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Abstract

Magnetic reconnection is often invoked to explain the nonthermal radiation of relativistic outflows, including jets of
active galactic nuclei (AGNs). Motivated by the largely unknown plasma composition of AGN jets, we study
reconnection in the unexplored regime of electron–positron–proton (pair-proton) plasmas with large-scale two-
dimensional particle-in-cell simulations. We cover a wide range of pair multiplicities (lepton-to-proton number ratio
κ=1–199) for different values of the all-species plasma magnetization (σ=1, 3, and 10) and electron temperature
( –Q º =kT m c 0.1 100e e e

2 ). We focus on the dependence of the post-reconnection energy partition and lepton
energy spectra on the hot pair plasma magnetization se h, (i.e., the ratio of magnetic to pair enthalpy densities). We
find that the post-reconnection energy is shared roughly equally between magnetic fields, pairs, and protons for
se h, 3. We empirically find that the mean lepton Lorentz factor in the post-reconnection region depends on σ, Θe,
and se h, as ( )( )g s sá - ñ » + Q +1 1 4 1 30e e e h, , for σ�1. The high-energy part of the post-reconnection lepton
energy distributions can be described by a power law, whose slope is mainly controlled by se h, for κ3–6, with
harder power laws obtained for higher magnetizations. We finally show that reconnection in pair-proton plasmas with
multiplicities κ∼1–20, magnetizations σ∼1–10, and temperatures Θe∼1–10 results in particle power-law slopes
and average electron Lorentz factors that are consistent with those inferred in leptonic models of AGN jet emission.
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1. Introduction

A fundamental question in the physics of astrophysical
relativistic outflows is how their energy, which is initially
carried in the form of Poynting flux, is first transferred to the
plasma and then radiated away to power the observed emission.
Magnetic field dissipation via reconnection has been often
invoked to explain the nonthermal signatures of pulsar wind
nebulae (PWNe; e.g., Lyubarsky & Kirk 2001; Pétri &
Lyubarsky 2007; Sironi & Spitkovsky 2011a; Cerutti et al.
2012; Philippov & Spitkovsky 2014; see Sironi & Cerutti 2017
for a recent review), gamma-ray bursts (GRBs; e.g., Thompson
1994; Usov 1994; Spruit et al. 2001; Drenkhahn & Spruit 2002;
Lyutikov & Blandford 2003; Giannios 2008; Beniamini &
Giannios 2017), and jets from active galactic nuclei (AGNs;
e.g., Romanova & Lovelace 1992; Giannios et al. 2009, 2010;
Giannios 2013; Petropoulou et al. 2016; Nalewajko et al. 2018;
Christie et al. 2019).

In most relativistic astrophysical outflows, reconnection
proceeds in the so-called relativistic regime in which the Alfvén
velocity of the plasma approaches the speed of light (or
equivalently, the plasma magnetization, defined as the ratio of
magnetic to particle enthalpy densities, is σ1). The physics of
reconnection can only be captured from first principles by means
of fully kinetic particle-in-cell (PIC) simulations. Extensive
numerical work on relativistic reconnection of electron–positron
(pair) plasmas has been performed in two dimensions (e.g.,
Zenitani & Hoshino 2001, 2007; Daughton & Karimabadi 2007;
Cerutti et al. 2012; Sironi & Spitkovsky 2014; Guo et al.
2014, 2015; Liu et al. 2015; Nalewajko et al. 2015; Sironi et al.
2015, 2016; Werner et al. 2016; Hakobyan et al. 2019; Kagan
et al. 2018; Petropoulou & Sironi 2018) and in three dimensions

(e.g., Zenitani & Hoshino 2005, 2008; Liu et al. 2011; Sironi &
Spitkovsky 2011a, 2012; Kagan et al. 2013; Cerutti et al. 2014;
Sironi & Spitkovsky 2014; Guo et al. 2015; Werner &
Uzdensky 2017), whereas the study of transrelativistic and
relativistic reconnection in two-dimensional electron–proton
plasmas became possible more recently (e.g., Melzani et al.
2014; Sironi et al. 2015; Guo et al. 2016; Rowan et al. 2017;
Ball et al. 2018; Werner et al. 2018).
In contrast to other astrophysical outflows, such as PWNe,

the plasma composition of astrophysical jets is largely
unknown. On the one hand, there is no direct way of probing
the plasma composition in jets, and on the other hand, there are
large theoretical uncertainties about the jet baryon loading
mechanisms (for recent kinetic simulations of black hole jet
launching, see Parfrey et al. (2019)). As a result, any attempts
to infer the jet plasma composition rely on the modeling of the
emitted radiation (e.g., Ghisellini 2012; Ghisellini et al. 2014),
which, however, suffers from degeneracies that are inherent in
the radiative models. For AGN jets, in particular, both pair and
electron–proton compositions have been discussed in the
literature. A pure pair composition in powerful AGN jets
(e.g., in flat spectrum radio quasars; henceforth FSRQs) is
disfavored because bulk Comptonization of the ambient low-
energy photons by the pairs would result in luminous spectral
features in X-rays that are not observed (e.g., Sikora et al.
1997; Sikora & Madejski 2000; cf., Kammoun et al. 2018).
This argument does not apply to less powerful jets (such as BL
Lac type sources), because the ambient radiation fields are
weak or even absent, and a pure pair plasma cannot be
excluded in this case. If jets are devoid of pairs, i.e., they are
composed of electron–proton plasmas, the inferred power
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(which is dominated by the kinetic power of protons) is large,
usually exceeding the accretion power (e.g., Ghisellini et al.
2014; Madejski et al. 2016). A mixed composition with tens of
pairs per proton may be more realistic, as it can reduce the
inferred jet power by a factor equal to the lepton-to-proton
number ratio; the so-called pair multiplicity (e.g., Ghisellini
et al. 2010; Ghisellini 2012; Madejski et al. 2016). The
presence of pairs in the dissipation regions of jets is also
expected to affect the average energy per lepton available for
particle heating, as well as the efficiency with which
nonthermal particles are accelerated.

The goal of this work is to study the general properties of
relativistic reconnection in the unexplored regime of plasmas
with mixed composition. We focus on electron–positron–
proton (or pair-proton) plasmas, as they bridge the gap between
the pair plasma and electron–proton plasma cases that have
been extensively studied in the past. We perform a suite of
large-scale 2D PIC simulations using the realistic proton-to-
electron mass ratio (mi/me=1836) while varying three
physical parameters, namely the plasma magnetization
(σ=1, 3, and 10), the plasma temperature (Q º =kT m ce e e

2

-0.1 100 with equal electron and proton temperatures), and the
number of pairs per proton (κ=1–199). In this study, even in
cases where the pairs dominate by number, the plasma rest-mass
energy is governed by protons. We study, for the first time, the
inflows and outflows of plasma in the reconnection region, the
energy partition between pairs, protons, and magnetic fields, and
the energy distributions of accelerated particles as a function of
the pair multiplicity.

This paper is organized as follows. In Section 2, we describe
the setup of our simulations. In Section 3, we present the
structure of the reconnection layer for different pair multi-
plicities. In Section 4, we focus on the inflow and outflow
motions of the plasma. In Section 5, we discuss the energy
partition between magnetic fields and different particle species in
the reconnection region. In Section 6, we focus on the evolution
of the particle energy spectrum, illustrating how the lepton
power-law slope depends on the pair multiplicity. In Section 7,
we discuss the astrophysical implications of our findings. We
conclude in Section 8, with a summary of our results. Readers
interested primarily in the application of our results to jetted
AGNs can move directly to Section 7.

2. Numerical Setup

We use the three-dimensional electromagnetic PIC code
TRISTAN-MP (Buneman 1993; Spitkovsky 2005) to study
magnetic reconnection in pair-proton plasmas. We explore
antiparallel reconnection, i.e., we set the guide field perpend-
icular to the alternating fields to be zero. The reconnection layer
is initialized as a Harris sheet of length L, with the magnetic
field ( ) ˆp= - DB xB ytanh 20 reversing at y=0 over a
thickness Δ. Here, we set Δ=80 c/ωp, where ωp is the all-
species plasma frequency defined in Equation (11), and choose
a spatial resolution of c/ωp=3 computational cells.

The field strength B0 is defined through the (total) plasma
magnetization s p= B h40

2 , where h is the enthalpy density of
the unreconnected plasma including all species (see
Equation (4)). The Alfvén speed is related to the magnetization
as ( )s s= +v c 1A . We focus on the regime of relativistic
reconnection (i.e., vA/c∼1) and explore cases with σ=1, 3,
and 10 (see Table 1). The proton and pair plasmas outside the
layer are initialized with the same temperature (Ti=Te). We

consider cases where the pairs are initially relativistically hot
(Q º =kT m c 1e e e

2 , 10, and 100), but for completeness,
we study also a few cases with initially colder pairs (Θe=
0.1). In all simulations, the protons are nonrelativistic (Q ºi

= QkT m c m m 1i i e e i
2 ).

