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Abstract

Magnetized turbulence and magnetic reconnection are often invoked to explain the nonthermal emission observed
from a wide variety of astrophysical sources. By means of fully kinetic 2D and 3D particle-in-cell simulations, we
investigate the interplay between turbulence and reconnection in generating nonthermal particles in magnetically
dominated (or, equivalently, “relativistic”) pair plasmas. A generic by-product of the turbulence evolution is the
generation of a nonthermal particle spectrum with a power-law energy range. The power-law slope p is harder for
larger magnetizations and stronger turbulence fluctuations, and it can be as hard as p  2. The Larmor radius of
particles at the high-energy cutoff is comparable to the size l of the largest turbulent eddies. Plasmoid-mediated
reconnection, which self-consistently occurs in the turbulent plasma, controls the physics of particle injection.
Then, particles are further accelerated by stochastic scattering off turbulent fluctuations. The work done by parallel
electric fields—naturally expected in reconnection layers—is responsible for most of the initial energy increase and
is proportional to the magnetization σ of the system, while the subsequent energy gain, which dominates the
overall energization of high-energy particles, is powered by the perpendicular electric fields of turbulent
fluctuations. The two-stage acceleration process leaves an imprint in the particle pitch-angle distribution: low-
energy particles are aligned with the field, while the highest-energy particles move preferentially orthogonal to it.
The energy diffusion coefficient of stochastic acceleration scales as Dγ∼0.1σ(c/l)γ2, where γ is the particle
Lorentz factor. This results in fast acceleration timescales tacc∼(3/σ)l/c. Our findings have important
implications for understanding the generation of nonthermal particles in high-energy astrophysical sources.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Plasma astrophysics (1261); Particle
astrophysics (96); Non-thermal radiation sources (1119); Plasma physics (2089)

1. Introduction

Generation of energetic particles far exceeding thermal energies
is ubiquitous in the collisionless plasmas found in space and
astrophysical environments. Thus, it is not surprising that over the
past several decades, significant efforts have been made to
understand the mechanisms of particle acceleration. Among such
mechanisms, plasma turbulence has been often invoked to explain
nonthermal particles in a variety of astrophysical systems (e.g.,
Melrose 1980; Lazarian et al. 2012; Petrosian 2012). Indeed,
turbulence is ubiquitous in astrophysics, in systems as diverse as
stellar coronae and winds (Matthaeus et al. 1999; Cranmer et al.
2007), the interstellar medium (Armstrong et al. 1995; Lithwick &
Goldreich 2001), supernova remnants (Weiler & Sramek 1988;
Roy et al. 2009), pulsar wind nebulae (Porth et al. 2014; Lyutikov
et al. 2019), black hole accretion disks (Balbus & Hawley 1998;
Brandenburg & Subramanian 2005), jets from active galactic
nuclei (AGNs; Marscher et al. 2008; MacDonald & Marscher
2018), radio lobes (Vogt & Enßlin 2005; O’Sullivan et al. 2009),
gamma-ray bursts (Piran 2004; Kumar & Narayan 2009), and
galaxy clusters (Zweibel & Heiles 1997; Subramanian et al.
2006).

A characteristic feature of magnetized turbulence is the
tendency to develop sheets of strong electric current density
that are prone to magnetic reconnection (Matthaeus &
Lamkin 1986; Biskamp & Welter 1989; Carbone et al. 1990;
Politano et al. 1995; Dmitruk & Matthaeus 2006; Retinò et al.
2007; Sundkvist et al. 2007; Servidio et al. 2009). These
reconnecting current sheets are natural sites of magnetic energy
dissipation and particle acceleration (Arzner & Vlahos 2004;

Dmitruk et al. 2004; Matsumoto et al. 2015). At the same time,
it has long been known that particles can gain energy through
random scattering by turbulence fluctuations (e.g., Kulsrud &
Ferrari 1971). Therefore, turbulence fluctuations and magnetic
reconnection operate in synergy, and a comprehensive under-
standing of the particle acceleration physics in a turbulent
environment will require a detailed investigation of their
interplay.
Here, we want to study the physics of the generation of

energetic particles in magnetically dominated turbulence
(Thompson & Blaes 1998; Cho 2005; Inoue et al. 2011; Zrake
& MacFadyen 2012; Cho & Lazarian 2014; Zrake 2014). In
this case, the magnetic energy density exceeds not only the
pressure but also the rest-mass energy density of the plasma,
and the Alfvén speed approaches the speed of light. Under-
standing the process of particle acceleration in this turbulence
regime is important to shed light on the bright nonthermal
synchrotron and inverse Compton signatures that are routinely
observed from high-energy astrophysical sources such as pulsar
magnetospheres and winds (Bühler & Blandford 2014), jets
from AGNs (Begelman et al. 1984), or coronae of accretion
disks (Yuan & Narayan 2014). In particular, there are several
crucial questions that need to be answered: (i) How efficient is
the turbulence acceleration process in these systems? (ii) What
is the slope of a (potential) power-law high-energy tail
generated by turbulence? (iii) What is the maximum attainable
particle energy? (iv) Which physical mechanism governs the
injection of particles from the thermal pool to higher energies?
(v) On what timescales does particle acceleration proceed?
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Given the complexity of the problem, an analytic treatment
is often insufficient, and one must rely on numerical
simulations. In this case, most of the previous works have
used test-particle simulations, where turbulence was repre-
sented by prescribed fields (e.g., Michałek & Ostrowsky 1996;
Arzner et al. 2006; O’Sullivan et al. 2009; Teraki & Asano
2019) or was provided by turbulent fields obtained from MHD
simulations (e.g., Ambrosiano et al. 1988; Dmitruk et al. 2004;
Kowal et al. 2012; Dalena et al. 2014; Lynn et al. 2014;
Beresnyak & Li 2016; Kimura et al. 2016, 2019; González
et al. 2017; Isliker et al. 2017). These approaches offer a useful
strategy to study the problem of particle acceleration with
relatively inexpensive computational simulations. On the other
hand, they also have some limitations, e.g., the absence of
back-reaction to the imposed electromagnetic fields and ad hoc
particle injection prescriptions. These limitations are overcome
by recent hybrid (kinetic ions and fluid electrons; Servidio et al.
2012; Kunz et al. 2016; Pecora et al. 2018) and fully kinetic
particle-in-cell (PIC) simulations (Zhdankin et al. 2017;
Comisso & Sironi 2018; Zhdankin et al. 2018, 2019a, 2019b;
Nättilä 2019; Wong et al. 2019), where the particle acceleration
process can be followed self-consistently during the turbulence
evolution. These simulations have confirmed in a self-
consistent way that in a collisionless plasma, turbulence can
drive particles out of thermal equilibrium.

In our earlier work (Comisso & Sironi 2018), we performed
large-scale fully kinetic simulations to show that decaying
turbulence in magnetically dominated plasmas can generate a
large fraction of nonthermal particles with a power-law
distribution that extends to very high energies. The simulation
domains were large enough to capture both the MHD cascade
at large scales and the kinetic cascade at small scales, and in
this astrophysically relevant setting we found that the power-
law slope attains an asymptotic, system-size-independent
value, while the high-energy cutoff increases linearly with
the system size. Zhdankin et al. (2017, 2018) found that driven
plasma turbulence is also a viable astrophysical particle
accelerator. Indeed, they showed that nonthermal energy
distributions produced by driven turbulence converge to a
system-size-independent power-law slope for sufficiently large
domains. In order to explain the formation of nonthermal
particle populations in magnetically dominated turbulence, in
Comisso & Sironi (2018) we analyzed self-consistent particle
trajectories from one of the PIC simulations, finding that most
of the particles enter into the acceleration process through an
injection phase that occurs at reconnecting current sheets that
form self-consistently in the turbulent system. However, we
also found that this initial energy gain, mediated by reconnec-
tion, is relatively small. At higher energies, particles were
stochastically accelerated by scattering off the turbulent
fluctuations, thereby experiencing a biased random walk in
momentum space.

In this paper, we extend our previous analysis of the particle
acceleration process to a suite of large-scale PIC simulations,
where turbulence starts from strong magnetic field fluctuations
that gradually decay. In particular, we analyze in a more
extended way the impact of magnetic reconnection on the
initial stage of particle acceleration, the properties of the
particle diffusion process in energy space due to stochastic
scattering off turbulence fluctuations, and the signatures of
these acceleration processes on the particle distribution. We
show that elongated current sheets are prone to the rapid

development of the plasmoid instability and break up into
plasmoids/flux ropes separated by secondary current sheets,
which gives rise to fast reconnection and efficient particle
injection. Plasmoids/flux ropes are ubiquitous in both 2D and
3D simulations, as a consequence of the large-scale separation
between the energy-containing eddies and the plasma skin
depth. The initial energization of particles (i.e., at injection) is
controlled by the work done by the electric field parallel to the
local magnetic field, which is nonzero at reconnecting current
sheets. On the other hand, after the first energization phase, the
work done by the perpendicular electric field takes over and
eventually dominates the overall energization for high-energy
particles. Indeed, also the slope of the power-law high-energy
tail is controlled by energization via perpendicular electric
fields. We show that the particle pitch-angle distribution bears
memory of the different energization processes, showing that
particle velocities are preferentially aligned with the magnetic
field at low energies, while they are preferentially oriented in
the direction perpendicular to the magnetic field at high particle
energies. We also determine the diffusion coefficient in energy
space that characterizes the physics of stochastic acceleration
by turbulent fluctuations. In both 2D and 3D simulations, in the
energy interval pertaining to the nonthermal power-law tail, the
energy diffusion coefficient increases linearly with the plasma
magnetization and quadratically with the particle energy. For
high plasma magnetizations, this yields a fast rate of particle
energy gain, which can be comparable to or even higher than
the particle energy gain rate from fast magnetic reconnection.
This paper is organized as follows. In Section 2 we describe

our computational method and simulation setup. This is
followed, in Section 3, by a description of the fully developed
turbulence state and the resulting particle energy spectra for
different plasma conditions. The following sections are mostly
devoted to the analysis of the acceleration mechanisms and
their signature on the particle distribution function. In
particular, in Section 4 we investigate the role of magnetic
reconnection in providing an efficient particle injection
mechanism. In Section 5 we study the different contributions
of the parallel versus perpendicular electric field in driving the
energization of particles. The properties of pitch-angle particle
distributions, four-velocity distribution functions, and mixing
of the energized particles are presented in Section 6. Then, in
Section 7 we study the properties of diffusion in energy space
of the particles that are accelerated by stochastic scattering off
the turbulent fluctuations. Finally, in Section 8 we summarize
our findings.

2. Numerical Method and Setup

In order to study the particle acceleration process from first
principles, we solve the full Vlasov–Maxwell system of
equations through the PIC method (Birdsall & Langdon 1985),
which evolves electromagnetic fields via Maxwell’s equations
and particle trajectories via the Lorentz force. To this purpose,
we employ the electromagnetic fully relativistic PIC code
TRISTAN-MP (Buneman 1993; Spitkovsky 2005), which
allows us to perform large-scale two-dimensional (2D) and
three-dimensional (3D) simulations of plasma turbulence. In
2D our computational domain is a square of size L2 in the x-y
plane, while in 3D it is a cube of size L3. We use periodic
boundary conditions in all directions. For both 2D and 3D
domains, all three components of particle momenta and
electromagnetic fields are evolved in time.
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We initialize a uniform electron–positron plasma with total
particle density n0 according to a Maxwell–Jüttner distribution
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⎠⎟( )

( )

( )
( )

p q q
g
q

= -p
p

f
m c K

1

4 1
exp , 10 3 3

0 2 0 0

where ( ) ( )g = +p p mc1 2 is the particle Lorentz factor,
θ0=kBT0/mc

2 is the dimensionless temperature, and K2(z) is
the modified Bessel function of the second kind. Here, as usual,
kB indicates the Boltzmann constant, T0 is the initial plasma
temperature, m denotes the particle mass, p is the particle
momentum, and c is the speed of light in vacuum. In all the
simulations, we set up a uniform mean magnetic field along
the z-direction, ˆ=B zB0 0 . The initial equilibrium is perturbed
by magnetic fluctuations of the form

( ) ( ) ˆ ( ) [ ( · )] ( )å xd d f= +B x k k k xB iexp , 2
k

k

where ( )d kB is the Fourier amplitude of the mode with
wavevector k, ˆ ( ) ∣ ∣x = ´ ´k k B k Bi 0 0 are Alfvénic polar-
ization unit vectors, and fk are random phases. By setting

( ) ( )d d- =k kB B and f f= --k k, we ensure that ( )dB x is a
real function. We adopt equal amplitude per mode and
wavevector components kj=2πnj/L with mode numbers in
the interval { }Î ¼n N1, ,j j . We set Nx=Ny=8 in 2D
simulations and Nx=Ny=4 and Nz=2 in 3D simulations.
The choice of perturbing lower mode numbers in 3D
simulations is due to the smaller domain size affordable in
3D and the desire to maximize the inertial range of the
turbulent cascade. With these choices, the initial magnetic
energy spectrum peaks near kN=2π Nmax/L (where Nmax=8
in 2D and Nmax=4 in 3D). In the following, we will use
l=2π/kN as our unit length, which we also refer to as the
energy-carrying scale.

