2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

Optimization of the Sherrington-Kirkpatrick Hamiltonian

Andrea Montanari
Department of Electrical Engineering and Department of Statistics
Stanford University
Stanford, CA, USA
montanari @ stanford.edu

Abstract—Let A be a symmetric random matrix with
independent and identically distributed Gaussian entries
above the diagonal. We consider the problem of maxi-
mizing the quadratic form associated to A over binary
vectors. In the language of statistical physics, this amounts
to finding the ground state of the Sherrington-Kirkpatrick
model of spin glasses. The asymptotic value of this
optimization problem was characterized by Parisi via a
celebrated variational principle, subsequently proved by
Talagrand. We give an algorithm that, for any ¢ > 0,
outputs a feasible solution whose value is at least (1 — ¢)
of the optimum, with probability converging to one as
the dimension n of the matrix diverges. The algorithm’s
time complexity is of order n?. It is a message-passing
algorithm, but the specific structure of its update rules is
new.

As a side result, we prove that, at (low) non-zero tem-
perature, the algorithm constructs approximate solutions
of the Thouless-Anderson-Palmer equations.

Keywords-Sherrington-Kirkpatrick; spin glasses; replica
symmetry breaking; message passing algorithms

I. INTRODUCTION AND MAIN RESULT

Let A € R™"™ be a random matrix from the
GOE(n) ensemble. Namely, A = A" and (A;;)i<j<n
is a collection of independent random variables with
Ai; ~ N(0,2/n) and A;; = N(0,1/n) for i < j. We
are concerned with the following optimization problem
(here (u,v) = >, ., u;v; is the standard scalar prod-
uct)

maximize (o, Ao),

1
subject to o € {+1,—-1}". ()

From a worst-case perspective, this problem is NP-hard
and indeed hard to approximate within a sublogarithmic
factor [3]. For random data A, the energy function
H, (o) = (o, Ac)/2 is also known as the Sherrington-
Kirkpatrick model [41]. Its properties have been in-
tensely studied in statistical physics and probability
theory for over 40 years as a prototypical example of
complex energy landscape and a mean field model for
spin glasses [28], [45], [37]. Generalizations of this
model have been used to understand structural glasses,

random combinatorial problems, neural networks, and
a number of other systems [19], [29], [48], [33], [27].

In this paper we consider the computational prob-
lem of finding a vector o, € {+1,—1}" that is a
near optimum, namely such that H,(o.) > (1 —
€) MaXgeiy1,—1}» Hn (o). Under a widely believed as-
sumption about the structure of the associated Gibbs
measure (more precisely, on the support of the asymp-
totic overlap distribution) we prove that, for any € > 0
there exists an algorithm with complexity O(n?) that
—with high probability— outputs such a vector.

In order to state our assumption, we need to take a
detour and introduce Parisi’s variational formula for the
value of the optimization problem (1). Let £2([0,1]) be
the space of probability measures on the interval [0, 1]
endowed with the topology of weak convergence. For
p € 2(]0,1]), we will write (with a slight abuse of
notation) u(t) = p([0,¢]) for its distribution function.
For 8 € Rx(, consider the following parabolic partial
differential equation (PDE) on (¢,z) € [0,1] x R

0uB(t. ) + 5 500, 0(t, ) + 1 B0(1) (0.2(1,2))” =0,

®(1,z) =log2coshz.
@)

It is understood that this is to be solved backward in
time with the given final condition at ¢ = 1. Existence
and uniqueness where proved in [23]. We will also write
®,, to emphasize the dependence of the solution on the
measure . The Parisi functional is then defined as

1
Poli) = 0,00~ 36° [ tutyar. 3

The relation between this functional and the origi-
nal optimization problem is given by a remarkable
variational principle, first proposed by Parisi [38] and
established rigorously, more than twenty-five years later,
by Talagrand [44], and Panchenko [36].

Theorem 1 (Talagrand [44]). Consider the partition
function Z,(B) = 3 geqi1,—1yn exp{BHn(o)}. Then
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we have, almost surely (and in L")

1
lim —log Z,(8) = i P ) 4
Jim —log Z,.(6) Lo (1) 4)

The following consequence for the optimization prob-
lem (1) is elementary, see e.g. [17].

Corollary I.1. We have, almost surely

lim — max

1
(o, Ac) = lim — min
n—oo 2N oe{+1,—1}7

B—ro0 B ue2([0,1))

&)

Remark L.1. The limit 5 — oo on the right-hand side
of Eq. (5) can be removed by defining a new variational
principle directly ‘at 5 = oo’. Namely, the right-hand
side of Eq. (5) can be replaced by min, Is(fy) where P
is a modification of P and the minimum is taked over
a suitable functional space [5]. In this paper we use the
B < oo formulation, but it should be possible to work
directly at 3 = oco: we defer such extensions to future
work.

We also note that while we stated Theorem 1 and
Corollary 1.1 for simplicity in the case of A ~ GOE(n),
these results holds more generally for symmetric ma-
trices A with independent entries above the diagonal,
provided E{A;;} = 0, E{A?;} = 1/n and E{|A;;|*} <
C'/n3/? [12]. (Indeed even weaker conditions are suffi-
cient [17].

Existence and uniqueness of the minimizer of Pg( - )
were proved in [4] and [23], which also proved that p +—
Ps(p) is strongly convex. We will denote by g the
unique minimizer, and refer to it as the ‘Parisi measure’
or ‘overlap distribution’ at inverse temperature 5. Our
key assumption will be that —at large enough (- the
support of g is an interval [0, g.(5)].

Assumption 1 (No overlap gap). There exist 5y < o0
such that, for any B > Po, the function t — pg([0,1t])
is strictly increasing on [0, q.], where q. = q.(8) and
1s([0,q:]) = 1.

This assumption is sometimes referred to as ‘contin-
uous replica symmetry breaking’ or ‘full replica sym-
metry breaking’ and is widely believed to be true (with
Bo = 1) within statistical physics [28]. In particular,
this conjecture is supported by high precision numerical
solutions of the variational problem for Pg[15], [35],
[40]. Rigorous evidence was recently obtained in [6].
Addressing this conjecture goes beyond the scope of
the present paper.

Let us emphasize that the expression ‘no overlap
gap’ captures the content of this assumption better

Pa(u) .

than ‘continuous’ or ‘full replica symmetry breaking.’
Indeed, the latter are generally used whenever the
support of the probability measure i, supp(ug), has
infinite cardinality. In contrast, here we are requiring the
stronger condition supp(ug) = [0, ¢g.] (which implies
g« > 0 for all 8 > 1 [46]).

We are now in position to state our main result.

Theorem 2. Under Assumption 1, for any € > 0 there
exists an algorithm that takes as input the matrix A €
R™ ™ and outputs 0. = o.(A) € {+1,—1}", such
that the following hold:

(i) The complexity (floating point operations) of the
algorithm is at most C(g)n>.

(ii) We  have (o, A0y) > 1 -
€) Maxye(i1,—1}n (0, Ao), with high probability
(with respect to A ~ GOE(n)).

The same result holds when A = A(n) is symmetric
with A;; = 0 and (Aij)1<i<j<n a collection of in-
dependent random variables, satisfying: E{A;;} = 0,
E{A};} = 1/n and E{exp(AA;;)} < exp(C.A?/2n)
for some constant C, and all i < j < n (in words,
entries are subgaussian with common subgaussian pa-
rameter C. /n).

In other words, on average, the optimization problem
(1) is much easier than in worst case. Of course, this is
far from being the only example of this phenomenon (a
gap between worst case and average case complexity).
However, it is a rather surprising example given the
complexity of the energy landscape H, (o). Its proof
uses in a crucial way a fine property of the associated
Gibbs measure, namely the support overlap distribution.