Let Nppc denote the total number of computational particles
per cell, which is equally partitioned between negatively and
positively charged particles. If q=2/(κ+1) denotes the

Table 1
Simulation Parameters

Run σ Θe κ se h,
a L/rLe L/rLi Tmax

b

A0* 1 1 199 2.9 2706.5 13.6 1.8
A1 1 1 66 6.9 1769.0 26.9 1.8
A2 1 1 19 21.4 1004.7 52.9 1.8
A3 1 1 6 69.3 273.2 48.2 6.1c

A4* 1 1 6 69.3 557.9 98.4 1.7
A5 1 1 6 69.3 1195.4 210.9 1.3
A6 1 1 3 130.0 398.9 133.0 1.7
A7 1 1 1.2 317.6 257.7 206.6 1.7
A8 1 1 1 387.9 245.2 245.2 5.5
A9 1 1 199 2.9 5799.8 29.1 1.5

B0 1 10 199 1.2 4099.7 20.6 2.0
B1 1 10 66 1.7 3492.7 53.2 1.9
B2 1 10 19 3.4 2466.1 129.8 1.9
B3 1 10 6 9.0 1510.7 266.6 1.8
B4 1 10 3 16.1 1104.6 368.2 1.8
B5 1 10 1 46.4 688.2 688.2 3.1

C1 3 1 199 8.8 1562.6 7.85 1.7
C2 3 1 66 20.7 1021.3 15.5 1.6
C3 3 1 19 64.1 580.1 30.5 1.5
C4* 3 1 6 207.8 322.1 56.8 3.1
C5 3 1 6 207.8 690.2 121.8 1.3
C6 3 1 1 1163.8 141.5 141.5 3.9c

D1 3 10 66 5.1 1975.4 30.1 1.2
D2 3 10 19 10.2 1423.8 74.9 1.7
D3 3 10 6 27.1 872.2 153.9 1.5
D4 3 10 1 139.3 397.3 397.3 3.9

E1 10 1 199 29.4 838.4 4.2 1.5
E2 10 1 19 213.6 311.2 16.4 1.4
E3* 10 1 1 3879.2 77.5 77.5 3.9c

E4 10 1 1 3879.2 229.8 229.8 1.0

F1 10 10 199 12.9 1296.4 6.5 1.6
F2 10 10 6 90.2 468.0 82.6 1.5
F3 10 10 1 464.5 217.6 217.6 3.9

G1 1 0.1 19 76.4 1230.6 64.8 1.5
G2 1 0.1 3 478.3 491.7 163.9 1.3

H1 1 100 199 1.0 4376.9 22.0 1.9
H2 1 100 19 1.3 3911.1 205.8 2.0
H3 1 100 3 2.7 2610.6 870.2 2.0
H4 1 100 1 6.2 1758.0 1758.0 6.0

Notes.For simulations performed with the same physical parameters but
different box sizes, we mark the default cases for display in the figures with an
asterisk (*). Simulations with κ=1 and κ>1 are performed with 4 and 32
computational particles per cell, respectively. In all cases, the plasma skin
depth c/ωp is resolved with three computational cells and the typical domain
size is L/(c/ωp);5200–11200.
a Hot pair plasma magnetization defined in Equation (1).
b Duration of the simulation in units of L/c.
c The reconnection rate decreases after ∼3L/c due to the formation of a large
boundary island.
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physical number ratio of protons to electrons in a plasma with
pair multiplicity κ, then the numbers of computational protons
and positrons per cell are given, respectively, by (q/2)Nppc and
[(1−q)/2]Nppc.

6 We varied Nppc from 4 to 64 and checked the
convergence of our results in regard to the reconnection rate,
outflow four-velocity, and particle energy distributions. For
pair-proton simulations with high pair multiplicity (e.g.,
κ>10), we need to use Nppc>16 to achieve convergence
(within a few percent in inflow rate and outflow four-velocity),
whereas for electron–proton simulations, we find that four
particles per cell are sufficient. For cases with high κ (low q),
there is a low probability of proton “injection” in a given cell
due to the small (physical) fraction of protons per electron. This
introduces an appreciable level of shot noise in fluid quantities
that are computed from (or governed by) the protons (e.g.,
outflow four-velocity), which can be mitigated by increasing
the number of computational particles per cell.

The magnetic pressure outside the current sheet is balanced
by the particle pressure in the sheet. This is achieved by adding
a component of hot plasma with the same composition as in the
upstream region and overdensity η=3 relative to the all-
species number density outside the layer. We exclude the hot
particles initialized in the current sheet from the particle energy
spectra and from all thermodynamical quantities (except the
plasma number density), as their properties depend on our
choice of the sheet initialization.

Our simulations are performed in a 2D domain, but all three
components of the velocity and of the electromagnetic fields are
tracked. We adopt periodic boundary conditions in the x
direction of the reconnection outflow, and we employ an
expanding simulation box in the y direction (i.e., the direction of
the reconnection inflow). We also use two moving injectors
receding from y=0 along ˆy, which constantly introduce fresh
magnetized plasma into the simulation domain; for details, see
Sironi & Spitkovsky (2011b, 2014), Sironi et al. (2016), Rowan
et al. (2017), and Ball et al. (2018). In all cases, the box size
along the y direction increases over time; by the end of the
simulation, it is comparable to—or larger than—the x extent.

We trigger reconnection at the center of the simulation
domain by instantaneously removing the pressure of hot
particles that were initialized in the sheet (Sironi et al. 2016;
Ball et al. 2018). This causes a central collapse of the current
sheet and the formation of two “reconnection fronts” that are
pulled along the layer toward the edges of the box by the
magnetic tension force and reach the boundaries at t∼L/2vA.
The main advantage of this simulation setup is that the results
are independent of the initialization of the sheet (i.e.,
overdensity, temperature, and thickness7), in contrast to the
untriggered cases where the influence of the initial conditions
may affect the temporal evolution of the reconnection rate and
the particle energy distributions at early times (see, e.g.,
Figure 4 of Petropoulou & Sironi 2018).

For our typical unit of length, we choose the Larmor radius
of electrons (rLe) with Lorentz factor equal to the cold pair
plasma magnetization (se c, ), namely r s= m c eBLe e c e,

2
0,

implicitly assuming that reconnection transfers all the magnetic
energy to relativistic pairs (for definitions, see Equations (15)
and (7)). The proton Larmor radius is defined in a similar way,
i.e., r s= m c eBLi i c i,

2
0, where si c, is the cold proton plasma

magnetization (see Equation (9)). The size of the computational
domain along the reconnection layer L ranges from hundreds to
thousands of rLeand tens to hundreds of rLi(see Table 1). The
fact that the Larmor radii change as a function of pair
multiplicity is a direct result of our choice to fix the total σ and
electron thermal spread Θe, as shown in Figure 16 of
Appendix A.
A key parameter in our study, as it will become clear in the

following sections, is the hot pair plasma magnetization. This is
defined as s pº B h4e h, 0

2 , where h± is the enthalpy density of
the upstream pair plasma, and it relates to the total σ as

( ) ( )
( )
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where q=2/(κ+1) is the ratio of proton-to-electron number
densities and ĝi e, are the adiabatic indices of protons and
leptons. Equation (1) can be simplified in the following
asymptotic regimes:

1. Relativistically cold electrons (Θe=1). Here, s »e h,
[ ]s k k+m mi e . For electron–proton plasmas (or in

general, if κ=mi/me) this reduces to the well-known
result se h, ≈σ mi/me, whereas for pair-dominated plasmas
with κ?mi/me, we find se h, ≈σ. Although pairs are
cold, if their number density is sufficiently high, like in the
latter case, their pressure (which is ∝κ Θe) can be more
important than the proton rest-mass energy density.

2. Relativistically hot electrons (1<Θe<mi/me). Here,
[ ]s s k k» + Q Qm m 4 4e h i e e e, . This reduces to s »e h,

( )s Qm m4i e e for κ=1, while for κ?(mi/me)/4Θe, we
findse h, ≈σ. In the latter case, the pressure of the hot pairs
is large enough to dominate over the rest-mass energy
density of protons. Note that the critical pair multiplicity
here is lower by a factor of ∼4Θe compared to the cold
electron case (see first bullet point).

3. Relativistically hot protons (Θe?mi/me). In this ultra-
relativistic regime, all fundamental plasma scales (e.g., the
plasma frequencies and skin depths) become independent
of the particle rest mass. They depend only on the average
particle energy—which, in this regime, is similar for
protons and pairs. Here, se h, ≈σ independent of κ.

In this study, we focus on cases where the protons are
nonrelativistic and dominate the mass density. For the full list
of parameters and their definitions, we refer the reader to
Appendix A.

3. Structure of the Reconnection Layer

3.1. Temporal Evolution

To illustrate the temporal evolution of the reconnection region,
Figure 1 shows snapshots of the 2D structure of the particle
number density from one of our simulations in a σ=1, Θe=1
pair-proton plasma with pair multiplicity κ=19 (A2 in Table 1).