The strength of the initial magnetic field fluctuations is
parameterized by the magnetization

( )s
d

p
=

B

n w mc4
, 30

rms0
2

0 0
2

where ( )d d= á = ñB B t 0rms0
2 1 2 is the space-averaged rms

value of the initial magnetic field fluctuations and =w mc0
2

[ ( ) ( )]q qK K mc1 13 0 2 0
2 is the initial enthalpy per particle,

with Kn(z) indicating the modified Bessel function of the
second kind of order n. Since we are interested in magnetically
dominated environments, we present results from simulations
with different values of σ0 (from 2.5 to 80) in the regime σ0 ?
1 . In this case, the Alfvén speed defined with the fluctuating
fields is ( )s s= + ~v c c1A0 0 0 . We find that with our
definition of σ0 our results do not depend on the choice of the
initial dimensionless temperature θ0, apart from an overall
energy rescaling (see Section 3).

We resolve the initial plasma skin depth de0=c/ωp0 with 10
cells in 2D and 3 cells in 3D (in 2D we have checked that runs
with de0=3 or 10 cells give identical results, including the
development of turbulent structures, as can be seen in the
Appendix). Note that the initial plasma skin depth is defined
with the relativistic plasma frequency w p g= n e m4p th0 0

2
0 ,

where γth0=w0−θ0 is the initial mean particle Lorentz
factor.

In order to capture the full plasma turbulence cascade from
macroscopic MHD scales to kinetic scales, we solve the kinetic
system of equations on large computational domains. This is
achieved by adopting a box of 24603 cells in 3D simulations
and 16,4002 cells in 2D simulations. For the 2D analysis, we
also present results from three simulations with 32,8002 cells
and one simulation with 65,6002 cells. In our reference 2D
simulation we employ 64 particles per cell, while 16 particles
per cell are adopted for our reference 3D simulation. For the
other runs, we employ 16 particles per cell in 2D and 4 particles
per cell in 3D. We have tested that in the magnetically
dominated regime of interest here, the discussed results are the
same when using up to 256 particles per cell (see a particle
spectrum comparison in the Appendix).
The simulation time step is controlled by the numerical speed

of light of 0.45 cells per time step. The simulations are run for
ct/l=12−15, at which point most of the turbulent magnetic
energy has been transferred to the particles. Our study is focused
on magnetically dominated turbulence, and for this purpose we
have performed several simulations at different magnetizations
σ0. In 2D we have investigated { }s Î 2.5, 5, 10, 20, 40, 800 .
In 3D we have explored { }s Î 5, 10, 20, 400 . If not otherwise
specified, the simulations start with δBrms0/B0=1 and θ0=0.3.
Cases with different δBrms0/B0 and θ0 have also been performed
in 2D. For convenience, we have summarized the physical
parameters of the presented simulations in Table 1. Our
reference 2D and 3D simulations are indicated with an asterisk.

3. Plasma Turbulence and Particle Spectrum

In this section, we give an overview of the plasma turbulence
state in 2D and 3D PIC simulations, with a particular focus on
the particle energy spectrum that develops self-consistently.
We first present the characteristic fluid structures of the
magnetized turbulence state and the time evolution of the
magnetic power spectrum. Then, we show the time evolution of
the particle energy spectrum and discuss its dependence on the
main physical parameters.

3.1. Plasma Turbulence

Turbulence structures from our reference 2D simulation are
illustrated in Figure 1. We plot the magnetic field squared
fluctuations δB2, the out-of-plane electric current density Jz, the
bulk dimensionless four-velocity Γβ, and the particle density
ratio n/n0. Here ( )G = - V c1 1 2 indicates the plasma
bulk Lorentz factor and ∣ ∣b = V c is the dimensionless plasma
bulk speed obtained by averaging the velocities of individual
particles. We can see that the fluctuations δB2 are generally
stronger in large-scale flux tubes (see the circular structures of
size comparable to the energy-carrying scale l), but high values
of δB2 are also obtained in small-scale structures identified with
reconnection plasmoids (see the circular structures with size
=l). These are “secondary” magnetic islands (flux ropes in 3D)
that are produced by magnetic reconnection (Biskamp 2000).
In such plasmoids, the particle number density n exhibits strong
enhancements in excess of n∼15 n0. High values of particle
number density occur in large-scale flux tubes as well. In
general, the particle density displays strong compressions in
coherent quasi-circular structures spanning a range of scales.
In between flux tubes, reconnection layers reveal the

formation of plasmoids within narrow current sheets. Indeed,
current sheets with high aspect ratio tend to fragment into
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plasmoids and secondary current sheets as a result of magnetic
reconnection. Smaller-size current sheets are also ubiquitous,
spanning a wide range of scales. We will see in the following
sections that reconnecting current sheets, which are a natural
by-product of turbulent cascades in magnetized plasmas (e.g.,
Servidio et al. 2009; Wan et al. 2013; Cerri & Califano 2017;
Franci et al. 2017; Haggerty et al. 2017; Comisso & Sironi
2018; Dong et al. 2018; Papini et al. 2019), play an important
role for particle injection into the acceleration process
(Comisso & Sironi 2018). Finally, we also point out that in
the strongly magnetized regime of plasma turbulence investi-
gated here, the plasma bulk speed can reach very high values.
In particular, we observe ultrarelativistic flows with bulk
Lorentz factor as high as Γ∼5. Such high speeds develop
predominantly in between the large-scale flux tubes, although
high-velocity fluctuations occur all over the spatial domain.

We now consider the fluid structures that develop in 3D
plasma turbulence. Our reference 3D simulation has
L/de0=820, which is half the size of the reference 2D
simulation. However, since in 3D we adopt perturbation
numbers up to Nmax=4 (as compared to Nmax=8 in 2D),
we still have a well-extended turbulence inertial range. In fact,
the ratio of the initial energy-carrying scale l=2π/kN to the
plasma skin depth de0 remains the same between our reference
2D and 3D simulations, leading to the same high-energy cutoff
of the particle energy spectrum (see Comisso & Sironi 2018, as
well as Equation (9) in the following subsection).

The turbulence structures from our reference 3D simulation
are displayed in Figure 2. The magnetic field squared
fluctuations δB2 present both large-scale and small-scale
structures. However, in this case, the large-scale fluctuations
are not organized in coherent flux tubes (as it was in 2D, where
they were a result of the constrained 2D dynamics). Despite
differences in the large-scale structure of the magnetic field,
there is still a copious presence of current sheets (current
ribbons when considering the third direction). Due to the
presence of the mean magnetic field ˆ=B zB0 0 , current ribbons
are mostly elongated along ẑ. We can see that the z component
of the electric current density, Jz, displays a variety of current
sheets of different sizes. Some of these current layers break into
plasmoids (see also Section 4), as highly elongated layers
cannot be stable against the plasmoid instability, also in 3D
geometry (e.g., Daughton et al. 2011; Sironi & Spitkovsky
2014; Guo et al. 2015; Huang & Bhattacharjee 2016; Ebrahimi
2017; Werner & Uzdensky 2017; Baalrud et al. 2018; Stanier
et al. 2019). Here we show that plasmoids/flux ropes are self-
consistently created in fully 3D plasma turbulence (see
Section 4), where current sheets are self-consistently generated
by the turbulence itself. As for 2D plasma turbulence, we will
see that these current sheets play an important role in the initial
stages of particle acceleration (Sections 4–6).
Locations characterized by strong electric current densities

are typically accompanied by strong gradients in particle
density. In localized regions, the particle density can exceed
n∼12 n0, similar to the 2D case. On the other hand, large-
scale structures like the overdense regions at the core of 2D
large-scale flux tubes are missing in 3D. Finally, we observe
that also in 3D, due to the high magnetization of the system, the
plasma flow speed is generally very high. We can see regions
with ultrarelativistic flow speeds having bulk Lorentz factor as
high as Γ∼4.
We now present the time evolution of the magnetic power

spectrum from the reference 2D and 3D simulations. In our
simulations, turbulence develops from the initialized magnetic
fluctuations. The magnetic energy decays in time, as no
continuous driving is imposed, and a well-developed inertial
range and kinetic range of the turbulence cascade develop
within the outer-scale nonlinear timescale. In Figure 3, we
show the time evolution of the magnetic power spectrum PB(k)
for the reference 2D simulation, where

( )
·

( )å
d d

=
Î

B B
P k dk

B
4

k

k k
B

dk 0
2

*

is computed from the discrete Fourier transform dBk of the
fluctuating magnetic field. Each curve refers to a different time
(from brown to orange), as indicated by the corresponding
vertical dashed lines in the inset, where we present the temporal
decay of the magnetic field fluctuations δBrms/B0. We can see
that at MHD scales (kde00.5) the magnetic power spectrum
is consistent with a Kolmogorov scaling PB(k)∝k−5/3

(Biskamp 2003) (compare with the dotted–dashed line), while
the Iroshnikov–Kraichnan scaling PB(k)∝k−3/2 (Iroshnikov
1963; Kraichnan 1965) (triple-dotted–dashed line) is possibly
approached at late times. At kinetic scales (kde00.5), the
spectrum steepens and approaches a power-law slope PB(k)∝
k−4.3 (compare with the dashed line). A similar slope was
proposed for magnetized turbulence at subinertial scales in a
cold plasma (Abdelhamid et al. 2016; Passot et al. 2017). We

Table 1
Simulation Parameters

Sim L/de0 σ0 δBrms0/B0 θ0 Nmax

3D[a] 820 5 1 0.3 4
3D[b]* 820 10 1 0.3 4
3D[c] 820 20 1 0.3 4
3D[d] 820 40 1 0.3 4

2D[a] 1640 2.5 1 0.3 8
2D[b] 1640 5 1 0.3 8
2D[c]* 1640 10 1 0.3 8
2D[d] 1640 20 1 0.3 8
2D[e] 1640 40 1 0.3 8
2D[f] 1640 80 1 0.3 8
2D[g] 1640 2.5 2 0.3 8
2D[h] 1640 5 2 0.3 8
2D[i] 1640 10 2 0.3 8
2D[j] 1640 20 2 0.3 8
2D[k] 1640 40 2 0.3 8
2D[l] 1640 80 2 0.3 8
2D[m] 1640 10 1 0.1 8
2D[n] 1640 10 1 1 8
2D[o] 1640 10 1 3 8
2D[p] 1640 10 1 10 8
2D[q] 3280 40 1 0.3 8
2D[r] 3280 40 2 0.3 8
2D[s] 3280 40 4 0.3 8
2D[t] 6560 10 1 0.3 8

Note. We mark the reference simulations with an asterisk. The magnetization
parameter σ0 is defined with the initial magnetic field fluctuations, s =0

d pB n w mc4rms0
2

0 0
2, where ( )d d= á = ñB B t 0rms0

2 1 2. In this paper we also use
the instantaneous magnetization parameter s d p= B n wmc4rms

2
0

2, where d =Brms

dá ñB2 1 2 (and wmc2 is the instantaneous enthalpy per particle), and the
magnetization associated with the mean magnetic field, s p= =B n w mc4z 0

2
0 0

2

( )s dB B0 0 rms0
2.
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finally observe that the turbulence integral scale
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which is close to the energy-carrying scale associated with the
wavenumber where PB(k, t) peaks, increases as the magnetic
energy decays in time. This is due to the merging of the large-
scale magnetic flux tubes, which drives an inverse energy
transfer to scales larger than the initial integral scale (e.g.,
Biskamp & Schwarz 2001).

We now consider the time evolution of the magnetic power
spectrum in 3D. Due to the presence of the large-scale mean
magnetic field B0, turbulence becomes increasingly anisotropic
toward small scales, within the inertial range. To account for
this global anisotropy with respect to B0, we consider the
magnetic power spectrum with respect to the wavenumber

( )= +k̂ k kx y
2 2 1 2 perpendicular to the mean field, obtained

from the discrete Fourier transform of the fluctuating magnetic
field as

( )
·

( )å
d d

=^ ^
Î ^

B B
P k dk

B
. 6

k

k k
B

dk 0
2

*

Figure 4 shows the time evolution of the magnetic power
spectrum ( )^P kB , which does exhibit inertial and kinetic ranges
of the turbulence cascade at times ct/l  1. As the magnetic
field fluctuations decay (see inset), the inertial range
( ^ k d 0.5e0 ) of the magnetic power spectrum tends to flatten
from ( ) µ^ ^

-P k kB
5 3 (Goldreich & Sridhar 1995; Thompson &

Blaes 1998; dotted–dashed line) to ( ) µ^ ^
-P k kB

3 2 (Boldyrev
2006; triple-dotted–dashed line). At kinetic scales ( ^ k de0

0.5), the spectrum steepens to a power law ( ) µ^ ^
-P k kB

4.3

(dashed line), similar to the 2D result and in agreement with
theoretical predictions for magnetized turbulence at subinertial
scales in cold plasmas (Abdelhamid et al. 2016; Passot et al. 2017).

Figure 1. 2D plots of different fluid structures in fully developed 2D turbulence (at ct/l=4.6) with σ0=10, δBrms0/B0=1, and L/de0=1640 (with l=L/8). The
displayed quantities are (from left to right, top to bottom) the fluctuation magnetic energy density in units of pB 80

2 , the current density Jz along the mean magnetic
field in units of en0c, the bulk dimensionless four-velocity Γβ, and the particle density ratio n/n0. Note that the color bars for Γβ and n/n0 are in logarithmic scale.
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Note also that in the 3D case the magnetic energy decays faster
than in the 2D case (compare insets of Figures 3 and 4). We will
show that this leads to a reduced particle acceleration rate at late
times.