Remark 1.2 (Computation model). For the sake of
simplicity, we measure complexity in floating point
operations. However, all operations in our algorithm
appear to be stable and it should be possible to translate
this result to weaker computation models.

We also assume that we can choose one value of the
inverse temperature /3, and query the distribution f5(t)
and the PDE solution ®(t, ) as well as its derivatives
0:P(t,x), 0y ®(t,x) at specified points (t,z), with
each query costing O(1) operations.

This is a reasonable model for two reasons: (i) The
PDE (2) is independent of the instance, and can be
solved to a desired degree of accuracy only once. This
solution can be used every time a new instance of the
problem is presented. (i7) The function pu — Pg(u) is
uniformly continuous [22] and strongly convex [4], [23].
Further the PDE solution ® is continuous in x4 and can
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be characterized as fixed point of a certain contraction
[23]. Because of these reasons we expect that an oracle
to compute ®(t, z), 0, (¢, x), 0z, P(t, ) to accuracy 7
can be implemented efficiently. We defer to future work
a more detailed study of the complexity of this oracle.

Beyond Theorem 2, our general analysis allows us to
prove an additional fact that is of independent interest.
Namely, for any 8 > [y, our message passing iteration
constructs an approximate solution of the celebrated
Thouless, Anderson, Palmer (TAP) equations [28], [45].

In order to avoid inessential technical complications,
the bulk of this paper is devoted to proving Theorem
2 for the case of Gaussian matrices A, However, the
class of algorithms we use enjoys certain universality
properties, first established in [7]. These properties
can be used to establish the last part of Theorem 2
which addresses the case of symmetric matrices with
independent subgaussian entries. Section V contains
such generalization.

As a special case of random matrices A with indepen-
dent subgaussian entries, we can consider (centered) ad-
jacency matrices of dense Erdos-Renyi random graphs.
As a consequence of Theorem 2 we obtain an algorithm
to approximate the MAXCUT of such a graph.

Let G, = ([n], En) ~ G(n,p) be an Erdos-Renyi
random graph with edge probability P{(i, j) € En} =
p = Q(1). A random balanced partition of the ver-
tices (which we encode as a vector o € {+1,—1}")
achieves a cut CUT ¢ (o) = |E,|/2+ O(n) = n?p/4 +
O(n), and simple concentration argument implies that
the MAXCUT has size maxyecq41,—13 CUTg(o) =
|En|/2 + O(n?/?p'/?). In fact, it follows from [17]
that' maxyeqi1,-13» CUTg(0) = [En|/2 + (nPp(1 —
p)/2)Y/?P, 4 o(n/?), where P, is the prediction of
Parisi’s formula (i.e. the right-hand side of ((4))). In
other words, MAXCUT on dense Erdos-Renyi random
graphs is non-trivial only once we subtract the baseline
value |E,|/2. Once this baseline is subtracted, the
problem lies in the universality class of the Sherrington-
Kirkpatrick model. As a corollary of Theorem 2 we can
approximate this subtracted value arbitrarily well.

Corollary 1.2. Under Assumption I, for any £ > O there
exists an algorithm (with complexity at most C(g) n?),
that takes as input an Erdos-Renyi random graph G,, =
([n], En) ~ G(n,p) (with p bounded away from 0 and
1 as n — o), and outputs o, = 0.(G) € {+1,—-1}",

'In [17], the same result is shown to hold for sparser graphs, as
long as the average degree diverges: np, — co.

such that
<CUTG<0*> - '2”') >
|En|>
1-— CUT ) — — | .
( 6)06{111%{1}”( olo) &

The rest of this section provides further background.
In Section II we describe and analyze a general mes-
sage passing algorithm, which we call incremental ap-
proximate message passing (IAMP). We believe this
algorithm is of independent interest and can be applied
beyond the Sherrington-Kirkpatrick model. In Section
IIT we use this approach to prove Theorem 2. In Section
IV we show that the same message passing algorithm of
Section II produces approximate solutions of the TAP
equations. Finally, Section V discusses a generalization
of Theorem 2 using universality. The impatient reader,
who is interested in a succinct description of the algo-
rithm (with some technical bells and whistles removed),
is urged to read Appendix A.

A. Further background

As mentioned above —under suitable complexity the-
ory assumptions— there is no polynomial-time algorithm
that approximates the quadratic program (1) better than
within a factor O((logn)®), for some ¢ > 0 [3]. Little
is known on average-case hardness, when A is drawn
from one of the random matrix distributions considered
here. As an exception, Gamarnik [20] proved that exact
computation of the partition function Z,(3) is hard on
average.

A natural approach to the quadratic program (1)
would be to use a convex relaxation. A spectral re-
laxation yields maxgcqi1,—13 Hn(o)/n < A\ (A)/2 =
140, (1), and hence is not tight for large n. This can be
compared to a numerical evaluation of Parisi’s formula
which yields P, =~ 0.763166 [15], [39]. Rounding the
spectral solution yields a H,(o,) = 2/7m + 0,(1) =~
0.636619. Somewhat surprisingly, the simplest semidef-
inite programming relaxation (degree 2 of the sum-of-
squares hierarchy), does not yield any improvement (for
large n) over the spectral one [32]. After a preprint of
this paper was posted, [26] proved that the degree 4
sum-of-squares relaxation has asymptotically the same
value as well. Theorem 2 was conjectured by the author
in 2016 [31], based on insights from statistical physics
[16], [L1]. The same presentation also outlined the
basic strategy followed in the present paper, which
uses an iterative ‘approximate message passing’ (AMP)
algorithm. This type of algorithms were first proposed in
the context of signal processing and compressed sensing
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[25], [18]. Their rigorous analysis was developed by
Bolthausen [10] and subsequently generalized in several
papers [8], [24], [7], [9]. In this paper we introduce a
specific class of AMP algorithms (‘incremental AMP”)
whose specific properties allow us to match the result
predicted by Parisi’s formula.

The fundamental phenomenon studied here is ex-
pected to be quite general. Namely objective functions
with overlap distribution having support of the form
[0, ¢.] are expected to be easy to optimize. In contrast,
if the support has a gap (for instance, has the form
[0,¢1] U [g2, g«] for some g1 < ¢2), this is considered
as an indication of average case hardness. This intu-
ition originates within spin glass theory [28]. Roughly
speaking, the structure of the overlap distribution should
reflect the connectivity properties of the level sets
Ln(e)={o: H,(o) > (1 —e)max, H,(c’)}. This
intuition was exploited in some cases to prove the failure
of certain classes of algorithms in problems with a gap
in the overlap distribution, see e.g. [21].

Important progress towards clarifying this connection
was achieved recently in two remarkable papers [1],
[42].

Addario-Berry and Maillard [1] study an abstract op-
timization problem that is thought to capture some key
features of the the energy landscape of the Sherrington-
Kirkpatrick model, the so-called ‘continuous random
energy model.” They prove that an approximate opti-
mum can be found in time polynomial in the problem
dimensions. From an optimization perspective, the ran-
dom energy model is somewhat un-natural, in that spec-
ifying an instance requires memory that is exponential
in the problem dimensions.