6 We fill the cells with particles by performing two cycles of injection. We
first inject protons and electrons at equal numbers (i.e., N1=(q/2)Nppc per
cell) and then inject positrons and electrons, with a number of
N2=[(1−q)/2]Nppc per cell for each component. The injection is not done
on a cell-by-cell basis, but rather in slabs partitioned along the y direction with
Ncells each, which are handled by different computer cores. When either
N1×Ncells or N2×Ncells is <10, the actual number of particles injected is
randomly drawn from a Poisson distribution with mean value equal to
N1×Ncells or N2×Ncells, respectively.
7 This is true if the sheet is thick enough that it does not become
spontaneously tearing-unstable at locations that have not been swept up yet
by the receding reconnection fronts.
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The localized (at the center) removal of pressure from the hot
particle population initialized in the sheet (see Section 2) causes
its collapse, thus leading to the formation of a central (or primary)
X-point. Two reconnection fronts form on opposite sides of the
primary X-point and move outward due to the tension of the
magnetic field lines. Plasmoid and secondary X-point formation
takes place in the low-density region between the moving fronts,
as shown in panels (a) and (b). The fronts reach the boundaries of
the simulation domain at t≈L/2vA≈0.7L/c and form the so-
called boundary island, whose size eventually becomes a
significant fraction of the layer length (here, ∼0.4 L as shown
in panels (d) and (e)). The formation of such a large plasmoid,
which is the result of periodic boundary conditions, will
eventually inhibit the inflow of fresh plasma into the layer, thus
shutting off the reconnection process. We verified that the
reconnection process remains active8 for the entire duration of
all simulations listed in Table 1, except A3, C6, and E3.

3.2. Dependence on Pair Multiplicity

The effect that the pair multiplicity κ has on the appearance of
the reconnection region is illustrated in Figure 2, where 2D
snapshots of the all-species particle density, including particles
initially present in the sheet, are plotted for increasing values of κ

(top to bottom) in plasmas with σ=1, Θe=1 (left panel) and
σ=1, Θe=10 (right panel). In cases with fixed σ and Θe but
increasing κ, we find that the plasma outflows along the layer
become more uniform (i.e., fewer X-points and plasmoids form
in the layer) and the typical size of the plasmoids decreases. For
fixed σ and κ, an increasing upstream plasma temperature also
leads to smaller plasmoids and less fragmentation in the
reconnection region (compare left and right panels in Figure 2).
One might argue that the differences in the appearance of the

layer as a function of κ are merely a result of the different box
sizes in terms of the proton skin depth or alternatively rLi(see
Table 1). To check this possibility, we compare cases with
different physical conditions, but similar box sizes in terms of
rLi. We find that the plasma conditions have a major effect on
the appearance of the layer (for details, see Appendix B) and that
the differences seen in Figure 2 are not just a numerical artifact.
Empirically, we find that the most important parameter

controlling the appearance of the layer turns out to be se h, . We
find that the layer structure is similar for different values of the
pair multiplicity and temperature, as long as se h, is nearly the
same. For example, compare panel (e) on the left side to panel (c)
on the right side of Figure 2. Typically, the density profile is
smoother and the plasmoid sizes are smaller for lower se h, values

9

(e.g., compare panels (a) and (f) on the left side of Figure 2).
Similar results have been presented by Ball et al. (2018) (see

Figure 4 therein) for transrelativistic electron–proton reconnec-
tion and an increasing electron plasma βe, defined as the ratio of
upstream electron plasma pressure and magnetic pressure (see
Equation (10)). The similarity of our findings is not unexpected,
and can be understood as follows: the increasing pair multiplicity
corresponds to a decreasing hot pair plasma magnetization
se h, (see Equation (1) and Figure 15), which in turn is inversely
proportional to βe in the limit of κ?1 (see Equation (10)).
Henceforth, we choose se h, over βe to perform our parameter

study, because the relative contribution of the rest-mass and
internal energy densities to the enthalpy density of the upstream
plasma varies among our simulations. In Sections 5 and 6, we
will also demonstrate that se h, is the main parameter that
regulates the energy partition and the power-law slope of the
lepton energy spectrum.

4. Inflows and Outflows

To compute the reconnection rate in our simulations we average
the inflow speed at each time over a slab centered at x=0.5 L
with width 0.2 L across the layer (i.e., along the y direction) and
length 0.5 L (along the x direction). Our results are nearly
insensitive to the choice of the slab dimensions as long as the
region occupied by the boundary island, where the inflow rate is
inhibited, is excluded from the averaging process. The spatially
averaged inflow rate is then averaged over time for t>L/2vA, i.e.,
excluding times when the reconnection fronts are still in the slab.
Our results for simulations with different σ, Θe, and κ

(Table 1) are presented in Figure 3, where the average inflow
speed vin (normalized to vA) is plotted as a function of the hot
pair plasma magnetization se h, . Results for pair-proton and
electron–proton cases are indicated with filled and open
symbols, respectively. The error bars, which indicate the
standard deviation of the reconnection rate over the duration
of the simulation, typically become larger with increasing

Figure 1. Two-dimensional structure of the all-species particle number density
n (normalized to the number density n0 far from the reconnection layer), from a
simulation with σ=1, Θe=1, and κ=19 (A2 in Table 1). We show only the
region ∣ ∣ <y L 0.1 to emphasize the small-scale structures in the reconnection
layer (the extent of the computational box along y increases over time, as
described in Section 2). The 2D density structure at different times (as marked
on the plots) is shown in the panels from top to bottom, with overplotted
magnetic field lines (solid white lines). A movie showing the temporal
evolution of the 2D structure of the number density of each particle species can
be found athttps://bit.ly/2HmZR7j.

8 We characterize the reconnection process as active, as long as the inflow
rate of plasma into the reconnection region does not show a monotonically
decreasing trend with time and remains 0.01vA at all times.

9
The apparent correlation of the plasmoid size with se h, is likely related to the

dependence of the electron Larmor radius on se h, (i.e., rLe∝se h,
1/2).
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se h, and fixed σ, Θe. This suggests that the layer becomes
accordingly more structured (see also Figure 2), because the
temporal variations of the reconnection rate about its average
value relate to the motion and coalescence of plasmoids (see also
Petropoulou & Sironi 2018). We find a weak dependence of the
average reconnection rate on se h, , as this changes only by a
factor of ∼3 (∼0.05–0.15) over more than three orders of
magnitude in se h, . Despite this weak dependence, our results
reveal a clear trend of lower reconnection rates at lower se h, (i.e.,
at higher βe), in agreement with the findings of Ball et al. (2018).

The four-velocity of the plasma outflows in the reconnection
region along the x direction, Γvout/c, is computed using all
particle species, although it is controlled by the protons that
contribute most to the plasma inertia. The Lorentz factor Γ takes
into account the motion in all three directions, but the bulk motion
along x dominates. To estimate the maximum four-velocity, we
compute the 95th percentile10 of all values of Γvout/c at y=0 at
each time, and show in Figure 4 its temporal evolution from
simulations with σ=1, Θe=1, and different pair multi-
plicities. The outflowing plasma accelerates soon after the onset
of reconnection, its motion becomes relativistic, and its
maximum four-velocity approaches the asymptotic value s
(Lyubarsky 2005). We note that the 95th percentile of Γvout/c
values in the layer provides a more conservative estimate of the
maximum outflow four-velocity than the one derived using, for
example, the fifth (or tenth) largest value (e.g., Sironi et al. 2016).

We verified that, with the latter method, the peak four-velocity is
even closer to s . We find no systematic dependence of the
maximum outflow four-velocity on the pair multiplicity, apart
from the fact that the bulk acceleration is more gradual in plasmas
with κ=199 (see black line in Figure 4); this is also true for
other values of Θe and σ=1–3.

5. Energy Partition in the Reconnection Region

The question of how the available energy is shared between
particles and magnetic fields in the region where plasma has
undergone reconnection (henceforth, the reconnection region)
is of particular astrophysical importance because it is related to
the intensity and spectrum of the associated electromagnetic
radiation. Here, we study the energy partition in pair-proton
plasmas post-reconnection, as a function of pair multiplicity,
magnetization, and temperature of the unreconnected plasma.
To identify the reconnection region, we use a mixing criterion,

as proposed by Daughton et al. (2014). Particles are tagged with
an identifier (0 or 1) based on their initial location (below or
above) with respect to the current sheet. Particles from these two
regions get mixed in the course of the reconnection process. We
identify the reconnection region by the ensemble of computa-
tional cells with mixing fraction above a certain threshold ò and
below 1−ò; here, we employed ò=0.0111 (for more details,
we refer the reader to Rowan et al. (2017) and Ball et al.
(2018)). Two-dimensional snapshots of the mixing fraction

Figure 2. Two-dimensional snapshots of the all-species particle number density n (normalized to the number density n0 far from the reconnection layer), including the
particles initially present in the sheet. Results are displayed at t=1.5L/c for different values of the pair multiplicity κ, as marked on each panel. The simulations were
performed for plasmas with σ=1 and Θe=1 (left panel) and σ=1 and Θe=10 (right panel); for reference, see cases A0–A2, A4, A6, A8, and B0–B5 in Table 1.
The appearance of the layer is similar for cases with similar se h, values, as exemplified by panels (e) on the left and (c) on the right-hand side of the figure (see also
Table 2). Movies showing the temporal evolution of the layer structure for different pair multiplicities can be found athttps://bit.ly/2HmZR7j.

