbial communities incubated with dark treatment DOM had greater expression of 
genes for metabolism, motility, and resource transport than did microbial communities incubated 184	
with photo-altered DOM (Fig. 3). These patterns in differential gene expression were also 
detected for Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria when analyzed 186	
individually (Fig. S3, Datasets S2-S4). This finding suggests that microbial communities 
incubated with dark treatment DOM were allocating energy towards degrading organic 188	
compounds and searching for resources. Across all taxa, carbohydrate, lipid, amino acid, and 
xenobiotic metabolism were elevated in the dark treatment (Fig. 3C), as were many signal 190	
transduction and cell motility genes (Fig. 3D), including several chemotaxis and pilus related 
proteins (e.g., mcp, cheR, pilI, pilG), enzymes and transporters involved in phosphorus and 192	
nitrogen acquisition (e.g., phoR, phoD, ntrY, nifA), and flagellin (e.g., fliC) (Dataset S1). 
Elevated expression of these genes in the dark versus light treatment indicates that communities 194	
incubated with dark-treatment DOM experienced comparatively poor conditions for growth, 
because cells allocate more energy toward moving and scavenging when resources are scarce 196	
(Soutourina and Bertin, 2003). This interpretation of gene expression in the dark treatment is 
consistent with current understanding of microbial metabolism of terrigenous DOM. For 198	
example, HMW and aromatic carbon in terrestrial DOM fuels a substantial fraction of microbial 
respiration (Cory and Kaplan, 2012; Ward et al., 2013; Sleighter et al., 2014) despite being 200	
energetically costly for microbes to degrade (Wetzel et al., 1995; Buchan et al., 2000). 

In contrast to communities in the dark treatment, communities incubated with photo-altered 202	
DOM had significantly higher expression of genes involved in transcription and translation (Fig. 
3B), suggesting that photo-alteration of DOM caused microbial communities to invest more in 204	
growth and less in scavenging. These patterns of differential gene expression were also detected 
for Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria when analyzed individually 206	
(Fig. S3, Datasets S2-S4). Across all taxa, genes in these categories that were expressed more in 
the light treatment than the dark treatment included two highly expressed RNA polymerase 208	
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genes (rpoA, rpoB), and all 42 differentially expressed ribosomal protein genes (Dataset S1). 
Cells tightly regulate transcription and translation, and allocate more resources to these processes 210	
when growing exponentially (log phase) (Nomura et al., 1984; Kraakman et al., 1993; Scott et 
al., 2010) or preparing to do so (lag phase) (Rolfe et al., 2011; Madar et al., 2013). Moreover, 212	
overwhelming evidence from transcriptional studies demonstrates a positive relationship 
between expression of genes for transcription and translation and bacterial cell growth (Franchini 214	
and Egli, 2006; Lahtvee et al., 2011; Harke and Gobler, 2013; Matsumoto et al., 2013; Gifford et 
al., 2016). Increased expression of genes involved in transcription and translation suggests that 216	
photo-alteration of DOM produced new compounds that induced microbial growth. Exact 
overlap in a subset of DOM formulas produced by sunlight (photo-altered DOM) and degraded 218	
by microbes (region IV in Fig. 2) suggests these are the kinds of compounds that induced 
microbial growth. These formulas were on average relatively LMW, aliphatic, and classified 220	
predominately as lignin-like (region IV in Fig. 2). Production of compounds that induce 
microbial growth is consistent with prior work suggesting that photo-alteration of DOM creates 222	
compounds that are more labile to microbes compared to DOM used by microbes in the dark 
(Wetzel et al., 1995; Moran and Zepp, 1997; Bertilsson and Tranvik, 1998; Cory et al., 2010; 224	
Satinsky et al., 2017).  

Taxonomic binning of ribosomal protein transcripts revealed that photo-alteration of DOM 226	
increased ribosomal expression by Gammaproteobacteria and Betaproteobacteria and decreased 
ribosomal expression of Bacteroidetes relative to their 16S rRNA gene abundances (Fig. S4). 228	
Together, Gammaproteobacteria and Betaproteobacteria were responsible for 90% of ribosomal 
protein transcripts in the light treatment (62% and 28%, respectively), and only 49% in the dark 230	
treatment (30% and 19%, respectively). The ratio of ribosomal gene expression to 16S gene 
abundance for Gammaproteobacteria and Betaproteobacteria was greater in the light treatment 232	
(90% / 60% = 1.5) than in the dark treatment (49% / 51% = 0.96), suggesting that growth by 
these groups was favored by DOM photo-alteration more than other groups. Conversely, photo-234	
alteration of DOM decreased ribosomal expression by Bacteroidetes from 36% in the dark 
treatment to 6% in the light treatment. Moreover, the ratio of ribosomal gene expression to 16S 236	
gene abundance for Bacteroidetes was lower in the light treatment (6% / 4% = 1.5) than in the 
dark treatment (36% / 13% = 2.78), suggesting that Bacteroidetes growth was not favored by 238	
DOM photo-alteration. Although these phyla contain a diverse array of organisms that may not 
all react similarly to environmental changes, differences in ribosomal protein expression by these 240	
groups at 4 h provide a mechanistic explanation for how and why community composition 
between light and dark treatments shifted over the longer-term (5 d) (Ward et al., 2017). That is, 242	
taxonomic groups with high ribosomal expression at 4 h were more dominant members of the 
community at 5 d, indicating that one way in which microbial communities may have adapted to 244	
photo-altered DOM is through selection for growth of certain populations, which in turn results 
in longer-term changes in community composition. These results provide evidence for a 246	
mechanism of community change, hypothesized by others (Judd et al., 2007; Ward et al., 2017; 
Cory and Kling, 2018), that greater ribosomal expression of taxa precedes increased abundance 248	
of the same taxa. 
 250	
DOM Metabolism Genes 

The second category of genes we investigated was DOM metabolism genes. Differential 252	
gene expression of specific DOM metabolism genes, taken together with sunlight-induced 
changes in DOM chemistry, suggested that sunlight replaced the function of key genes in 254	
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microbial DOM degradation pathways. Sunlight broke down HMW DOM into LMW DOM, 
decreased the aromatic content of DOM, oxidized DOM, and decarboxylated DOM (Fig. 2) 256	
(Ward and Cory, 2016). Most differentially expressed genes involved in these same processes, 
specifically, the aromatic degradation genes, oxygenase genes, and decarboxylase genes, were 258	
significantly less expressed by microbes incubated with photo-altered DOM, even when 
expression was calculated as a percentage of total Metabolism gene expression (a KEGG tier II 260	
category; Fig. 4A, Dataset S1). Expression of these genes was also reduced in the light treatment 
for Gammaproteobacteria and Betaproteobacteria when analyzed separately (Datasets S3-S4), 262	
and showed no pattern with treatment for Bacteroidetes and other taxa (Datasets S4-S5). Further 
evidence that microbes and sunlight used the same processes to degrade DOM was the strong 264	
overlap in number and chemical composition of the formulas degraded by both microbes and 
sunlight (Fig. 2). Of the 148 formulas degraded by both microbes and sunlight, 90% were tannin-266	
like formulas (region V, Fig. 2) previously shown to be decarboxylated to smaller and less 
aromatic formulas by sunlight (Ward and Cory, 2016). 268	