Subag [42] considers the p-spin spherical spin glass.
Roughly speaking, this can be described as the problem
of optimizing a random smooth function (which can
be taken to be a low-degree polynomial) over the
unit sphere. Subag relaxes this problem by extending
the optimization over the unit ball, and proves that
this objective function can be optimized efficiently by
following the positive directions of the Hessian. The
solution thus constructed lies on the unit sphere and
thus solves the un-relaxed problem. The mathematical
insight of [42] is beautifully simple, but uses in a crucial
way the spherical geometry. While it might be possible
to generalize the same argument to the hypercube case
(e.g., using the generalized TAP free energy of [30],
[14]) this extension is far from obvious. In particular,
uniform control of the Hessian is not as straightforward
as in [42].
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The algorithm presented here is partially inspired by
[42] (in particular, a key role is played by approximate
orthogonality of the updates), but its specific structure
is dictated by the message passing viewpoint. Thanks
to the technique of [10], [8], [24], [9], its analysis does
not require uniform control and is relatively simple.

B. Notations

Given vectors x,y € R", we denote by (x,y) their
scalar product and by ||x| = (x,x)!/? the associated
¢y norm. Given a function f : RF — R, and k
vectors x1,...,x; € R™ we write f(x1,...,x)) for
the vector in R™ with components f(xy,...,x;); =
f(z14,...,2k,:). The empirical distribution of the co-
ordinates of a vector of vectors (x1,...,x) € (R?)¥
is the probability measure on R”* defined by

n
. 1 5
Pxy,...w = E : LYy The) *
1 k n 4 - (z1, Th,i)
i=

In other words, if we arrange the vectors 1,...,xy ina
matrix in X = [x1,..., 2] € R"™* py .. denotes
the probability distribution of a uniformly random row
of X. In the case of a single vector z € R" (i.e. for k =
1), this reduces to the standard empirical distribution of
the entries of 2. We say that a function f : R — R
is pseudo-Lipschitz if |f(x) — f(y)] < C(1 + ||| +
lylDllz =yl

Given two probability measures 1, v on R, we recall
that their Wasserstein W5 distance is defined as

{ ut [la- y|%<dw,dy>}l/2 ,

where the infimum is taken over all the couplings of u
and v (i.e. joint distributions on RY x R¢ whose first
marginal coincides with p, and second with v. For a
sequence of probability measures (i, )n>1, and p on
R?, we say that p1,, converges in Wasserstein distance

= inf

W (pu, v
(1 v) YEC(p,v)

to p (and write pu, Wa, w) if limy, oo Wolpn, ) =
0. It is well known that u, LUEN w if and only
if lim, oo [Y(2)pn(de) = [9(x)p(de) for all
bounded Lipschitz functions v, and for ¢(x) = |||
[47, Theorem 6.9]. Given a sequence of random vari-
ables X,,, we write X,, — Xoo Or plim,_, o X,

X to state that X,, converge in probability to X ..

We will sometimes be interested in double limits of
sequences of random variables. If X,, 5s is a sequence
indexed by n, M and x, is a constant,

lim p—lianJW = Tx,
M—00 n—s00 ’
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whenever X, pr converges in probability to a non-
random quantity z,; as n — oo, and limp; oo zpr =
T

II. A GENERAL MESSAGE PASSING ALGORITHM

Our algorithm is based on the following approximate
message passing (AMP) iteration.

AMP iteration. Consider a sequence of (weakly dif-
ferentiable) functions f;, : R**2 — R, and a non-
random initialization u® € R™ and additional vector

. ~ W2 .
y € R" with pyo, — pu,y (where py,y is
any probability distribution on R? with finite second
moment [ (ug + y?)pu,,y (dug,dy) < o). The AMP
iteration is defined by letting, for k£ > 0,

ub = A fir(u’, . uty)
k
- b 'f'— uov"'auj_l;yv
Z: k,jJj 1( ) ©6)
0
bk:,j_ Z fk 77u57y1)

It will be understood throughout that f; = 0 for j < 0.

Proposition II.1. Consider the AMP iteration (6), and
assume f, : R*¥*2 — R to be Lipschitz continuous.
Then for any k € N, and any pseudo-Lipschitz function
P RFF2 5 R, we have

1 n

Here (Uj)j>1 is a centered Gaussian process inde-

ulsy;) 25 Bp(U, ..., Un; Y) . (7)

pendent of (Up,Y) with covariance Q= (ij) kj>1

determined recursively via

Q11 = E{fi(Uo,-- .U Y) f;(Uo, ... Ui Y)} .
(3)

This proposition follows immediately from the gen-
eral analysis of AMP algorithms developed in [24], [9],
cf. Appendix A.

We next consider a special case of the general AMP
setting.

Incremental AMP (IAMP). Fix §, M > 0, and func-
tions gy : R > R, k € N, s5,v: RxRsg - R. We
consider the general iteration (6), with the following
choice of functions fj (independent of y):

Tr(uo, - ur) = gr (Tp—1) - [ur]ar )
Tp = Tr_1+ v(xk_l, ké) o+ (10)
+ s(xg—_1, k0) [uk}M\/g, T0=1,

1421

where, for u € R, [u]pr = max(—M, min(u, M)).
Following our convention for f;, we set g; = 0 for
7 <0.

We note that, by Eq. (9), zj is indeed a function of
ug, - - - , Uy, and therefore fi is a function of wuyg, . .., uk
as stated.

Lemma IL2 (State evolution for Incremental AMP).
Consider the incremental AMP iteration, and assume
v : R x Rso —+ R to be Lipschitz continuous and
bounded, and Gy, : R — R to be Lipschitz continuous
and bounded for each k. Then for any k € N, and any
pseudo-Lipschitz function 1 : RFt2 — R, we have

n

1 Zqﬁ(u?,...,

(The double limit is to be interpreted as defined in the
Notations section.) Here (Uj‘vs)jzl is a centered Gaus-
sian process independent of U = Uy, with independent
entries, with variance Var(U?) = gy given recursively

by

uf) =E¢(Ug,..., Uy).

Tt = E{Gu(X2_1)%} - G
X0 = X0 4 o(XP_ 11 k0) 0+ s(Xp_1; kO)UIVG .
(11)

Proof: Consider Egs. (9), (10), and note that,
for any k, xp_1 is a bounded Lipschitz function of
ug, ..., Uiy—1 (because bounded Lipschitz functions are
closed under sum, product, and composition). Hence
fi defined in (9) is Lipschitz continuous and we can
therefore apply Proposition II.1 to get

uby 25 B (UM, .. UPM)Y

5M
Uj

determined by Eq. (8). We next claim the follow-

Here (
M

)j>1 is a Gaussian process with covariance

ing:

1y
2)

QM =0 for k # j (and we set g}
gy" — qi for each k as M — oo.

= @ﬂ/{k)

With these two claims, the statement of the lemma
follows by dominated convergence.

To prove claim 1 note that, by symmetry we only have
to consider the case j < k. The proof is by induction
over k. For k = 1 there is nothing to prove. Assume
next that the claim holds up to a certain k, and consider
QJ p1 for 1. < j < k. By Eq. (8) we have (dropping
for simplicity the superscripts d, M from the random
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variables)

Qi1 = E{% V(X 2)[Uj 1] ar G (Xn—1) [Uklar
—E{gj 1(Xj— 2)[U]*1}M/g\k(kal)}E{[Uk]]\/[}:O.

Here the second equality follows from the induction
hypothesis.

To prove claim 2, note that g satisfies the recursion
that follows from Eq. (8), namely

~ ~ 4, 9,
G = B{gn (XM7Y - B{UL MR
XoM = x0M 4 o(XPM k) 6 (12)
+ (XM k6) [USM V6
Also note that
(Xp M) < Cop (14 Vol + 0P +

For some constants Cj5j independent of M. This fol-
lows by induction over k using Eq. (12), and the
fact that s,v are Lipschitz continuous. Since g is
Lipschitz continuous as well, we obtain |g (X g%ﬂ <
Fk(Uo7Uf’M, .. .,U,ffvlf) for some polynomial Fj in-
dependent of M. Hence the claim follows by applying
recursively dominated convergence. [ ]

Remark IL.1. The use of truncation [ug]ps in the
definition (9) is dictated by the need to ensure that fy
is Lipschitz, and to be able to apply Proposition II.1.
We believe that the conclusion of Proposition II.1 holds
under weaker assumptions (e.g. fj locally Lipschitz
with polynomial growth). Such a generalization would
allow to replace [ug]as by uy in Eq. (9), and hence get
rid of the parameter M in our algorithm.