10 We compute the absolute values of the four-velocity measured at different
locations along the layer at y=0, sort them in descending order, and determine
the value below which 95% of the measurements falls.

11 We verified that our results are insensitive to the exact value, except for very
early times (i.e., 0.15L/c) where the small size of the reconnection region
makes the computation of quantities therein sensitive to the choice of ò.
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from two indicative simulations (see A1 and A6 in Table 1) are
presented in Figure 5, where the reconnection region is
identified by the mixed colors (green and red).

We compute the kinetic energy of each particle species by
summing up the contributions from all computational cells that
define the reconnection region, namely ( )g= å -u m c n 1j j j j

2
cells ,

where γj is the average Lorentz factor of particles of species j in a
computational cell. We then normalize uj to the total energy

= + å = u u uB j i e jtot , , where p= åu B 8B cells
2 . In Figure 6, we

show the temporal evolution of uj/utot for the same cases as those
shown in Figure 5. At very early times, when the reconnection
region is small (see gray-shaded region in Figure 6), the plasma
properties therein depend on how exactly the reconnection region

is identified. However, neither the time-averaged properties nor
their late-time evolution are sensitive to the definition of the
reconnection region. Given that there might also be other factors
affecting the early time evolution (e.g., initial setup), we
henceforth ignore this transitional early period. At later times,
the ratio of post-reconnection magnetic energy to the total energy
decreases gradually with time, whereas the pair energy density
ratio reaches an almost constant value very soon after the onset of
reconnection (i.e., already at 0.4L/c). The proton energy ratio
typically asymptotes to a constant value at later times compared
to the pairs, but our simulations are long enough to capture the
steady-state values of all energy ratios. We find similar temporal
trends for other cases as well.
The time-averaged energy ratios of protons, pairs, and

magnetic fields in the reconnection region are presented in
Figure 7. The leftmost point in each series with a given color
corresponds to pair-proton plasmas with κ=199, and the
rightmost point corresponds to the pure electron–proton case
with κ=1 (open symbols). The fraction of energy that
remains in the post-reconnection magnetic field is ∼1/3 and is
approximately constant for a wide range of se h, values,
spanning almost three orders of magnitude (bottom panel).
Only for se h, <3, we find subequipartition values, i.e.,
uB/utot<1/3. In this parameter regime, the pairs in the
plasma carry most of the upstream total energy. Upon entering
the reconnection region, the pair kinetic energy increases even
further, at the expense of magnetic energy, due to field
dissipation. As a result, the post-reconnection magnetic energy
for se h, <3 is only a small fraction of the total energy
(uB/utot∼0.1–0.2).
One can empirically define two regimes of interest for the

particle energy ratios: a low-se h, regime (se h, 30), where
ui/utot∝se h, and sµ -u ue e htot ,

1 2, and a high-se h, regime
(se h, >30), where both ratios are almost independent of the hot
pair plasma magnetization. In both regimes, there is no dependence
of the particle energy ratios on Θe, but a weak dependence on the
total plasma magnetization σ is evident. This can be seen more

Figure 4. Temporal evolution of the maximum outflow four-velocity (in units
of the speed of light) for reconnection in a pair-proton plasma with σ=1,
Θe=1, and different pair multiplicities marked on the plot (see A0–A2, A4,
and A6–A8 in Table 1). At each time, we take a slice at y=0 and use the 95th
percentile of all values measured along the layer as a proxy of the maximum
four-velocity. The horizontal dashed gray line marks the Alfvén four-velocity.
Time is normalized to the light-crossing time of the layer.

Figure 5. Two-dimensional snapshots of the mixing fraction computed at
t=1.5L/c for two pair-proton simulations with κ=3 and κ=66 (see A1
and A6 in Table 1).

Figure 3. Average inflow rate (in units of the Alfvén speed) as a function of
se h, for all the simulations presented in Table 1 in which the reconnection
process is not inhibited by the boundary island. Filled and open symbols are
used for simulations in pair-proton and electron–proton plasmas, respectively.
Error bars indicate the standard deviation of the spatially averaged inflow rate
during the course of the simulation. Results from the box-size scaling
simulations are not included here.
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clearly in the middle panel of Figure 7, where points with the
lowest σ (black and cyan symbols) systematically lie below points
with higher σ. Finally, energy equipartition between magnetic
fields, protons, and pairs is asymptotically achieved for σ?1 and
se h, 30, with each component carrying∼1/3 of the total energy.

The dependence of the particle energy densities on se h, 
could originate from either changes in the number density or in
the mean particle Lorentz factor, or both. A proxy of the
average post-reconnection particle Lorentz factor, gá - ñ =1j

å åu n m cj j jcells cells
2, is plotted against se h, in the left panel

Figure 8 for protons (top panel) and pairs (bottom panel). In all
cases, we find that the post-reconnection mean proton Lorentz
factor is almost independent of se h, and Θe, but has a
dependence on σ, with larger values leading to higher mean
proton Lorentz factors. Indeed, when gá - ñ1i is normalized to
αiσ (with αi=1/3 for σ=1, 3 and αi=1/5 for σ=10) all
curves coincide, as shown in the right panel of Figure 8. In
contrast to the protons, the mean lepton Lorentz factor depends
on Θe, σ, and se h, , as shown in the left panel of Figure 8. For
σ�1, we empirically find that the mean lepton Lorentz factor
can be approximated as (see also right panel in Figure 8)

⎜ ⎟⎛
⎝

⎞
⎠( ) · ( )g s

s
á - ñ » + Q +1 1 4 1

30
2e e

e h,

The asymptotic value of the mean lepton Lorentz factor for
se h, =30 implies that, in this regime, the pairs in the
reconnection region still bear memory of their initial (pre-
reconnection) conditions (in particular, of Θe), in agreement
with the discussion on Figure 7. In the high-se h, regime, the
mean lepton Lorentz factor scales almost linearly with se h, . This

asymptotic behavior of gá - ñ1e can be understood as follows.
For fixed σ and Θe (i.e., fixed amount of post-reconnection
energy available for the particles), the energy per lepton
increases as the number of leptons per proton decreases, or
equivalently, as se h, increases (see also Equation (1)). We refer
the reader to Appendix D, for a quantitative discussion on the
dependence of the mean lepton Lorentz factor on the physical
parameters σ, Θe, and κ of the upstream plasma.

6. Particle Energy Distributions

Having discussed the general properties of reconnection in
pair-proton plasmas (see Sections 3–5), we continue our study
by examining the particle energy distributions and their
dependence on physical parameters, most notably on se h, .

6.1. Temporal Evolution of Particle Energy Spectra

The energy distribution of each particle species is defined as
fj(E)≡dNj/dE, where E is the particle kinetic energy and
= - +j i e e, , . Henceforth, all particle energies are kinetic (i.e.,

excluding rest mass), unless stated otherwise.
As a representative example, Figure 9 presents the temporal

evolution of the electron, positron, and proton energy
distributions (from top to bottom) from a simulation with
σ=1, Θe=1, and κ=19 (see also Figure 1, for a depiction
of the layer structure). The energy distributions of each particle

Figure 6. Temporal evolution of the energy stored in magnetic field (dotted
green line), protons (dashed red line), electrons (solid black line), and positrons
(dashed–dotted blue line) in the reconnection region. The energies of all
components are normalized to the total (particle and magnetic) energy at each
time. Results for κ=3 and κ=66 are shown in the top and bottom panels.
Snapshots of the mixing fraction used to identify the reconnection region are
shown in Figure 5. The early-time evolution of the energy ratios (gray-shaded
region) is sensitive to the choice of the mixing threshold.

Figure 7. Time-averaged energy ratios of protons (top panel), pairs (middle
panel), and magnetic field (bottom panel) in the reconnection region, plotted
against se h, for our complete set of simulations with different physical
parameters marked on the plot (same color coding used as in Figure 3).
Results from the size-scaling simulations are not included here. Filled and open
symbols are used for simulations in pair-proton and electron–proton
reconnection, respectively. Error bars indicate the standard deviation of the
energy ratios during the course of the simulation. In all panels, the horizontal
dashed line marks the equipartition value of one-third. The dependence of the
particle energy ratios on se h, changes at se h, ∼30, as noted by the dotted
vertical line in the upper two panels.

7

The Astrophysical Journal, 880:37 (20pp), 2019 July 20 Petropoulou et al.



species are normalized to the total number of particles of that
species in the reconnection region at the end of the simulation.
The displayed spectra exclude the particle population that was
initialized in the current sheet. For reference, the spectrum
obtained at the time the reconnection fronts reach the
boundaries (i.e., t=L/2vA) is shown with a dashed black line.

Soon after the onset of reconnection, the electron and
positron energy spectra in the reconnection region begin to
deviate from their initial Maxwell–Jüttner distributions. They
develop a nonthermal component even before the time the
reconnection fronts reach the boundaries of the layer (i.e., at
ct/L∼0.7). The nonthermal part of the spectrum of pairs can be
described by a power law above a characteristic energy where the
post-reconnection energy spectrum Efj(E) obtains its peak value.
For the adopted parameters, we find ~E m c 10e epk,

2 , in
agreement with the value of the mean post-reconnection Lorentz
factor that we derived in Section 5 (see third black symbol from
the left in bottom panel of Figure 8).