Genes for aromatic degradation, oxygenation, and decarboxylation encode costly enzymes 
that destabilize and break down large and complex carbon compounds (Cavin et al., 1998; Bugg 270	
et al., 2011; Fuchs et al., 2011; Gulvik and Buchan, 2013). Given that microbes carefully 
regulate gene expression to produce costly enzymes only when necessary (Browning and Busby, 272	
2004), reduced expression of these gene categories in the light treatment suggests that sunlight 
destabilized and cleaved aromatic rings, oxidized DOM, and removed carboxyl groups from 274	
DOM, minimizing the need for enzymes that perform these functions. These findings are 
consistent with the global gene expression patterns discussed above, which suggest that after 4 h, 276	
the light-treatment microbial communities were investing in growth. These findings provide an 
explanation for this investment in growth, suggesting that sunlight initially stimulated microbial 278	
growth by replacing enzymatic functions and transforming DOM into more easily consumed 
products. In this way, photo-alteration of DOM relieved microbes of energetically expensive 280	
needs and allowed microbial communities to put energy and resources towards activities such as 
transcription and translation.  282	

This differential expression of specific metabolic genes not only reveals biological 
mechanisms of DOM degradation after photo-alteration, but also provides a new, genomics-284	
based line of evidence for the effects and mechanisms of photochemical alteration of DOM. 
These metatranscriptomic data demonstrate that sunlight alters microbial metabolism of DOM by 286	
breaking down aromatic compounds and oxidizing DOM. This evidence is consistent with 
numerous studies showing that sunlight cleaves aromatic rings (Strome and Miller, 1978; 288	
Stubbins et al., 2010) and oxidizes organic matter (Cory et al., 2010; Gonsior et al., 2014, Ward 
and Cory, 2020), likely in part through the photochemical production of reactive oxygen species 290	
from DOM (Cory et al., 2010; Page et al., 2014). We also provide metatranscriptomic evidence 
suggesting that sunlight decarboxylates DOM. Reduced expression of decarboxylase genes in 292	
response to photo-altered DOM suggests that decarboxylation is an important pathway for 
microbial metabolism of carboxylic acids within terrigenous DOM (an abundant fraction of 294	
DOM in inland waters) (Ritchie and Perdue, 2003; Ward and Cory, 2015). Photo-
decarboxylation of DOM has been inferred (Faust and Zepp, 1993; Xie et al., 2004), but in 296	
contrast to aromatic degradation and oxidation of DOM, direct evidence of photo-
decarboxylation of terrigenous DOM is limited (Ward and Cory, 2016). The metatranscriptomic 298	
data presented here are in strong agreement with chemical evidence supporting decarboxylation 
as a driving pathway of terrigenous DOM photo-alteration (Ward and Cory, 2016).  300	
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Differential expression of specific metabolic genes also highlights the similarities between 
photo- and bio-degraded fractions of DOM. Reduced expression of aromatic degradation genes, 302	
oxygenase genes, and decarboxylase genes in response to photo-altered DOM indicates a 
substantial competition between sunlight and microbes to degrade similar types of DOM (Bowen 304	
et al., 2019). 
 306	
Membrane Transport Genes 

The third category of genes we investigated was the ABC transporter genes. Differential 308	
expression of these transporter genes, which accounted for the bulk of membrane transport 
expression, suggested that photo-alteration of DOM increased the availability of sugars and 310	
alcohols, and changed the chemical forms of phosphorus, sulfur, and ferric iron (Fe(III)) 
available to microbes. Expression of total ABC transporter genes was similar across treatments 312	
(Fig. 3D), but 65 genes representing subunits for 35 transporters had significantly different 
expression across treatments when normalized to total ABC Transporter expression (a KEGG 314	
tier IV category; Fig. 4B, Dataset S1).  

All differentially expressed sugar and polyol transporter genes were expressed more in the 316	
dark treatment than in the light treatment (Fig. 4B), except for the sn-glycerol 3-phosphate 
transporter genes (ugp, i.e., K05813, K05814, K05815, and K05816). Expression of these genes 318	
was also greater in the dark treatment for Gammaproteobacteria, Betaproteobacteria, and 
Bacteroidetes when analyzed separately (Datasets S2-S4). Greater expression of sugar and polyol 320	
transporter genes in the dark treatment suggests that sugars and polyols were limiting, because 
suboptimal levels of these substrates induce expression of their transporter proteins (Ferenci, 322	
1999). In turn, lower expression of sugar and polyol transporter genes in the light treatment 
suggests that photo-alteration of DOM increased availability of sugars and alcohols. Sugars and 324	
alcohols contain oxidized functional groups within DOM, and there is some evidence that 
exposure to sunlight can increase the abundance of these and other oxidized functional groups 326	
(Gonsior et al., 2014; Ward and Cory, 2016, Ward and Cory, 2020). 

Transporter genes for organic phosphorus, such as sn-glycerol 3-phosphate (G3P; ugpA, 328	
ugpB, ugpC, ugpE) and phosphonate (phnE) transporter genes, were more expressed in the light 
treatment across all taxa (Fig. 4B, Dataset S1), and for Gammaproteobacteria and 330	
Betaproteobacteria when analyzed separately (Datasets S3-S4). In contrast, expression of these 
genes was greater in the dark treatment for Bacteroidetes and other taxa (Datasets S5-S6). The 332	
increase in phosphorus transporter expression in the light treatment for Gammaproteobacteria 
and Betaproteobacteria is consistent with an increase in microbial demand for phosphorus for 334	
activities such as biosynthesis, and may also indicate a shift in the available forms of 
phosphorus. G3P is a degradation product of plant cell phospholipids which, along with 336	
phosphonates, are abundant in a variety of soils (Tate and Newman, 1982; Turner et al., 2004). 
Organophosphates like G3P serve diverse cellular functions, and uptake may be preferable to 338	
inorganic phosphate when cells carry out certain functions. For example, the first step in the 
biosynthesis of phospholipid membranes is the synthesis of G3P (Cronan, Jr. and Rock, 2008), 340	
which is probably less energetically costly to import than it is to synthesize (Ames, 1986). 
Elevated expression of G3P and phosphonate transporter genes may reflect a greater need for 342	
phosphorus for biosynthesis by the rapidly growing light-treatment microbial community. In 
addition, expression of G3P transporter genes is induced when inorganic phosphate is limiting 344	
and G3P is available (Brzoska et al., 1994; Vershinina and Znamenskaya, 2002; León-Sobrino et 
al., 2019), so elevated expression of G3P and phosphonate transporter genes may indicate that 346	
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photo-alteration of DOM makes inorganic phosphorus less available or organic phosphorus more 
available.  348	

Genes for sulfate transporters were also more expressed in the light treatment across all taxa 
(Fig. 4, Dataset S1) and for Gammaproteobacteria and Betaproteobacteria when analyzed 350	
separately (Datasets S2-S3) but showed no pattern for Bacteroidetes and other taxa (Datasets S4-
S5). Similar to expression of organic phosphorus transporter genes, this elevated expression of 352	
sulfate transporter genes is consistent with an increase in microbial demand for sulfur, and may 
also indicate that organic sulfur sources were less available after photo-alteration of DOM. 354	
Sulfate assimilation is an energy consuming process; energy is required to transport this ion 
across membranes and to reduce sulfur from an oxidation state of +6 to -2 for incorporation into 356	
cystine. Consequently, sulfate transporter genes are only expressed when sulfur is required and 
when favorable organic sulfur compounds are unavailable (Piłsyk and Paszewski, 2009; 358	
Campanini et al., 2014). Therefore, elevated expression of sulfate transporter genes suggests that 
first, sulfur was needed by the light-treatment microbial communities, perhaps because these 360	
communities were growing, and second, photo-degradation of DOM made organic sulfur 
compounds less available than sulfate. Consistent with this interpretation, all differentially 362	
expressed genes for organic sulfur catabolic enzymes were more expressed in the dark treatment 
across all taxa (Dataset S1) and for Gammaproteobacteria and Betaproteobacteria when analyzed 364	
separately (Datasets S2-S3) but were not differentially expressed by Bacteroidetes and other taxa 
(Datasets S4-S5). These genes included sulfatases (betC, aslA, K01138), a sulfotransferase 366	
(raxST), an alkanesulfonate monooxygenase (ssuD), and a sulfoxide reductase (msrP) (Dataset 
S1).  368	