We are now in position of defining our candidate for
a near optimum of the problem (1). We fix ¢ > 0 and
define (recalling the definition of f; in Egs. (9), (10))

la/d]
z:\/Ska(uo,...,uk). (13)

Note that this vector depends on parameters d, M, g, and
on the functions g, s,v. Parameters 6 and M must be
taken (respectively) small enough and large enough (but
independent of n). The next section will be devoted to
choosing g and the functions g, s, v. In this section we
will establish some general properties of z (for small §
and large M).

Lemma I1.3. Consider the incremental AMP iteration,
and assume g,s,v : R x R>g — R to be Lips-
chitz continuous and bounded. Further assume 0. gy (),
0z8(x,t), Oxv(x,t) to exist and be Lipschitz continuous.

o+ [URMIR)

Define the random variable
la/s]

=V0 Y Gr(Xe1) UR
k=1

Then we have, for any pseudo-Lipschitz function 1) :
R =R,
=E{y(2°)}, (14)

lim p-lim —
M—00 ns00 N

Zq/}zz

lim p-lim 21 (z,Az) = (15)

lg/6]—1
=0 > E{(U)E{GK(X 1) E{Ge(XP_ )%}

k=1

Proof: Equation (14) follows immediately from
Lemma IL.2 upon noticing that (z;) is a pseudo-
Lipschitz function of g, ..., Uk ;.

In order to prove Eq. (15), we will write f, =
fr(uo, ..., ug), and K = |g/d|. We further notice that,
for j < k,

p-lim by, ; = p-lim — Z kil; ké)[uf]M

n—00 n—oo N

B { L k&[Uij’M}M}

ou
0
— ]E{ajj (X;jﬂf,ka)}lE{[U,f’M]M} ~0.
(16)
Here and below the random variables U5 M Xy S.M are

defined as in the proof of Lemma II.2. On the other
hand

p-limbyg j, = p-lim — ng

n— oo n— 00
=1

= E{gu (X"} P(UM €

)1uf€[—M,M]

[—M, M]).

Note that we applied Lemma I1.2 to a non-Lipschitz
function. The limit holds nevertheless by a standard
weak convergence argument (namely, using upper and
lower Lipschitz approximations of the indicator func-
tion). We therefore conclude that (using U ,f’M ~ Ej,]cw ,
g — @i, as M — 0):

lim p-limbyj, = E{Ge(X_,)}- (17)

M—o0 n—oo

Next notice that, for j < k,

n—oo
= E{/g\j(XjN_I’f) [UJM’(S}M%(X;V[’?) [Uziv[’(s]M}
= E{G (X)) (U g (XD YE{IUN 10} =
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By a similar argument, always for j < k,

p—liml< My=0.

n—oo 1 7

On the other hand
1
lim p-lim— 2
Jim_pelim 1]
. ~ M,6,\2 2
= Mh_r)nOO]E{gk(XkA) [ ]M}
. ~ 5 g
im B3 (X" U TR}
= E{g:(X2_1)* E{(UD)*} .

By the AMP iteration, we know that Af, = uF+! 4+
Z’Z:l bi.ef,_1. Hence, using the above limits, for j <
k’

M5
U,”

1
lim p-lim —(

M—0 nsoc T

f_jaAfk:>

1
lim p-lim —(f

M—00 500 N

k
+ Z lim p-limby ¢(f;, fr_1)
= —00

1]V]—>oo n

= lim p-limbg x(f;, fr_1)

— Loy B (X0 )P EL (U2 V(G (X2 _,)}

We finally can compute

u

i k+1>

1
lim p-lim o (z,Az)

M—0 n—0o

1
—00 n—00 2n

>

1<j<k<K

K
= 52:11\/}1111 p-lim — (f;, Af;)
J:

lim p—liml<fj,Afk>

M—o0 n—oo N

+0

K—1
. . 1
5 Z Jim p-lim —(f;, Af ;1)

—0 p—oco N

<
—

=

4]

J

E{;(X7_1)*} E{(U})* }E{g; (X7_1)} -

—

In the case of models with full replica symmetry
breaking, it is natural to consider the limit of small
step size § — 0. This limit is described by a stochastic
differential equation (SDE) described below.

SDE description. Consider Lipschitz functions g, s, v :
R x R>¢ — R, with |s(z, )| + |v(z,t)] < C(1 + |z|).
Let (B;)i>0 be a standard Brownian motion. We define
the process (X, Z;)i>0 via

dXt = ’U(Xt, t) dt—i—S(Xu t) dBt y dZt = g(Xt, t) dBt s
(18)
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with initial condition Xy = Zy = 0. Equivalently

¢ ¢
Xt:/ v( Xy, 1) dr—i—/ (X, r)dB,,
0 0 (19)

t
Zi = / o(X,,7)dB,
0

where the integral is understood in Ito’s sense. Existence
and uniqueness of strong solutions of this SDE is given
—for instance— in [34, Theorem 5.2.1].

Lemma IL.4. Given Lipschitz functions g,s,v : R X
R>o — R, with v and s bounded, let (X, Z,) be the
process defined above. Assume E{g(Xy,t)*} = 1 for
all t > 0. Further consider the state evolution iteration
of Eq. (11), whereby gy, is defined recursively via

g(x, ko)
E{g(X}_,, k&)2}1/2"

(20)

Then, there exists a coupling of (X?)i>0 and (Xi)i>o
such that

4 2
Jmax B(1X] — Xl )} <cs, 21)
E(|Z° — Z5)?) < C V3, (22)
la/6]-1
§ > B{U*E{Ge(X 1)} E{G(X0_1)?}
k=1
= /q E{g(Xy,t)} dt + O(6/*). (23)
0

(Here C'is a constant depending only on the bounds on
g,v, s, and on G. Further the O(6'/*) error is bounded
as |O(6Y4)| < C6Y* for the same constant.)

Proof: Throughout this proof, we will write ¢ =
kd and denote by C' a generic constant that depends
on the bounds on g, s,v, and can change from line to
line. Note that, by construction, g; = 1 for all j, and
therefore (U]‘»S )j>0 ~ia N(0, 1). Hence we can construct
the discrete and continuous processes on the same space
by letting \/EUJ‘-s = By,., — By,.

J
We then decompose the difference between the two
processes as

k=1 .t; 46
Xps—Xp = Z/ [0(X,t) — (XS, tj41)] dt
j=0"t

k—1

ti+o
Z/t [S(Xt, t) — S()(j(vs7 tj+1):| dBt .
=0t

+

By taking the second moment, and using the fact that
X, is measurable on (Bj;)s<; and X;S is measurable on
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(Bs)s<t,» we get

E{[m—xzf}

<2k25/ (X, t) = 0(X0,t541)] "} dt
k-1 Jt]+6 2
+2Z/t_ E{ [s(X,,1) — s(X2,t;51)]  dt.

Next notice that by the boundedness of s,v, we have
E{|X; — Xs|?} < C|t —s|. Let A, = E(| Xy, — X2|?).
Assuming without loss of generality § < 1,
2
E{ [0(X,t) = o(X7,tj41)] "}
< CE(IX: — Xy,?) + CE(1X, — Xj)
+ Ot —tj 1> < CAL+C6.