3.2. Particle Spectrum

The most interesting outcome of the turbulent cascade is the
generation of a large population of nonthermal particles. This is
shown in Figure 5 (for the 2D setup), where the time evolution
of the particle energy spectrum ( )g -dN d ln 1 is presented
(g - = E mc1 k

2 is the normalized particle kinetic energy).
As a result of turbulent field dissipation, the spectrum shifts to
energies much larger than the initial Maxwellian, which is

shown by the blue line peaking at g g- ~ -1 1 0.6th0 . At
late times, when most of the turbulent energy has decayed, the
spectrum stops evolving (orange and red lines): it peaks at
γ−1∼5 and extends well beyond the peak into a nonthermal
tail of ultrarelativistic particles that can be described by a power
law
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g
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g g g=
-
-

< <
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dN

d
N

1

1
, for , 7

st

p

st c0

and a sharp cutoff for γ�γc. Here N0 is the normalization of
the power law and p is the power-law index, which is about 2.8
for the simulation results presented in the main panel of
Figure 5 (note that in our figures we plot dN/dln(γ−1) to

Figure 2. 3D plots of different fluid structures in fully developed 3D turbulence (at ct/l=2.7) with σ0=10, δBrms0/B0=1, and L/de0=820 (with l=L/4). The
displayed quantities are (from left to right, top to bottom) the fluctuation magnetic energy density in units of B0

2/8π, the current density Jz along the mean magnetic
field in units of en0c, the bulk dimensionless four-velocity Γβ, and the particle density ratio n/n0. Note that the color bars for Γβ and n/n0 are in logarithmic scale. An
animation showing the current density Jz in different x-y slices can be found at https://doi.org/10.7916/d8-prt9-kn88.
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emphasize the particle content, proportional to ( )g g- - + d1 p 1

for the distribution in Equation (7)). The percentage of the
particles in the nonthermal tail (measured as the number of
particles with Lorentz factor exceeding twice the thermal peak)
is high, ζnt∼17%, and it corresponds to a high value of the
normalization N0, which is close to the thermal peak. The
starting point of the power law, γst, is roughly only a factor of
two larger than the peak of the particle energy spectrum at late
times. Therefore, dropping O(1) factors, the starting point of
the power law can be estimated as

⎜ ⎟⎛
⎝

⎞
⎠ ( )g g

s
g~ = +s 1

2
, 8st th

0
0

since most of the magnetic energy is converted to particle energy
by the time the particle energy spectrum has saturated (see inset of
Figure 3). On the other hand, the high-energy cutoff γc depends
on the system size. As discussed in the following sections,
stochastic acceleration by turbulent fluctuations dominates the
energy gain of the most energetic particles. High-energy particles
cease to be efficiently scattered by turbulent fluctuations when
their Larmor radius ( )r g= ^mc eB vL exceeds the integral
length scale p=ℓ k2 I , implying an upper limit to their Lorentz
factor of

( )g
p

s g~ á ñ ~e B
ℓ

mc k d

2
, 9c

I e
z th

2
2

0
0

where á ñB2 is the space-averaged mean-square value of the
magnetic field and
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This argument assumes that the turbulence survives long
enough to allow the particles to reach this upper limit (we
also assumed B0/δBrms1). A numerical confirmation of
Equation (9), with kI∼kN, was presented in Comisso & Sironi
(2018) by performing simulations with different domain sizes.
We point out that inverse magnetic energy transfer (e.g.,
Biskamp & Schwarz 2001; Zrake 2014; Brandenburg &
Kahniashvili 2015) can possibly drive a substantial decrease
in time of kI, which, in turn, can allow the most energetic
particles to reach even higher energies.
We observe that the slope of the power law is not universal,

but it depends on the magnetization σ0 and the ratio δBrms0/B0

(Comisso & Sironi 2018). The inset of Figure 5 shows how the
power-law index changes with the magnetization σ0 from two
series of simulations having δBrms0/B0=1 and δBrms0/B0=
2. We can see that the slope of the power law becomes harder
for larger magnetization, and that for fixed σ0 it is harder when
increasing δBrms0/B0 (see also Figure 7). The decrease of the

Figure 3. Power spectrum of the magnetic field for the 2D simulation in
Figure 1, showing a well-developed inertial range and a kinetic range scaling
roughly as PB(k) ∝ k−4.3. The inset shows the time evolution of d =Brms

dá ñB2 1 2 normalized to B0, with vertical dashed lines indicating the times when
the magnetic power spectra presented in the main panel are computed (same
color-coding).

Figure 4. Power spectrum of the magnetic field for the 3D simulation in
Figure 2, showing a well-developed inertial range and a kinetic range scaling
roughly as ( ) µ^ ^

-P k kB
4.3. The inset shows the time evolution of

d d= á ñB Brms
2 1 2 normalized to B0, with vertical dashed lines indicating the

times when the magnetic power spectra presented in the main panel are
computed (same color-coding).

Figure 5. Time evolution of the particle spectrum ( )g -dN d ln 1 for the
simulation in Figure 1. At late times, the particle spectrum displays a power-
law tail with index ( )g= - - ~p d N dlog log 1 2.8. About 17% of the
particles have γ�12 at ct/l=12 (twice the peak of the particle energy
spectrum at that time), which gives an indication of the percentage of
nonthermal particles. The inset shows the power-law index p as a function of
the magnetization σ0 for two values of δBrms0/B0.
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power-law index p for increasing magnetization σ0 (see also
Zhdankin et al. 2017; Comisso & Sironi 2018) is in analogy
with the results of PIC simulations of relativistic magnetic
reconnection (Guo et al. 2014; Sironi & Spitkovsky 2014;
Werner et al. 2016; Lyutikov et al. 2017; Petropoulou &
Sironi 2018). We will see that magnetic reconnection plays an
important role also in the turbulence scenario considered here.
However, as we show below, its role is confined to the initial
stages of particle acceleration, while the dominant acceleration
process is given by stochastic scattering off turbulent
fluctuations, which determines the slope and the cutoff of the
high-energy power-law tail.

A similar picture holds in 3D, i.e., a generic by-product of
the magnetized turbulence cascade is the production of a large
number of nonthermal particles. Figure 6 shows the evolution
of the particle energy spectrum ( )g -dN d ln 1 starting from
the initial Maxwellian peaked at g g- ~ -1 1 0.6th0 . As
time progresses, the particle energy spectrum shifts to higher
energies and develops a high-energy tail containing a large
fraction of particles. At late times, when most of the turbulent
energy has decayed, the particle energy spectrum stops
evolving (orange and red lines), and it peaks at γ−1∼7. It
extends well beyond the peak into a nonthermal tail of
ultrarelativistic particles that can be described by a power law
with an index p∼2.9 (main panel of Figure 6). As in the 2D
case, the normalization of the power law is close to the peak of
the spectrum, giving a large fraction of nonthermal particles. At
ct/l=12 we find that about 16% of particles have or exceed
twice the energy of the spectral peak, which provides an
indication of the percentage of particles in the nonthermal tail
ζnt.

In order to understand the dependence of the high-energy
power-law slope on the initial magnetization in 3D, we performed
four large-scale 3D simulations with { }s Î 5, 10, 20, 400 and
same δBrms0/B0=1, L/de0=820. The power-law index p
decreases for increasing σ0 (see top inset in Figure 6), with
values that are close to the ones from the corresponding 2D
simulations with δBrms0/B0=1 (blue curve from the inset in
Figure 5). Here we also show the scaling of the high-energy cutoff

γc (bottom inset in Figure 6), defined as the Lorentz factor where
the spectrum drops one order of magnitude below the power-law
best fit. The high-energy cutoff γc increases as g sµc 0

1 2

(compare with dashed line in the inset), which is consistent with
the expectation from Equations (9) and (10) for a σ0-independent
domain size L/de0 and fixed δBrms0/B0.
Several astrophysical systems are thought to have δBrms/B0

larger than unity (e.g., d ~B B 6rms
2

0
2 in some regions of the

Crab Nebula; Lyutikov et al. 2019). Therefore, we have
performed three additional 2D simulations with initial ratios
δBrms0/B0=1, 2, 4, with fixed initial magnetization σ0=40
and a larger domain size L/de0=3280. Figure 7 shows that the
power law becomes harder with increasing δBrms0/B0, with
p<2 for large initial fluctuations. In this case, both
Equations (8) and (9) should be understood as upper limits
that are subject to energy constraints, as we now discuss. The
starting point of the power-law tail, γst, could be lower than
indicated in Equation (8), if only a minor fraction of the
available energy goes into thermal particles, while most of the
energy goes into the nonthermal tail. Also, while in the case
p>2 one can have from Equation (9) that g  ¥c as kIde0 →
0, the case 1<p<2 has a lower attainable high-energy cutoff
γc, since the mean energy per particle in the power-law tail has
to be (Sironi & Spitkovsky 2014)
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where χ is the fraction of turbulent magnetic energy converted
into particles belonging to the power-law tail.
We conclude this section with the results of 2D simulations

having different initial plasma temperature θ0. From Figure 8,
we can see that the slope p, the fraction of nonthermal particles,
and the extent of the nonthermal tail γc/γst do not depend on
θ0. Indeed, this plot shows that spectra obtained from
simulations with different θ0 nearly overlap, when shifted by
an amount equal to the initial thermal Lorentz factor γth0. The
role of the initial choice of temperature is only to produce an
energy rescaling, since both γst and γc are proportional to γth0,

Figure 6. Time evolution of the particle spectrum dN/dln(γ−1) for the
simulation in Figure 2. At late times, the spectrum displays a power-law tail
with index ( )g= - - ~p d N dlog log 1 2.9. About 16% of the particles
have γ�15 at ct/l=12 (twice the peak of the particle energy spectrum),
which gives an indication of the percentage of nonthermal particles. The inset
shows the power-law index p and the cutoff Lorentz factor γc as a function of
the magnetization σ0. The dashed line indicates the scaling g sµc 0

1 2 expected
for a σ0-independent domain size L/de0=820.

Figure 7. Particle spectra dN/dln(γ−1) at late times for simulations with
magnetization σ0=40, system size L/de0=3280 (with l=L/8), and
different values of initial fluctuations { }d ÎB B 1, 2, 4rms0 0 . For the case
with larger initial fluctuations, the late-time particle spectrum displays a power-
law tail with index ( )g= - - ~p d N dlog log 1 1.9, and about 31% of the
particles have γ�25 at ct/l=12 (twice the peak of the particle energy
spectrum at that time), which gives an indication of the percentage of
nonthermal particles.
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as can be seen from the relations (8) and (9), and the definitions
of σ0 and s dz e0 already take into account relativistic thermal
effects.

Up to this point, we have discussed general features of the
particle spectrum generated as a by-product of the plasma
turbulence. We have found that despite some differences
between 2D and 3D settings, the produced particle spectrum
does not depend on the dimensionality of the simulation
domain (see also Comisso & Sironi 2018). In both cases, the
high-energy power-law range extends from (about) the thermal
peak to a maximum energy set by the energy-containing scale
of turbulence. These common features, combined with the fact
that the slope of the power law is also similar, yield a similar
percentage of particles in the power-law tail. In the next
sections, we will shed light on the particle acceleration
mechanisms that produce the nonthermal particle spectrum.

4. Particle Injection and Fast Reconnection

In this section, we investigate the physics behind the initial
rapid acceleration of particles from low energies (g g~mc mcth

2 2)
to energies well above the thermal peak (γmc2?γthmc

2),
which is usually referred to as the injection mechanism. The
investigation of the injection mechanism will not be limited to this
section, but it will be pursued also in parts of Sections 5 and 6.
Here, specifically, as a continuation of our earlier analysis
(Comisso & Sironi 2018), we want to examine the spatial
locations where the injection process occurs and understand what
is special about these locations. To this aim, we have tracked
the time evolution of a large subsample of particles that were
randomly selected from our reference PIC simulations. Following
in time their trajectory and energy evolution, we can analyze,
for the fraction of particles that experience an injection process,
the physical conditions at the moment of their rapid initial
acceleration phase. Then, we calculate the conditions for having
efficient particle injection by reconnection, which are linked to
the onset of fast magnetic reconnection mediated by the plasmoid
instability. Indeed, despite their small filling fraction, we show
that reconnecting current sheets can inject a large fraction of
particles in a few outer-scale eddy turnover times.

4.1. Particle Injection at Reconnecting Current Sheets

We begin our analysis from the reference 2D case, and then
we extend the analysis to the reference 3D case. For the
injection analysis presented in this section, we employed a
subsample of ∼106 tracked particles for the 2D case and a
subsample of ∼107 tracked particles for the 3D case.
We show in Figure 9(a) the time evolution of the Lorentz

factor for 10 representative particles that eventually populate
the nonthermal tail at ct/l=12 (see particle spectrum in
Figure 5). These particles have a distinct moment in which they
are “extracted” from the thermal pool at γ∼γth and injected to
higher Lorentz factors γ ? γth. To identify this moment, which
we call injection time tinj, we evaluate when the rate of increase
of the particle Lorentz factor (averaged over cΔt/de0=45)
satisfies ˙g gD D t thr, and prior to this time the particle
Lorentz factor was γ�4γth0∼6. We take the threshold
˙ g s g w0.01 th pthr 0 0 0, but we have verified that our identifica-
tion of tinj is nearly the same when varying ġthr around this
value by up to a factor of three (the factor 0.01 is much lower
than the typical collisionless reconnection rate [∼0.1, in units
of the Alfvén speed], which is the appropriate reference scaling
here, as shown in Comisso & Sironi 2018 and below).

Figure 8. Particle spectra ( )g -dN d ln 1 at ct/l=12 for simulations with
fixed σ0=10, δBrms0/B0=1, and L/de0=1640 (with l=L/8), but different
normalized initial temperature { }q = Îk T mc 0.1, 0.3, 1, 3, 10B0 0

2 . The x-
axis has been normalized to the initial thermal Lorentz factor γth0 to facilitate
comparison among the different cases.