Changes in DOM composition do not clearly support a decrease in availability of organic 
sulfur compounds in the light treatment. In the dark treatment, 7% of the formulas degraded by 370	
microbes contained S (Fig. 2). Of the formulas produced by light and degraded by microbes 
(group IV in Fig. 2), 9% contained S (Fig. 2). These results suggest that photo-alteration of DOM 372	
led to a 2% increase in availability of organic sulfur compounds compared to the dark treatment. 
Small differences in S-containing formulas between the dark and light treatments should be 374	
interpreted with caution due to the bias of FT-ICR MS against the detection of heteroatom 
containing DOM (e.g., Hockaday et al., 2009) especially considering the low organic sulfur 376	
content of DOM in this watershed (Cory et al., 2007). 

Results from other studies support increased expression for sulfate transporter genes in the 378	
light treatment. For example, one study demonstrated substantial photo-oxidation of organic 
sulfur within DOM (Gomez-Saez et al., 2017). Another study showed that organic sulfur within 380	
terrigenous DOM is readily mineralized to sulfate by sunlight (Ossola et al., 2019).  

Like the expression of phosphorus and sulfur transporter genes, expression of Fe(III) 382	
transporter genes also suggests that photo-alteration of DOM caused changes to the chemical 
forms and availability of iron. However, Fe(III) transporter expression indicated both light and 384	
dark treatments were actively scavenging iron (Cornelis et al., 2009; Noinaj et al., 2010). The 
main difference between the treatments was that in the dark treatment, genes involved in TonB-386	
dependent Fe(III) transport were more expressed (tonB, exbB, fecA, fecR), while in the light 
treatment, TonB-independent Fe(III) transporter genes were more expressed (fbpA, fbpB, fbpC; 388	
Fig. 4B, Dataset S1). This pattern in expression occurred across all taxa, and for Bacteroidetes 
(tonB, exbB, exbD in dark; fbpA in light), Gammaproteobacteria (exbB, fecA,	fecR,	feoA,	fhuE,	390	
hemR	in	dark;	fbpA in light), Betaproteobacteria (fhuF in dark; fbpA in light), and other taxa 
(fbpA in light) when analyzed separately (Datasets S1-S5). The inner membrane proteins tonB 392	
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and exbB (along with exbD) transduce proton motive force to TonB-dependent transporters in 
the outer membrane that bind and transport chelated Fe(III) including siderophore-bound Fe(III). 394	
In contrast, TonB-independent systems transport unchelated Fe(III) across the inner membrane 
after it crosses the outer membrane either passively or via some unknown outer membrane 396	
system (Wyckoff et al., 2006; Zhang et al., 2018). This suggests that dark-treatment microbes 
were importing chelated Fe(III) and light-treatment microbes were importing unchelated Fe(III). 398	
Transcription of these different Fe(III) transport systems is regulated in part by characteristics of 
Fe(III) chelating molecules (Zhang et al., 2018; Dong et al., 2019), suggesting that this shift in 400	
expression is driven by changes in the available forms of Fe(III). Consistently, sunlight is 
thought to break down chelated Fe(III) and release free Fe(III) (Voelker et al., 1997), which can 402	
then precipitate or become loosely bound to other organic compounds. Therefore, it is likely that 
microbes in the light treatment were actively transporting Fe(III) that had been recently released 404	
from photo-degraded siderophores or other chelating molecules, such as carboxylic acids (Fujii 
et al., 2014). 406	

Unlike transporter genes for phosphorus, sulfur, and Fe(III), no pattern was apparent among 
amino acid transporter genes. Of the 20 differentially expressed amino acid transporter genes, 12 408	
were more expressed in the dark treatment and eight were more expressed in the light treatment 
(Fig. 4B). Overall, however, photo-alteration of DOM caused lower expression of genes for 410	
transporting sugars and alcohols, higher expression of genes for transporting organic phosphorus 
and sulfate, and a shift in expression of genes for Fe(III) transport from chelated to unchelated 412	
Fe(III). Thus, ABC transporter expression suggests that photo-alteration of DOM makes many 
LMW organic compounds more available and changes the chemical state of several essential 414	
nutrients (i.e., phosphorus, sulfur, Fe(III)). 
 416	
Photo-alteration of DOM Caused Transient Growth 

The transcriptional responses outlined above (Fig. 5) suggest greater initial growth in the 418	
microbial communities incubated with photo-altered DOM. First, greater expression of 
ribosomal proteins and RNA polymerase genes in the light treatment suggests microbial 420	
investment in gene products that support growth. Second, lower expression of aromatic 
degradation genes, oxygenases, and decarboxylases in the light treatment suggests that photo-422	
alteration of DOM replaced the function of these genes by producing compounds that were more 
accessible to microbes and thus capable of stimulating growth. Third, lower expression of sugar 424	
and polyol transporters in the light treatment and higher expression of organic phosphorus, 
sulfate, and Fe(III) transporters suggests that photo-alteration of DOM released LMW 426	
compounds that could have also stimulated growth and altered the availability of several 
nutrients. 428	

Interestingly, these indicators of growth in the light treatment communities at 4 h, suggested 
by metatranscriptomic data, did not result in higher rates of microbial activity over the full 5 d 430	
incubation. We measured rates of respiration (O2 consumption and CO2 production) and new cell 
production (direct cell counts) over 5 d, and the rate of biomass production after 5 days 432	
(determined as the rate of incorporation of 14C leucine), and all measures were lower for 
microbes in the light treatment compared to the dark treatment (Fig. 6). Moreover, approximately 434	
twice as much DOC was consumed by microbes in the dark treatment compared to the light 
treatment over 5 d (Fig. S5). This contrast between 4 h and 5 d suggests that photo-alteration of 436	
DOM supported only a transient burst of growth. Given the relatively short duration of the 
photo-exposure (~ 24 h natural sunlight), the production of photo-altered DOM compounds may 438	
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have been too small to boost microbial activity over the entire 5 d incubation. It is possible that a 
top-down control, such as viral lysis, could have caused slower microbial activity in the light 440	
treatment incubations at 5 d, but this is unlikely considering the triple-replication of the 
experiment and the lack of evidence of top-down control in the dark treatments or in similar 442	
studies (Judd et al., 2006, 2007). It is more likely that the lower activity of microbes at 5 d in the 
light versus dark treatment was due to a combination of (1) too little production of beneficial 444	
compounds during the short photo-exposure of DOM to stimulate growth for 5 full days, and (2) 
the photochemical removal of DOM compounds that communities had been equipped to degrade 446	
prior to photo-exposure (Fig. S5) (Ward et al., 2017). In other words, the benefit provided to 
microbes by photo-production of growth-stimulating compounds came at the cost of losing many 448	
of the DOM compounds that supported microbial activity in the dark treatment.  