The same bound holds for E{[s(X,t)— (X ti+v1)]?}
Substituting above, we get
k—1
A <C@+1)5> (Aj+96)
j=0

This implies bound E(| X,
1)

In order to prove Eq. (22), note that
E{g(X}_1,tk)?} <

— X}?|?) < 06 as stated in

< E{[g(Xe,_,,tk) + CIXR_ — X, 1P}
<1+CVs.
Hence
E{[Gr(X0_1) — 9(XP_1, te)]*} < CV5.
Let K = |gq/ 5J and write

t+6
s — 7% = Z / 9(Xe,t) = Gr41(X2)] dB;

Therefore

(\ZKs—ZSIQ)
tj+o
/t E{ (Xt,t) = gj11(X }df
t;j+o
SQZ/ E{[g(X1,t) — g(XJ,tj41))° } dt
K—-1 .45
+22/ E{[g;+1(X]) — g(X7, t;0)]*} dt
j=0 7t

K-1 ;46
3052/ (A;+68)dt +C(G+1)Vs
- t;

<C(7+1)V5s.

The bound of Eq. (22) follows since

qx
E(|Zy. — Zisl?) = / E{g(X,, t)?}dt < 6.
K6

Finally, Eq. (23) follows by the same estimates. [ ]

We now collect the main findings of this section in a
theorem. This characterizes the values of the objective
function achievable by the above algorithm.

Theorem 3. Let g,s,v : R x R>g — R be Lipschitz
continuous, with v and s bounded, and define the pro-
cess (X, Z) using the SDE (18) with initial condition
Xo = Zy = 0. Assume E{g(X;,t)?} = 1 for all t > 0.
Further assume 0,9(x,t)0,s(x,t)0,v(x,t) to exist and
be Lipschitz continuous.

Define the incremental AMP iteration (u¥)g>o, and
let z be given by Eq. (13). Finally, let v : R — R
be a pseudo-Lipschitz function. Then, for any € > 0
there exist §.(e) > 0, and for any 6 > 06.(¢) there
exist M, (e,0) < oo such that, if § < 0.(¢) and M >
M., (e,d), we have

p-lim <z,Az>—/0qIE{g(Xt,t)}dt

n—oo 2
p-lim — Zz/) ;)

n— 00

<e,

<e.

—E{y(Z9)}

(Further the above llmlts in probability are non-random
quantities.)

Proof: This follows immediately from Lemma II.3
and Lemma I1.4. [ ]

III. PROOF OF THE MAIN THEOREM
A. Choosing the nonlinearities

In view of Theorem 3, we need to choose the coeffi-
cients g, s,v in the SDE (18) as to solve the following
stochastic optimal control problem:

q
maximize / E{g(X:,t)}dt,

0
P(Zze[-1,1]) =1, (24)
dXt = U(Xt, t) dt + S(Xt, t) dBt 5 (25)
g,8,v € Lip(R x [0,1]).

subject to

By Theorem 3, the value of this problem is the asymp-
totic optimal value achieved by the IAMP algoritm,
for problem (1). Notice that related (but not identical)
optimal control problems were studied, among others,
in [4], [23], to construct useful representations for the
Parisi formula. Here we will not attempt to solve di-
rectly this problem, and instead we will compare it with
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the structure of the Parisi formula. This will motivate a
guess for the three functions g, s,v, which enables us
to prove Theorem 2 (after taking 8 — oo). Note that it
follows a posteriori that this guess is an optimizer of
the above stochastic optimal control problem (again, for
large (3).

Throughout this section we set 8 > [y as per
Assumption 1. We also set § = ¢, = ¢.(8) and p = ug
the unique minimizer of the Parisi functional. We also
fix ® to be the solution of the PDE (2) with p = pg.

There is a natural SDE associated with the Parisi’s
variational principle, that was first introduced in physics
[28], and recently studied in the probability theory
literature [4], [23]:

X; = BPu(t)0,®(t, X,)dt + fdB;.  (26)
Unless otherwise stated, it is understood that we set the

initial condition to Xy = 0. Motivated by this, we set
the coefficients g, s, v as follows

’U(.’Lt) = BQM(t)am‘I)(tal“)’
g(x,t) = O D(t, x).

We collect below a few useful regularity properties of
®, which have been proved in the literature.

Lemma IIL.1.

S(:E7t) =3, 27

(i) 9I®(t,x) exists and is continuous

for all 5 > 1.
(i4) For all (t,z) €[0,1] x
|0,®(t, )| <1, 0<a2 P(t,x) <1,
|20(t, = ] <4.
(iii) 0;0i®(t,x) € L>=([0,1] x R) for all j < 0.
(iv) 0. P(t, ) O2®(t, z) are Lipschitz continuous on

[0, 1] x

Proof: Points (i) and (i4i) are Theorem 4 in [23].
Point (4¢) is Proposition 2.(é¢) in [4]. Finally, point (iv)
follows immediately from points (i), (iv). |

This Lemma implies that the choice (27) satisfies
the regularity assumptions in Theorem 3. We next have
to check the normalization condition, and compute the
resulting distribution.

Lemma IIL.2. We have
Zy = 0, P(t, X¢) .
€[-1,1]) =1 for all t.

(28)
In particular P(Z;

Proof: By Lemma 2 in [4], we have, for any t; <
to

ta

ﬁazz(p(ta Xt) dBt )
ty1
(29)

0o ®(ta, X)) — 0p®(t1, Xy,) =

which is exactly Eq. (28). Lemma III.1.(7¢) implies
|Z¢| <1 almost surely. |

Lemma IIL.3. For all 0 <t < q,, we have
E{(9,9(t, X))’} =1t,
E{(80,.9(t, X,))°} = 1.

(30)
(3D

Proof: Equation (30) is Proposition 1 in [13]. For
Eq. (31) note that by Eq. (39) in the same paper, we
have, for any t; < ts < g,

E{(0:®(t2, X¢,))*} — E{(0,®(t1, X¢,))*}
—/t2E{(B<9m<I>(t,Xt))2}dt,

and therefore the claim follows from Eq. 30. ]

Lemma II1.4. For any 0 <t < q., we have
1
E{0..®(t, X¢)} :/ u(s)ds.
t

Proof: Consider t € [0, g.] a continuity point of y.
Then the proof of Lemma 16 in [23] yields

Dra®(t, X3) =1 — (1) (0D, X))

5] [ 0.6 x0 s}

Taking expectation and using Fubini’s
Eq. (30), we get

alongside

E{0,.9(t, X,)} = —mm—zsmm>

=[U@Ms

The claim follows also for ¢ not a continuity point
because the right hand side is obviously continuous
in ¢. The left hand side is continuous because 9,,®
is Lipschitz (cf. Lemma II1.1) and E{|X; — X,|?} <
C'|t—s| because the coefficients of the SDE are bounded
Lipschitz. ]

We summarize the results of this section in the fol-
lowing theorem. Here and below, for x € R", § C R",
we let d(z, S) = inf{|lx —y|| : y € S}

Theorem 4. Under Assumption [ let g,s,v : R X
R>o — R be defined as per Eq. (27), and set § = q..(0)
for B > Bo. Further let

&@)= 50— (-0 -5 [ 2usa).

Define the incremental AMP iteration (u®)i>o via
Egs. (6), (9), (10), with gy given by Eq. (20), and
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let z be given by Eq. (13). Then, for any ¢ > 0
there exist §.(¢) > 0, and for any 6 > 6.(¢) there
exist M,(g,0) < oo such that, if 6 < d.(¢) and
M > M, (g,0), we have

1
im — _ <
p-lim 2n<z,Az) E(B)| <e,

n—oo

1
p-lim —d(z,[-1,1]")? <e.
n—oo N
(Further the above limits in probability are non-random
quantities.)

