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ABSTRACT

In recent years, smart home technology has become prevalant and

important for various applications. A typical smart home system

consists of sensing nodes sending raw data to a cloud server which

performs inference using a Machine Learning (ML) model trained

offline. This approach suffers from high energy and communica-

tion costs and raises privacy concerns. To address these issues

researchers proposed hierarchy aware models which distributes

the inference computations across the sensor network with each

node processing a part of the inference. While hierarchical models

reduce these overheads significantly they are computationally in-

tensive to run on resource constrained devices which are typical to

smart home deployments. In this work we present a novel approach

combining Hierarchy aware Neural Networks (HNN) with varia-

tional dropout technique to generate sparse models which have low

computational overhead allowing them to be run on edge devices

with limited resources. We evaluate our approach using an exten-

sive real-world smart home deployment consisting of several edge

devices. Measurements across different devices show that without

significant loss of accuracy, energy consumption can be reduced

by up to 35% over state-of-the-art.

CCS CONCEPTS

• Computing methodologies → Distributed computing method-

ologies; •Computer systems organization→ Embedded systems;

•Mathematics of computing → Information theory.
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1 INTRODUCTION

In recent years, smart home technology has evolved from simple

functionality such as automated device control to more sophisti-

cated applications like activity recognition, surveillance, smart grid

controls and many more. These applications entirely rely on cloud

servers to perform Machine Learning(ML) on data generated by
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smart home sensors. A typical smart home architecture comprises

of a hierarchy of sensors, actuators, hubs/gateways where sensors

transmit raw data to hubs which aggregates the received data and

sends it to the cloud. The cloud performs inference using a pre-

trained ML model to predict a quantity of interest specific to the

application. The Samsung Smart Things ecosystem[11] is one such

commercially available example of this architecture.

This monolithic approach has several disadvantages. First, the

constant communication of data is energy intensive and reduces

the life of battery operated sensor nodes. Second, large volumes of

data generated by some sensors eg. cameras, might saturate and

slow down the network. This excessive communication could de-

mand provisioning of additional expensive resources. Lastly, smart

home sensors record sensitive data capturing various user activities

within the home. Sending this raw personal data to a third party

vendor raises serious privacy concerns.

To overcome these issues recent work [2] proposed a hierarchi-

cal approach which pushes ML inference computations from the

cloud to edge devices. In this approach, edge devices run partial

ML inference on the sensor values, transforming them into a lower

dimensional representation. These partial values are aggregated

by the cloud(at the top of the hierarchy) where the final inference

result is computed. The authors demonstrate that this approach

reduces energy consumption by 63% and network latency by 68%.

However, they consider relatively high powered edge devices (Rasp-

berryPi 3[4]) and do not address memory or computation costs for

running on resource constrained devices. In order to leverage the

advantages of this approach, the computations need to be optimized

for resource constrained edge devices typical to smart home appli-

cations. This is challenging as the current dominant approach is

to use Neural Networks (NN) which are memory and computation

heavy. State of the art neural networks for image classification often

have millions of parameters and require 100-500MB of RAM for

storing the weights alone and more to perform inference computa-

tions. However, a micro-controller on a typical edge device often

has 128KB of RAM or less.

In this paper, we present a novel implementation combining

hierarchy aware inference with variational dropout which can be

run on resource constrained IoT edge devices for smart home appli-

cations. We use Human Activity Recognition (HAR) as a use case

to evaluate our approach. The rest of the paper will discuss our

approach in the context of HAR. While our evaluation is specific to

HAR, the principles of the approach can be applied to any such ap-

plication. We evaluate our implementation using a comprehensive

real-world smart home deployment. We show that our approach

reduces energy by 35% in addition to the reductions achieved by

current hierarchical methods[2].
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2 RELATEDWORK

Human Activity Recognition(HAR) in smart homes has been well

studied in recent years by the community [12], [14], [10]. However,

most works focus only on improving accuracy of activity recogni-

tion and use the traditional monolithic approach which as explained

earlier has disadvantages. Our work addresses all these issues and

we conduct experiments using an extensive real-world deployment

with different subjects for evaluation.

Prior work has also explored hierarchy aware learning by push-

ing down inference computations across the IoT network.[2], [13]

implement hierarchy aware machine learning for distributing infer-

ence computations on edge devices. However they evaluate their

systems on relatively high powered devices which aren’t represen-

tative of typical edge devices which have fewer resources.