These results make clear that the microbial response to photo-altered DOM can be dynamic, 450	
with different effects in the short-term (hours) and long-term (days). In fact, several studies have 
found transient responses, especially those that include sampling after 24 hours or less of 452	
microbial incubation with photo-altered DOM (Kaiser and Sulzberger, 2004; Judd et al., 2007; 
Gareis and Lesack, 2018). Two studies (Kaiser and Sulzberger, 2004; Judd et al., 2007) found 454	
that photo-exposure of DOM initially (1-3 h) inhibited microbial activity, but over time (5-19 d) 
the activity of microbes growing on photo-altered DOM caught up to or exceeded activity of 456	
dark-treatment microbes. Another study (Gareis and Lesack, 2018) found the opposite response, 
that photo-exposure of DOM initially stimulated cell-specific bacterial production after 24 h 458	
before declining to lower bacterial production rates than the dark-treatment microbes. Regardless 
of positive or negative response, the transient effect on microbial activity in these studies was 460	
inferred to be caused by changes in DOM composition, consistent with our interpretation. 
However, in our experiment, the microbial response was more similar to the response seen by 462	
Gareis and Lesack (2018); we found that photo-alteration appeared to initially support a growth 
response through replacement of key steps in enzymatic pathways, and to later slow microbial 464	
activity most likely due to depletion of microbially-favored substrates (Ward et al., 2017). These 
results and previous studies highlight the transient nature of microbial responses to photo-466	
exposed DOM and demonstrate the dramatic impact of short- and long-term microbial 
adjustments to changes in DOM chemistry. 468	
 
Conclusions 470	

The fate of carbon in inland waters depends on the mechanisms by which sunlight and 
microbes transform terrigenous DOM. Understanding these mechanisms is especially critical in 472	
the Arctic because (a) arctic lakes and streams contain high amounts of terrigenous DOM (Cory 
et al., 2007; Caplanne and Laurion, 2008; Gareis et al., 2010), (b) terrigenous DOM is an 474	
important carbon source for microbial communities in these oligotrophic systems (Crump et al., 
2003; Mann et al., 2012), (c) export of terrigenous DOM to sunlit waters is expected to increase 476	
as the Arctic’s vast stores of soil carbon thaw (Rowland et al., 2010), and (d) arctic lakes and 
streams are generally unshaded and shallow, making photo-alteration a critical control of DOM 478	
processing relative to more shaded and deeper aquatic ecosystems (Cory et al., 2014). 

Our results suggest that aromatic degradation, oxidation, and decarboxylation are important 480	
mechanisms by which both sunlight and microbes independently break down DOM. 
Consequently, the photo-alteration of DOM by sunlight functionally replaces key steps in 482	
microbial DOM degradation pathways and can stimulate microbial growth. In addition, our 
findings suggest that photo-alteration of DOM releases LMW compounds and changes the 484	
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availability of nutrients, which may also contribute to greater activity and growth. However, 
these benefits of DOM photo-alteration came at a cost to microbes in this experiment because 486	
sunlight removed many of the DOM compounds that microbial communities were metabolically 
equipped to use (Ward et al., 2017). Loss of these compounds reduced microbial activity over 488	
the 5 d incubation, likely after growth-stimulating photo-products were depleted. 

These contrasting responses of microbes in the short- and long-term (4 h and 5 d) show that 490	
sunlight can both produce and eliminate compounds that are useful to microbial communities, 
but that the net effect of DOM photo-alteration depends on (a) which compounds are produced 492	
and eliminated and (b) the timescales that microbes require to adjust to photo-altered DOM. Our 
results suggest that when DOM moves from soils to sunlit lakes and streams, microbial 494	
communities can quickly shift gene expression to benefit from materials released from photo-
altered DOM. Over longer timescales (e.g., days to weeks), shifts in community composition can 496	
also allow microbes to benefit from DOM photo-alteration (Judd et al., 2007; Cory et al., 2013). 
However, in our study, shifts in community composition did not appear to benefit microbes, 498	
suggesting that in this case (but after only 5 days), longer-term microbial adjustments could not 
overcome the loss of bioavailable material due to photo-alteration. Thus, the longer-term benefits 500	
of DOM photo-alteration depend on whether the material produced by photo-alteration is derived 
from compounds that microbes are equipped to degrade, or from relatively refractory compounds 502	
that microbes cannot access. If photo-altered DOM is primarily derived from the former, as in 
this study, then the cost to microbes in loss of resources may outweigh the benefits, despite 504	
short- and longer-term adjustments by microbial communities. 

As the Arctic warms, there may be increases in export of terrigenous DOM to sunlit surface 506	
waters due to thawing permafrost (Rowland et al., 2010) and greater UV exposure of DOM due 
to longer ice-free seasons (Šmejkalová et al., 2016). However, the photo-reactivity and 508	
biological availability of this DOM will likely differ from the DOM currently draining to arctic 
lakes and streams (e.g., Cory et al., 2013; Ward and Cory, 2016; Stubbins et al., 2017). 510	
Therefore, to forecast the fate of this DOM, it is increasingly important to understand the 
interactions between photochemical and biological DOM degradation. Our measurements of 512	
microbial metatranscriptomic responses to photo-alteration of DOM, paired with high-resolution 
DOM composition data, provide mechanistic explanations for how photo-alteration of DOM in 514	
inland waters affects rates of microbial activity and thus DOM fate and arctic carbon cycling.  
 516	
Experimental Procedures 
 In this study we used new genomics results generated from a previously published 518	
experiment (Ward and Cory, 2015, 2016; Ward et al., 2017) to provide mechanistic explanations 
for why photo-alteration of DOM affects microbial activity rates and community composition. 520	
Below, we first briefly summarize the previously published experimental design and methods, 
then we summarize the new genomic techniques and methodology.  522	
Summary of experimental design and methods  
 Figure S6 is a schematic of the experimental design from which microbial communities 524	
from tundra soil leachates were incubated in triplicate with both light-exposed and dark-exposed 
soil-derived DOM for analysis in this study. The preparation and treatment of soil-derived DOM 526	
for these incubations was described previously (Ward and Cory, 2015). Briefly, soil samples 
from the organic layer of three adjacent pits were collected at 5-15 cm depth on June 15, 2013 in 528	
the Imnavait Creek watershed on the North Slope of Alaska (68.62° N, 149.28° W; elevation ~ 
900 m). Soil was collected in plastic bags, immediately transferred to coolers, and within hours 530	
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placed in freezers at Toolik Field Station. Leachate was made by adding an equal mass of soil 
from each of three replicate pits for a total of 3600 g of soil and 15 L of deionized water, 532	
followed by filtration through 0.45 µm high-capacity cartridge filters (Geotech Environmental 
Equipment, Inc., Denver, CO). Filtration with a larger pore size (GF/F filters, nominal pore size 534	
0.7 µm) has previously been shown to substantially reduce microbial contamination, reducing 
bacterial production by 93 ± 2% (mean ± 1 SD) compared to unfiltered lake water (Ward et al., 536	
2017). 

Each of the three replicates of DOM leachate was split into a light treatment and dark 538	
treatment. Both treatments were placed in UV-transparent Whirlpak bags (5 L) and exposed to 
24 h of natural sunlight at Toolik Field Station on June 24 and 25, 2013; dark treatments were 540	
wrapped in aluminum foil. Details of the sunlight exposure experiment are reported in Ward and 
Cory (2016).  542	

Before and after sunlight exposure, subsamples were collected for DOM chemical 
characterization by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 544	
and 13C nuclear magnetic resonance spectroscopy (13C NMR). The chemical composition of 
DOM by FT-ICR MS and 13C-NMR used in this study was previously reported in Ward and 546	
Cory (2015, 2016) and in Ward et al. (2017), along with the methodology used to analyze and 
interpret DOM composition. Briefly, DOM was extracted using 5 g PPL solid-phase (SPE) 548	
cartridges for FT-ICR MS analysis. DOC recovery was 57 ± 1% (± 1 SE; Ward and Cory, 2015). 
Methanol SPE eluates were diluted to ~50 mg C per L prior to introduction to the electrospray 550	
ionization source of a 12T Bruker SolariX FT-ICR mass spectrometer. All spectra were acquired 
in negative mode. Formula assignment criteria have previously been described in detail (Ward 552	
and Cory, 2015, 2016). Aromatic or aliphatic character of formulas produced or degraded by 
sunlight or microbes was determined using the aromaticity index (AIMOD; Koch and Dittmar, 554	
2006). Formulas were assigned to compound classes using the following criteria: Tannin-like: 
0.6 ≤ O/C ≤ 1.2, 0.5 ≤ H/C ≤ 1.5, AIMOD < 0.67; Lignin-like: 0.1 < O/C < 0.6, 0.5 ≤ H/C ≤ 1.7, 556	
AIMOD < 0.67 (Ward et al., 2017 and therein). 

