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Abstract

Consider an unobservable M |G|1 queue with preemptive-resume scheduling and
two priority classes. Customers are strategic and may join the premium class for
a fee. We analyze the resulting equilibrium outcomes, equilibrium stability, and
social welfare. We find that for service distributions with coefficient of variation
greater than 1, there exists a unique and stable mixed equilibrium at low loads.
We also establish a tight bound on the price of anarchy, which is 4/3.
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1. Introduction

Queuing models based on priority scheduling have been applied to a variety
of contexts. These include transmission of multimedia traffic over a network
[1], management of hospital beds and ambulances [2], and managing the smart
grid [3]. All of these examples concern themselves with non-preemptive models.
Yet, many other important applications, such as high performance computing
[4] and scheduling of cloud containers [5], make use of preemption. As far as
we are aware, however, there are relatively few studies of strategic customer
behavior in preemptive queues.

While equilibria and social welfare within preemptive priority queues are
considered in works such as [6, pp 83-85] [7] [8], the analyses either implicitly
or explicitly assume that the M |M |1 regime is in effect. In particular, under a
model in which customers may pay a fee to join the higher priority class such
as in [6, pp 83-85], it is asserted that a mixed equilibrium state will never be
stable, partly because if one exists it will not be the sole possible equilibrium
state. In our paper, we show that this result does not extend to general service
distributions.
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Specifically, we consider an M |G|1 queue with preemptive-resume schedul-
ing discipline (i.e., preempted jobs resume from the point where they are in-
terrupted), and two priority classes. Customers have the option on entering
the queue to purchase access to a premium class, or otherwise remain in the
ordinary class.

We use the standard notation λ to denote the mean arrival rate, µ for the
mean service rate, and ρ = λ/µ for the traffic load. In addition, we use C to
denote the cost to join the premium class, φ to denote the fraction of customers
joining the premium class, and define a variance parameter K such that the
second moment of service equals K/µ2.

Under the model of an unobservable queue [6, pp 22, 53], we analyze the
equilibrium outcomes, stability of the equilibria, and social welfare of the system.
We show that the results are influenced both by the traffic load and the second
moment of the service distribution. In particular, we show that a stable mixed
equilibrium exists at sufficient low traffic load if K > 2 (i.e., the coefficient of
variation is greater than 1). We further show that the price of anarchy of the
queue is bounded by 4/3. These results stand in sharp contrast to the non-
preemptive case where K bears no impact on the equilibrium outcomes and the
price of anarchy is always 1.

2. Equilibrium Analysis

We are interested in the existence and stability of equilibria. In this model,
the provider fixes the cost C to join the premium class prior to admitting cus-
tomers. Thus, equilibria states are characterized by the fraction φ of customers
who join the premium class. This results in three possible equilibria types:

1. Everyone joins the premium class, i.e. φ = 1.

2. No one joins the premium class, i.e. φ = 0.

3. Some join the premium class, i.e. φ ∈ (0, 1).

Equilibria of the first two types are pure strategies, as all customers make the
same decision. Equilibria of the third type are mixed strategies, as a customer
who is indifferent will join the premium class with probability φ and remain in
the ordinary class with probability 1 − φ.

To show existence of possible equilibria, we must define where the customer
will be indifferent between their options. As the customer chooses between
the premium or ordinary class, they are indifferent if the costs of joining each
class are identical. By assumption, customers are statistically identical, thus
we need only consider the cost of waiting in the queue. By extension, WLOG
we may assume a customer’s cost of waiting in the queue equals the time spent
waiting as the customers will have identical value on their time spent waiting.
Letting E[Wp] and E[Wo] be the expected wait time in the queue as a member
of the premium and ordinary classes respectively, a customer is indifferent if the
following holds:

E[Wp] + C = E[Wo].
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As the wait times depend on the fraction of customers in each class, we can relate
a equilibrium strategy φ ∈ [0, 1] to the cost which leads to that equilibrium by
applying the formula for expected wait time in an M |G|1 priority-resume (PR)
queue: [9, p.175]:

C(φ) , E[Wo]− E[Wp] =
Kρ+ (2−K)φρ(1− ρ)

2µ(1− ρ)(1− φρ)
. (1)

We first evaluate the behavior of C(φ) as φ increases from 0 to 1, to show
how the relative costs of waiting changes as more customers attempt to join the
premium class.