Methods to compress or reduce models have also been explored

by the community. The “variational dropout” method proposed in

[7] has been shown theoretically to enforce better regularization,

and empirically to lead to substantial reductions in the number of

non-zero model parameters - up to 280x as reported in [7]. Thus,

because variational dropout is able to simultaneously regularize

and induce sparsity, we consider this a promising method for im-

plementing efficient deep learning models on resource constrained

edge devices.

3 HIERARCHICAL TRAINING
METHODOLOGY

We now describe our hierarchy aware methodology in detail. We

consider a Smart Home deployment consisting of s sensing devices

gathering features x = (x1, ...,xs ). For simplicity of notation, we

assume each sensor gathers a single feature, thus there is a 1:1

correspondence between sensors si and features xi . Each sensor

communicates with one or more ofm different aggregator devices

Ei . Note that each aggregator device necessarily receives input from
multiple sensors. We denote by xi ⊂ x the subset of features which

are locally available on aggregator Ei . Each aggregator computes

a function of its input data and emits a lower dimensional repre-

sentation: zi = дi (xi ). The resulting compression factor is |xi |/|zi |.

In our case, as proposed in [2], дi (xi ) is an MLP defined over the

locally available data. Here we consider a three tier hierarchy. The

output of aggregator devices at the first tier (i.e. the sensors) is used

as input to MLPs running in the aggregator devices at the second

tier. More formally, an aggregator E2i in the second tier which takes

input from E1j , ...,E
1
k
in the first tier computes:

z2i = д
2
i (z

1
j , ..., z

1
k
) (1)

= д2i (д
1
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(xk ) (2)

This process is repeated until the final layer in the cloud. As dis-

cussed in the introduction, we train the model offline using standard

SGD and then copy the weights corresponding to each local MLP

to the corresponding device during inference.

As discussed above, a potential issue is that the embedded de-

vices acting as aggregators are typically resource constrained and

have low power processors which may not be able to deliver sat-

isfactory performance even when using smaller local MLPs. We

apply the variational dropout method of [7] to induce sparsity in

Figure 1: Diagram of connectivity between sensors. Green

and purple correspond to local aggregation units

Test Subject 1 2 3 4

Count 28, 840 28, 787 29, 758 28, 599

Table 1: Summary of Analysis Datasets

the local network weights. The method of [7] only allows for a

sparse solution, it does not guarantee the degree of sparsity. Their

method includes a threshold parameter which can be used to trun-

cate small weights to zero and encourage a sparse solution. Section

5 compares the tradeoff between accuracy and sparsity along with

resulting savings in energy whilst varying this parameter.

4 SMART HOME DEPLOYMENT

We conducted a large scale deployment in the home of one of

our group members. We deployed a total of twenty-one sensors

around the home. Figure 2 presents a floor plan of the deployment

environment and the location of sensors therein.

4.1 Application Network Architecture

This section details the hierarchical structure of our deployment

and the connectivity between each layer in the hierarchy. Figure

1 presents a high level overview of our hierarchical architecture.

During the model training phase, all sensors send their data to the

cloud. Once data has been collected, a hierarchy aware model is

trained offline and the resulting local partial inference models are

deployed to each of the local aggregators in the sensing hierarchy.

All communication between devices uses the MQTT protocol [1].

We introduce a “room level aggregator” running on a Raspberry

Pi. Each room has several sensors deployed in various locations

measuring a particular phenomena of interest. Each sensor connects

to a processing node - a Photon, or a Raspberry Pi Zero, depending

on the type of interface required by the sensor. This processing

node collects data from the sensors and performs partial inference

during the testing phase.

Most sensors, such as the smart-plugs, come with on-board

micro-controllers that interface with the actual sensor and send the

raw readings out to a hub or some other interface. Ideally, our hier-

archical models would run on these native computing platforms.

However, since many sensors are off the shelf products, we don’t

usually have access to modify the firmware and hence emulate such

local processing by connecting to a Photon or a Raspberry Pi Zero.

We use an Intel NUC computer[6] as in-house “cloud server.” We

20



Efficient Sparse Processing in Smart Home Applications SenSys-ML 2019, November 10, 2019, New York, NY, USA

Figure 2: Sensor deployment in smart home. (1) kitchen door contact (2) fridge door contact (3) kitchen drawer contacts 1&2

(4) teapot smart-plug (5) kitchen smart bulb (6) metasense (7) airbeam (8) kitchen angular motion (9) kitchen locator beacon

1 (10) kitchen cabinet contact 1 (11) kitchen cabinet contact 2 (12) kitchen locator beacon 2 (13) kitchen pantry contact (14)

dining roommulti-sensor (15) dining room locator beacon (16) living room locator beacon 1 (17) living roommotion 1 (18) TV

smart plug (19) living room angular motion (20) living room motion 2 (21) living room locator beacon 2

Clearing table Drinking tea Eating Making Tea Prepping Food Setting Table Watching TV

805 174 1042 540 416 287 1373

Table 2: Number of instances for each activity

implemented a shared MQTT message bus, which all devices use

to send data. Each device in the hierarchy sends its partial output

to a specific topic. The corresponding data aggregator in the next

level of the hierarchy subscribes to this topic, to obtain the partial

inference output.

