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Abstract—This paper proposes a multi-layer neural network
structure for few-shot image recognition of novel categories.
The proposed multi-layer neural network architecture encodes
transferable knowledge extracted from a large annotated dataset
of base categories. This architecture is then applied to novel cate-
gories containing only a few samples. The transfer of knowledge is
carried out at the feature-extraction and the classification levels
distributed across the two training stages. In the first-training
stage, we introduce the relative feature to capture the structure
of the data as well as obtain a low-dimensional discriminative
space. Secondly, we account for the variable variance of different
categories by using a network to predict the variance of each
class. Classification is then performed by computing the Maha-
lanobis distance to the mean-class representation in contrast to
previous approaches that used the Euclidean distance. In the
second-training stage, a category-agnostic mapping is learned
from the mean-sample representation to its corresponding class-
prototype representation. This is because the mean-sample rep-
resentation may not accurately represent the novel category
prototype. Finally, we evaluate the proposed network structure
on four standard few-shot image recognition datasets, where
our proposed few-shot learning system produces competitive
performance compared to previous work. We also extensively
studied and analyzed the contribution of each component of our
proposed framework.

Index Terms—Transfer learning, convolutional neural
network, few-shot learning, image classification.

I. INTRODUCTION

FOR the past decade, deep convolutional neural networks
(CNN) have produced excellent results in visual recog-

nition tasks such as object recognition, scene classification,
etc. [1]–[3]. A CNN learns to recognize a large quantity of
visual categories by training on a large collection of annotated
images using a gradient-descent technique [4]. Although the
training procedure is computationally intensive, it can be
parallelized using a Graphics Processing Unit (GPU). Even
after a long training period, the CNN can only recognize a
fixed set of image categories. To learn to recognize novel
categories, one has to collect new training data and re-train the
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Fig. 1. Object categories follow a long tailed distribution with a lot of rare
classes and very few common classes.

CNN model with further adjustments. Unfortunately, in some
cases, there might not be enough labeled data available for
training a novel category. This results in a long-tailed distri-
bution of object categories [5] as shown in Fig. 1. In such
a long-tailed distribution, only a few object categories occur
frequently. Thus, we can obtain lot of samples from these
categories. However, there are lots of categories which occur
very rarely. For these object categories, we can obtain only a
very few samples. As an example, a crow is a bird that we see
very often. Therefore we can collect lot of crow samples with
sufficient variability. On the other hand, samples of a rare bird
kakapo are very difficult to obtain.
Research on learning novel categories from a few samples is

termed few-shot learning. Most previous methods tackle few-
shot learning by assuming access to a large labeled training
database as base categories. Using this large database, the goal
of few-shot image recognition systems is to recognize any
novel category accurately from just a few samples of that
category.
Traditional supervised learning using a few samples for

training often causes overfitting and results in poor gener-
alization. The poor performance in generalization is due to
the following reasons: Firstly, it is related to the fundamental
problem known as the curse of dimensionality. The sparsity
of the feature volume due to less number of samples in
such a high-dimensional image feature space aggravates the
problem of overfitting. Secondly, the use of only a few training
samples would not be able to represent the overall variation
of a class. Hence, the true spread of the class distribution
remains unknown and the classification boundaries are poorly
estimated. Also, the few training samples of a class might be
sampled near the edge of the class distribution. As a result,
the mean of these training samples would not be close to
the true mean of the class. Therefore, the mean would not
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accurately represent the location of the class in the feature
space, resulting in mis-classification.
In this paper, we propose solutions to each of the

above problems. Firstly, to address the problem of high-
dimensionality, we propose a low-dimensional discriminative
space called the relative-feature space. In this space, the rela-
tive feature of a sample is represented as a vector of distances
between the training samples in a training batch. Since the
number of training samples is less, the dimensionality of this
relative feature space will be a lot less than the dimensionality
of the original absolute feature space. Also, the features will
be discriminative since instances from the same classes are
expected to cluster and would have similar pairwise inter-class
and intra-class distances. Additional benefit of using these
relative features is that they extract second-order structural
information about the dataset to assist recognition. Using
higher-order features beyond the second-order relative features
would not have the added benefit of having a low-dimensional
feature space. Therefore, the combination of relative features
and absolute features presents better performance in recogni-
tion. Secondly, to address the uncertain variance of categories,
we propose a trainable neural network (NN) as a module to
predict the variance of each category. Finally, we propose
to learn a category-agnostic transformation from the class-
mean representation to the class-prototype representation.
As a result, more accurate locations of the class can be
obtained from the mean of a few samples.
The contributions of this paper are both at the feature-

extraction and classification stage of the few-shot object
recognition system. They can be summarized as follows:
(a) A novel relative-feature descriptor in combination with the
original absolute deep-feature descriptor for object recogni-
tion, (b) A framework for learning class variances in order
to compute the Mahalanobis distances to class prototypes,
(c) Additional training pipeline in order to learn a category-
agnostic transformation from the class-mean representation to
the class prototype. The training of the two stages has not
been carried out jointly since the category-agnostic transfor-
mation assumes that a robust representation has already been
learned for the images. Finally, we have conducted extensive
experimentation and analyses on four standard datasets to
verify the validity of the proposed two-stage few-shot learning
framework for image recognition.
This paper is organized into five sections. Section II dis-

cusses related work and Section III describes our proposed
approach. Section IV provides experimental results and dis-
cussion. This is followed by conclusion and future direction
in Section V.