Lemma 1. The function C(φ), defined in Equation (1), behaves as follows with
respect to φ:

1. If K > 2 and ρ < (K − 2)/(2K − 2), C(φ) is monotone decreasing.

2. Else, if K > 2 and ρ = (K − 2)/(2K − 2), C(φ) is constant valued.

3. Otherwise, C(φ) is monotone increasing.

The proof is obtained by computing the derivative C′(φ) and determining the
conditions for which it is positive, negative, or zero. It turns out that the sign
of the derivative is determined by the sign of its numerator, which is constant
with respect to φ. Therefore, C(φ) must be monotone or constant, the exact
behavior depending on the values of K and ρ, and the rest follows.

As C(φ) must be monotone or constant, min C(φ) and max C(φ) will be well
defined quantities. Further, each of these will be equal to either C(0) or C(1)
depending on the exact behavior of C(φ). If C(φ) is monotone, there is a unique
solution to C(φ) = C, which is

φe =
2µC(1− ρ)−Kρ

ρ(1− ρ)(2µC + 2−K)
. (2)

Thus, given a cost C, we determine the existence of possible equilibria by
relating C to C(φ). When evaluating the stability of any such possible equilibria,
we apply the Evolutionary Stable Strategy definition from [10]:

Definition 1. A strategy adopted by a population which cannot be invaded by
an initially rare strategy is said to be an Evolutionary Stable Strategy (ESS).
That is, if strategy φ∗ is ESS, then no other equilibrium strategy φ∗∗ exists such
that φ∗∗ is a best response to φ∗.

We next present the main results of this section:

Theorem 1. The equilibria of a two-class M |G|1-PR queue have the following
structure:

1. If C < min C(φ), everyone joins is the unique equilibrium.

2. If C > max C(φ), no one joins is the unique equilibrium.
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3. If min C(φ) < C < max C(φ) and C(φ) is monotone decreasing, a some
join equilibirum with φe customers in the premium class is the unique
equilibrium.

4. If min C(φ) < C < max C(φ) and C(φ) is monotone increasing, the every-
one joins equilibrium, no one joins equilibirum, and some join equilibrium
with φe customers are all possible equilibria.

Pure equilbibria are always ESS. The mixed equilibrium is ESS if and only if it
is unique.

Corollary 1. By Lemma 1 and Theorem 1, a unique mixed equilibrium exists
if and only if K > 2 and ρ < (K − 2)/(2K − 2). Furthermore, this equlibrium
is ESS.

We next sketch the proof of Theorem 1. The first two cases follow trivially
from the fact that if C is smaller than the minimum (or respectively, greater
than the maximum) joining the premium class will cost less (resp., more) than
remaining in the ordinary class regardless of how many customers are in the
premium class. Therefore, the only possible equilibria is the everyone joins
(resp., no one joins) equilibrium.

In the third case, φe being a possible equilibrium follows by definition. That
no others are possible follows from C(φ) being monotone decreasing: if more
customers join the premium class than under equilibrium, then it is cheaper to
remain in the ordinary class, and vice versa. Hence, a deviation from φe has
a best response of pushing the system back to φe, and no other equilibrium is
possible.

In the fourth case, φe is again a possible equilibrium state by definition.
However, because C(φ) is monotone increasing, if more customers join the pre-
mium class than under equilibrium, then it is cheaper to join the premium class.
The reverse is also true if more customers join the ordinary class than under
equilibrium. This results in the system reaching a pure state if deviating from
φe. These pure states are also possible equilibria as once in a pure state, it costs
more to attempt to join the opposite class of what all other customers have
chosen.