Formulas were categorized as degraded versus produced by sunlight if their intensity 558	
decreased or increased after light exposure, respectively, using the 95% confidence interval of 
the mean of experimental replicates (N =3) to determine if a change in peak intensity was 560	
significantly different from zero (Ward and Cory, 2016). Formulas were categorized as 
consumed by or resistant to microbes if their intensity decreased or remained unchanged after 562	
incubation with the native microbial community, respectively (Ward et al., 2017). The 95% 
confidence intervals calculated across experimental replicates were used to determine if a change 564	
in formula intensity after incubation with microbes was significantly greater than zero (N = 3; 
Ward et al., 2017). This approach to analyze FT-ICR MS spectra accounts for experimental 566	
variability (e.g., natural variability in microbial respiration between incubations, extraction 
efficiency of PPL cartridges) and instrumental variability (e.g., ionization efficiency).  568	

Whirlpak bags were leached with laboratory grade water (DI water) under the same 
experimental conditions as the soil leachates (e.g., water volume, dark and light treatments, and 570	
experiment time) to determine whether these containers added organic carbon contamination to 
the soil leachates. DOC concentrations were slightly higher in Whirlpak bags leached with the 572	
DI water compared to DI blanks, demonstrating that Whirlpak bags leached on average 1.4 ± 
0.1% (± 1 SE) of the initial DOC concentration of the filtered soil leachates. There was no 574	
significant difference in the DOC leached from DI-water filled Whirlpak bags exposed to 
sunlight compared to dark controls. 576	
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Following sunlight exposure, DOM was inoculated with microbes and both the light and 
dark treatments were incubated in the dark at 6-7 °C. The inoculum was comprised of a mixture 578	
of leachates from the three organic layer soil pits and had been passed through GF/C filters 
(Whatman GE Life Sciences, Freiburg, Germany). This community was assumed to be adapted 580	
to growth on leached soil DOM because it had grown in leached soil DOM for >48 hours. Once 
added to DOM, the inoculum was equivalent to 20% of total DOM leachate volume. After 4 h, 582	
one subsample from each replicate was filtered and preserved for DNA and RNA analysis (see 
below). After 5 d, subsamples were collected for DOM characterization with FT-ICR MS. 584	
Subsamples were also incubated separately over 5 d for respiration measurements (O2 
consumption and CO2 production), taken at 0 and 5 d time-points for cell counts, and taken at 5 d 586	
for bacterial production measured by leucine incorporation (Ward et al., 2017).  
Metatranscriptome methods  588	

Metatranscriptome sequences were generated from subsamples filtered onto 0.22-μm 
polyethersulfone (Supor) membrane filters (Pall Corp., New York, NY), preserved with 590	
RNAlaterTM RNA Stabilization Reagent (Qiagen, Hilden, Germany), and extracted and purified 
as described by Satinsky et al. (2015) with some modifications (details in Supplementary 592	
Information; SI). Ribosomal RNA removal, cDNA synthesis, and Illumina HiSeq sequencing 
were performed at the Joint Genome Institute (JGI) in Walnut Creek, CA, using either standard 594	
or low-input RNASeq protocols, both of which involve rRNA removal using the Ribo-Zero™ 
rRNA Removal Kit for Bacteria (Epicentre, Madison, WI), and cDNA library generation with 596	
Illumina Truseq Stranded RNA LT kit (Illumina, Inc., San Diego, CA) (details in SI). 

RNA sequences (average 9.2 x 107 per sample; Table S1) were trimmed and quality-filtered 598	
with the BBDuk algorithm from BBMap v38.57 (Bushnell, 2015), and assembled using 
MEGAHIT (Li et al., 2015) (details in SI). Coding sequences (CDS) were predicted with 600	
Prodigal (Hyatt et al., 2010), and annotated to the Kyoto Encyclopedia of Genes and Genomes 
database (KEGG) (Kanehisa et al., 2008) and a custom phylogenetic database (Annotations 602	
provided in Dataset S7), according to the JGI’s Standard Operating Procedure (Huntemann et al., 
2015). Quality-controlled reads were mapped to CDS using BBMap, and SAMtools was used to 604	
extract counts, CDS lengths, and alignment lengths from BBMap output (Li et al., 2009). On 
average, 82% of reads mapped to KEGG-annotated CDS sequences. Counts per annotation were 606	
normalized to transcripts per million (TPM) (Wagner et al., 2012) to reduce biases associated 
with library size, CDS length, and read alignment length, and to express all counts as a portion of 608	
one million. Collectively, this workflow assembled metatranscriptomic reads into CDS and 
functionally annotated the translated CDS. Prior work has demonstrated that metatranscriptomic 610	
data can be directly annotated (versus mapping reads to whole genome sequences) with high 
accuracy, even in the case of partial transcripts, and that this accuracy improves as the length of 612	
the annotated sequence increases (Nayfach et al., 2015). 

Several KEGG gene categories were curated for analysis, including an aromatic degradation 614	
category, defined as the KEGG pathway for aromatic degradation; an oxygenase category, 
defined as KEGG Orthologs (KOs) associated with Enzyme Commission (EC) numbers 1.13 or 616	
1.14; and a decarboxylase category, defined as KOs associated with EC number 4.1.1. Transcript 
abundances of genes within these categories were then normalized to total Metabolism 618	
expression (KEGG tier II category). Several ATP Binding Cassette (ABC) transporter categories 
were also created, including categories for the transport of sugars, polyols (i.e., alcohols), 620	
phosphorus, iron, other ions, and amino acids. The polyol category did not include transporters 
of phosphate-containing polyols; these transporters were instead included in the phosphorus 622	
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transporter category. Genes within these categories were normalized to total ABC Transporter 
expression (KEGG tier IV pathway). All curated categories are defined in Dataset S1. 624	

Differential gene expression (DGE) between treatments was determined using the exactTest 
function within edgeR based on the TPM-normalized KO dataset, after setting calcnormfactors 626	
to “none” to avoid default TMM (trimmed mean of M values) normalization by edgeR. We 
selected this setting because edgeR was developed with the assumption that most genes are not 628	
differentially expressed in typical model organisms (Robinson and Oshlack, 2010), which may 
be questionable for highly diverse (Weiss et al., 2017) and transcriptionally-responsive microbial 630	
communities.  