Proof: First mnotice that d(z,[-1,1]")? =
S W(z) with ¥(z;) = d(z,[—1,1])* a pseudo-
Lipschitz function. Further, integration by parts yields

ew)=p [ [ worasar

Hence the claims of this theorem follow immediately
from Theorem 3 upon checking those assumptions using
the lemmas given in this section. ]

B. Sequential rounding and putting everything together

Theorem 4 constructs a vector z € R™. It is not diffi-
cult to round this to a vector with entries in {+1,—1},
as detailed in the next lemma.

Lemma IILS. There exist an algorithm with complexity
O(n?), and an absolute constant C > 0 such that the
following happens with probability at least 1 — e~ ™.
Given A ~ GOE(n) and a vector x € R™ such that
d(z,[-1,1]")? < neq, the algorithm returns a vector

o, € {+1,—1}" such that
1

1
P > —
o (4, Ao y) > o (z, Ax) 20(\/60 +

1
7))
Proof: Recall the definition of Hamiltonian
H,(x) = (x,Ax)/2 (which we view as a func-
tion on R"). We also define H,(x) = H,(z) —
Z?:l Ayxi/2 = Zi<j§n Aijzix;.

We construct o, in two steps. First we let z to be the
projection of z onto the hypercube [—1,+1]™ (i.e. Z €
[—1,+1]™ is such that ||z — z||? = d(2,[-1,+1]")% <
nep). Note that this can be constructed in O(n) time
(simply by projecting each coordinate Z; onto [—1, +1]).

Second, note that the function H,(x) is lin-
ear in each coordinate of . Namely, for each ¢
H,(x) = zohi1 ¢(x~r; A)+hoe(xr; A), where g =
(zi)iem)\e and hyg(ze; A) = 3., Agjz;. We then
construct a sequence 2(0),,2(75£ as follows. Set

z(0) = z and, for each 1 < ¢ < n:

I T
s {Sign(hu(%(f —1)ss A))

if i £ ¢,
if i = 0.

Finally we set o, = z(n). This procedure takes O(n?)
operations.

The lemma then follows straightforwardly from the
following three claims:

() Hale) > . (2). ~
(ii) [Hn(ow) — Hn(ow)| < 20Vn, |Hnp(ow) —
H,(o)| < 204/n with probability at least 1 —
e 2,
(t13) |Hp(z) — Hn(Z2)| < 20n,/gg with probability at
least 1 — e™2".

Claim (4) is immediate since H,, (2(¢+1)) > H, (2({+
1)) for each ¢.
Claim (4¢) holds since, for any = € [—1,+1]",

(@) = ()] < 5 3" 1Aul = 7(4).

Now we have ET(A) = y/n/m, and 7 is a Lipschitz
function of the Gaussian vector (A;;);<,. hence the
desired bounds follow by Gaussian concentration.

For claim (4i%), let v = z — Z and note that (denoting
by Amax(A) the maximum eigenvalue of A)

1 .
|H,(2) — Ho(2)| < 5 l(v, Av)| + (v, AZ)|
1 N
< max(A)[[0]7 + Amax(A) 0] |2]
< A (A) [éao + Vo] < 2 Amax(A)VED

The desired probability bound follows by concentration
of the largest eigenvalue of GOE matrices [2]. ]

We finally need to show that the quantity £(5) of
Theorem 4 converges to the asymptotic optimum value,
for large 3. This is achieved in the two lemmas below.

Lemma IIL6. Let &(8) = (8/2)(1 — [, 1% us(dt)).
Then, almost surely,

log 2

£(8) < lim —  max (o, Ao) < E(B) +

T n—oo 2n oe{+1,—-1}n 15}
Proof: By  Gaussian  concentration, it
is  sufficient to  consider the  expectation

E, = Emaxsec(41,—13» hn(o)/n  (recall that
H,(o) = (o, Ac)/2. Recall the definition of partition
function Z,(8) = > ,eqi1,-130 &P(BHn(0)),
and define the associated Gibbs measure
vg(o) = exp(BHy(0))/Z,(B) and free energy
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density F,(T) = (T/n)ElogZ,(8 = 1/T).
A standard thermodynamic identity [27] yields
Fo(T) = Evyyr(Hy (o)) + TS(vi/r), where S(q) is
the Shannon entropy of the probability distribution gq.
Further F)(T) = S(vi/r) > and F,(T) — E, as
T — 0. Hence

Evg(H, (o)) < E, <

F.(1/B) < Evg(Hy (o)) + 3

On the other hand, 0g(58F,(5)) = Evg(H,(0o)). Since

BF,(8) — Ps(ug) by Theorem 1, F,(53),Ps(us) are
convex with Pg(up) differentiable [43], it follows that

d
@Pﬁ(wﬁ

(The last equality is proved in [43], with a difference
in normalization of 3.) [ ]

Lemma IIL7. For any 8 > (o,
lim 3%(1 - q.(8))* < 1.
B—00

lim Evg(H, (o)) =

n—oo

= &o(B).

Proof: The PDE (2) can be solved for ¢t €
(g«, 1] using the Cole-Hopf transformation ® = log u.
This yields ®(q.,z) = ((1 — ¢+)/2) + log2coshx,
whence 0,P(q.,x) = tanh(z) and 0., P(g.,z) =
1 — tanh(z)2. Substituting in Egs. (30), (30), we get

E{ tanh(X,.)?} = q.,
B*E{ (1 — tanh(X,.)?)*} = 1.
Hence
— B°E{1 — tanh(X,, )?}”

q*)z)Z} =1.

ﬂ2(1 - Q*)2
< B’E{(1 — tanh(X,
|

The proof our main result, Theorem 2, follows quite
easily from the findings of this section.

Proof of Theorem 2: Let FE,
lim;, 00 MaxXgegi1,—13n Hp(o)/n. This limit exists
by Corollary 1.1, and we further have E, > 1/2
(this can be proved by the same thermodynamic
argument as in the proof of Lemma III.6, noting that
(1/n)log,, Z,(B) — log2 + (B2/4) for B <1 [37]). It
is therefore sufficient to output o, such that, with high
probability, H,(o.)/n > E. — (¢/3).

Let 5 = 10/e. By Lemma II1.6 and Lemma IIL.7,
we have £(8) > E. — (¢/5). Applying the algorithm
of Theorem 4 thus we obtain, with high probability,
a vector # € R™ such that H,(z) > E, —¢/4 and
d(z,[-1,1]")% < £2/106. The proof is completed by
using the rounding procedure of Lemma II1.5. [ ]

log 2
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IV. RELATION WITH THE TAP EQUATIONS

In this section we prove that the algorithm described
in Section II, when used in conjunction with the specific
choice of functions gg, s, v in Section III actually
constructs an approximate solution of the TAP equations
(under Assumption 1). As in the previous section, we

set § = qu, v(x,t) = But)d,0(t,x), s(z,t) = B,
g(x7t) = Bamrq)(t,m), and
~ _ (x k’é)
= . 32
gr(x) E{g(X?_,, k02 ] 12 (32)

Using these settings, we recall that =¥ and z are given
by

x® = 2P o kS) 6 4 BV o[ur] vV, (33)

la/s]

z:\/gzgk(u()v"'?
k=1

Finally, we will repeatedly use the fact that the PDE (2)
can be solved on (g, 1] using the Cole-Hopf transfor-
mation, which yields ®(g.,x) = log2cosh(x) + (1 —
qx)/2.