The ESS criteria follows as a corollary from the previous assertions. In the
first three cases, deviating from the equilibrium is never a best response. In the
fourth case, pure equilibria are possible by deviating from the mixed equilibrium.

3. Social Welfare Analysis

We now shift our analysis to the social welfare and attendant price of an-
archy [11]. Social welfare is defined in terms of the utilities of the customers
and the provider. However, here customers are statistically identical, and the
preemption policy is work-conserving. Further, the cost C to join the premium
class is a transfer from customers to the provider. As a result, the social welfare
only varies based on the costs of waiting in the queue for service. Thus we
maximize the social benefit by minimizing overall wait times. We derive the

4



expected average wait time E[W ] from the expected wait times in each priority
class as follows:

E[W ] =
ρ (K − 2φρ+ (2−K)φ(1− φ(1− ρ)))

2µ(1− ρ)(1− φρ)
. (3)

Lemma 2. Let φ∗ be defined as follows:

φ∗ ,
1−
√

1− ρ
ρ

. (4)

In this model, the socially optimal states depend on the value of K as follows:

1. If K < 2, the socially optimal states are φ = 0 and φ = 1;
2. If K = 2, all states φ ∈ [0, 1] are socially optimal;
3. If K > 2, the socially optimal state is φ = φ∗.

To prove this, we compute the derivative of E[W ] with respect to φ. In
doing so, we find that the sign of the derivative flips when φ = φ∗. If K < 2,
the sign of the derivative flips from positive to negative at φ∗, thus φ∗ results
in the maximum possible wait time, and conversely φ = 0 and φ = 1 result in
the minimum wait time. If K = 2, then the derivative is 0 for all φ, thus the
wait time is constant with respect to φ and all states are optimal by default.
If K > 2, the sign of the derivative flips from negative to positive at φ∗ and
therefore φ∗ results in the minimum possible wait time.

As K is defined in terms of the second moment, this means that if variance
in service is less than that of exponential, the social welfare is maximized when
all customers join the same class. If variance is greater than that of exponential,
the social welfare is maximized when a specific fraction φ∗ of customers join the
premium class. If the service distribution is exponential however, then it does
not matter how many customers join the premium class, as the choice to join
or not does not impact the overall welfare. This can ultimately be shown to
result from the relation between the expected time of service of a preempting
customer (1/µ) and the expected residual time of service of the preempted
customer (K/(2µ)).

3.1. Price of Anarchy

The Price of Anarchy (PoA) is a measure of the loss of optimality resulting
from a lack of cooperation. This is defined by comparing the socially optimal
state to the equilibrium state which leads to the highest social cost [11]. As
the social welfare depends solely on E[W ], we define the PoA for our system in
terms of the costs of waiting:

Definition 2. Let E ⊂ [0, 1] be the set of possible equilibria for fixed cost C and
traffic load ρ. The Price of Anarchy (PoA) is defined as the following ratio:

PoA =

max
φ∈E

E[W ]

min
φ∈[0,1]

E[W ]
.
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As possible equilibria and the socially optimal state depend on K, ρ, and C,
so must the PoA. As a result, we aim to show that an upper bound exists on
the PoA, such that there is a clearly defined worst case scenario which cannot
be exceeded.

Theorem 2. The price of anarchy of a two-class M |G|1-PR queue is bounded
from above by 4/3.

To prove that such an upper bound exists, we assume that given arbitrary
but fixed ρ and K, C is set such that the state φ which leads to the largest
possible average wait time E[W ] is in the set of possible equilibria. Per Lemma
2, we note that if K < 2, the socially optimal states are φ ∈ {0, 1}. Using the
proof of the lemma, it is straightforward to show that φ∗ is the corresponding
worst-case state. This results in

PoA =
(2−K)

(
2− 2(1− ρ)

3
2 − 3ρ

)
Kρ2

+
2

K
. (5)

If K = 2, then all states are socially optimal, and thus so are all possible
equilibria states. It then follows that if K = 2, the PoA is equal to 1, regardless
of the value of ρ.