DGE was determined for TPM-normalized datasets of all KOs, ABC transporter KOs, and 632	
Metabolism KOs, the final of which included the curated groups aromatic degradation KOs, 
oxygenase KOs, and decarboxylase KOs. A KO was considered differentially expressed if the 634	
false discovery rate (FDR; Benjamini and Hochberg, 1995) value of p was < 0.05. Datasets of all 
KOs were also compared at a basic level by summing TPM values within KEGG gene categories 636	
and using paired t-tests in R (R Core Development Team, 2011) to determine significant 
differences in gene expression between treatments (α = 0.05). These analyses were conducted for 638	
the complete metatranscriptomic dataset, and for datasets binned into the major taxonomic 
groups Bacteroidetes, Betaproteobacteria, Gammaproteobacteria, and other taxa. 640	

Bacterial community composition was determined with PCR amplicon sequencing of 16S 
ribosomal RNA genes using DNA collected and extracted as previously described (Crump et al., 642	
2003, 2013). PCR amplicon sequencing followed the Earth Microbiome Project protocol 
(http://www.earthmicrobiome.org/emp-standard-protocols/16s) (details in SI). Samples were 644	
sequenced at Oregon State University’s Center for Genome Research and Biocomputing with 
Illumina MiSeq 2x150 bp paired-end reads. Amplicon sequences were analyzed using tools from 646	
the MOTHUR (v.1.32.1) (Schloss et al., 2009), QIIME (Caporaso et al., 2010), and USEARCH 
(v.7.0.1001_i86linux64) (Edgar, 2013) software packages (details in SI).  648	

Microbial cell concentrations, respiration, and bacterial production were quantified as 
described in Ward and Cory (2015). Briefly, cell concentrations were quantified at 0 and 5 d 650	
using epifluorescence microscopy (glutaraldehyde-fixed samples; Crump et al., 1998) 
(glutaraldehyde-fixed samples), and cells produced per day was calculated by subtracting initial 652	
cell concentrations from final cell concentrations, and then dividing this number by days of 
incubation. Respiration was measured over 5 d incubations as CO2 production and O2 654	
consumption relative to killed controls (1% HgCl2). Membrane inlet mass spectrometry was used 
to measure O2, and a DIC analyzer (Apollo Sci Tech, LLC, Newark, DE) was used to measure 656	
CO2. Bacterial production was determined on the fifth day of incubations by measuring 14C-
labeled L-leucine incorporation into cells in two subsamples and one TCA-killed control 658	
incubated for 2-4 h at 6 °C in the dark (Crump et al., 2003). 

16S rRNA gene amplicon sequences have been deposited in the NCBI Sequence Read 660	
Archive (SRA) under the bioproject accession number PRJNA356108 
(https://www.ncbi.nlm.nih.gov). Metatranscriptome sequences and assembled contigs are 662	
publicly available via IMG under GOLD study ID Gs0114298 (https://img.jgi.doe.gov). 
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Figure Legends 962	
Figure 1. Characterization of gene expression and taxa conducting expression in the two 
treatments. (A) MA-plot of the log2 fold-changes (logFC, y-axis) in the light and dark treatments 964	
versus the mean of normalized counts (transcripts per million; TPM) of each KEGG Ortholog 
(KO; i.e., gene; gray symbols). Colored symbols represent differentially expressed KOs (FDR < 966	
0.05) with greater expression in the dark treatment (blue symbols) and the light treatment 
(orange symbols). The horizontal lines (black) indicate when absolute log2FC values are ≥ 1 968	
between treatments. (B) Relative taxonomic composition of the whole community (16S 
amplicons) compared to the active community (metatranscriptomes; metaT) in light and dark 970	
treatments. 
 972	
Figure 2. Average chemical characteristics of DOM formulas that significantly increased or 
decreased in abundance at the 95% confidence interval after exposure to sunlight or incubation 974	
with microbes. Cross-comparison between the list of formulas in each category yielded the data 
in the Venn diagram (A) and the table (B). The table provides average molecular weight (MW); 976	
molar ratios of oxygen to carbon (O/C) and hydrogen to carbon (H/C) for each group of 
formulas; percent aromatic, tannin-like or lignin-like formulas; and the percent of formulas that 978	
contained N or S.  
 980	
Figure 3. Expression (summed transcripts per million) of KEGG tier II (A) and tier III (B-E) 
categories in the dark treatment (blue) and light treatment (orange). Asterisks (*) represent 982	
significant differences according to paired t-tests (p ≤ 0.05). Error bars indicate standard error of 
the mean. 984	
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Figure 4. Heatmap of differential gene expression comparing light and dark treatments. The 986	
heatmap portrays standard deviations from the mean (Z-scores) of transcript abundances for each 
of the three replicates of all differentially expressed (A) DOM metabolism KOs (i.e., genes) in 988	
aromatic degradation, oxygenase, and decarboxylase categories, and (B) ABC transporter KOs in 
sugar, polyol, phosphorus, sulfur, iron, other ions, and amino acid categories. Transcript 990	
abundances were calculated as percentages of total expression within the KEGG categories 
Metabolism (A) and ABC Transporters (B), which are KEGG tier II and IV categories, 992	
respectively, and then converted to Z-scores. An asterisk (*) indicates KOs that are shown twice 
because they fall into more than one gene category.  994	
 
Figure 5. Diagram of selected functions of genes that were more expressed by the microbial 996	
communities in the light treatment (top) and dark treatment (bottom). Differences between the 
two diagrams describe shifts in gene expression that resulted from photo-alteration of dissolved 998	
organic matter in the light treatment. 
 1000	
Figure 6. Microbial activity in the dark treatment (blue) and light treatment (orange), as 
measured by respiration (O2 consumption and CO2 production), new cell production measured 1002	
over the 5-day incubation, and bacterial (biomass) production rate measured at the end of 5 days. 
Error bars represent standard error of the mean. Measurements were lower in the light treatment, 1004	
but the differences between treatments for each measurement were not statistically significant 
(paired t-tests p > 0.05). Raw data for this figure were published previously in Ward et al., 1006	
(2017). 
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Supplementary Methods 
 
RNA extraction. RNA samples were filtered onto 0.22-μm polyethersulfone (Supor) membrane filters 
(Pall Corp.) and preserved with RNAlaterTM RNA Stabilization Reagent (Qiagen). RNA extraction and 
DNA removal was carried out as described by Satinsky et al. (Satinsky et al., 2015) with some 
modifications. This protocol modifies the RNeasy mini kit protocol (Qiagen) for RNA extraction and 
uses the TURBO DNA-free kit (Ambion) for DNA removal. Filters were removed from RNAlater, sliced 
into small pieces with a sterile scalpel, and combined with 2 mL sterilized zirconium beads, 10 mL 
Ambion denaturation solution, and 500 µl of Plant RNA Isolation Aid (Ambion) in a 50 mL conical tube. 
Tubes were agitated on a vortex adapter for 10 minutes on high and centrifuged for 1 minute at 3500 x g. 
Lysate was transferred to a 15 mL conical tube and centrifuged for 5 minutes at 3500 x g. Lysate was then 
washed twice with 3.5 mL of saturated phenol (pH 4.3), and once with 5 mL chloroform:isoamyl alcohol 
(24:1) in 50 mL conical tubes. Lysate was then combined with an equal volume of 100% ethanol, 
homogenized by passing it through a syringe needle 3-4 times, and then passed through a Direct-Zol RNA 
Kit column (Zymo Research) using a vacuum manifold. RNA was purified and resuspended following the 
Direct-Zol RNA Kit (Zymo Research) manufacturer’s instructions and eluted twice with 50 µL nuclease-
free water. DNA was removed using the TURBO DNA-free Kit (Ambion).  
 