Lemma IV.1. Setting k. = |q./d], we have

")

up_1) O ub. (34)

lim lim p- hmf =0.

’2
=0 M—0 nosoco N

Hz — tanh(z®

Proof: By Lemma I1.2, we have

2
]\/}gnoo Eilgol — Hz — tanh(x"*) ’

2
~E{[2° - 0.9(a., X))} -
On the other hand, using Lemma 1.4, we obtain
- — 0,(q.. X, )]2}

limE
§—0

g

where the last identity follows from Eq. (29).
Lemma IV.2. Setting k. = |q./d], let

- 62(1 — ) tanh(

2
ﬁGMCD t Xt) dBt az©(q*,Xq*):| }

E, s =BAz — zh ")

Then,we have

1
lim li lim — || E
i o plim Bl =
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Proof: Throughout the proof, we will write f, =
fr(wo, ..., ug). By the basic iteration (6), we have

k.
Az=V5> Af,
k 1

- 5Zuk+1+ﬁ22bkm L

k=1/¢=1

Using Eqgs. (16) and (17), together with the fact that
|| f&ll?/n, ||u¥||?/n are bounded by Lemma I1.2, we
get

1
1 -lim — || E
Minwgggln“ vl =

lim p—hm
M—00 n_so00 N

%(1 — ¢.) tanh(a*

B\/Szuk—l—l )

2

N ijE{%(X,i_l)}fk,l iy

|

5\/52 Upyy — (1 — g.) tanh(X7))

2
k.
+BV8 Y S E{Ge (X2 1)}Gk-1 (X{o)URy — X;i*]
k=1
(35)
Next, using again Lemma II.4, we have

\/522;1 Ulg+1 % By.. Xj. RN Xg, and

K
—~ ~ Lo
\/EZ E{Gr(XR_1)}gr-1(Xp_0)UR_; =
k=1

/ " E{g(X,, 1)} 9(X,.1)dB,
_ / B0, (t, X)) 00 D(t, X,)AB,

= [

where in the last step we used Lemma II1.4. By Fubini’s
theorem

SRS
[

1 9=
—l—ﬁz/ u(s) 022 P(t, X¢)dB; ds
0

qx

_ﬁ/q*

dS 8M<I>(t Xt)dBt y

0

a CI) sts)d8+ﬁ(l _Q*)a (I)( qu*)»
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where in the last step we used once more Eq. (29).
Substituting these limits in Eq. (35), we get

2

lim lim p- hm — HE =
=0 M—00 oo

=FE { {,BBq* + 52/0 ) 1(s) 0, (X, s) ds

+ 62(1 - Q*)azq)(Xq*aQ*) - X

qx

- 62<1 — ¢«) tanh(X,, )] }

=E { [52(1 - Q*)axq)(Xq*aQ*) — Xq.
—B%(1 — q*)tanh(Xq*)]z} =0.

Where we used the fact that X; solves te SDE (26), and
D(q., ) =log2cosh(z) + (1 — q.)/2. [

We can therefore state our result about constructing
solutions to the TAP equations.

Theorem 5 (Constructing solutions to the TAP equa-
tions). Under Assumption I let g,s,v : R X R>g — R
be defined as per Eq. (27), and set ¢ = q.(B) for
B > fBo. Define the incremental AMP iteration (u”)j>o
via Egs. (6), (9), (10), with gy, given by Eq. (20), and
let z be given by Eq. (13). (The same iteration is given
explicitly in Egs. (33), (34).)

Set ks = |q.«/d]. Then, for any ¢ > 0 there exist
0+(g) > 0, and for any § > 6.(¢) there exist M, (g,d) <
oo such that, if § < 6.(e) and M > M, (e, ), we have,
with high probability
ke —

k.

1
- HﬁAtanh(m xF — f%(1 — ¢,) tanh(x

’<5.

Proof: The theorem follows immediately from
Lemma IV.l1 and Lemma V.2, using the fact that, with
high probability, A has operator norm bounded by 2+¢
[2]. ]

V. UNIVERSALITY

In this section we use the universality results of
[7] to generalize Theorem 2 to other random matrix
distributions. Namely, we will work under the following
assumption:

Assumption 2. The matrix A A(n) is symmet-
ric with A;; = 0 and (Aij)i<i<j<n a collection of
independent random variables, satisfying E{A;;} =
0, E{Afj} 1/n. Further, the entries are sub-
gaussian, with common subgaussian parameter C, /n.
(Namely,E{exp(AA;;)} < exp(CiA\?/2n) for all i <
J<n)
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Using [7, Theorem 4], and proceeding exactly as for
Proposition II.1, we obtain the following.

Proposition V.1. Consider the AMP iteration (6), with
A = A(n) satisfying Assumption 2. Further, assume
fr : REF2 5 R to be a fixed polynomial (independent
of n). Then for any k € N, and any pseudo-Lipschitz
function v : R¥2 — R, we have

1 n
n > by, .. ufsy) 2 Bap(Us, ... U Y).
i=1
(36)
Here (Uj)j>1 is a centered Gaussian process inde-
pendent of (Uy,Y) with covariance Q = (Qk])k,]zl
determined recursively via
@k-ﬁ-Lj—H =E{fx(Uo,....Us;Y)f;(Uo,...,U;;Y)}.
(37)

Notice an important difference with respect to Propo-
sition (6): instead of Lipschitz functions, we require the
functions fj to be polynomials. However, this result is
strong enough to allow us prove the following general-
ization of Theorem 2.

Theorem 6. Ler A A(n), n > 1 be random
matrices satisfying Assumption 2. Under Assumption
I, for any € > 0 there exists an algorithm that
takes as input the matrix A € R"™*"™, and outputs
o, = 0.(A) € {+1,—-1}", such that the following
hold: (i) The complexity (floating point operations)
of the algorithm is at most C(g)n? (ii) We have
(0., Ac.) > (1 — ) maxgeiy1,—1)n (0, Ao).

Proof: Let gi(z), v(x,t), s(x,t) be defined as in
the proof of Theorem 2 for k < 1/4. For each M € Z,
and each k < 1/§, we construct a polynomial Py as :
R*~1 — R which approximates the dynamics defined
by gr(-), v(-,k0), s(-,kd), in a sense that we will
make precise below.

We define the IAMP iteration, analogously to (9),
(10)

fk(u07"'a

We then claim that we can construct these polynomial
approximations py as so that, for any & < 1/, and any
pseudo-Lipschitz function v : R¥*2 — R, we have

Zw

ug) = Pev (U, .., up—1) - up, (38)

),

lim p-lim —
M—00 n—sooc N

Ew(UO ey
(39)

where the independent random variables (UéS )e>o are
defined as in Lemma II1.2. Given this claim, the rest of
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the proof of Theorem 2 can be applied verbatimly to
this —slightly different— algorithm.

In order to prove the claim (39), we proceed as in the
proof of Lemma I1.2. Namely, by applying Proposition
V.1, we get

6,M
U™,

p-lim — Zw

n—oo 1

=Ey(Uy, ...

where (U f ’M) ¢>0 1s a centered Gaussian process. Using
the same argument as in Lemma I1.2, we obtain that the
Gaussian random variables (U f ’M) ¢>0 are independent.
Further, letting g}/ = E{(U, U>M)2}, Proposition V.1
yields the following recursion

M -a

= E{pp s (UM, ..., U} (40)

Bt
The claim (39) follows by showing the we can choose
polynomials (pg,ar)e>0 so that limys oo @27 = Gy for
each ¢ < 1/6. This can be done by induction over k.
As a preliminary, notice that there is co = ¢o(J) > 0
sufficiently small so that, for the sequence of random
variables defined recursively via Eq. (11), we have
2¢0 < G < 1/(2¢p) for all k < 1/6 (the existence
of such ¢y > 0 can also be shown by induction over k
using the fact that g, v, s, are bounded Lipschitz).