While we have connected all devices running machine learning

computations to a standard WiFi network in our experiments, a

real world deployment would support different communication

protocols. For example, for the Zigbee and Z-Wave sensors we use a

SmartThings Hub to forward their events to the local network and

then the MQTT broker to forward the events via WiFi to a Rasp-

berry PI where we execute the classifier. A more efficient approach

would be to add a Zigbee and Z-Wave radio to the PI and run the

computation where the data is received, this however would de-

prive us of the useful SmartThings tools to configure and monitor

the sensor network. An alternative would have been to run the

classifier on the SmartThings Hub. We did not choose this second

option because, while it is possible to write a classifier on Smart-

Things, it would currently run on the SmartThings Cloud, therefore

we would not be able to measure power and performance during

our experiments. This illustrates an important point: even though

local processing may be possible in principle software limitations

imposed by device manufacturers may preclude it.

4.2 Data Collection

Three rounds of data collection were performed at the test home

using a different test subject each time. The test subject performed

a series of eight activities: preparing food, cooking food, setting

the table, eating food, clearing the table, making tea, drinking tea,

and watching TV. While preparing food, the test subject collected

ingredients from a kitchen pantry and refrigerator. While cooking,

the subject prepared pasta and tomato sauce using the food prepared

previously. The subject then set the dining room table and ate the

prepared meal at the table. The subject then cleared the table and

boiled water to prepare tea using an electric tea kettle. Finally, the

subject drank tea and watched TV in the living room. Ground truth

labels were gathered manually, recording the timestamp at which

the activity changed, and by recording video and audio. Table 2

shows the number of instances of each activity recorded, where

each instance of an activity corresponds to multiple windows of

sensor values. Since a wide variety of binary and continuous sensors

were used, the readings were synced to the highest sampling device.

Training and prediction happen over these windows. Table 1 shows

the number of individual datapoints collected for each test subject

(note that this is different from the number of activity instances

recorded.

5 EXPERIMENTAL EVALUATION

In this section, we discuss various experiments we performed for

real-time evaluation. We evaluate the system on two key metrics:

inference accuracy, energy usage. We compare the performance of

traditional Monolithic Neural Network (MNN) with our proposed

sparse Hierarchical Neural Network (HNN). The energy required

for communication overhead is not factored in the results. This is

due to the reasoning that changing the sparsity of the model only

affects the computational complexity and does not change the data
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rate. Hence any savings in energy due to communication will be the

same as seen in [2]. The sparse models provide additional savings

over it.

5.1 Inference Accuracy: Monolithic vs
Hierarchical

In this section we present an analysis of our proposed methods on

the data collected in our home-deployment. Our goal is to illustrate

that our proposed hierarchy aware methods can deliver comparable

(or superior) accuracy to methods which allow for full communica-

tion. We emphasize that the purpose of this work is not to improve

on state-of-the-art accuracy or methods for activity detection in

smart homes. Rather, we merely seek to show that existing tech-

niques can be implemented in a communication efficient manner

by making them hierarchy aware.

Figure 3 presents a comparison of accuracy for the monolithic

and hierarchy-aware approaches on test subject 3 - for which we

were able to obtain the most accurate results. The models were

trained on subjects 1 and 2 and subject 3 was used as the held out

test set. The X-axis represents different values of log(α) parameter

which controls sparsity in the resulting network. This threshold

parameter does not directly control sparsity and is only used to

truncate weights which are likely to be zero. Increasing it does not

necessary result in an actual increase in the number of weights

with zero values. The numbers on top of each bar is the sparsity of

the resulting network. The number of output units in each “local”

MLP running on a distributed device is 2 for devices in the first tier

of hierarchy, and 4 in the second tier. Each bar in Figure 3 presents

results using the indicated number of hidden units per hidden layer

in each local network. For example, the blue bar indicates each

local network has 16 hidden units per hidden layer, meaning local

networks in the first tier of the hierarchy have the architecture

(K , 16, 2), where K is the number of input features. In presenting

these results, our goal is to better understand the tradeoffs between

accuracy, complexity and sparsity in the local MLP model.