There is a clear difference between the temporal evolution of
the lepton and proton energy distributions. More specifically,
the nonthermal component of the proton spectrum begins to
emerge only at t>L/2vA, after the fronts have reached the
boundaries. At earlier times, the proton energy spectrum shows
a narrow peak that evolves with time. We interpret this early-
time spectral feature as a result of heating and bulk motion of
the proton plasma, whose outflow four-velocity evolves
strongly for t<0.5L/c (see blue curve in the top panel of
Figure 4). Similar results were obtained by Ball et al. (2018) for
transrelativistic reconnection in electron–proton plasmas (see
Figure 3 therein).

The late-time development of the power law in the proton
distribution can be understood in terms of the interactions of
particles with various structures in the layer. X-points are

typically smaller than the proton Larmor radius, so direct
proton acceleration by the nonideal reconnection electric field
is not very efficient. We find evidence of proton acceleration
only when the boundary island, which is the largest structure in
the layer, begins to form. We argue that, in a much larger
simulation domain, where larger secondary plasmoids could

Figure 8. Left panel: time-averaged ratios of the energy density to the rest mass energy density of protons (top panel) and pairs (bottom panel), which serve as a proxy
of gá - ñ1j . A dashed line with slope unity is also plotted in the bottom panel to show the linear asymptotic dependence of the mean lepton Lorentz factor on se h, . All
symbols have the same meaning as in Figure 7. Right panel: proxy of the post-reconnection particle Lorentz factor normalized to αiσ for protons (with αi=1/3 for
σ=1, 3 and αi=1/5 for σ=10) and ( )s + Q1 4 e for leptons.

Figure 9. Temporal evolution (see inset color bar) of the electron, positron, and
proton energy distributions (from top to bottom) extracted from the
reconnection region of a simulation with σ=1, Θe=1, and κ=19; see
also Figure 1, for a depiction of the layer structure. The spectrum obtained at
the time the reconnection fronts reach the boundaries (i.e., t=L/2vA) is
highlighted with a dashed black line. The energy distributions of each particle
species are normalized to the total number of particles of that species within the
reconnection region at the end of the simulation.
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form, protons should show signs of acceleration even before
the reconnection fronts interact with the boundaries.

6.2. Effects of Pair Multiplicity

To illustrate the dependence of the particle energy distribu-
tions on pair multiplicity, Figure 10 shows the energy spectra
from a set of simulations with σ=1, Θe=1 and different
values of κ marked on the plots. Thick solid and thin dashed
lines show the spectra from the reconnection region and the
whole simulation domain, respectively. The spectra are
computed at the end of each simulation and are normalized
to the total number of protons within the reconnection region.
The vertical dashed–dotted line in each panel marks the energy
of particles with Larmor radius12 0.1 L, i.e., comparable to the
size of the largest plasmoids in the layer.

The peak energy of the pair energy distributions depends
strongly on the pair multiplicity for κ<6, and becomes
approximately constant (here, ~E m c 10e epk,

2 ) for higher pair
multiplicities. In contrast, the peak proton energy is approxi-
mately constant for all κ values we explored. The dependence
of the peak particle energy on κ is more clearly illustrated in
Figure 11, where the energy distributions of each particle
species are plotted for different values of κ. These findings are
in agreement with those presented in Figure 8 for the mean
particle Lorentz factor. The fact that the mean and the peak
lepton energies are comparable is not surprising: most of the
energy is expected to reside at the peak of the energy
distribution, given that the power-law slopes of the lepton
energy spectra are typically 2 (see below and Section 6.3).

Above the peak energy Epk,e, the pair energy spectra can be
approximated by a power law with slope p (i.e., f (E)∝E− p)
followed by a cutoff. The power-law segment used for the
estimation of the slope (see Section 6.3) is overplotted (dashed–
dotted blue lines) in order to guide the eye. Inspection of the
figure (see also Figure 11) shows that the power law of the pair
distributions becomes steeper (i.e., larger p values) as the pair
multiplicity increases (for details, see Section 6.3). The power
law of the pair distributions extends well beyond their peak
energy for all the cases we explored, except for the cases with
the highest Θe, which are discussed in Appendix E. For protons,
a well-developed power law forms only for small pair
multiplicities (here, for κ<19), while their energy distribution
shows a steep drop above the peak energy ~E m c 10i epk,

2 3 for
κ=66 and 199. This should not be mistakenly interpreted as a
limitation of reconnection in accelerating protons in plasmas
with high pair multiplicities. It is merely a result of the limited
size of the computational domain in terms of the proton Larmor
radius: L/rLi drops by a factor of 10 between the simulations
with κ=3 and κ=199, as shown in Table 1 (the dependence
of the particle energy distributions on the box size is discussed in
Appendix C). For these reasons, we do not attempt to study the
spectral properties of the proton energy distributions, and in what
follows, we focus on the energy distributions of pairs.

6.3. Power-law Slope of Pair Energy Spectra

We compute the slope of the power-law segment of the pair
energy distributions and explore its dependence on the physical
parameters. Due to the similarity between the energy distribu-
tions of positrons and electrons (see Figure 10) it is sufficient to

use one of the two to compute the slope. For this purpose, we
henceforth use the electron energy spectrum obtained at the end
of each simulation.
The electron energy distribution can be generally described by

two components: a low-energy broad component that forms due
to heating and a high-energy component, which can be described
as a truncated power law at low energies with an exponential
cutoff at higher energies (e.g., panels in middle row of
Figure 10). A detailed fit to the simulation data is very
challenging due to the degeneracy in the model parameters
describing the two components. For example, the choice of the
low-energy end of the power law affects the broadness and
normalization of the low-energy component and vice versa. The
slope inferred from the two-component fit to the data can vary by
0.2 at most, depending on the other model parameters. Given the
inherit uncertainties in the fitting procedure, in what follows, we
identify the power-law segment by eye and fit it with a single
power law (see dashed–dotted blue lines in Figure 10).
The extent of the power law is, in most cases, sufficient to

allow a reliable estimation of its slope. We assign a systematic
error of ±0.2 to the derived slope, which dominates the
statistical error from the fits, to account for the subjective choice
of the fitting energy range. For those simulations with much
greater duration than the others (see electron–proton cases in
Table 1), we also computed the slope at earlier times (i.e.,
comparable to the duration of all other cases) and found no
difference in the inferred p value within the systematic error.
Although a hard power law can be safely distinguished from the
thermal part of the energy distribution, for very steep power laws
with p4, we cannot exclude the possibility that what we are
identifying as a power law is in fact the tail of a thermal-like
distribution or a multitemperature distribution (see e.g., bottom
right panel in Figure 10). Detailed modeling of the energy
distributions, which is important for determining the temporal
evolution of the cutoff energy or the shape of the exponential
cutoff (Werner et al. 2016; Kagan et al. 2018; Petropoulou &
Sironi 2018), lies beyond the scope of this paper.
Our results are summarized in Figure 12 and Table 2,

where the slope of the electron energy distribution p is
plotted as a function of se h, . We do not include the results
from runs H1–H3 with the highest plasma temperature (see
Table 1), because the energy spectra are qualitatively
different from all other cases; for details, see Appendix E
and Ball et al. (2018). The inferred power-law slopes fall onto
two branches (dashed gray lines) that track each other for
se h, ∼30–300, but merge in the asymptotic regime of se h,

103, where both protons and pairs start to behave as one
particle species (i.e., their Larmor radii become similar). The
upper branch (i.e., larger p values) is composed of results
from κ=1 simulations, whereas results for larger multi-
plicities (κ6) fall onto the lower branch (i.e., smaller p
values). For a fixed pair of Θe and σ values, a transition from
the lower to the upper branch, which is accompanied by a
steepening of the power law, occurs at κ∼3–6. No
transition is found for σ=10. The power-law slopes derived
for the majority of the simulations lie on the lower branch for
a wide range of se h, values, spanning more than three orders
in magnitude, despite the differences in the total plasma
magnetization, temperature, and pair multiplicity. This
suggests that se h, is a key physical parameter in regard to
the pair energy distribution.12 The Larmor radius is computed using the upstream magnetic field strength.
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Figure 10. Electron (blue lines), positron (red lines), and proton (green lines) energy distributions computed from a set of simulations with σ=1, Θe=1, and
different pair multiplicities marked on the plots (see runs A0–A2, A4, A6 and A8 in Table 1). The spectra are computed at the end of each simulation and are
normalized to the total number of protons within the reconnection region at that time. Thick solid and thin dashed lines show the spectra from the reconnection region
and the whole simulation domain, respectively. The power-law segment of the electron distributions used to measure the slope is indicated with dashed–dotted blue
lines. The black lines in the upper right corner of each panel have slopes of −p+1 and are plotted for three values of p in order to facilitate the comparison with the
power-law segments of the particle distributions. The vertical dashed–dotted line in each panel marks the energy of relativistic particles with Larmor radius 0.1 L.
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In general, higher se h, lead to the production of harder power
laws (i.e., smaller p values), which is similar to the trend
reported by Ball et al. (2018) for a decreasing electron plasma βe
in electron–proton reconnection (see Figure 13 therein). By
tracking a large number of particles, Ball et al. (2018) showed
that, at low βe, particles primarily accelerate via the nonideal
electric field at X-points. Because their number was found to
decrease with increasing βe, the authors argued that lower
acceleration efficiencies and steeper power laws are expected at
high βe. The dependence of our derived power-law slopes on
se h, can be qualitatively understood in the same context, because
more X-points and secondary plasmoids are formed (see
Section 3.2) at high se h, (or equivalently low βe). A quantitative
description of our results requires a detailed study of the electron
acceleration, which is beyond the scope of this paper.