The basis of the induction limy; oo @37 = Go is
trivial. Then assume that the induction claim is true for
all ¢ < k. Without loss of generality we can consider
that, for any M > 1 we have ¢g < @7, ..., g™ < 1/cp.
Indeed by the induction hypothesis this holds for all
M large enough, and we can always renumber the
polynomials pg as(---) so that it holds for all M > 1.
Then notice that the random variable X ;j of Eq. (11) can
be written as X{ = hy(Up,Uf,...,U_,) for a certain
function Ay, that is bounded by a polynomial. We then
choose the polynomials py a7(-) so that

E{|hk(Uo,Uf’M,...,U,ff‘f)
. 5,M 5, M+ |2 1
*pk,M(UmUl ""7Uk71)‘ }S a

Such polynomials can be constructed, for instance, by
considering the expansion of hj in the basis of mul-
tivariate Hermite polynomials (suitably rescaled as to
form an orthonormal basis with in L2(R*~1, 11;.), where
1 1s the joint distribution of Uy, Uf’M, cee UZ%.) The
variance bound ¢ < gM,..., g < 1/cg is used in
controlling the error term.
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The induction claim then follows by

. . 5M 5,M
A}gnooE{pk,M(Ul NN
_ 6M 6, M\2
= N}gnoo E{hk Yoo Uk71) }
— E{hkwl,...,Uk,N},

where the last equality holds by dominated convergence.
|

Corollary 1.2 follows by applying Theorem 6 with A
a suitably centered and normalized adjacency matrix.

Proof of Corollary 1.2:
G(n,p), construct the matrix A = A’ €
setting A;; = 0 and, for ¢ # j:

Given a graph G ~
RTLXTL’ by

np
Aij =

It is easy to verify that this matrix satisfies Assumption
2. Further, we have

11—
CUTg(o) = %\En| - §<a, 1)2 + Vrp(T=p) (4p) (o, Acr).
Recall that we know from [17]
maxye(4+1,-1}» CUTg(o) = [E,[/2 + (n®p(1 —

p)/2)Y/?P, 4+ o(n/?). Let &1 denote the output of the
algorithm of Theorem 6, on input A. Applying this
theorem and Lemma V.1, we get

1
phmnlggo %<01,A0'1> (1—-¢)P,,
1
p-lim —({e1,1) = 0.
n—oo T

We construct o, by balancing o;. Namely, if
|{o1,1)| = ¢, we obtain o, by flipping |£/2] entries
of oy so that |{o,,1)| < 1. We then have, with high
probability

1
CUTg(o.) — §|En|

1
> —§ + —/np(1—p) (0., Ac)

4
1
= gVl =p) [0+, Agx) — (a1, Adi)|
1 1
> S| Bl + (1 - 1- LA
2 5lEnl+ 2(L=e)Vnp(l —p) max (o, A)

= VnllAl, oo — ol

(Here || A||,, denotes the operator norm of matrix A.)
Therefore, since |(o1,1)|/n = £/n - 1, and || A||,, <

2.01 with high probability [2], we get

E
CUTg(ow) | 2"'
>(1—¢) max {CUTg(O') |En |} —nVi||A
oe{+1,—-1}"
>(1—¢) max {CUTg(O') |Enl } —o(n*?),
oe{+1,—-1}"
which completes the proof. ]
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APPENDIX

As mentioned in the main text, Proposition II.1 is a
consequence of the general analysis of AMP algorithms
available in the literature. In particular it can be obtained
from a reduction to the setting of [24, Theorem 1]. Let
us briefly recall the class of algorithms considered in
[24], adapting the notations to the present ones. (we
limit ourselves to consider the ‘one-block’ case in the
language of [24]).

Fixing 7' > 1 consider a sequence of Lipschitz
functions
F, RT x R? - RT,

(xla" . ,xT321>Z2) — Ft(anxla"' 7IT)’Z1722) .

Given two matrices © € R"*(T+1D) > ¢ R"*2 e let
Fy(x; z) € R**(T*+1) be the matrix whose i-th row is
given by Fi(x;, z;) (where x; is the i-th row of « and
z; 18 the ¢-th row of 2).

Then [24] analyzes the following AMP iteration,

which produces a sequence of iterates a* € R™*(T+1)
= AF(z;2) — F_ (=75 2)B] . (41

Here B, € R”*T is a matrix with entries defined by

Under the assumption that x°, z are independent of
A, and pgo . = n' 1L, 50, converges in W,
[24, Theorem 1] determines the asymptotic empirical
distribution of x?, z.
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Proposition II.1 can be recast as a special case of
this setting. First notice that we can always choose an
n-independent 7" such that the time horizon k in Eq. (7)
satisfies k < T'. We then consider the iteration (41) with
initialization ° = 0, data vectors z = (u’,y), and
update functions given by

Ft(ﬂ?l,xQ,... 7xT7Z1722)Z = f@*l(zhxh"

With this setting, the vector (z},)i<n, € R™ coincides
with u as given in Eq. (6), for all ¢ > £. The recursion
of Eq. (8) follows from the analogous recursion in [24,
Theorem 1].

In this appendix we provide a simplified version of
the algorithm of Theorem 2, for the reader’s conve-
nience. In this presentation we simplify certain technical
details that have been introduced in the main text to
simplify the proof. In the pseudo-code below © denotes
entrywise multiplication between vectors. Further, when
a scalar function is applied to a vector, it is understood
to be applied componentwise. In particular, note that
022 ® (K6, £*)| is the ¢5 norm of the vector whose i-
th component is 0,,®(kd, xF).

Algorithm 1: TAMP algorithm to optimize SK
Hamiltonian
Data: Matrix A ~ GOE(n), parameters 6, 5 > 0
Result: Near optimum o, € {+1 — 1}" of the SK
Hamiltonian
Compute minimizer jg of the Parisi functional
Ps(u) (cf. Eq. (3));
Compute solution ® PDE (2), with p1 = pug;
Compute ¢. () = sup{q: q € supp(up)}
(Edwards-Anderson parameter);
Initialize ! = 0, u® ~ N(0,I,,), g~ ' =1,
g_2 =0, b(] =0;
for k < 0 to |g./6] do
ufFtl = A(gk—l ® uk) _ bkgk—Z ® uk—l;
xk =
1+ B2u(k6) 0, ®(kS, xF~1) § + BVour;
9" = Vn0u; ®(k, 2*) /|| 05 ® (K0, ) ;
br1 = i 97 /ns
end
Compute z = \/gqu:*l/rﬂ gt ouk;
Round z to o, € {—1,+1}"™;
return o,

Notice that this pseudo-code does not describe how
to minimize the Parisi functional and to solve the PDE
(2). As discussed in the introduction, we believe this
can be done efficiently because of the strong convexity
and continuity of p +— Pg(u). Indeed highly accurate

-»17471;2’2)

numerical solutions (albeit with no rigorous analysis)
were developed already in [15], [35], [40].

Further, the pseudo-code does not specify the round-
ing procedure, which is given below.

Algorithm 2: Round

Data: Matrix A € R™"*", vector z € R"
Result: Integer solution o, € {+1 —1}"
for i < 1 to n do
| Set z; - min(max(z;, —1), +1);
end
for i + 1 to n do
Compute h; = z#i AijZjs
Set Z; + sign(h;);
end
return o, = z.
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