5.1.1 Results. Overall, we see that the hierarchy aware approach

yields comparable accuracy to the monolithic approach which al-

lows for full communication between the devices. These results

validate our central claim that communication efficiency can be

improved by training hierarchy aware model without sacrificing a

substantial degree of accuracy. We also observe that we are able to

sparsify networks substantially while still attaining high accuracy.

For example, in the hierarchy aware case for α = 1 and with 256

hidden units, we are able to omit almost 87% of the weights in the

network. This corresponds to a dense network with only 32 hidden

units in the first layer. Unsurprisingly, a greater fraction of weights

can be zeroed out for larger networks. This is valuable as it enables

us to use larger networks, which learn more complex patterns in

data, without dramatically increasing storage requirements. While

we again stress that our goal is not to compare the accuracy of our

approach with prior work, we remark that our accuracy results are

comparable to 73% - 94% achieved by state-of-the-art as in [8].

Reassuringly, we find that increasing the number of hidden units

per hidden layer has little (and sometimes negative) effect on classi-

fication accuracy in the hierarchy aware case. This means that we

can obtain computational efficiency gains by reducing the size of

Table 3: Accuracy VS Sparsity on subject 1 betweenHNN and

MNN.

Model Threshold 7 6 5 4 3

HNN
Sparsity 0.3469 0.4685 0.4845 0.5305 0.5501

Accuracy 0.6154 0.5828 0.6384 0.5850 0.6078

MNN
Sparsity 0.2711 0.3624 0.4691 0.4829 0.5947

Accuracy 0.6703 0.6777 0.6776 0.7398 0.5272

Table 4: Accuracy VS Sparsity on subject 2 betweenHNN and

MNN.

Threshold 7 6 5 4 3

HNN
Sparsity 0.3523 0.4127 0.4772 0.5669 0.5545

Accuracy 0.7146 0.4589 0.5775 0.4584 0.3879

MNN
Sparsity 0.2231 0.2972 0.4223 0.4929 0.5521

Accuracy 0.4242 0.4124 0.4344 0.4348 0.4239

Table 5: Accuracy VS Sparsity on subject 3 betweenHNN and

MNN.

Threshold 7 6 5 4 3

HNN
Sparsity 0.2814 0.3996 0.4611 0.4933 0.5839

Accuracy 0.8402 0.7919 0.8270 0.7402 0.7099

MNN
Sparsity 0.1899 0.2969 0.3228 0.4628 0.4458

Accuracy 0.8126 0.7974 0.7736 0.8240 0.7993

local networks without incurring meaningful losses in accuracy. In

section 5.3 we show this reduction in network complexity translates

into energy savings. While these results are optimistic for smaller

local networks, unfortunately, there are no known robust tech-

niques for selecting model architecture apriori of training. Overall,

we take these experiments as evidence that our proposed methods

can be deployed on practical applications without substantially

losing accuracy relative to the full communication setting.

5.2 Activity Recognition Accuracy with Sparse
Neural Networks

In this section we evaluate the accuracy of the model for detecting

the activities of daily living. In addition to presenting the accuracy

of activity recognition, we also aim to show that our sparse models

have little to no loss in accuracy compared to monolithic models

- with and without sparsity. Tables 3, 4 and 5 show the results of

overall accuracy of activity recognition across different levels of

sparsity for both Hierarchical and Monolithic models. From empir-

ical analysis we found that the best neural network architecture

was 2 hidden layers with 64 hidden units each. All results below

are for this configuration of neural network.

For subject 1, highest accuracy the monolithic model achieved

was 66%. FromTable 3we can see that sparseMNN seems to perform

slightly better overall with highest accuracy of 67%. The sparseHNN

achieves a maximum accuracy of 63% at 48% sparsity. For subject 2

the best non-sparse monolithic model achieves an accuracy of 86%.

Table 4 shows that HNN performs better than MNN with a highest

accuracy of 71% for 35% sparsity. We can also see that the sparse
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Hierarchy Aware

Monolithic

Figure 3: Sparse Monolithic and Sparse Hierarchy-Aware Accuracy for different no of hidden units per hidden layer.

MNN performs significantly worse compared to the monolithic

approach with 42% accuracy.

For Subject 6, the baseline accuracy achieved by the non-sparse

monolithic model is 82%. Table 5 shows that sparse HNN has better

or comparable accuracy to sparse MNN. The sparse HNN has a

highest accuracy of 84% for 28% sparsity. However for 46% sparsity

it achieves an accuracy of 82% which gives better overall trade-off

between accuracy, energy and communication costs.