rRNA removal, cDNA synthesis and Illumina HiSeq sequencing. Ribosomal RNA removal, cDNA 
synthesis and Illumina HiSeq sequencing were performed at the Joint Genome Institute in Walnut Creek, 
CA, using either standard or low-input RNASeq protocols. In both protocols, rRNA was removed from 1 
µg or 100 ng of total RNA (regular vs. low-input protocol, respectively) using the Ribo-Zero™ rRNA 
Removal Kit for Bacteria (Epicentre). Stranded cDNA libraries were generated using the Truseq Stranded 
RNA LT kit (Illumina). Resulting rRNA depleted-RNA was fragmented and reverse transcribed using 
random hexamers and SSII (Invitrogen) followed by second strand synthesis. The fragmented cDNA was 
treated with end-pair, A-tailing, adapter ligation, and 8 or 10 cycles of PCR (regular vs. low-input 
protocol, respectively). The quantified libraries were then multiplexed into pools of 4 or 3 libraries 
(regular vs. low-input protocol, respectively), and the pool was then prepared for sequencing on the 
Illumina HiSeq sequencing platform using a TruSeq paired-end cluster kit, v4, and Illumina’s cBot 
instrument to generate a clustered flowcell for sequencing. Sequencing of the flowcell was performed on 
the Illumina HiSeq2500 sequencer using HiSeq TruSeq SBS sequencing kits, v4, following a 2x150 
indexed run recipe. 
 
RNA sequence trimming and quality control. RNA sequences were trimmed, quality-controlled, and 
assembled by the Joint Genome Institute’s assembly team. Raw reads were first quality-trimmed to Q10 
and adapter-trimmed using BBDuk (Bushnell, 2015; options: ktrim=r, k=25, mink=12, tpe=t, tbo=t, 
qtrim=r, trimq=10, maq=10, maxns=3, minlen=50). Reads were then filtered for process artifacts using 
BBDuk (options: k=16). Ribosomal RNA reads were removed with BBMap (Bushnell, 2015) by mapping 
against a trimmed version of the Silva 119 database (options: fast=t minid=0.90 local=t). BBMap was 
also used to remove human reads. Metatranscriptomes were assembled with trimmed and quality-
controlled reads using MEGAHIT (Li et al., 2015) (version 0.2.0; options: --cpu-only -m 100e9 --k-max 
123 -l 155).  
 
Statistical analyses and metatranscriptome exploration tools. Pairwise similarities among 
metatranscriptomes were calculated using Bray-Curtis similarity values (Legendre and Legendre, 2012) 
and visualized with principle coordinates analysis using Primer-e software (www.primer-e.com). The 
difference between treatments was assessed with PERMANOVA. Alpha diversity of each KEGG 
annotated metatranscriptome was assessed by the Shannon index using the ‘diversity’ function in the R 
package “vegan” (v.2.5-5) (Oksanen et al. 2019). (Oksanen et al., 2019). MEtaGenome ANalyzer 
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(MEGAN) (Huson et al., 2011) and ShotMAP (Nayfach et al., 2015) software were used to explore 
abundances of transcripts within KEGG categories, pathways, and individual KOs. 
 
16S rRNA gene amplification. PCR 16S rRNA amplicon sequencing of extracted DNA followed the 
Earth Microbiome Project protocol (http://www.earthmicrobiome.org/emp-standard-protocols/16s/): 
Primers focused on the V4 region of the 16S rRNA gene (515F, GTGCCAGCMGCCGCGGTAA and 
806R, GGACTACHVGGGTWTCTAAT), and were combined at 250 nM with template DNA, sterile 
water and HotMasterMix (5Prime) under the following conditions: 94°C for 3 min; 30 cycles of 94°C for 
45 sec, 50°C for 60 sec, 72°C for 90 sec; 72°C for 10 min. Triplicate amplifications were pooled, 
quantified with Picogreen, combined in equimolar concentrations, and cleaned using the Ultraclean PCR 
Clean-Up Kit (MoBio).  
 
16S rRNA gene analysis. 16S amplicon sequences were paired using make.contigs (Schloss et al., 2009) 
from MOTHUR v. 1.32.1, and converted to QIIME format with split.groups from MOTHUR and 
add_qiime_labels.py from QIIME (Caporaso et al., 2010). Sequences were quality filtered with an 
expected error rate of 0.5, dereplicated (derep_fulllength), and abundance sorted (sortbysize) using 
USEARCH v.7.0.1001_i86linux64 (Edgar, 2013). Singleton sequences were removed in the latter step to 
prevent them from seeding clusters when clustering OTUs. Reads were then clustered (cluster_otus) at 
97% similarity and chimeras were removed via the de novo chimera check inherent in the cluster_otus in 
addition to reference-based chimera filtering (uchime_ref) with the Gold Database 
(www.genomesonline.org) as reference. Reads (including singletons) were subsequently mapped back to 
OTUs using UPARSE (usearch_global) and an OTU table was created. Taxonomy of the representative 
sequences was assigned in QIIME (assign_taxonomy.py) using the RDP classifier trained to the SILVA 
database (v.111 database clustered to 97% OTUs). OTUs classified as Eukaryote, Archaea, Chloroplast, 
Mitochondria, and Unknown were removed, and the OTU table was rarefied to 3800 sequences per 
sample, and beta-diversity calculated as Bray-Curtis similarity.  The raw OTU table is provided in Dataset 
S6. 
 
Taxonomic binning of KEGG annotated RNA transcripts. Dominant taxa from KEGG annotated 
metatranscriptomes were classified to the phylum or class level for analysis. Taxa that did not make 
dominant contributions to the metatranscriptomes were classified as “other.” 
 
DOM characterization. The percent of DOM that was mineralized to CO2 was determined by dividing 
the amount of CO2 produced by the initial amount of DOM, measured as dissolved organic carbon 
(DOC). The percent of DOM consumed or altered by sunlight was determined by adding mineralized 
DOM and partially oxidized DOM (Ward and Cory, 2015, 2016). Fourier transform ion cyclotron mass 
spectra (FT-ICR MS) were analyzed according to Ward & Cory (Ward and Cory, 2016). Formulas were 
classified as aromatic, aliphatic, tannin-like, lignin-like or highly-oxidized on the basis of their chemical 
composition  (Ward and Cory, 2015, 2016; Ward et al., 2017). Formulas were categorized as photo-
degraded or photo-produced if their intensity decreased or increased, respectively, after sunlight exposure, 
and categorized as bio-degraded if their intensity decreased after the microbial incubation period. 95% 
confidence intervals calculated across experimental replicates were used to determine if a change in 
formula intensity due to photo-degradation, photo-production, or bio-degradation was significantly greater 
than zero (Ward and Cory, 2015; Ward et al., 2017). Quantification of functional groups such as carboxyl 
carbon was determined from 13C NMR spectroscopy following (Ward and Cory, 2016).  
 
Additional explanation of DOM characterization for those not familiar with FT-ICR MS. The 
classification of DOM chemical composition used in this experiment is described in detail in (Ward and 
Cory, 2015, 2016; Ward et al., 2017), and is based on literature conventions that have been described in 
detail including in many reviews on this topic (Sleighter et al., 2008; Hockaday et al., 2009; Stubbins et 
al., 2010). Briefly, every ion detected by FT-ICR MS with a unique mass is assigned a formula (e.g., a 
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mass of 332.30474 Da is assigned a formula of C17H16O7). Formulas are then grouped into broad 
categories of biomolecules such as tannins or lignin by comparing the atomic ratio of each formula (e.g., 
H/C, O/C, N/C) with the atomic ratios of major biomolecules expected to contribute to the DOM pool. 
DOM formulas that overlap with the range of atomic ratios of major biomolecules, such as tannins and 
lignin, share chemical properties such as number of double bonds, degree of saturation, and oxidization 
state, with these biomolecules. Whether a formula is aromatic or aliphatic is unambiguously determined 
based on the number of C, H, O, N, S and P in the formula and the double bond equivalence (DBE) of 
each formula (Koch and Dittmar, 2006). This sharing of chemical properties between DOM formulas and 
major groups of organic molecules forms the expectations for DOM compounds as being more labile or 
more recalcitrant to degradation.   
 