Figure 9. Relation between particle injection and electric current density from
the 2D simulation with σ0=10, δBrms0/B0=1, and L/de0=1640. Top
panel: time evolution of the Lorentz factor for 10 representative particles
selected to end up in different energy bins at ct/l=12 (matching the different
colors in the color bar on the right). Bottom panel: pdf’s of ∣ ∣J Jz p z, ,rms

experienced by high-energy particles at their injection time tinj (red circles) and
by all our tracked particles at ct/l=3.5 (blue diamonds). About 95% of the
high-energy particles are injected at locations with ∣ ∣ J J2z p z, ,rms.
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Once tinj is determined for the population of particles at
hand, it is possible to explore the properties of the electro-
magnetic fields at the injection location. In this case, by
analyzing the fields at injection, we find that the out-of-plane
current density Jz is particularly revealing. In particular, Jz has,
in general, high values at injection locations. To provide a
statistical measure of the likelihood of this occurrence, we can
construct the probability density function (pdf) of the
magnitude of the out-of-plane electric current density experi-
enced by the particles at their injection time, ∣ ∣Jz p, , normalized
by Jz,rms, i.e., the standard deviation of the current density

= á ñJ Jz z,rms
2 1 2 in the whole domain at that time. The outcome

of this analysis is shown in Figure 9(b) by the red circles. The
pdf of the high-energy particles at injection should be
contrasted with the pdf of the entire population of particles at
a representative time (here, ct/l=3.5), shown by the blue
diamonds in Figure 9(b). The difference between the two pdf’s
is striking. The main difference is that the pdf of the overall
particle population is peaked around zero, while the pdf of the
high-energy particles at injection is peaked at much higher
values corresponding to ∣ ∣ ~J J4z p z, ,rms. In particular, ∼95% of
the high-energy particles are injected at locations with
∣ ∣ J J2z p z, ,rms. On the other hand, by taking all the particles
at the representative time ct/l=3.5, only ∼9% of them
happen to be in regions where ∣ ∣ J J2z p z, ,rms. Note also that the
pdf of the overall particle population does not follow Gaussian
statistics owing to the intermittent nature of current sheets in
turbulence (e.g., Servidio et al. 2009; Cerri et al. 2017;
Haggerty et al. 2017; Dong et al. 2018), which is therefore
reflected in the pdf of the particles that sample the entire
domain.

To obtain further insight, we look now at the morphology of
regions with out-of-plane current density ∣ ∣ J J2z z,rms, and we
correlate it with the spatial locations of the particles undergoing
injection at tinj. This is shown in Figure 10(a), where we can see
that the vast majority of the structures with ∣ ∣ J J2z z,rms are
sheet-like structures, namely, current sheets, and the over-
whelming majority of particles at injection reside in these
regions. A large fraction of these current sheets are active
reconnection layers, fragmenting into plasmoids. A typical case
of such reconnecting current sheets is illustrated in
Figure 10(b), where we show a small portion of the domain,
corresponding to the area within the rectangular blue contour in
Figure 10(a), at different times ct/l=3.3, 3.4, 3.5. The
reconnecting current sheet evolves in time and breaks up in
shorter sheets owing to the formation of plasmoids. During this
period of time, particles are constantly injected up to
nonthermal energies, as shown by the red circles in
Figure 10(b).

These results are also robust in 3D, for which we have
performed the same type of analysis. Figure 11(a) shows the
time evolution of the Lorentz factor for 10 representative
particles selected to end up in different energy bins of the
nonthermal tail at ct/l=12 (see particle spectrum in Figure 6).
As in 2D, we can see a sudden acceleration episode with
particles that are extracted from the thermal pool and injected
into the acceleration process. We identify the injection time tinj
as for the 2D case, by evaluating when the Lorentz factor
increases at a rate exceeding the same threshold ġthr adopted for
2D, starting from a value that is γ�5γth0∼8 (this value is
slightly higher than the 2D case, since in 3D a larger fraction of
magnetic energy is dissipated by the end of the simulation).

Note that, as in 2D, after the injection phase the particles
continue to gain energy owing to stochastic scattering off
turbulent fluctuations. We will discuss in detail this second
acceleration stage in Section 7.
By constructing the pdf of ∣ ∣J Jz p z, ,rms for the high-energy

particles at injection and for all particles at a representative time
(taken at ct/l=2.5), we find results that are similar to the ones
we have obtained for the 2D case. Figure 11(b) indeed shows that
the pdf of the particles at injection (red circles) peaks at
∣ ∣ ~J J 2.5z p z, ,rms , as opposed to the pdf of the entire population
of particles at the representative time ct/l=2.5 (blue diamonds),
which peaks at ∣ ∣ ~J J 0z p z, ,rms . Again, particles at injection feel a
substantial electric current density in the direction of the mean

Figure 10. Spatial correlation between particle injection and reconnecting
current sheets for the same simulation as in Figure 9. Top panel: regions of
space with ∣ ∣ á ñJ J2z z

2 1 2 (shown in black) at ct/l=3.5, with red circles
indicating the positions of the particles undergoing injection around this time.
Bottom panels: shaded isocontours of Jz in the spatial domain ( ) Îx l y l,
[ ] [ ]´2.70, 3.15 2.0, 2.9 (corresponding to the area within the rectangular blue
contour in the top panel) at times ct/l=3.3 (left), ct/l=3.4 (middle), and ct/
l=3.5 (right). The red circles indicate the positions of particles undergoing
injection around this time. The color scheme for the shaded isocontours is such
that blue indicates regions with Jz<0, while red indicates regions with Jz>0.
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magnetic field. The peak of the pdf for the particles at injection is
at a lower value of ∣ ∣J Jz p z, ,rms than in 2D, and in general there are
weaker ∣ ∣J Jz p z, ,rms wings for both the pdf of all particles and the
pdf of particles experiencing injection. This can be attributed to
the lower levels of intermittency that characterize 3D magnetized
turbulence with respect to its 2D counterpart (e.g., Biskamp 2003).
Nevertheless, about 80% of the particles are injected in regions
with ∣ ∣ J J2z p z, ,rms. On the other hand, only approximately 11%
of the entire population of particles (at the representative time
ct/l=2.5) reside at ∣ ∣ J J2z p z, ,rms. Therefore, also in 3D, special
locations of high electric current density are associated with
particle injection.

The spatial locations with ∣ ∣ J J2z z,rms are associated with
current ribbons that are predominantly elongated along the
mean magnetic field B0. In Figure 12, we show the morphology
of these regions for two representative planes perpendicular to
B0 (taken at ct/l=2.5). These regions are sheet-like structures
with a variety of length scales. We can see that the majority of
the particles undergoing injection, whose location is shown by
the red circles, resides at these current sheets. A large fraction
of these current sheets are active reconnection layers,
fragmenting into plasmoids. A typical example of such
reconnecting current sheets is shown in Figure 13. We can

see four flux ropes (3D plasmoids) that are formed within the
current sheet (and elongated in the direction of the mean
magnetic field), which is the typical signature of fast plasmoid-
mediated reconnection. We will see in the next subsection that
current sheets undergoing fast reconnection are important for
having efficient particle injection, as they are capable to
“process” a significant fraction of particles (from the thermal
pool) during their lifetime in the turbulent plasma.

Figure 11. Relation between particle injection and electric current density from
the 3D simulation with σ0=10, δBrms0/B0=1, and L/de0=820. Top panel:
time evolution of the Lorentz factor for 10 representative particles selected to
end up in different energy bins at ct/l=12 (matching the different colors in
the color bar on the right). Bottom panel: pdf’s of ∣ ∣J Jz p z, ,rms experienced by the
high-energy particles at their tinj (red circles) and by all our tracked particles at
ct/l=2.5 (blue diamonds). About 80% of the high-energy particles are
injected at regions with ∣ ∣ J J2z p z, ,rms.

Figure 12. Spatial correlation between particle injection and reconnecting
current sheets for the same 3D simulation as in Figure 11. In black, we show
regions of space with strong current density ∣ ∣ á ñJ J2z z

2 1 2 at ct/l=2.5, for
two representative planes of the 3D domain, taken at z/l=0.6 (top panel) and
z/l=3.4 (bottom panel). The large-scale mean magnetic field B0 is in the out-
of-plane direction. The red circles indicate the positions of particles undergoing
injection around this time.
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4.2. Plasmoid-mediated Disruption of the Current Sheets and
Efficiency of Reconnection-mediated Injection

Reconnecting current sheets are a viable source of particle
injection in typical astrophysical systems ( ℓ de0) only if the
injection efficiency (i.e., the fraction of particles going through the
injection phase) is large and independent of system size. Here we
show that this is indeed expected for our turbulence studies.

The rate at which a reconnecting current sheet can process
particles is proportional to the normalized reconnection speed
βR=vR/c, which essentially quantifies the speed of the
reconnection process. This rate would be low for very
elongated current sheets, as the large aspect ratio has the effect
of throttling the reconnection rate. Indeed, a stable current sheet
would be able to reach an asymptotic width determined by the
microphysics of the plasma. For a collisionless relativistic pair
plasma, the steady-state solution for the half-width of a
reconnecting current sheet is (Comisso & Asenjo 2014)

( )l
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, 12w

2
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where w=K3(1/θ)/K2(1/θ) is the enthalpy per particle in units of
mc2. For a thinning current sheet, l¥ is the asymptotic limit of its

half-width. For θ=kBT/mc
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Then, for a current sheet of half-length x l¥ and a
compression ratio between inflow and outflow of order unity,
the steady-state reconnection rate is
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Since current sheets generated by outer-scale eddies (which, as
we discuss below, are the ones that dominate particle injection)
have half-length ξ∼ℓ larger than dw by many orders of
magnitude, the reconnection rate, as well as the injection
efficiency, would be extremely low in this scenario.
However, plasmoids (which form copiously in our simula-

tions) can break the reconnection layer into shorter elements,
consequently leading to a regime of fast nonlinear reconnection
(Daughton et al. 2006; Daughton & Karimabadi 2007;
Bhattacharjee et al. 2009; Daughton et al. 2009; Huang &
Bhattacharjee 2010; Uzdensky et al. 2010). This can happen if
the plasmoids disrupt the current sheet within its characteristic
lifetime, i.e., within one nonlinear eddy turnover time (Carbone
et al. 1990; Boldyrev & Loureiro 2017; Loureiro & Boldyrev
2017; Mallet et al. 2017; Comisso et al. 2018; Dong et al. 2018;
Walker et al. 2018). Fast magnetic reconnection essentially
begins when plasmoids become nonlinear, namely, when the
current density fluctuations caused by the growing plasmoids
are of the same order as the current density of the reconnection
layer (see Figure 4 in Huang et al. 2017). Therefore,
understanding the plasmoid formation in the context of a
forming current sheet is essential to understand the onset of fast
magnetic reconnection and ensuing particle injection.
In order to evaluate the conditions for plasmoid formation

and current sheet disruption, we need to analyze the growth rate
of tearing (or “reconnecting”) modes in such a current sheet.
The collisionless tearing mode dispersion relation for a
relativistic pair plasma can be obtained from the relativistic
pair-plasma fluid equations (e.g., Koide 2009) by applying the
standard tearing mode analysis (Furth et al. 1963; Coppi et al.
1976; Ara et al. 1978). In this way, one can obtain, for arbitrary
values of the tearing stability parameter Δ′ (Furth et al. 1963),
the dispersion relation

⎛
⎝⎜

⎞
⎠⎟

[( ) ]

[( ) ]
( )g t

l
p

G ¡ -
G ¡ +

= - D¢
d

1 4
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8
, 14H

w

1 2 1 2
3 2

where

( )t g t
l

= ¡ =
x lk v d

1
, , 15H

A
H

w

γ is the growth rate, kξ is the wavenumber in the ξ-direction, λ
is the current sheet half-width, vAλ is the Alfvén speed based on
the reconnecting magnetic field, and Γ(z) indicates the gamma
function. This dispersion relation matches the nonrelativistic
one (Porcelli 1991) when w→ 1, i.e., when the plasma is cold.1

Equation (14) can be further simplified for short-wavelength
modes (small Δ′) and long-wavelength modes (large Δ′),
which is convenient in order to derive analytically the
conditions for current sheet disruption. For ϒ = 1, the small-
Δ′ regime, the growth rate, and the inner tearing layer half-

Figure 13. Chain of flux ropes formed in a reconnecting current sheet that self-
consistently develops in 3D turbulence (with σ0=10, δBrms0/B0=1, and L/
de0=820). Isosurfaces of the current density Jz are shown in blue color in the
zoomed-in region, highlighting four flux ropes (3D plasmoids) elongated along
ẑ , i.e., the direction of the mean magnetic field. The color scheme for the
shaded isocontours is such that blue indicates regions with Jz<0, while red
indicates regions with Jz>0.