5.2.1 Discussion. Overall we observe that sparse HNN performed

better for subjects 2 and 6, while for subject 1 sparse MNN per-

formed slightly better. Figure 4 shows the energy reduction achieved

for different sparsity for the best architecture (64 hidden units per

layer) chosen from training. The lowest and highest sparsity that

yielded the best accuracy for any subject is marked by vertical

lines. We can observe that for 35-48% sparsity we get 25-35% energy

savings with comparable accuracy. While the analysis was done for

activity recognition in a smart home, the principles are applicable

for any IoT wireless sensor network. This validates that sparse

hierarchical neural networks could reduce energy usage.

5.3 Energy Usage

In this section we analyze the trade-offs between sparsity and en-

ergy usage. We test our implementation on two embedded devices

which are representative of typical IoT devices you might see in

use: Raspberry Pi Zero[5], Photon[9]. The Raspberry Pi Zero has a

1GHz single-core CPU with 512MB RAM and the Photon features a

120MHz ARM Cortex M3 with 128KB RAM. In addition, we try to

implement our sparse model on an Arduino UNO[3] which has ex-

tremely small computational power. The UNO uses an ATmega328P

Figure 4: Monolithic and Hierarchy-Aware Accuracy

microcontroller which runs at 16MHz and has 2KB of RAM. The

energy used for an inference is directly proportional to the number

of computations performed. This is influenced by number of hidden

units and sparsity of the weights. Below, we analyze the trade-offs

between energy, sparsity and number of hidden units. We use a

neural network with 2 hidden layers, for evaluation. The input and

output layers have 4 units each.

5.3.1 Effect of size of neural network. For this analysis we fix spar-

sity at 45% and vary the number of hidden units per layer. The

sparsity was chosen to be 45 as it strikes an ideal balance between

accuracy and reducing energy. Figure 5 shows the amount of en-

ergy saved in comparison to a hierarchical model without sparsity
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Figure 5: Energy Reduction vs Number of hidden units

Figure 6: Energy reduction (%) for different levels of sparsity

for performing 120000 inference computations. The Arduino UNO

runs out of memory for more than 40 hidden units.

Although the results don’t show an overall trend, there’s a drop

in energy savings across both the Pi Zero and the Photon towards

the end. This is explained by the fact that when sparsity is constant

and the number of hidden units is increased, the number of non-

zero weights increases. For 45% sparsity beyond 50 hidden units per

layer, the effect of the increased number of hidden units dominates

over sparsity. It is important to note that despite this, the approach

produces 30-35% (Photon) and 12-15% (Pi Zero) energy reductions.

5.3.2 Effect of sparsity. We fix number of hidden units per layer

at 30 and vary sparsity. The energy used for performing 120000

inference computations is measured. We observe from Figure 6

that energy savings increases with sparsity across all three devices.

For a fixed number of hidden units, when sparsity is increased,

more weights become zero and hence computations per inference

reduces. The figure shows that for Pi Zero the sparse model is more

expensive when sparsity is below 25%. This is because, the CSR

based implementation is more expensive and inefficient for dense

matrices. The traditional approach takes advantage of cache locality

which reduces memory accesses required. After 25% sparsity, the

CSR based approach is clearly more efficient as it only performs

computations for non zero weights. The photon which doesn’t have

an internal cache doesn’t show this trend as all memory accesses

have the same cost and CSR implementation reduces the number

of accesses. This validates our expectations that using a sparse

hierarchical model will produce additional energy savings.

5.4 Drawbacks

Our work addresses the use case where the model uses hetero-

geneous input consisting of different kinds of sensor data having

different characteristics. This is in contrast to federated learning

which deals with the case where each node process the same kind of

data(eg. camera images). A potential pitfall in our approach is that,

an error or malfunction of a single sensor/node could adversely af-

fect the final prediction.We seek to explore in the future, methods to

make the model more robust to such failures. A potential approach

would be to propagate noise/simulated error during training.

6 CONCLUSION

With rising importance of smart home applications, it is important

to efficiently perform inference on edge devices with limited re-

sources. In this work we proposed a new method which combines

hierarchy aware networks with variational dropout technique to

produce sparse hierarchical neural networks. These sparse models

have very low overhead and can be run on resource constrained

edge devices. We evaluated our approach on a real-world smart

home deployment consisting of various sensors. We analyzed the

various trade-offs between energy consumption, network size and

level of sparsity across three different low resource devices. Our

measurements on three different edge devices show that we can

reduce energy consumption by up to 35% with little loss in accuracy.
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