 
Table S1. RNA sequencing statistics for the six metatranscriptomes. 
 

IMG Genome ID 3300005640 3300005644 3300006426 3300005650 3300006423 3300005646 

Crump Lab number 2013-052 2013-053 2013-054 2013-055 2013-056 2013-057 

Treatment light dark light dark light dark 

Replicate 1 1 2 2 3 3 

Total number of reads 73,629,230 78,208,760 120,499,524 121,268,126 79,264,904 79,188,270 

Number of contigs 610,923 796,077 960,066 1,446,774 493,929 992,332 

RNA genes 15,039 13,957 95,512 19,738 77,669 12,863 

Protein genes (CDS) 703,933 926,550 1,030,181 1,661,625 500,885 1,151,205 

Genes annotated to KO 354,037 427,150 488,296 721,583 208,627 527,077 

Reads mapped to CDS 62,465,501  66,390,431 95,739,719 98,052,903 62,500,740 64,198,959 

Reads mapped to annotated CDS 30,280,392 26,417,344 43,034,810 39,872,640 19,766,388 29,593,071 

Reads mapped to prokaryotic CDS 30,174,590 26,375,653 42,720,850 39,793,557 19,517,390 29,541,901 
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Figure S1. A boxplot (left) representing Shannon alpha diversity index of KEGG annotated 
metatranscriptomes for each treatment (paired t-test, P = 0.033), based on raw gene counts. Boxes 
represent the interquartile range (IQR); the line inside each box represents the median. Upper whiskers on 
boxes represent the smaller of the maximum value or quartile 3 + (1.5 x IQR). Lower whiskers on boxes 
represent the larger of the minimum value or quartile 1- (1.5 x IQR). Principle coordinates diagram (right) 
based on Bray-Curtis similarity of TPM normalized KEGG annotated metatranscriptomes. 
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Figure S2. Relative taxonomic composition of the whole community (16S amplicons) in the inoculum 
and in all treatment replicates at 4 hours and 5 days incubation. 
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Figure S3. Expression (summed TPM) of KEGG tier II (A) and tier III (B-E) categories in the 
dark treatment (blue) and light treatment (orange) for transcripts classified to Bacteroidetes, 
Gammaproteobacteria, Betaproteobacteria, and other bacteria. Asterisks represent significant 
differences according to paired t-tests (p ≤ 0.05). Error bars indicate standard error of the mean.  
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Figure S4. Relative taxonomic composition of expressed genes belonging to the Ribosome KEGG 
pathway in all treatment replicates at 4 hours. 
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Figure S5.  Percent of dissolved organic carbon (DOC) oxidized to CO2 by sunlight and 
microbes or converted to microbial biomass over 5 days of incubation in the two treatments.  
Error bars indicate standard error of the mean. 
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Figure S6. Schematic of experimental design. 
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Dataset S1 
Excel spreadsheet providing transcript abundances, expressed as number of reads mapped (Rg) and as 
transcripts per million (TPM), for genes annotated to the KEGG database. The first tab includes all 
KEGG Orthologs (KOs) found in samples. The second tab includes all KOs categorized as KEGG tier IV 
ABC Transporters (ABC transporter genes). The third tab includes all KOs categorized as KEGG tier II 
Metabolism genes. The fourth, fifth, and sixth tabs include subsets of the Metabolism category and 
defined as aromatic degradation genes, oxygenase genes, decarboxylase genes, respectively. Statistics 
from EdgeR analysis using TPM normalization are provided including log2 fold change (logFC) between 
treatments, the average log2 counts per million (logCPM), p-value, and false discovery rate (FDR). 
 
Dataset S2 
Excel spreadsheet providing transcript abundances, expressed as number of reads mapped (Rg) and as 
transcripts per million (TPM), for genes annotated to the KEGG database and taxonomically classified to 
Bacteroidetes. The first tab includes all KEGG Orthologs (KOs) found in samples. The second tab 
includes all KOs categorized as KEGG tier IV ABC Transporters (ABC transporter genes). The third tab 
includes all KOs categorized as KEGG tier II Metabolism genes. The fourth, fifth, and sixth tabs include 
subsets of the Metabolism category defined as aromatic degradation genes, oxygenase genes, 
decarboxylase genes, respectively. Statistics from EdgeR analysis using TPM normalization are provided 
including log2 fold change (logFC) between treatments, the average log2 counts per million (logCPM), p-
value, and false discovery rate (FDR). 
 
Dataset S3 
Excel spreadsheet providing transcript abundances, expressed as number of reads mapped (Rg) and as 
transcripts per million (TPM), for genes annotated to the KEGG database and taxonomically classified to 
Gammaproteobacteria. The first tab includes all KEGG Orthologs (KOs) found in samples. The second 
tab includes all KOs categorized as KEGG tier IV ABC Transporters (ABC transporter genes). The third 
tab includes all KOs categorized as KEGG tier II Metabolism genes. The fourth, fifth, and sixth tabs 
include subsets of the Metabolism category defined as aromatic degradation genes, oxygenase genes, 
decarboxylase genes, respectively. Statistics from EdgeR analysis using TPM normalization are provided 
including log2 fold change (logFC) between treatments, the average log2 counts per million (logCPM), p-
value, and false discovery rate (FDR). 
 
Dataset S4 
Excel spreadsheet providing transcript abundances, expressed as number of reads mapped (Rg) and as 
transcripts per million (TPM), for genes annotated to the KEGG database and taxonomically classified to 
Betaproteobacteria. The first tab includes all KEGG Orthologs (KOs) found in samples. The second tab 
includes all KOs categorized as KEGG tier IV ABC Transporters (ABC transporter genes). The third tab 
includes all KOs categorized as KEGG tier II Metabolism genes. The fourth, fifth, and sixth tabs include 
subsets of the Metabolism category defined as aromatic degradation genes, oxygenase genes, 
decarboxylase genes, respectively. Statistics from EdgeR analysis using TPM normalization are provided 
including log2 fold change (logFC) between treatments, the average log2 counts per million (logCPM), p-
value, and false discovery rate (FDR). 
 
Dataset S5 
Excel spreadsheet providing transcript abundances, expressed as number of reads mapped (Rg) and as 
transcripts per million (TPM), for genes annotated to the KEGG database and taxonomically classified to 
organisms other than Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. The first tab includes 
all KEGG Orthologs (KOs) found in samples. The second tab includes all KOs categorized as KEGG tier 
IV ABC Transporters (ABC transporter genes). The third tab includes all KOs categorized as KEGG tier 
II Metabolism genes. The fourth, fifth, and sixth tabs include subsets of the Metabolism category defined 
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as aromatic degradation genes, oxygenase genes, decarboxylase genes, respectively. Statistics from edgeR 
analysis using TPM normalization are provided including log2 fold change (logFC) between treatments, 
the average log2 counts per million (logCPM), p-value, and false discovery rate (FDR). 
 
Dataset S6 
Excel spreadsheet providing the raw 16S rRNA gene amplicon OTU table, and a list of taxonomic 
identities and TPM for all gene transcripts identified in metatranscriptomes. The metadata tab provides 
information about each sample. 
 
Dataset S7 
Tab-delimited file of the taxonomic (phylodist) and KEGG (KO) annotations for each CDS identified in 
this study. 
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