1 For the purpose of this study we have not considered oblique tearing modes,
which can be included in a more general dispersion relation.
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width (where the ideal MHD approximation breaks down
owing to the finite electron and positron inertia) of the
instability are
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On the other hand, for ¡  -1 , in the large-Δ′ regime, the
growth rate and the inner tearing layer half-width are
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Using these relations, together with the tearing stability index2
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it can be shown that the dominant tearing mode at current sheet
disruption scales like the fastest-growing mode (see Comisso
et al. 2016, 2017; Huang et al. 2017), so that the instability
wavenumber at current sheet disruption turns out to be simply

( )
l

~xk
d

, 19d
w

d
, 2

where the subscript “d” denotes current sheet disruption. This
implies also that the growth rate and the inner tearing layer
half-width at current sheet disruption are
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From these expressions, one still needs to determine the current
sheet half-width at disruption, λd, in order to know the
wavenumber kξ,d and the growth rate γd. We calculate the width
of the current sheet at disruption by using the principle of least
time introduced in Comisso et al. (2016, 2017), substituting the
resistive tearing mode dispersion relation with the collisionless
dispersion relation discussed above. Then, for a rapid current
sheet that forms on the Alfvénic timescale, the mode that
becomes nonlinear in the shortest time disrupts the current
sheet when
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where cλ is an O(1) constant, ˆ ( )d x= l  B is a normalized
amplitude of the noise that seeds the instability (evaluated at the
disruption scale), δBλ is the characteristic magnetic field
fluctuation at scale λ, and α is an index that depends on the
spectrum of the noise, which is related to the turbulence spectrum
as ( ) µx x

a-P k kB
1 2 (Comisso et al. 2018). Equation (21) can

be solved exactly in terms of the Lambert W function, but here
we prefer to consider an asymptotic solution that yields more
transparent results. Therefore, we solve Equation (21) by

iteration, obtaining, at the first order, the solution
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which gives us the critical current sheet width that determines
the layer disruption and the onset of fast reconnection. Finally,
the growth rate of the instability when the current sheet reaches
this ratio is
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while the wavenumber of the dominant mode becomes
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We obtain from Equation (22) that  l l¥ dd w for
outer-scale current sheets with ξ∼ℓ ? dw, as is expected
under typical astrophysical conditions. Therefore, an outer-
scale current sheet disrupts in a chain of plasmoids before
reaching the kinetic scale dw, while interplasmoid layers, being
shorter, can reach the thickness dw. Equation (22) tells us also
that current sheets disrupt at a larger thickness for larger noise
levels. However, the dependence is only logarithmic. From the
other two relations, Equation (23) and Equation (24), we have
that the growth rate of the dominant mode is g x lv 1d A at
current sheet disruption, as is required for the instability to
amplify the perturbation to a significant level within the
lifetime of the current sheet (Comisso et al. 2018). Also, the
number of plasmoids fragmenting the outer-scale current
sheets, which is µ xk ℓd, , increases as ℓ dw increases and the
noise of the system decreases. As an example, we show in
Figures 14 and 15 that a larger number of plasmoids form when
the domain is increased by a factor of 4 with respect to the
reference 2D simulation. In this simulation, as we argue below
in this section, efficient plasmoid formation keeps the
reconnection speed and the injection efficiency high when
increasing system size. As a result, the fraction of nonthermal
particles remains about the same when moving from the
reference box size L/de0=1640 up to L/de0=6560 (see
Figure 2(b) in Comisso & Sironi 2018).
When the reconnection layer becomes dominated by the

presence of plasmoids, soon after the condition λ∼λd is met,
the complexity of the dynamics gives rise to a strongly time-
dependent process. Nevertheless, in a statistical steady-state,
we may expect that the reconnection layer containing the main
X-point, which is the one that determines the global reconnec-
tion rate, has a bounded aspect ratio ξX/λX. If ξX/λX∼1, the
reconnection process would choke itself off, since this would
imply βR∼0 (Comisso & Bhattacharjee 2016). This means
that ξX/λX ? 1 in a steady reconnection process. On the other
hand, the reconnection layer at the main X-point cannot be
longer than the marginally stable sheet. Indeed, the fractal-like
process of current sheet disruption due to the plasmoid
instability terminates when the length of the innermost local
current layer of the chain is shorter than the critical length ξc
(Huang & Bhattacharjee 2010; Uzdensky et al. 2010; Comisso
et al. 2015; Comisso & Grasso 2016). Therefore, ξX  ξc is also
expected. At present there are no analytical estimates for the

2 Here we assume a Harris-type current sheet (Harris 1962), which is a
reasonably good approximation of current sheets occurring in magnetized
turbulence (e.g., Servidio et al. 2010) and coalescing magnetic islands (e.g.,
Huang et al. 2017).
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aspect ratio ξc/λX, which might also depend on the noise level
(e.g., Ni et al. 2010; Huang et al. 2017; Shi et al. 2018).
However, numerical simulations have found ξc/λX∼50 in the
collisionless regime (e.g., Daughton et al. 2006; Daughton &
Karimabadi 2007; Ji & Daughton 2011). As a consequence, for
a compression ratio between inflow and outflow of order unity,
the reconnection rate is bounded from above and below as

( )b1 50 1, 25R

which classify it as a fast reconnection rate. More precisely,
numerical simulations consistently indicate that βR is an O(0.1)

quantity (for relativistic pair plasmas, see, e.g., Zenitani et al.
2009; Bessho & Bhattacharjee 2012; Cerutti et al. 2012; Guo
et al. 2014; Kagan et al. 2015; Liu et al. 2015, 2017; Sironi
et al. 2016; Werner & Uzdensky 2017).
The aforementioned properties of reconnecting current

sheets are important in regulating the particle injection
efficiency. Here we show that the fraction of particles
processed by reconnecting current sheets is independent of
the system size and is quite large (despite the small filling
fraction of current sheets) as long as the reconnection rate is
high. To this purpose, let us consider a generic current sheet of
characteristic length 2ξ and thickness 2λ, whose lifetime is
approximately given by the local eddy turnover time
t t x~ =x lvA Anl , assuming critical balance (Goldreich &
Sridhar 1995; Boldyrev 2006). If fast reconnection occurs for a
time close to the eddy turnover time (see, e.g., Figure 15), a
single reconnecting current sheet can “process” the upstream
plasma up to a distance

( )l b t b
x

= ~
l

c c
v

, 26R j R j j R j
j

A j
, , nl, ,

,

where j labels the jth current sheet among the population of
current sheets present at a given time, and the subscript “R”
stands for reconnection. Since the surface processed by the
entire population of reconnecting current sheets is in good
approximation the one processed by the largest-scale ones,
whose length scale corresponds to the turbulence integral
length ℓ (e.g., Servidio et al. 2009), we have that magnetic
reconnection can process a plasma surface

( )å l x b= ~ L 27R j R j j R,
2

in one large-eddy turnover time. Here we have used ncs∼
(L/ℓ)2 as an estimate for the number of outer-scale current
sheets, and βR is the average reconnection rate. Furthermore, if
we consider that current sheets in 3D are sheet-like structures

Figure 14. Chains of plasmoids in plasma turbulence from a 2D simulation with L/de0=6560 (σ0=10, δBrms0/B0=1). The shaded isocontours represent the
electric current density Jz in a portion of the spatial domain given by ( ) [ ] [ ]Î ´x l y l, 2.5, 8.0 1.5, 7.0 at time ct/l=4.5. The color scheme is such that blue
represents the most negative value and red the most positive value. Zoomed-in subdomains are used to reveal one plasmoid chain.

Figure 15. Plasmoid formation and development from a 2D simulation with
L/de0=6560 (σ0=10, δBrms0/B0=1). The shaded isocontours represent
the electric current density Jz in a portion of the spatial domain given by
( ) [ ] [ ]Î ´x l y l, 7.4, 8.0 2.5, 4.2 at times ct/l=4.2 (left), ct/l=4.5
(middle), and ct/l=4.8 (right). Colors range from blue (Jz<0) to
red (Jz>0).
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with  l x  l2 2 2 , with 2lP indicating the direction along the
magnetic field, we can obtain that, in one large-eddy turnover
time, the reconnecting current sheets process a plasma volume

( )å l x b= ~ l L . 28R j R j j j R, ,
3

Therefore, according to Equations (27)/(28), the plasma
surface/volume processed by the reconnecting current sheets
is a fixed fraction of the domain if βR is independent of the
system size, as discussed above. Moreover, since βR is anO(0.1)
quantity, magnetic reconnection can process large volumes of
magnetic energy in few outer-scale eddy turnover times.

In the next sections, we will address how particles are
energized both in the injection phase and in the subsequent
stochastic acceleration phase, and we will analyze the
signatures of the acceleration process on the particle
distribution.

5. Mechanisms of Particle Energization

In order to distinguish the relative roles of different
energization mechanisms, it is convenient to compute the work
done by the parallel electric field, ( ) ( ) · ( ) ò= ¢ ¢ ¢E vW t q t t dt

t

0
,

as well as the work done by the perpendicular electric field,
( ) ( ) · ( )ò= ¢ ¢ ¢^ Ê vW t q t t dt

t

0
, for a statistically significant

sample of particles (here, as usual, q is the electric charge, E
is the electric field, and v is the particle velocity). To this aim, we
tracked a sample of ∼107 particles randomly selected from each
of our PIC simulations.3 Note that in this section, parallel (P)
and perpendicular (̂ ) components are defined with respect to
the local magnetic field, i.e., ( · ) =E E B B B2 and =Ê

-E E . The main results of our analysis, for the reference 2D
and 3D simulations (see Table 1), are presented in Figure 16
(left column for 2D and right column for 3D). We first discuss
the energization process of representative particles that end up
in the high-energy tail, and then we present a statistical analysis
that allows us to quantify the contributions of parallel and
perpendicular electric fields for the overall acceleration of
nonthermal particles.

Figures 16(a) and (b) show the particle energy gain
normalized to rest-mass energy, Δγ (t)=γ (t)−γ (0), as
well as the relative contributions ( )W t mc2 and ( )Ŵ t mc2, for
representative high-energy particles in 2D and 3D turbulence.
The total work done by the electric field is not plotted here,
since ( ) · ( ) ( )ò g¢ ¢ ¢ = DE vq t t dt mc t

t

0
2 is satisfied to high

accuracy and is essentially indistinguishable from the black
solid line representing Δγ(t). Both figures indicate that the
work done by E is responsible for the initial energy gain, while
the work done by Ê takes over at relatively low energies and
propels the particle to the highest energies. Alternative plots
that provide similar information, but can be more easily
generalized to analyze a large population of particles (as we do
below), are shown in Figures 16(c) and (d), for 2D and 3D,
respectively. In this case, the relative contributions W mc2 and
Ŵ mc2 are plotted as a function of Δγ, and the black solid
line indicates the expected sum of the two terms. The plots
show that the low Δγ-range is dominated by WP, while
 Ŵ W when particles reach high energies.

Figures 16(c) and (d) are generalized in Figures 16(e) and
(f), respectively, to account for a statistical assessment of the
energization of a sample of particles. We consider all tracked
particles that end up well into the nonthermal tail at late times,
more precisely all tracked particles for which g s 18 0 at
ct/l=12. The figures show the distribution ( )gDf W mc, 2

of particles with respect to Δγ and W mc2. We normalize
( )gDf W mc, 2 such that

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )


ò g gD D =
-¥

¥
f

W

mc
d, 1. 29

2

The distribution ( )gD ^f W mc, 2 is not plotted here since it
conveys the same message. We can see that the peak of the
distribution for a given Δγ is around  ~W mc 402 , for all
gD > 50. This occurs in both 2D and 3D simulations. We also

calculated the median of the histogram as a function of Δγ,
which is shown as a black dashed line in Figures 16(e) and (f).
The median also approaches a constant value  ~W mc 402 at
Δγ>50.4 This confirms for a statistically significant sample
of particles the same conclusions presented above: high-energy
particles are first energized via · v E , which brings them up to

gD ~ ~W mc 402 , and then further energization is provided
by perpendicular electric fields, with  Ŵ W for the highest-
energy particles.
In summary, we find both for individual particles and for a

large sample of particles that the initial stages of acceleration
are controlled by parallel electric fields. This is consistent with
the fact that strong parallel electric fields are expected at active
reconnection layers, where we have indeed shown that particle
injection (i.e., the first stage of acceleration) occurs. Accelera-
tion by perpendicular electric fields becomes important after
injection rather than before injection because the plasma is
strongly magnetized (σz+σ ? 1), implying that the large
majority of the particles need an energy increase before being
able to sample turbulence fluctuations in the inertial range of
the turbulence cascade. After injection, the particles’ Larmor
radius becomes larger than the characteristic thickness of the
current sheets, so that these particles cannot be confined inside
them and experience direct acceleration by the reconnection
electric field. Therefore, the effect of the current sheets
becomes negligible at large particle energies.
The initial energy gain due to · v E is dependent on

magnetization. It can be seen from Figure 17 that the typical
energy gain provided by · v E increases with σ0. From our
simulations we find that the typical increase in Lorentz factor
during the injection process (which is governed by parallel
fields at reconnection layers) is

( )g ks g sD ~ ~W mc , 1, 30thinj
2

0 0 0

where κ is a numerical factor of order unity (κ∼2 from
Figure 17). In general, the time-dependent magnetization s =
d pB n wmc4rms

2
0

2 decreases with time in decaying turbulence,
implying that the time-dependent g ksgD = thinj also decreases
with time (γth is the instantaneous mean Lorentz factor).
The length lP along B (which in reconnection layers is

dominated by the mean field B0) required to attain the energy

3 WP(t) and ( )Ŵ t are computed on the fly in order to achieve high accuracy,
regardless of the time sampling of particle outputs.