7. Astrophysical Implications

In this section, we discuss the findings of our simulations in
the context of AGN jets. We focus on blazars, the most extreme
subclass of AGN, with jets closely aligned to our line of sight.
The blazar jet emission has a characteristic double-humped
shape with a broad low-energy component extending from
radio wavelengths up to UV or X-ray energies, and a high-
energy component extending across the X-ray and γ-ray bands
(Ulrich et al. 1997; Fossati et al. 1998; Costamante et al. 2001).
The low-energy hump is believed to be produced by
synchrotron emission of relativistic pairs with a power-law
(or broken power-law) energy distribution (e.g., Celotti &
Ghisellini 2008), which is suggestive of nonthermal particle
acceleration. The synchrotron-emitting pairs can also inverse
Compton scatter low-energy photons to γ-ray energies, which
could explain the high-energy component of the blazar

Figure 11. Post-reconnection energy distributions of protons, electrons, and
positrons (from top to bottom) from simulations with σ=1, Θe=1, and
different pair multiplicities marked on each plot (see runs A0–A2, A4, and
A6–A8 in Table 1). The spectrum of each particle species is computed at the
end of each simulation and is normalized to the total particle number of that
species in the reconnection region. The black lines in the upper right corner
of each panel have slopes of −p+1 and are plotted for three values of p in
order to facilitate the comparison with the power-law segments of the
particle distributions.

Figure 12. Power-law index of the electron energy distribution p as a function
of se h, from our simulations presented in Table 1 (results from the box-size
scaling runs are not included). Different symbols, colors, and symbol sizes are
used to indicate simulations with different values of Θe, σ, and κ, respectively
(see inset legends). Dashed gray lines indicate the two branches discussed in
text. A systematic error of ±0.2 applies to all p values (for details, see
Section 6.3).
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spectrum.13 In blazars with TeV γ-ray emission, electrons
should accelerate up to Lorentz factors 105–106 to explain the
highest photon energies (e.g., Aleksić et al. 2012; Ahnen et al.
2018).

7.1. Properties of Radiating Particles

A key parameter in blazar emission models is the shape of the
nonthermal pair distribution (e.g., power law, broken power law,
log-parabolic, and others). The assumed distribution in most cases
is phenomenological, as it is not derived from a physical scenario.
Upon adopting a specific model for the energy distribution of
accelerated pairs, its properties (e.g., power-law slope, minimum,
and maximum Lorentz factors) are inferred by modeling the
broadband blazar photon spectrum (e.g., Celotti & Ghisellini 2008;
Ghisellini et al. 2014). However, not all the model parameters can

be uniquely determined, due to degeneracies that are inherent in
the radiative models (e.g., Cerruti et al. 2013).
Bearing in mind the aforementioned caveats, we continue

with a tentative comparison of our results (see Sections 5–6)
with those inferred by radiative leptonic models. As an
indicative example, we use the results of Celotti & Ghisellini
(2008). The accelerated lepton distribution that was used for
the modeling was assumed to be a broken power law:
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where s1=1, and s2, γinj were determined by the fit to the data.
There is some degeneracy in the low-energy index, because
distributions with even flatter spectra than the one above (i.e.,
s1<1) cannot be usually distinguished by the data (see also
Ghisellini et al. 2014).
In our simulations, we find that the post-reconnection pair

energy distributions exhibit a power law extending well beyond a
broad thermal-like component that peaks at Epk,e (e.g., Figures 10
and 11). At E<Epk,e, the pair spectra in the reconnection region
generally follow the low-energy tail of a Maxwell–Jüttner
distribution (e.g., Figure 23), which can be modeled by an
inverted power law (i.e., s1<0). For the purpose of making a
general comparison to the modeling results, we can phenomen-
ologically describe the lepton energy spectra from our simulations
via Equation (3), with s1<1, s2=p, and a peak Lorentz factor
g = + E m c1inj e epk,

2, which depends on the total magnetization
and temperature of the plasma (e.g., Figures 10 and 23). Using the
fitting results of Celotti & Ghisellini (2008) (see Table A1
therein), we compute the mean Lorentz factor of the accelerated
distribution (i.e., without radiative cooling) and compare it against
the one determined by our simulations (e.g., Figure 8).
Our results are summarized in Figure 13, where the power-law

index p above the peak Lorentz factor of the distribution is plotted
against the mean Lorentz factor gá ñe of the distribution (for a
tabulated list of our results, see Table 2). Open and filled triangles
indicate the values from the leptonic modeling of Celotti &
Ghisellini (2008) for FSRQs and BL Lac objects, respectively.
The predictions of reconnection are shown with colored symbols
(for details, see figure caption). The degeneracy of the power-law
index p on the physical parameters, such as σ and Θe shown in
Figure 12, is lifted when p is plotted against the mean lepton
Lorentz factor. This is illustrated in Figure 13, where, for fixed σ,
curves corresponding to higherΘe values are shifted toward larger
gá ñe and p values (upper right corner of the plot). For fixed plasma
temperature but increasing σ, the curves are shifted toward lower
p values (i.e., harder power laws) and larger mean particle
energies, regardless of the pair multiplicity.
Interestingly, the values from our simulations fall in the same

range with those inferred by leptonic radiation models. More
specifically, the numerically obtained curves for Θe=1 and 10
enclose most of the results for FSRQs (open triangles). One can
envision different families of curves that pass through the data
points for FSRQs, which can be obtained by simply changing the
temperature of the upstream plasma from Θe=1 to 10. For
example, some FSRQ results could be interpreted in the context
of reconnection in pair-proton plasmas with Θe=3, σ=1, and
κ∼1–10 (imagine the blue line with circles shifted to the right
and upward). The relevant range of multiplicities would be
somewhere between ∼10 and 70, for Θe=3 and σ=3
(imagine the red line with circles shifted to the right and
upward). We find that reconnection in cold pair-proton plasmas

Table 2
Values of Physical Quantities Displayed in Figures 12 and 13. The Electron

Plasma Parameter, Defined by Equation (10), is also Listed

Run σ Θe κ se h, βe p gá - ñ1e

A0 1 1 199 2.9 0.072 4.8 6.0
A1 1 1 66 6.9 0.031 3.5 7.0
A2 1 1 19 21.4 0.010 2.5 9.8
A4 1 1 6 69.3 0.003 2.0 15.8
A6 1 1 3 130.0 0.002 2.1 25.8
A7 1 1 1.2 317.6 0.001 2.4 75.0
A8 1 1 1 387.9 0.001 2.5 147.5

B0 1 10 199 1.2 0.199 4.4 44.1
B1 1 10 66 1.7 0.146 4.6 48.2
B2 1 10 19 3.4 0.076 4.6 53.9
B3 1 10 6 9.0 0.032 3.5 65.9
B4 1 10 3 16.1 0.020 3.4 76.3
B5 1 10 1 46.4 0.010 4.0 201.3

C1 3 1 199 8.8 0.024 3.6 13.6
C2 3 1 66 20.7 0.010 2.5 20.0
C3 3 1 19 64.1 0.003 1.9 36.3
C4 3 1 6 207.8 0.001 1.7 79.8
C6 3 1 1 1163.8 0.0004 2.0 602.9

D1 3 10 66 5.1 0.049 4.0 86.0
D2 3 10 19 10.2 0.025 3.1 107.9
D3 3 10 6 27.1 0.011 2.5 153.7
D4 3 10 1 139.3 0.003 3.0 691.2

E1 10 1 199 29.4 0.007 2.4 40.6
E2 10 1 19 213.6 0.001 1.6 166.3
E3 10 1 1 3879.2 0.0001 1.4a 2114.7

F1 10 10 199 12.9 0.020 3.0 203.1
F2 10 10 6 90.2 0.003 2.0 592.4
F3 10 10 1 464.5 0.001 1.8 2371.3

G1 1 0.1 19 76.4 0.001 1.9 0.31
G2 1 0.1 3 478.3 0.0002 1.6 0.25

H1 1 100 199 1.0 0.244 3.2 454.0
H2 1 100 19 1.3 0.205 3.3 463.1
H3 1 100 3 2.7 0.121 3.6 512.2

Note. A systematic error of ±0.2 applies to all p values. Results from the box-
size scaling simulations are not included here.
a The power law might not have reached saturation, because this is the smallest box-size
simulation in terms of rLe(see Table 1) and the power laws tend to become steeper with
increasing box size (Ball et al. 2018; Petropoulou & Sironi 2018). To check this, we ran a
simulation with a box three times larger (E4 in Table 1) and found a slope of 1.6, which is
comparable to the reported value within the systematic uncertainties.