If K > 2, then the socially optimal state is φ = φ∗, and the worst case state
is φ ∈ {0, 1}. Thus, we have a PoA which is the reciprocal of expression in
Equation (5):

PoA =
Kρ2

(2−K)(2− 2(1− ρ)
3
2 − 3ρ) + 2ρ2

. (6)

Thus, to determine an upper bound on the price of anarchy, we determine
the suprema of Equations (5) and (6) given ρ ∈ (0, 1), and the respective bounds
on K for each equation. We observe that Equation (5) will be maximized when
K = 1; evaluating with respect to ρ we find that the PoA when K < 2 is
bounded from above by 5/4, as ρ approaches 0. Evaluating Equation (6), we
find that it too will be maximized as ρ approaches 0, resulting in a bound of

PoA =
4K

2 + 3K
.

And asK approaches infinity, this quantity is bounded from above by 4/3. Thus,
regardless of the values of K, C, or ρ, the price of anarchy is never greater than
4/3. This bound is reached as ρ approaches 0. Thus, low traffic loads lead to
the greatest cost from a lack of cooperation. Conversely, as ρ → 1, the PoA
approaches 1.

4. Comparison to the Non-Preemptive (NP) Queue

We now briefly contrast the results to the situation where customers are
offered the ability to purchase access to the premium class, but no customers
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may be preempted while in service. Based upon the formula for waiting in an
M |G|1 queue with no preemption [9, p.164], one can derive the resulting cost
function C(φ) and expected average wait time E[W ] as follows:

C(φ) =
Kρ2

2µ(1− ρ)(1− φρ)
,

E[W ] =
Kρ

2µ(1− ρ)
.

We immediately note that E[W ] is constant with respect to φ, thus the
average wait time does not depend on the number of customers in each class.
This results in all states being socially optimal and the PoA = 1 by default,
regardless of which equilibria are possible. Evaluating C(φ), we find that in a
non-preemptive queue, the following equilibria structure prevails:

• If C < C(0), everyone joins is the only possible equilibrium.

• If C > C(1), no one joins is the only possible equilibrium.

• If C(0) < C < C(1), there are three possible equilibria: everyone joins, no
one joins, and a some join with φ = 1/ρ− (Kρ)/(2µC(1− ρ)).

The pure equilibria are ESS, while the some join will never be ESS. Thus,
in contrast to the preemptive queue, customers will tend towards all joining
the same class no matter what the service variance or traffic load are. Indeed,
the service variance will only impact the cost that can be charged to join the
premium class, but it has no impact on the social welfare.

5. Conclusions

In this paper we analyzed the equilibrium outcomes of a two-class M |G|1-
PR queue where customers can purchase access to the higher priority class
for a fee. We find that if the variance in service is greater than that of the
exponential distribution and the traffic load is sufficiently low, then there exist
conditions under which a stable mixed equilibrium is possible. This is not
possible otherwise (e.g., for exponential and deterministic service times).

We also conducted a social welfare analysis and showed that a mixed state is
socially optimal if service variance is sufficiently high (i.e., K > 2). Thus, it is
not the case generally that the system is always best off when all customers join
one class or the other, as might be observed when looking at more deterministic
systems. In any event, the resulting price of anarchy is bounded by 4/3. As the
traffic load increases to 1, the price of anarchy tends to 1. Finally, we observe
that the social welfare in the M/G/1-PR queue can either be smaller or larger
that of the M/G/1-NP queue. However, the former case is likelier because only
in the M/G/1-PR queue a mixed equilibrium is stable, and this can only be
reached when K > 2 (i.e., when a mixed equilibrium leads to a higher social
welfare than the pure equilibria).
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