4 For low values of Δγ, the mode and the median of ( ∣ ) gDf W mc2 are
independent of the final particle energy only if the selected threshold satisfies γ
? (σ0/2)γth0 at late times, i.e., for particles that end up well into the
nonthermal tail (see also Section 6).
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gain Δγinj can be obtained from the reconnection electric field
ER by assuming particles moving along E at the speed ∣ ∣ ~v c.
If EP∼ER≈const during the acceleration time, then

( )
g b dD = B

e l

mc
. 31Rinj rms 2

Here we have used the typical reconnection electric field
b d b d= ~E B v c BR R A Rrms rms. Therefore, the length scale linj

required to attain the increase Δγinj can be expressed as

( )
k
b

s
g=l

w
d , 32

R
th einj

Figure 16. Relative contributions of ( · ) =E E B B B2 and = -Ê E E to the particle energization in 2D (left) and 3D (right) simulations with σ0=10 and δBrms0/
B0=1. The 2D simulation has domain size L/de0=1640 (with l=L/8), while the 3D simulation has domain size L/de0=820 (with l=L/4). Top row: for a
typical high-energy particle, time evolution of the normalized particle energy gain, Δγ (black solid line), normalized work done by the parallel electric field, W mc2

(red solid line), and normalized work done by the perpendicular electric field, Ŵ mc2 (blue solid line). Middle row: scatter plot of W mc2 vs. Δγ (red triangles) and
W⊥/mc

2 vs. Δγ (blue diamonds), for the same particle displayed in the top panel. The solid black line indicates the expected sum  g+ = D^W mc W mc2 2 . Bottom
row: distribution of particles with respect to Δγ and W mc2, for particles ending up with γ�18σ0 at ct/l=12. The median of the conditional pdf at given
Δγ, ( ∣ ) gDf W mc2 , is shown with a dashed black line. Again, the solid black line indicates the expected sum  g+ = D^W mc W mc2 2 .
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where the different physical quantities have to be evaluated at
the injection time. This expression indicates that a sufficient
length for particle injection is always guaranteed for a large
enough system, i.e., l?linj. Similarly, as most of injection
happens at outer-scale current sheets, the time τinj required for
accelerating particles up to this energy is always granted if

t d t= =l V l cnl rms inj inj , where τnl is the outer-scale non-
linear time and d d= á ñV Vrms

2 1 2 is the space-averaged rms
value of the velocity field fluctuations. The two requirements
coincide for δVrms → c.

Even though  Ŵ W for high-energy particles, the initial
· v E energization process is important to promote the particles

to energies large enough that they can experience the
subsequent · ^v E acceleration. Hence, energization by · v E
controls the number of particles that have the possibility to reach
nonthermal energies. This point, which was already discussed in
Section 4, can be probed in a direct way by comparing the self-
consistent PIC particles with a population of test particles for
which we artificially exclude acceleration by E , assuming that the
electric field they feel is  -E E E . To this aim, we performed
a 2D PIC simulation where we added a population of ∼5×109

such test particles. The resulting particle spectra at late time
(ct/l=12) are shown in Figure 18. The particle spectrum of
normal particles has a much larger fraction of particles contained
in the high-energy tail (17% vs. 0.2%).5 Equivalently, the
normalization of the power-law tail in the test-particle spectrum
is much lower than for self-consistent particles. On the other
hand, the index ( )g= - -p d N dlog log 1 of the power-law
tail is similar (see dashed black lines), indicating that the · ^v E
energization is the crucial process responsible for setting the
power-law slope. Also, the cutoff energy is about the same for
the two populations of particles, indicating that it is not
controlled by parallel electric fields.

In the next section we will see that the two different
energization processes, which dominate in different energy

ranges ( · v E for g ksgD  thinj and · ^v E for Δγinj  κσγth),
also affect the anisotropy of the particle distribution.

6. Anisotropy and Particle Mixing

Anisotropic features of the particle distribution can have a
significant impact on the observed synchrotron emission (e.g.,
Tavecchio & Sobacchi 2019). Here we show that even if the
initial velocity distribution is isotropic, the particle energization
process drives a significant energy-dependent anisotropy, as the
pitch-angle scattering rate is not sufficient to keep the particle
distribution close to isotropy. In order to characterize the
anisotropy of the particle distribution, we first examine the pitch-
angle distribution of the particles, namely, the statistics of the
pitch-angle cosine · (∣ ∣∣ ∣)a = v B v Bcos . Then, we analyze
the anisotropy of the four-velocity distribution of the particles.
We perform these analyses on a statistically significant sample of
∼107 particles, in both 2D and 3D. These particles were
randomly selected and tracked over time for each of the
simulations. Finally, we also look at the spatial mixing of
particles.

6.1. Pitch-angle Distribution

The time evolution of the overall particle distribution with
respect to acos is shown in Figure 19(a) for the reference 2D
simulation and in Figure 19(b) for the reference 3D simulation.
As turbulence evolves, the pitch-angle distribution becomes
anisotropic with strong peaks at a = cos 1, i.e., for particles
moving along the magnetic field lines. Pronounced peaks of the
pitch-angle distribution near a = cos 1 have also been found
in nonrelativistic plasma turbulence at low bp (e.g., Pecora et al.
2018), with ( )b p= á ñn k T B 8p B0

2 indicating the plasma beta,
i.e., the ratio of thermal pressure to magnetic pressure. Indeed,
the low-βp regime is similar to the high-σ regime investigated
here, in the sense that in both cases the magnetic energy density
dominates over the thermal energy density (in our simulations
the initial plasma beta is [ ( )]b q s s= +w2p z0 0 0 ). The pdf’s of
2D and 3D simulations are similar; nevertheless, the 3D case

Figure 17. Median of ( ∣ ) gDf W mc2 , divided by σ0, for high-energy particles
from different 3D simulations having σ0=5 (blue), σ0=10 (green), σ0=20
(orange), and σ0=40 (red). We considered all tracked particles with γ�18σ0
at ct/l=12. All the simulations have δBrms0/B0=1 and L/de0=820. The
solid black line indicates the expected sum  g+ = D^W mc W mc2 2 .

Figure 18. Particle spectra ( )g -dN d ln 1 at ct/l=12 for normal particles
(red solid line) and test particles that are evolved with  -E E E (blue solid
line) from a 2D simulation with σ0=10, δBrms0/B0=1, and L/de0=1640.
The two spectra display similar power-law index but different power-law
normalization. The high-energy tail with γ�12 contains 17% of the normal
particles, while only 0.2% of the test particles are contained in the tail
with γ�12.

5 In both cases we consider a nonthermal tail starting at γ�12, since the
power-law range starts at γ∼12 for both particle spectra. Note that this value
is quite larger than the thermal peak of the test-particle population, which is
consistent with the low normalization N0 of its nonthermal power-law tail.
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exhibits higher probability peaks near a = cos 1. Furthermore,
the pitch-angle distribution evolves more rapidly in 3D as a
consequence of the faster conversion of magnetic energy into
particle energy. The large fraction of particles having velocity

strongly aligned/antialigned with the local magnetic field is a
natural expectation of injection mediated by magnetic reconnec-
tion, which can efficiently energize particles through the work
done by E . As we have shown, reconnecting current sheets can

Figure 19. The pdf’s of the pitch-angle cosine · (∣ ∣∣ ∣)a = v B v Bcos at different times, obtained from 2D (left) and 3D (right) simulations. Both simulations have
σ0=10 and δBrms0/B0=1. The 2D simulation has domain size L/de0=1640 (with l=L/8), while the 3D simulation has domain size L/de0=820 (with l=L/4).

Figure 20. Particle distributions obtained from 2D (left) and 3D (right) simulations with σ0=10 and δBrms0/B0=1. The 2D simulation has domain size
L/de0=1640 (with l=L/8), while the 3D simulation has domain size L/de0=820 (with l=L/4). Top row: pdf’s of the pitch-angle cosine · (∣ ∣∣ ∣)a = v B v Bcos
for particle Lorentz factors in the intervals [ ]g Î 1, 1.5 (crosses), [ ]g Î 15, 20 (circles), [ ]g Î 35, 50 (squares), [ ]g Î 60, 80 (diamonds), and [ ]g Î 150, 200
(triangles). Bottom row: particle distribution with respect to the pitch-angle cosine acos and the Lorentz factor γ. The plots are obtained from data in the time range

[ ]Îct l 3, 12 to increase statistics.
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process a large fraction of particles in just a few c/l (see
Equations (27) and (28)).

The pdf’s illustrated in Figure 19 are dominated by low-
energy particles (i.e., near the spectral peak), since they control
the number census (see Figures 5 and 6). In order to
characterize the anisotropy of particles of higher energy, we
construct pdf’s of acos for different populations of particles
depending on their Lorentz factor. We collected particle data
from a time range [ ]Îct l 3, 12 in order to increase statistics.
However, we have verified that decreasing this range (up to a
single time snapshot taken at late times) does not modify the
results. These results are shown in Figures 20(a) and (b) for 2D
and 3D turbulence, respectively. At very low energies (γ∼1),
the particle distribution remains nearly isotropic. These are the
particles of our initial Maxwellian, which have not been
energized. At moderate Lorentz factors (γ∼15), the particle
distribution displays strong peaks close to a = cos 1, in
analogy with the results shown in Figure 19. At higher Lorentz
factors, the pitch-angle distribution evolves into a “butterfly
distribution” with minima at both a = cos 1 and a =cos 0.
This phenomenon occurs at Lorentz factors γ∼50 for the
simulations with σ0=10 shown in Figure 19. At even higher
energies (γ ? 50), the pitch-angle distribution becomes
eventually peaked at a =cos 0, i.e., for particles moving in
the plane perpendicular to the local magnetic field. This trend
can be displayed using a distribution ( )a gf cos , of particles
with respect to acos and γ. This distribution, shown in
Figures 20(c) and (d) for 2D and 3D turbulence, respectively,
has been normalized such that

( ) ( ) ( )ò a g a =
-

f dcos , cos 1. 33
1

1

In these plots, the peaks of ( )a gf cos , are located at
a = cos 1 for low energies, and then they move toward
a =cos 0 until γ∼80. At higher energies, the peak of the

distribution remains located at a =cos 0, with particles that lie
progressively more perpendicular to the local magnetic field as
their energy increases.

The energy-dependent anisotropy illustrated in Figure 20
reflects the different acceleration mechanisms that operate at
different energies (see Section 5). At low energies, the
contribution of the · v E energization is dominant, so that
particles end up being strongly aligned/antialigned with the
magnetic field ( a ~ cos 1). On the other hand, as the energy
increases, the ·^ ^v E energization takes over and propels the
particles in the direction perpendicular to the local magnetic
field. The timescale of this acceleration is fast compared to the
pitch-angle scattering timescale, so that particles retain their
orientation a ~cos 0 for long times.

The results shown in Figure 20 for magnetization σ0=10
also hold for the other magnetizations we investigate. In
Figure 21, we present the results from four simulations that
differ in magnetization { }s Î 5, 10, 20, 400 . Here we show
only the results from 3D simulations, since those from 2D
simulations are analogous. The ranges in γ are scaled with σ0,
which provides the typical energy scale (e.g., the starting point
of the high-energy nonthermal tail, γst, increases linearly with
σ0, as illustrated by Equation (8)). For ( )g s g~ 2 th0 0 (solid
lines), we have a pitch-angle distribution peaked at a ~ cos 1
(the only difference is that the percentage of particles aligned/
antialigned with the local magnetic field slightly increases with

σ0). The butterfly distribution with minima at a = cos 1, 0
appears for ( )g s g~ 5 2 th0 0 (long-dashed lines). Finally, for

( )g s g5 2 th0 0, well into the nonthermal tail, the particle
velocities become mostly perpendicular to the magnetic field,
and we can see that all the distributions are peaked at

a =cos 0 (see dashed lines).

6.2. Particle Four-Velocity Distribution

The results on the anisotropy of the pitch-angle distributions,
computed with respect to the local magnetic field

d= +B B B0 , suggest that the four-velocity distribution
function, with respect to the mean magnetic field ˆ=B zB0 0 ,
should also display significant anisotropy. Indeed, as the
turbulence fluctuations decay, the local magnetic field becomes
progressively more aligned with the direction of the mean
magnetic field.
We calculated the domain-averaged four-velocity distributions

in the x-y plane, ( )gb gbf ,x y , and in the x-z plane, ( )gb gbf ,x z ,
from the same samples of particles used to analyze the local
pitch-angle distributions. The results for our reference 3D
simulation (the 2D case is analogous) are shown in Figure 22
(and a zoom-in in Figure 23). As for Figure 20, we collected
particle data in the time range [ ]Îct l 3, 12 in order to increase
statistics, but we have also verified that decreasing this range (up
to a single time snapshot taken at late times) does not modify the
results. As we expected, from Figure 22 we find that the four-
velocity distribution is isotropic in the plane perpendicular to B0
(top panel), while it develops more complex features with
respect to planes that contain B0, as for the case of ( )gb gbf ,x z
(bottom panel). The results are analogous when considering

( )gb gbf ,y z or (( ) )g b g b gb+f ,x y z
2 2 2 2 1 2 . The distribution

( )gb gbf ,x z displays a core region elongated in the gbz
direction, as particle velocities are mostly aligned/antialigned
with the magnetic field at low energies. Furthermore, a close
inspection shows that there is an intermediate-energy region,
with the majority of particles residing in a double cone whose
axis is the direction of the mean magnetic field B0 (see
Figure 23). This is the intermediate-energy range, in which the

Figure 21. The pdf’s of the pitch-angle cosine · (∣ ∣∣ ∣)a = v B v Bcos for
particles with Lorentz factors [ ]g s sÎ 0.8 , 1.20 0 (solid lines), [ ]g s sÎ 4 , 50 0

(long-dashed lines), and [ ]g s sÎ 16 , 240 0 (dashed lines). Different colors refer
to different 3D simulations having σ0=5 (blue), σ0=10 (green), σ0=20
(orange), and σ0=40 (red). All 3D simulations have δBrms0/B0=1 and
L/de0=820. We also recall that γth0≈1.58. Data are collected from a time
range [ ]Îct l 3, 12 .
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peak of pitch-angle distribution moves from a = cos 1 toward
a =cos 0. At even higher energies, Figure 22 shows that

( )gb gbf ,y z becomes elongated in the direction perpendicular to
B0, consistently with the dominance of ·^ ^v E energization at
higher energies and the resulting anisotropy of the pitch-angle
cosine.

