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Abstract—In this paper, we investigate the problem of jointly
optimizing the waveform covariance matrix and the antenna
position vector for multiple-input-multiple-output (MIMO) radar
systems to approximate a desired transmit beampattern as well as
to minimize the cross-correlation of the received signals reflected
back from the targets. We formulate the problem as a non-
convex program and then propose a novel cyclic optimization
approach to efficiently tackle the problem. We further propose
a variant of binary evolutionary optimization algorithm in order
to efficiently design the corresponding antenna positions. Our
numerical investigations demonstrate a good performance both
in terms of accuracy and computational complexity, making the
proposed framework a good candidate for usage in real-time
radar signal processing applications.

Index Terms—Antenna selection, evolutionary algorithms,
MIMO radar, waveform design.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) radar has been an
emerging technology of the last two decades, attracting a great
deal of interest from researchers in radar and signal processing
communities [1]–[12]. One of the main advantages of MIMO
radar systems compared with the traditional phased-array
radars is their ability to transmit multiple probing waveforms
which can be chosen freely. The waveform diversity provided
by a MIMO radar system can increase the resolution and
sensitivity to target movements, and specifically, paving the
way for applying adaptive array techniques. An important
task in MIMO radar systems is thus to design the probing
waveforms to approximate a desired beampattern, and to
further minimize the cross-correlation of the signals reflected
from various targets, and from reflections of other waveforms.
Alternatively, one can consider the design of the probing signal
covariance matrix as it provides more degrees of freedom
compared to designing the waveforms directly [13]–[20].

A large part of the existing research on covariance waveform
design focuses mainly on the scenario with a uniform linear
array (ULA) and half-wavelength inter-element spacing in
order to match a desired beampattern. However, such de-
signs are typically concerned with statistical properties of the
transmitted waveforms rather than incorporating a design of
the positions of the transmit antennas as well. Recently, it
was shown in [19] that unlike a ULA configuration where
the total number of antennas and their positions are fixed,
one can achieve additional degrees of freedom by carefully
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Fig. 1. Geometry of a colocated MIMO radar with M grid points.

designing the antenna positions on a grid point for approx-
imating the transmit beampattern with the same number of
antennas (distributed non-uniformly on a grid point). As a
result, assuming the total number of transmit antennas is fixed,
a joint optimization of the covariance matrix and the antenna
selection vector can achieve superior results compared with
methods operating on a ULA configuration.

In this paper, we propose a novel cyclic optimization
approach to efficiently tackle the non-convex problem of
joint optimization of the waveform covariance matrix and
antenna positions, and further, we propose a variant of binary
evolutionary optimization algorithm (e.g., see [21]) in order
to efficiently design the corresponding antenna positions. In
addition, our method is able to produce waveform covariance
matrices with low cross-correlation properties.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider the problem of selecting N transmit antennas
placed on a uniform linear array (ULA) positions with
M(≥ N) grid points with equal grid spacing d, in order
to produce a desired beampattern as depicted in Fig. 1. We
introduce a binary antenna position vector to represent the
antenna configuration as

p = [p1, p2, · · · , pm, · · · , pM ]T , pm ∈ {0, 1}, (1)

where pm = 1 represents the fact that the m-th grid point
is selected for antenna placement; otherwise pm = 0.
Assuming a narrow-band signal model, the M -dimensional
steering vector at the angle of interest θ is given as
a(θ) = [1, ej2πd sin θ/λ, · · · , ej2π(M−1)d sin θ/λ]T , where λ is
the wavelength of the transmitted signal. Our goal is to design
the waveform covariance matrix R such that the transmitted



beampattern P (θ) approximates a given beampattern d(θ)
over the radial sectors of interest in a least squares (LS)
sense, and also such that the cross-correlation of the reflected
waveform from the targets is minimized. One can formulate
this problem by defining a cost function as follows:

J(p,R, α) (2)
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where α > 0 is a scaling factor to be optimized, ωk ≥ 0, k =
1, · · · ,K, is the weight for the k-th radial sector and ωc ≥ 0
is the weight for the cross-correlation term and α is a scaling
parameter to be designed. Note that the first term on the right
hand side of the above cost function captures the beampatten
matching criteria, and the second term represents the cross-
correlation between the reflected signal at different angles.

Finally, the joint optimization problem of designing the
transmitted waveform covariance and the antenna position can
be formulated as

min
p,R,α

J(p,R, α) (3)

s.t. R � 0, Rmm =
c

M
, for m = 1, · · · ,M, (4)

‖p‖1 = N, p ∈ {0, 1}M . (5)

Since R is a covariance matrix, it must be positive semidefinite
matrix. We further impose the constraint that all the antennas
are using the same transmit power, as reflected in (4). Further-
more, the constraint (5) guarantees that only N antennas are
to be placed in M possible grid points, and that the vector
p is binary. In order to tackle the non-convex program of
(3), we propose a cyclic optimization approach with respect
to the design variables (R, α) and p. Namely, for fixed p,
the minimization problem with respect to the design variables
(R, α) can be cast as

min
R,α

J(p,R, α) (6)

s.t. R � 0, Rmm =
c

M
, for m = 1, · · · ,M.

It can be shown that the above optimization problem can be
reformulated as a constrained convex quadratic program, and
hence, can be solved efficiently using off-the-shelf convex
solvers (such as CVX [22]). On the other hand, for fixed
(R, α), the optimization of the antenna selection vector p
can be written as follows

min
p

J(p,R, α), s.t. ‖p‖1 = N, p ∈ {0, 1}M , (7)

which we solve using a variant of binary evolutionary
optimization algorithm—details of which are omitted due to
the lack of space.