13 This is true in leptonic scenarios where the broadband jet emission is
attributed to relativistic pairs. This is our working hypothesis, and our results
should be interpreted in this framework.
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(Θe=1) with σ�10 typically results in slopes and mean
lepton energies that are not compatible with the FSRQ results.

BL Lac sources with –gá ñ ~ 10 10e
2 3 are compatible with our

simulation results for reconnection in pair-proton plasmas with
σ∼3–10, Θe∼10, and κ∼1–10. The majority of BL Lac
sources, however, require mean Lorentz factors >103. Reconnec-
tion in strongly magnetized plasmas (σ>10) can lead to high
values of the mean Lorentz factor, but concurrently produces hard
power laws (p<2) above the peak Lorentz factor γinj (e.g.,
orange curves) that do not agree with the fitting results for

gá ñ 10e
3 (filled triangles). In this regime, however, we argue

that γinj could be interpreted as the maximum Lorentz factor of a
hard power law with p<2, as found in our high-σmodels, with p
now corresponding to the index s1 (see Equation (3)). Because the
determination of the maximum Lorentz factor from the simulation
spectra is not trivial (e.g., Werner et al. 2018), we refrain from
drawing strong conclusions from the comparison of our results to
the BL Lac sources in the sample of Celotti & Ghisellini (2008).

7.2. Equipartition Conditions

One factor that makes the principle of energy equipartition
between particles and magnetic fields attractive is that it leads to
minimum power solutions for blazar jets (e.g., Dermer et al. 2014;
Petropoulou et al. 2016). The energy density ratio of radiating
particles and magnetic fields in the blazar emitting region is usually
a free parameter determined by the fitting of photon spectra.
Leptonic emission models typically find  u u0.03 30e B ,
although specific sources may require even higher values (e.g.,
Celotti & Ghisellini 2008; Tavecchio et al. 2010; Ghisellini et al.
2014). Alternatively, one can impose the constraint of rough energy
equipartition between pairs and magnetic fields while searching for
the best-fit model, as demonstrated successfully by Cerutti et al.
(2014) and Dermer et al. (2014, 2015).

The post-reconnection ratio u ue B obtained from our
simulations is plotted in Figure 14 as a function of the mean
lepton Lorentz factor gá ñe . We find that  u u0.2 10e B , with

higher values obtained for hotter upstream plasmas. Even larger
ratios, such as those inferred by modeling of TeV BL Lacs (e.g.,
Tavecchio et al. 2010), would require a pool of ultra-
relativistically hot particles entering the reconnection region.
The presence of a guide field (i.e., of a magnetic field component
that does not reconnect) would make the reconnection region
more magnetically dominated, thus leading to <u u 0.2e B .
More specifically, for electron–proton reconnection, it was
demonstrated that the fraction of magnetic energy transferred to
nonthermal electrons can decrease from ∼50% (in the absence of
guide field) to ∼10% for a guide field with strength comparable
to that of the reconnecting field component (Sironi et al. 2015;
Werner & Uzdensky 2017). However, dissipation efficiencies as
low as a few percent are still compatible with the global energetic
requirements for AGN emission (Ghisellini et al. 2014; Sironi
et al. 2015). A systematic study of the effects of the guide-field in
pair-proton reconnection will be the topic of a future study.

8. Summary

For the first time, we have investigated magnetic reconnection in
electron–positron–proton plasmas with a suite of large-scale 2D
PIC simulations, covering a wide range of pair multiplicities
(κ=1–199) for different values of the all-species plasma
magnetization (σ=1, 3, and 10) and plasma temperature (Θe=
0.1, 1, 10, and 100). In all cases we explored, protons in the
upstream plasma have nonrelativistic temperatures and dominate
the total mass.
The inflow rate of plasma into the reconnection region (i.e.,

the reconnection rate) ranges between ∼0.05vA and 0.15vA for a
wide range of values of the hot pair plasma magnetization se h, ,
with a weak trend toward higher rates for larger se h, values. The
motion of the plasma outflow in the reconnection region, which
is governed by the proton inertia, is relativistic with a maximum
four-velocity that approaches the expected asymptotic value of
s . We found no significant dependence of the outflow four-

velocity on the pair multiplicity or temperature.
We showed that ∼1/3 of the total energy remains in the post-

reconnection magnetic field for se h, 3, with the remaining 2/3
of the energy being shared between pairs and protons. Energy
equipartition between protons and pairs is achieved for σ?1
and se h, 30. For se h, 3, most of the energy in the

Figure 13. Power-law index of the electron distribution p plotted against the
mean electron Lorentz factor gá ñe from our simulations. Different colors and
symbols are used to indicate the total plasma magnetization σ and temperature
Θe, respectively. The pair multiplicity κ is indicated by the symbol size, as in
Figure 12. A systematic error of ±0.2 applies to all p values, but to avoid visual
clutter, it is not illustrated. Overplotted with filled and open triangles are the
values inferred by leptonic modeling of blazar broadband spectra (Celotti &
Ghisellini 2008) for different blazar types (see inset legend).

Figure 14. Ratio of post-reconnection lepton-to-magnetic energy densities plotted
against the mean lepton Lorentz factor from our simulations (results from the box-
size scaling runs are not included). Filled and open symbols are used for simulations
of reconnection in pair-proton and electron–proton plasmas, respectively.
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reconnection region is carried by the pairs, with protons and
magnetic fields contributing ∼1–10% to the total energy.

The reconnection process produces nonthermal particle energy
distributions. We found that the mean Lorentz factor of the proton
distribution (or more accurately, gá - ñ1i ) is almost independent
of the pair multiplicity and plasma temperature, but it is
approximately equal to σ/3. The mean Lorentz factor of the pair
distribution can be described by a simple analytical expression
(see Equation (2)) for different values of se h, , σ, and Θe.

The electron and positron energy distributions in the reconnec-
tion region are similar and can be modeled as a power law with
slope p above a peak Lorentz factor—which, in most cases, is
comparable with the mean Lorentz factor given by Equation (2).
The energy distribution below the peak can, in general, be
approximated by a flat power law (with index <0). We showed
that p is mainly controlled byse h, (with harder power laws obtained
for higher magnetizations) for a wide range of σ, Θe, and κ values.
There is, however, a dependence of p on pair multiplicity, with
power laws getting steeper as κ decreases from a few to unity.

We discussed the implications of our results in the context of
AGN jets. We showed that reconnection in pair-proton plasmas
naturally produces power-law pair distributions with slopes and
average Lorentz factors similar to those obtained by leptonic
modeling of the broadband jet emission. In general, we find that
the majority of the modeling results can be explained in the context
of reconnection in pair plasmas with multiplicities κ∼1–20,
magnetizations σ∼1–10, and temperatures Θe∼1–10.
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Appendix A
Parameter Definitions

We summarize the basic physical parameters that are relevant
for this study (see Table 3) and provide their definitions below.
The total (all-species) plasma magnetization is defined as
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where B0 is the upstream magnetic field strength and n n,i e are
the number densities of protons and pairs, respectively, in the
upstream region. Particles are initialized with temperatures Ti=Te.
The adiabatic indices for pairs and protons are computed iteratively
using the equation of state by Synge (1957). We find that ĝ » 4 3e

ĝ » 5 3i , except for Θe=0.1, where ĝ » 1.5e . The cold plasma
magnetization, which neglects the enthalpy terms, is defined by
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A key parameter in the study of the post-reconnection particle
energy distributions (see Sections 5 and 6) is the hot pair
plasma magnetization, which relates to the total σ as
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The cold pair plasma magnetization is identical to se h, only for
nonrelativistically hot plasmas (Θe=1), and is defined as

( ) ( )( )
· ( )

ˆ
ˆ

ˆ
ˆ

s s=
+ + - +

-

g
g

g
g

Q
-

Q
-

q q

q

2 1

2
7e c

m

m
,

1 1
i

e

i e

i

e e

e

Similar to the pair plasma, one can define the hot proton plasma
magnetization:
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which is ≈σ for all our cases. The cold proton plasma
magnetization is written as
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and it is the same as si h, as long as Θe=mi/me.
The ratio of the electron plasma pressure and the magnetic

pressure (plasma βe), which is a key parameter in studies of
electron–proton reconnection, relates to se h, as
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If all particle species are relativistically hot (Θe?mi/me), then
se h, ≈2σ/(2−q) and βe reaches its maximum value ≈1/4σ.