6.3. Particle Mixing

We show that while the qualitative and quantitative features
of the pitch-angle distributions are similar in our 2D and 3D
simulations, the turbulent mixing (in space) of the energized
particles is quite different. Particle mixing in 2D is expected to
be less efficient than in 3D, since the translation-invariant
symmetry along ẑ seriously constrains the 2D dynamics. As a
consequence, regions of space devoid of high-energy particles
can be retained for a larger number of outer-scale eddy turnover
times in 2D simulations.
In Figure 24, we show how the energized particles are

distributed in the spatial domain in 2D (left column) and 3D
(right column). For both cases, we plot the cell-averaged
kinetic energy per particle, gá - ñ1 cell, at three different times
(from top to bottom). The mean kinetic energy is normalized by
mc2. The time snapshots are different for 2D (ct/l=4.6, 7.7,
10.8) and 3D (ct/l=2.7, 4.5, 6.3), to account for the faster
turbulence decay in 3D. In both cases, the initial energization
occurs at current sheets, which display high values of
gá - ñ1 cell, and then particles propagate outside current sheets
in other regions of the domain (see top panels of Figure 24). As
time progresses, energized particles diffuse in the spatial
domain, and the mean kinetic energy per particle becomes
more uniform (middle panels of Figure 24). However, in 2D
the cores of the large-scale flux tubes remain essentially
unaffected, as these overdense regions with n?n0 and with
higher fluctuation magnetic energy density d pB 82 (see
Figure 1) are mainly populated by low-energy particles that
have not been processed by reconnecting current sheets. On the
other hand, the 3D domain does not present such isolated
regions of low gá - ñ1 cell. At quite early times, the mean
kinetic energy per particle becomes fairly homogeneous across
the entire 3D domain, whereas the 2D simulation preserved
regions of low gá - ñ1 cell for much longer (bottom panels of

Figure 22. Top panel: box-averaged four-velocity distribution function
( )gb gbf ,x y for a 3D simulation with σ0=10, δBrms0/B0=1, and

L/de0=820. Bottom panel: from the same simulation, box-averaged four-
velocity distribution function ( )gb gbf ,x z . The plots are obtained from data in
the time range [ ]Îct l 3, 12 . Normalization is arbitrary.

Figure 23. Zoom-in around the intermediate-energy region of the four-velocity
distribution function ( )gb gbf ,x z shown in Figure 22.
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Figure 24. 2D plots of the cell-averaged mean kinetic energy per particle normalized by mc2, gá - ñ1 cell, for 2D turbulence (left column) and 3D turbulence (right
column). For 3D turbulence, the 2D plots refer to a slice of the domain at constant z/l=0. The normalized times ct/l for the plots in the left column are (from top to
bottom) ct/l=4.6, ct/l=7.7, and ct/l=10.8, while those for the plots in the right column are (from top to bottom) ct/l=2.7, ct/l=4.5, and ct/l=6.3. The 2D
simulation has a domain size L/de0=1640 (with l=L/8), while for the 3D simulation L/de0=820 (with l=L/4). Both simulations have σ0=10 and δBrms0/
B0=1. An animation showing gá - ñ1 cell at ct/l=2.7 in different x-y slices can be found at https://doi.org/10.7916/d8-prt9-kn88.
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Figure 24). This different behavior between 2D and 3D
turbulence is also reflected in the particle energy spectrum, with
2D turbulence retaining more particles with γ  γth0 until late
times (see Figures 5 and 6).

7. Particle Energy Diffusion and Stochastic Acceleration

We have seen that after the injection phase the subsequent
energy gain is dominated by perpendicular electric fields via
stochastic scattering off the turbulent fluctuations (Comisso &
Sironi 2018). Here, in order to elucidate the properties of the
stochastic acceleration phase, we evaluate the energy diffusion
coefficient directly from the self-consistent particle evolution of
our PIC simulations. This allows us to determine the
acceleration timescale associated with stochastic acceleration.
Then, we show that the two-stage process that accelerates
particles is well modeled by an initial injection phase powered
by reconnection electric fields, followed by a second accelera-
tion phase modeled with the measured energy diffusion
coefficient.

7.1. Particle Energy Diffusion

Particles that are stochastically scattered off the turbulent
fluctuations experience a biased random walk in momentum
space, which can be modeled with a Fokker-Planck approach
(e.g., Blandford & Eichler 1987), provided that the fractional
momentum change in a single scattering is sufficiently small. In
this case, one could describe the process of stochastic
acceleration from the point of view of a Fokker-Planck
equation in energy space (e.g., Ramaty 1979)

( ) ( ) ( )
g g

¶
¶

= -
¶
¶

+
¶
¶

g g
N

t
A N D N . 34

2

2

Here, as usual, N is the particle spectrum differential in energy,
Aγ is the energy convection coefficient, and Dγ is the energy
diffusion coefficient. Note that, in general, the convection and
diffusion coefficients are time dependent (this is indeed
the case for the turbulence simulations performed here). The
convection coefficient Aγ represents the mean energy gain due
to stochastic acceleration and is related to the diffusion
coefficient in energy space as

( ) ( )
g

g g
g=

á ñ
=

¶
¶
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dt
D

1
. 35

2
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The diffusion coefficient in energy space Dγ is also related to
the diffusion coefficient in momentum space Dp, with Dγ;Dp

for the ultrarelativistic particles considered here. Given the fact
that high-energy particles preferentially lie in the plane
perpendicular to the mean field (Section 6) and that their
energization is mostly contributed by perpendicular electric
fields (Section 5), the momentum diffusion coefficient Dp is
essentially identical to

^
Dp , i.e., to the diffusion coefficient of

momenta perpendicular to the mean field. The determination of
this coefficient, or equivalently of the energy diffusion
coefficient, establishes the properties of the stochastic accel-
eration phase.

We evaluate the energy diffusion coefficient directly from
PIC simulations (see also Wong et al. 2019). To this aim, from
each of the 2D and 3D simulations employed for this analysis,

we tracked in time the positions, four-velocities, and electro-
magnetic field values of about 107 particles that were randomly
selected at the beginning of the simulation. From the time
history of the particle evolution, we calculate the mean-square
γ-variation

( ) ( ( ) ( )) ( )åg g gá D ñ = -
=N

t t
1

36
p n

N

n n
2

1

2
p

*

for particles grouped in such a way that at an initial time t* they
belong to the same energy bin (Np is the number of particles in
the selected bin). The energy bin at t* is chosen according to
the particle energy calculated in the frame comoving with the
drift velocity = ´v E Bc BD

2. For each particle, we perform
a Lorentz boost from the observer/simulation frame to the local

´E B frame, which results in the boosted Lorentz factor
( · )g g g¢ = - v v c1D D

2 , where ( )g = - v c1 1D D
2 is the

Lorentz factor for the drift velocity. Then, we evaluate
Equation (36) by selecting particles in a small energy bin with

[ ]g g n g n¢ Î ,
* *

, where γ* is the characteristic Lorentz factor
of the energy bin and ν is a constant factor that should be close
to unity (we choose ν=1.1). Finally, the diffusion coefficient
in energy space can be calculated as

( )
( )

g
=

á D ñ
D

gD
t2

, 37
2

where D = -t t t* is a time interval that should be (i) long
enough that the initial conditions become insignificant and
particles are in the diffusive regime and (ii) short enough that
the turbulence properties have not significantly changed. By
using a large sample of particles in each energy bin, nonsecular
variations of the particle energy are averaged out and the mean
energy gain can be obtained.
The results of our analysis of the particle energy diffusion

are reported in Figures 25 and 26, for 2D and 3D simulations,
respectively. The top panels show the mean-square variation
( )gá D ñ2 for particles binned according to their initial energy at

=ct l 5.25* for the reference 2D simulation and ct*/l=3 for
the reference 3D simulation. In both cases, at the selected time
t*, turbulence is well developed and the time-dependent
magnetization calculated with the magnetic energy in turbulent
fields is ( )s ~t 1* . The plots indicate that a diffusive behavior
in energy space, ( )gá D ñ µ Dt2 (compare with dashed black
lines), is achieved after cΔt/l∼1, in both 2D and 3D
reference simulations. For shorter time intervals, particles
preserve memory of the initial conditions and their motion is
not diffusive. The slope at late times (dashed lines) depends on
particle energy, and it allows us to quantify the energy
dependence of the diffusion coefficient.
The bottom panels of Figures 25 and 26 show the particle

energy dependence of the energy diffusion coefficient from
simulations with different initial magnetization σ0 (indicated
with different colors in the figures). The diffusion coefficient is
evaluated using Equation (37) in the time interval cΔt/
l=1.875, starting from ct*/l=5.25 for 2D simulations and
ct*/l=3 for 3D. We verified that the energy dependence
remains the same when taking different time intervals, or by
fitting the slopes of ( )gá D ñ2 as a function of time in the
diffusive regime (as done with the dashed lines in the top
panels). In order to properly compare different σ0, we display
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the energy diffusion coefficient as a function of the Lorentz
factor normalized by γσ (see Equation (8)). The energy range
where stochastic acceleration occurs starts at the beginning of
the power-law high-energy tail of the particle spectrum, i.e., for
γ/γσ  1. In the stochastic acceleration range, the energy
diffusion coefficient scales as Dγ ∝ γ2 (compare with the
dashed black lines in the bottom panels). A similar dependence
on the particle energy was also found in Lynn et al. (2014),
Kimura et al. (2016, 2019), and Wong et al. (2019) and is
consistent with particle acceleration by nonresonant and/or
broadened resonant interactions with the turbulent fluctuations
(e.g., Skilling 1975; Blandford & Eichler 1987; Schlickeiser
1989; Chandran 2000; Cho & Lazarian 2006; Lemoine 2019).
Then, at higher energies, near the high-energy cutoff of the
power law, the energy dependence of Dγ becomes weaker as
the particle Larmor radius gets closer to the energy-containing
scale of the turbulence.

The energy diffusion coefficient also depends on the actual
magnetization ( )s d p= á ñt B n wmc42

0
2

* . In order to better
understand this dependence, in Figure 27 we plot the energy
diffusion coefficient as a function of the magnetization σ at four
different times t* (in the range [ ]Îct l 4, 6* for 2D and

[ ]Îct l 2, 4* for 3D) for the four simulations having different
initial magnetization. Both 2D and 3D simulations show a clear
trend of increasing diffusion coefficient with increasing
magnetization. The 3D simulations are well fitted by a linear
relation in σ (compare with dashed black line),

⎜ ⎟⎛
⎝

⎞
⎠ ( )s g~gD

c

l
0.1 . 382

This scaling can be understood by noting that for a stochastic
process akin to the original Fermi mechanism (e.g., Blandford
& Eichler 1987; Lemoine 2019), the energy diffusion
coefficient is

( )g b
l

g= á ñgD
c1

3
, 39V V

2 2

mfp

2

where g bá ñV V
2 2 1 2 is the typical four-velocity of the scatterers and

λmfp is the particle scattering mean free path. Therefore, if we
estimate the scattering mean free path as ( )l d~ B B lmfp 0 rms

2

and identify γV βV with the dimensionless Alfvénic four-
velocity, g b pá ñ ~ á ñB nwmc4V V

2 2 2 2, from Equation (39) we

Figure 25. Diffusion in energy space from 2D simulations with δBrms0/B0=1
and different initial magnetizations σ0. Top panel: mean-square variation of the
Lorentz factor for particles binned in logarithmic intervals [ ]g n g n,

* *
with

ν=1.1 and γ*=21.5→84 (from blue to red) at time ct*/l=5.25 for the
reference 2D simulation. The dashed black lines indicate linear fits. Bottom
panel: energy diffusion coefficient Dγ (in units of c/l), as a function of the
Lorentz factor γ (divided by γσ to align cases with different magnetization),
measured at the time interval cΔt/l=1.875 from four simulations having
initial magnetization { }s Î 5, 10, 20, 400 .

Figure 26. Diffusion in energy space from 3D simulations with δBrms0/B0=1
and different initial magnetizations σ0. Top panel: mean-square variation of the
Lorentz factor for particles binned in logarithmic intervals [ ]g n g n,

* *
with

ν=1.1 and g = 21.5 84
*

(from blue to red) at time ct*/l=3 for the
reference 3D simulation. The dashed black lines indicate linear fits. Bottom
panel: energy diffusion coefficient Dγ (in units of c/l), as a function of the
Lorentz factor γ (divided by γσ to align cases with different magnetization),
measured at the time interval cΔt/l=1.875 from four simulations having
initial magnetization { }s Î 5, 10, 20, 400 .
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obtain Dγ ∝ σ for á ñ ~B B 12
0
2 , in agreement with

Equation (38). Then, from these results we can also estimate
the stochastic acceleration timescale

( )
g

g
s

=
á ñ

~
-

t
d

dt

l

c

1 3
. 40acc

1

In our simulations, the acceleration timescale increases in time
since σ decreases in time as a combined effect of the decaying
turbulent fluctuations δBrms(t) and the increase of the enthalpy
per particle mc2w(t).