III. NUMERICAL EXAMPLES

In this section, we provide several numerical examples in
order to assess the performance of our proposed algorithm.
We compare our method with the ADMM-based algorithm
proposed in [19]. In the following experiments, we assume
a colocated narrow-band MIMO radar with a non-uniform
linear array with M = 15 grid points with half-wavelength
inter-grid interval i.e., d = λ/2, unless stated otherwise,
and N = 10 antennas. The range of angle is (−90◦, 90◦)
with 1◦ resolution. We set the weights for the k-th angular
direction as wk = 1, for k = 1, · · · ,K; and the weight of the
cross-correlation term as wc = 1.

In Fig. 2 we compare the resulting beampattern with
the desired one for the two scenarios of ωc = 0 and
ωc = 1. In addition we provide the simulation results of
[19] for three mainlobes at θ = {−50◦, 0◦, 50◦}. In Fig.
3, we consider approximating the beampatterns with one
mainlobe at θ = 0◦, and a beamwidth of 60◦. Furthermore,
in Fig. 4, we consider approximating the beampattern with
θ = {−60◦,−30◦, 0◦, 30◦, 60◦} and a beamwidth of 10◦.
As it can be seen from Figs 2–4, our proposed method can
accurately match the desired beampattern. Also, note that our
propose algorithm outperforms the one proposed in [19] in
terms of accuracy, and moreover, is capable of designing wave-
form covariance matrix with low cross-correlation, unlike [19].
Further note that the designed beampatterns obtained with
ωc = 0 and with ωc = 1 are similar to one another. However,
the cross-correlation behavior of the former is much better
than that of the latter in that the reflected signal waveforms
corresponding to using ωc = 1 are almost uncorrelated with
each other. This can be further verified from Fig. 6 in which
we provide the comparison of the normalized magnitudes of
the cross-correlation coefficients (as formulated in the second
term of the right hand side of (2)) for three targets of interest
at directions θ = {−50◦, 0◦, 50◦}, as functions of ωc.

In Fig. 7, we demonstrate the final antenna position vectors
suggested by the proposed algorithm for the two cases of
ωc = 0 and ωc = 1. Finally, Fig. 5 demonstrates the computa-
tional cost of our proposed algorithm and that of proposed in
[19]. Note that our proposed algorithm significantly reduces
the computational cost of the ADMM-based method in [19] by
a factor of more than 100, making our algorithm particularly
suitable for real-time applications.

IV. CONCLUSION

In this paper, the problem of jointly designing the probing
signal covariance matrix as well as the antenna positions to
approximate a given beampattern was studied. In order to
tackle the problem, we proposed a novel cyclic optimization
method based on the non-convex formulation of the problem.
In addition, we used a variant of evolutionary optimization
algorithm to tackle the non-convex problem of designing
antenna positions. Several numerical examples were provided
which demonstrates the superiority of the proposed method
over the existing ADMM-based method in terms of accuracy
and computational complexity.
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Fig. 2. The transmit beampattern design for M = 15, N = 10
with and without the cross-correlation suppression with three mainlobes at
θ = {−50◦, 0◦, 50◦} with a beamwidth 20◦. The proposed algorithm can
accurately approximate the desired beampattern for both cases of ωc = 0
(without cross-correlation) and ωc = 1 (with cross-correlation). Note that
the designed beampatterns obtained with and without considering the cross-
correlation term are similar to one another. However, the cross-correlation
behavior of the former is much better than that of the latter in that the reflected
signal waveforms corresponding to using ωc = 1 are almost uncorrelated with
each other. The proposed algorithm outperforms the method in [19] in terms
of accuracy, and additionally is capable of designing waveform covariance
matrices with low cross-correlation.
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Fig. 3. The transmit beampattern design for M = 15, N = 10 with and
without the cross-correlation suppression with one mainlobe at θ = 0◦ with
a beam-width of 60◦. Note that in both cases of ωc = 0 and ωc = 1 our
proposed method can accurately approximate the desired beampattern.
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Fig. 7. The antenna position s for M = 15, N = 10 with and without the
cross-correlation suppression. y-axis is used only for representation purposes.
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Fig. 4. The transmit beampattern design for M = 15, N = 10 with
and without the cross-correlation suppression with five mainlobes at θ =
{−60◦,−30◦, 0◦, 30◦, 60◦} with a beamwidth of 10◦. The transmitted
power values are almost the same in all mainlobes.
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Fig. 5. Comparison of the computational cost of the proposed algorithm and
that of the method in [19] for different number of grid points and that of
antennas. We consider M = 4 and N = 3 as initialization, and then linearly
scale M and N by the factor of β ∈ {1, 2, 3, 4}. The proposed algorithm
significantly outperforms the ADMM-based method proposed in [19] by a
factor of more than 100, resulting our algorithm particularly suitable for real-
time applications.
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Fig. 6. The comparison of the normalized magnitudes of the cross-correlation
coefficients (as formulated in the second term of the right hand side of (2))
for three targets of interest at directions θ = {−50◦, 0◦, 50◦}, as functions
of ωc. Note that when ωc is very small (close to zero), the first and third
reflected signals are highly correlated. On the other hand, for ωc > 0.1 all
cross-correlation coefficients are approximately zero.
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