Table 3
Descriptions, Symbols, and Definitions of Parameters Used in This Study

Parameter Symbol Definition

Pair Multiplicity κ ne /ni
Proton Fraction q ( )k= +-n n 2 1i e

Lepton Adiabatic Index ĝe Synge (1957)
Proton Adiabatic Index ĝi Synge (1957)

Total Plasma Magnetization σ Equation (4)
Hot Pair Plasma Magnetization se h,  Equation (1)
Cold Pair Plasma Magnetization se c,  Equation (7)
Hot Proton Plasma Magnetization si h,  Equation (8)
Cold Proton Plasma Magnetization si c,  Equation (9)
Electron Plasma β βe Equation (10)
Plasma Electron Frequency ωpe− Equation (12)
Plasma Proton Frequency ωpi Equation (14)
Electron Larmor Radius rLe Equation (15)
Proton Larmor Radius rLi Equation (16)
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Let ωp denote the all-species plasma frequency:
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where the electron, positron, and proton plasma frequencies are
given by
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Finally, we define the Larmor radius of electrons and protons
with Lorentz factors se c, and si c, , respectively, assuming that all
the magnetic energy is transferred to the particles:
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Figures 15 and 16 show the various magnetizations and particle
Larmor radii as a function of the proton fraction q, which is
related to the pair multiplicity κ as q=2/(κ+1).

Appendix B
Appearance of the Reconnection Layer

In Section 3.2, we explored the effects of the pair
multiplicity on the appearance of the layer. More specifically,
we showed that the layer becomes more structured (i.e., more
secondary plasmoids) as the pair multiplicity decreases, with
other parameters kept the same. One could argue that these
differences are merely a result of the different box sizes in
terms of the proton skin depth. A straightforward way of
checking this possibility is to compare cases with different
physical conditions, but similar box sizes in terms of rLi.

Figure 15. Various magnetizations—defined in Equations (4)–(9)—plotted as a function of the proton fraction q for σ=1 and two plasma temperatures: Θe=1 (left
panel) and Θe=10 (right panel).

Figure 16. Electron and proton Larmor radii (see Equations (15) and (16), respectively) normalized to the all-species plasma skin depth plotted as a function of the
proton fraction q for σ=1 and two plasma temperatures: Θe=1 (left panel) and Θe=10 (right panel).
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Figure 17. Snapshots of the 2D structure of the all-species particle number density n (normalized to the number density n0 far from the reconnection layer) from two
simulations with different physical conditions but similar box size in terms of rLi(see runs A2 and B1 in Table 1): σ=1, Θe=1, κ=19, L/rLi;53 (left); and
σ=1, Θe=10, κ=66, L/rLi;53 (right).

Figure 18. Same as in Figure 17, but for: σ=1, Θe=10, κ=19, L/rLi;130 (left); and σ=3, Θe=1, κ=6, L/rLi;122 (right).
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Snapshots of the density structure from three such pairs of
simulations are presented in Figures 17–19. These comparative
plots clearly show that the appearance of the layer is
significantly affected by the plasma conditions.

Appendix C
Effects of Box Size

We discuss the effect of the box size on the inflow and
outflow rates as well as on the post-reconnection particle
energy distributions.

We selected two simulations (see runs A3–A5, C4–C5 in
Table 1) and varied the box size in the x-direction, as indicated
in Figure 20. Although the peak inflow rate is systematically
higher for smaller box sizes, the difference is less than ∼3–5%.
The temporal evolution of the reconnection rate is similar for
all box sizes (top panel in Figure 20), until the formation of the
boundary island inhibits the inflow of plasma in the reconnec-
tion region, as shown in the bottom panel (blue line). The
asymptotic outflow four-velocity is independent of the box
size, even for layer lengths of only a few hundred rLe.

Snapshots of the post-reconnection particle energy distribu-
tions from simulations with different box sizes are shown in
Figure 21. The power-law segment of the pair energy spectra is
similar for the different cases, suggesting a saturation of the
power-law slope already for boxes as small as L∼300 rLe(see
also Ball et al. 2018). Thus, we are confident that the power-
law slopes we report in Section 6.3 (Figure 12), which were
obtained for the spectra plotted with blue lines in Figure 21, are
robust. The high-energy cutoff of the pair distribution,
however, increases (almost linearly) with increasing box size,
as shown more clearly in the right plot of Figure 21. Even
larger domains are needed for capturing the asymptotic
temporal evolution of the cutoff energy. The proton distribution
depends strongly on the box size, for both σ values we
considered. A well-developed power-law forms above the peak
proton energy in the largest simulations, thus supporting the
argument that reconnection results in extended nonthermal
proton distributions (see also Section 6.3).
The effects of the box size on the quantities discussed above

and in Section 5 are summarized in Figure 22. The outflow
four-velocities are not included in this plot, because they are
almost the same for the box sizes we considered.

Figure 19. Same as in Figure 17, but for: σ=1, Θe=1, κ=6, L/rLi;211 (left); and σ=1, Θe=100, κ=19, L/rLi;206 (right).

17

The Astrophysical Journal, 880:37 (20pp), 2019 July 20 Petropoulou et al.



Figure 20. Temporal evolution of the inflow speed (left panel) and the outflow four-velocity (right panel) from simulations of reconnection in plasmas with: σ=1,
Θe=1, κ=6 (top panels); and σ=3, Θe=1, κ=6 (bottom panels) for different box sizes marked on the plot (see runs A3–A5, C4–C5 in Table 1).

Figure 21. Post-reconnection electron, positron, and proton energy distributions computed from simulations of reconnection in plasmas with: σ=1, Θe=1, κ=6
(left panel); σ=3, Θe=1, κ=6 (middle panel); and σ=1, Θe=1, κ=199 (right panel), for different box sizes marked on the plot (see runs A3–A5, C4–C5, A0
and A9 in Table 1). The spectra are computed at the same time (in units of L/c) and are normalized to the total number of protons within the reconnection region at
that time.
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Appendix D
Dependence of the Mean Lepton Lorentz Factor on

Physical Parameters

The mean energy of the relativistic pair distribution is of
astrophysical importance, as it can be imprinted on the radiated
nonthermal photon spectra (for details, see Section 7). We
therefore attempted to quantify the dependence of mean lepton
Lorentz factor on the physical parameters (σ, Θe, and κ) using a
proxy of gá - ñ1e , as defined in Section 5. We caution the
reader that the latter does not necessarily refer to a pure power-
law energy distribution. In fact, the definition of gá - ñ1e is
agnostic to the shape of the lepton energy distribution.

In general, we find that gá - ñ1e can be described by

( ) ( ) ( )( )g s k sá - ñ = Q + Qc s- Qa b1 , , , 17e
,

where a, b, and χ are obtained from a χ2
fit to the data. The

best-fit values and the associated 1σ statistical errors are
summarized in Table 4. We note that cases with σ=1,
Θe=0.1; σ=10, Θe=1; and σ=10, Θe=10 are excluded
from the fit, because the number of κ values is the same or less

than the free parameters of Equation (17). Nevertheless, we still
find that g ká - ñ µ -1e

1.

Appendix E
Effects of Plasma Temperature on Pair Energy Spectra

The post-reconnection particle energy distributions obtained
for the highest-temperature simulations (H1–H3 in Table 1)
show a high-energy component that forms at late times, as
illustrated in Figure 23 (left panel). This can be described by a
power law with slope p∼3.2–3.6 (see Table 2), which is
harder than the power laws obtained for lower temperatures but
similar se h, values (see Figure 12).
Snapshots of the pair energy distributions from simulations

with the same magnetization and multiplicity, but different
plasma temperatures, are shown in the middle and right panels
of Figure 23. Although Θe=100 shows a prominent high-
energy component in the distributions that is independent of κ,
we see a hint of this component at lower temperatures
(Θe=10) only at κ=199 (right panel). These results imply
that the high-energy component of the spectrum is not just
related to the plasma temperature. In all the cases that show a
high-energy component, the common denominator is the high
βe (i.e., βe>0.1; see Table 2).
Similar results have been reported by Ball et al. (2018) for

transrelativistic reconnection in electron–proton plasmas with
high βe approaching the maximum value 1/4σ (when both
electrons and protons start as relativistically hot). The
formation of the high-energy component was attributed to a
Fermi-like acceleration of particles with initial energy ∼kTe
bouncing between the reconnection outflow and the stationary
boundary island (see Section 6.3 in Ball et al. 2018). The fact
that it takes some time for the boundary island to grow is in
agreement with the late-time formation of the high-energy
component in the spectrum.

Figure 22. Summary plot showing the dependence of various quantities on the
size of the simulation box. From top to bottom: energy ratios for pairs (filled
symbols) and protons (open symbols), power-law slope of the lepton energy
spectrum (as computed at the end of each simulation), and time-averaged
reconnection rate. Error bars in the top and bottom panels indicate the standard
deviation during the course of the simulation. A systematic error of ±0.2 is
assigned in all power-law slopes (middle panel).

Table 4
Results of a χ2 Fit to Equation (17)

σ Θe a χ b

1 1 114.9±18.1 1.5±0.2 6.5±0.7
1 10 149.7±17.6 1.3±0.2 46.8±2.2
1 100 328.9±7.1 1.6±0.1 456.7±3.4
3 1 565.7±73.6 1.1±0.1 13.5±2.1
3 10 603.7±36.7 1.2±0.1 85.7±7.0

Note. We exclude cases with less data points than the number of free model
parameters. The 1σ statistical errors are also listed in the table.
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