7.2. Injection and Turbulence Acceleration

As discussed in Sections 4 and 5, a large fraction of particles
are preaccelerated by magnetic reconnection before being
accelerated by scattering off the turbulent fluctuations. This
two-stage acceleration process is shown in Figure 28 for both
2D and 3D simulations. Here, each colored curve represents the
average Lorentz factor of particles having the same injection
time tinj (within Δtinj=0.32c/l for 2D and Δtinj=0.22c/l for
3D). The linear growth from gá ñ ~ 1 up to gá ñ ~ 30 (i.e., the
injection phase) is powered by field-aligned electric fields,

whose magnitude is ∣ ∣  b dE BR rms, via

( )
g

b d
á ñ

=
d

dt

e

mc
B . 41R rms

The dashed black lines in Figure 28 show Equation (41) taking
a reconnection rate βR ; 0.05, as appropriate for relativistic
reconnection with guide field comparable to the alternating
fields (Werner & Uzdensky 2017). After this first acceleration
phase, stochastic acceleration takes place, and, as discussed
above, we can estimate

⎜ ⎟⎛
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á ñ
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dt
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4 , 42stoc

with κstoc∼0.03 from the 2D simulations and κstoc∼0.1
from the 3D ones. Taking the temporal decay of the magnetic
fluctuations, as well as the temporal increase of the relativistic
enthalpy, directly from our simulations, we obtain the dotted–
dashed lines shown in Figure 28. For the 3D case, the decrease
in time of the stochastic acceleration rate is more pronounced

Figure 27. Diffusion coefficient in energy space as a function of the actual
magnetization σ(t*) from 2D simulations (top) and 3D simulations (bottom)
with the same d =B B 1rms0 0 but different initial magnetization

{ }s Î 5, 10, 20, 400 . We employed cΔt/l=1.875 for all measurements of
the energy diffusion coefficient Dγ. Note that here Dγ is in units of c/l. A linear
fit is shown with a dashed black line. Figure 28. Evolution of the mean Lorentz factor of different generations of

particles undergoing injection at early times (ctinj/l2) for 2D turbulence
(top) and 3D turbulence (bottom). Both simulations have σ0=10 and δBrms0/
B0=1. The initial energy gain, due to the reconnection electric field, can be
modeled as in Equation (41) with βR=0.05 (dashed lines), while the
subsequent evolution, governed by stochastic interactions with the turbulent
fluctuations, follows Equation (42) (dotted–dashed line).
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than the 2D case as a consequence of the faster magnetic
energy decay and the corresponding decrease of the magnetiza-
tion σ.

A final remark concerns the acceleration timescales asso-
ciated with magnetic reconnection and turbulence fluctuations.
Fast magnetic reconnection leads to the acceleration timescale
tacc=βR

−1 (ρL/c), where ρL is the particle Larmor radius. On
the other hand, we have seen that stochastic acceleration by
turbulent fluctuation yields tacc=(3/σ) (l/c). Therefore, for
the hypothetical case in which reconnection could drive
particles up to the highest energies (ρL∼l), the acceleration
timescale of fast magnetic reconnection could actually be
longer than the one associated with the turbulence fluctuations
for σ  1. Indeed, in this magnetically dominated regime,
turbulence provides an exceptionally fast acceleration mech-
anism that can potentially explain the most extreme astro-
physical accelerators.

8. Summary

In this article, we have presented the results of a series of
first-principles kinetic PIC simulations of decaying turbulence
in magnetically dominated plasmas, with the goal of under-
standing how plasma turbulence and its interplay with magnetic
reconnection can accelerate charged particles. We considered a
pair (electron–positron) plasma, which is relevant for various
astrophysical systems, such as jets from supermassive black
holes, pulsar and magnetar magnetospheres, winds, and wind
nebulae. In this regime, our computational domain (24603 cells
in 3D; from 16,4002 to 65,6002 cells in 2D) is large enough to
capture the turbulence cascade from large (MHD) scales to
small (kinetic) scales.

In the following, we summarize the main points of this
paper.

1. The generation of a large population of nonthermal
particles is a self-consistent by-product of both 2D and 3D
magnetically dominated turbulence. In particular, the late-time
particle energy spectrum displays a power-law high-energy
range whose slope p, high-energy cutoff γc, and fraction of
particles in the power-law tail ζnt are markedly similar in 2D
and 3D, even though the time development of the particle
energy spectrum is different.

2. The power-law slope decreases (i.e., becomes harder) with
increasing initial values of magnetization and fractional
strength of the turbulence fluctuations, with slopes that can
be as hard as p  2. In contrast, the initial plasma temperature
does not affect the power-law slope, but only yields an overall
energy shift to larger energies for higher initial plasma
temperatures. For power-law energy tails with p>2 (i.e., not
limited by energy budget constraints), the wider the MHD
inertial range p k d2 I e, the larger the high-energy cutoff, which
can extend up to ( )g p~ á ñe mc B k2c I

2 2 , if turbulence
survives long enough to allow the particles to reach this upper
limit. The fact that the power-law starts close to the peak of the
distribution yields a large fraction of particles in the nonthermal
tail. For the physical parameters explored in this work, we
obtain a number fraction ζnt∼15%–31% of particles in the
nonthermal tail.

3. The majority of particles are injected into acceleration at
regions of high electric current density. More specifically, a
large fraction of particles are extracted from the thermal pool
and injected into the acceleration process by reconnecting
current sheets. These reconnecting current sheets are strongly

unstable to the formation of plasmoids, which allows fast
magnetic reconnection to occur. We observe the development
of plasmoids in current sheets formed as a self-consistent result
of magnetized turbulence, both in 2D and in 3D. In 3D, they
appear as a chain of flux ropes elongated in the direction of the
mean magnetic field.
4. Reconnecting current sheets are efficient in injecting

particles (i.e., they promote a large fraction of particles in the
nonthermal tail) in spite of their small filling fraction, as they
can process a large fraction of particles within the sheet
lifetime. The efficiency remains high also when increasing
system size, as we have shown that the plasmoid instability
(whose properties are obtained from a tearing mode dispersion
relation generalized for relativistically hot plasmas) ensures the
triggering of fast magnetic reconnection within the lifetime of
the large-scale current sheets, which are the ones that dominate
the particle injection census. As a consequence, magnetic
reconnection can process a large volume of plasma in a few
large (outer-scale) eddy turnover times (a volume b~ LR R

3 in
one outer-scale eddy turnover time).
5. Particle acceleration at reconnecting current sheets can

propel particles up to a typical Lorentz factor gain gD =inj
ksgth, after which the acceleration is continued by means of
stochastic scattering off turbulent fluctuations. It is the
stochastic acceleration process that allows particles to reach
the highest energies, up to a Larmor radius roughly equal to the
energy-containing scale of the turbulence. The work done by
the electric field parallel to the magnetic field (which is
expected at reconnecting current sheets), WP, is responsible for
most of the early particle energy gain (injection). On the other
hand, the second acceleration phase is powered by perpend-
icular electric fields. For high-energy particles, i.e., such that
Δγ ? κσγth, we find  Ŵ W , i.e., the work done by
perpendicular electric fields dominates the overall energy gain.
6. An additional confirmation of the fact that the parallel

electric field controls the injection physics but not the
subsequent acceleration process comes from a numerical
simulation with extra (test) particles that do not feel parallel
electric fields. This shows that the injection fraction is strongly
suppressed. In fact, only a small fraction of these test particles
participate in the acceleration process (ζnt decreases by almost
two orders of magnitude). On the other hand, for those test
particles that can participate in the acceleration process, the
power-law slope p is very similar to that of the regular particles.
This indicates that acceleration by the perpendicular electric
field controls the slope of the power-law high-energy tail.
7. The fact that different energization mechanisms dominate

at different energy ranges affects the particle pitch-angle
distribution, ( )a gf cos , . We find that the pitch-angle distribu-
tion develops distinguishing features at low, intermediate, and
high values of γ. These values depend on the initial mean
Lorentz factor and magnetization. For ( )g s g~ 2 th0 0, particle
velocities are strongly aligned/antialigned with the local
magnetic field B, while at ( )g s g5 2 th0 0, particle velocities
are mostly perpendicular to B. At intermediate energies such
that ( )g s g~ 5 2 th0 0, particles follow a distribution that has
minima for both parallel and perpendicular directions (i.e., at

a = cos 1, 0). These results are robust in both 2D and 3D
turbulence. In both cases, the overall population of particles is
dominated by the particles having pitch-angle cosine close to

a = cos 1, as the low-energy population controls the number
census.
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8. The different energization mechanisms are also respon-
sible for producing a gyrotropic four-velocity distribution with
distinct features in the direction pertaining to the mean
magnetic field ˆ=B zB0 0 . Specifically, the domain-averaged
four-velocity distribution is elongated in the γβz direction at
low particle energies, due to the · v E energization, while it
becomes elongated in the direction perpendicular to the mean
field at high particle energies, due to the · ^v E energization. At
intermediate energies the distribution peaks at intermediate
angles (i.e., at about 45° from the γβz axis).

9. After the injection phase, particles exhibit a diffusive
energy behavior in both 2D and 3D turbulence. We measured
the diffusion coefficient in energy space directly from our PIC
simulations, showing that Dγ ∝ γ2 for the energy range of the
power law. Furthermore, Dγ ∝ σ, with σ being the time-
dependent magnetization. The estimated energy diffusion
coefficient ( )s g~gD c l0.1 2 gives an acceleration timescale
that can be very fast, tacc∼(3/σ) (l/c), comparable to that of
fast magnetic reconnection or even higher, depending on the
plasma magnetization.

10. The mean energy gain of particles during the first
acceleration phase (injection) is well described by linear
acceleration by the typical reconnection electric field. Then,
the subsequent mean energy gain due to stochastic scattering
off the turbulent fluctuations follows from the energy diffusion
coefficient Dγ. In our simulations of decaying turbulence, as the
plasma magnetization decreases owing to the magnetic field
annihilation, the stochastic acceleration timescale gets longer
over time and the stochastic acceleration process eventually
saturates.

The aforementioned findings have implications for our
understanding of the generation of nonthermal particles in
high-energy astrophysical sources. The main astrophysical
implications are as follows: (i) the power-law slopes of the
emitting particles, which are predicted to be harder for larger
plasma magnetizations and stronger turbulent fluctuations, can
potentially explain the hard radio spectrum of the Crab Nebula
(e.g., Lyutikov et al. 2019); (ii) the anisotropy of the particle
pitch-angle distribution, for which the synchrotron spectrum of
the emitting particles is expected to be different from the
commonly assumed case of isotropic particles, has conse-
quences for our understanding of emission from AGN jets (e.g.,
Tavecchio & Sobacchi 2019); and (iii) magnetically dominated
plasma turbulence leads to particle acceleration on rapid
timescales, which can be even shorter than those associated
with fast magnetic reconnection and are then capable of
explaining particle acceleration in the most extreme astro-
physical accelerators (e.g., Takahashi et al. 2009).

In future studies we plan to address also the role of radiation
losses in different radiative turbulence regimes of relevance for
various astrophysical contexts. Indeed, weak radiative cooling

could set an upper limit for the Lorentz factor of the nonthermal
particles. On the other hand, strong radiative cooling could
affect not only the high-energy particles but also the thermal
pool, leading to a rapid thermalization of the plasma (Zhdankin
et al. 2019b). Another intriguing aspect that we plan to
investigate is the possibility of explaining the flaring activity in
the Crab Nebula as the result of particles that can escape from
the turbulent environment soon after having interacted with a
large-scale reconnection layer, as conjectured in Lyutikov et al.
(2019). Finally, while this work is devoted to the mechanisms
for the generation of nonthermal particles, we plan to
investigate also the mechanisms of particle heating in future
works.

We acknowledge fruitful discussions with Mikhail Medvedev,
Jonathan Zrake, Vahé Petrosian, Martin Lemoine, Aaron Tran,
Chuanfei Dong, Yi-Min Huang, Manasvi Lingam, Maxim
Lyutikov, and Joonas Nättilä. This research acknowledges
support from DoE DE-SC0016542, NSF ACI-1657507, and
NASA ATP NNX17AG21G. The simulations were performed
on Columbia University (Habanero and Terremoto), NASA-
HEC (Pleiades), NERSC (Cori and Edison), TACC (Stam-
pede2), and ORNL (Titan) resources.
Software: TRISTAN-MP (Buneman 1993; Spitkovsky

2005).

Appendix

In the magnetically dominated regime (σ0?1) studied
here, we have verified that the presented results are converged
with the adopted grid resolution and number of particles
per cell.
In this study, we presented results where the initial plasma

skin depth de0 is resolved with 10 cells in 2D and 3 cells in 3D.
However, 3 cells per initial skin depth de0 (the skin depth
increases during the simulation as the mean Lorentz factor
increases as a result of magnetic field annihilation) are already
sufficient to resolve current sheets and plasmoids. In Figure 29,
we show the electric current density Jz taken at three different
times (ct/l=1.8, 2.0, 2.2) from two 2D simulations where de0
is resolved with 3 cells (left column) and 10 cells (right
column), which produce analogous structures.
We have also checked for convergence with respect to

computational particles per cell. A comparison of the late-time
spectra from simulations employing different particles per cell
(up to 256) is shown in Figure 30, for simulations having
domain size L/de0=820. We can see that the particle spectra
are converged with the adopted particle resolution. Indeed,
noise-level fluctuations are on small scales and do not affect the
acceleration process in the regime investigated here.
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Figure 29. Formation of current sheets and plasmoids (in the central part of the zoomed-in domain) from two 2D simulations where the initial plasma skin depth de0 is
resolved with 3 cells (left column) and 10 cells (right column). Top, middle, and bottom panels refer to frames taken at ct/l=1.8, 2.0, and 2.2, respectively. In both
cases σ0=10, δBrms0/B0=1, L/de0=1640, and l=L/8. In both cases we employ 16 particles per cell.
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