II. RELATED WORK

The field of few-shot learning has shown increased interest
in the past decade. Most of the earlier methods used a
Bayesian approach of introducing priors to facilitate the few-
shot learning. Fei-Fei et al. [6] used a global prior while
Salakhutdinov et al. [7] used a super-category-level prior.
For application-specific tasks like handwriting recognition,
generative models have been proposed that can produce char-
acters from parts [8] or strokes [9]. For object recognition,

a hierarchical Bayesian program has been proposed to utilize
compositional and causal approaches to create a probabilistic
generative model for visual objects [10], [11]. Some ad-hoc
approaches to address few-shot learning were to carry out data
augmentation by harnessing unlabeled data [12], by trans-
formation and adding noise [13], [14], and by synthesizing
artificial examples [15]–[18] or using compositional represen-
tations [19], [20]. More recent methods that used generative
modeling include the auto-encoder [21] and variations of
adversarial-network-based architectures [22], [23]. However,
most of these generative methods require lots of efforts to
generate data, otherwise the generated data do not represent
the actual data distribution properly. Thus, recent methods
mostly take a metric-learning or a meta-learning approach to
few-shot learning.
Metric learning approaches strive to preserve class neigh-

borhood structure; that is, the representations are learned
such that features from the same class are clustered together
while features from different classes are kept far apart. As a
result, novel-class features are expected to have more room for
classification error. Koch et al. [24] used Siamese Networks to
match a training example of a novel category to a test example.
The training was carried out using an object recognition
dataset. Vinyals et al. [25] proposed Matching Networks,
which used a nearest-neighbor classifier in addition to an
attention mechanism over the training samples. Prototypical
Networks [26] extended nearest-mean classifiers [27] and
learned to classify query samples by computing Euclidean
distances to prototype features. As an extension to Proto-
typical Networks, Sung et al. [28] learned a distance metric
instead of using a predefined distance function. A more recent
method [29] used a metric learning approach, where the metric
is scaled and adapted based on the task.
On the other hand, meta-learning methods for few-shot

learning use a learning-to-learn scheme, where a model
extracts useful transferable knowledge about the learning
procedure from a large collection of tasks. This helps in
quickly learning the novel task which, in our case, is image
recognition for novel categories. Ravi and Larochelle [30]
used Long-Short-Term Memory (LSTM) [31] to train a meta-
learner to produce model parameter updates for optimization
of a base learner on a task. This method basically learns the
optimization procedure using data from a number of auxiliary
tasks. The work on learning-to-learn [32] approach to few-
shot learning is also closely related to the learning-to-optimize
technique. Finn et al. [33] built upon this work to focus on
learning the initial parameter for gradient descent so that the
learner can be optimized for a new task in a few iterations.
Mishra et al. [34] introduced temporal convolutions to pre-
dict the label of a test example, given a sequence of
labeled samples and the unlabeled test sample. The trans-
ductive propagation network [35] classifies the whole test
dataset using a graph-based label propagation mechanism.
They use an end-to-end meta-learning framework to learn
the feature embedding and graph construction simultaneously.
Sun et al. [36] used a meta-transfer learning mechanism
that shifts and scales neural network weights for new tasks.
Similarly, Munkhdalai et al. [37] proposed a meta-learning
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Fig. 2. Overall framework for the proposed approach for a 3-way 1-shot inference scenario. A single image from each of the 3 classes (classes are shown
in different colors) are used as support examples while a single query image is used. The output is the probability of the query example belonging to each
of the 3 classes.

scheme that shifts the neuron activations depending on task-
specific parameters.
Alternatively, few-shot learning methods include memory-

based models [38]–[40] that store selective relevant infor-
mation and use that for comparison at test time. Attentive
comparators [41] compare patches of images sequentially
through an attention mechanism and then arrive at a prediction.
Qiao et al. [42] learned a category-agnostic mapping from
activations to parameters that allowed fast generalization to
novel categories. A similar idea [43] was used to imprint
weights for the classification layer of the novel categories.
Bertinetto et al. [44] used a differential closed-form solver
based on ridge regression for fast adaptation to novel cat-
egories. Some methods extended existing machine learning
concepts like graph neural networks [45] and information
retrieval [46] to few-shot learning. For a more comprehensive
survey on few-shot learning, one can refer to [47], [48].

III. PROPOSED APPROACH

A. Problem Definition and Formulation

Our proposed few-shot learning method has both metric-
learning and meta-learning components, which are learned in
two stages. The metric-learning stage learns both absolute and
relative feature sets and then uses the Mahalanobis distance
metric to compute class labels of the test sample. The idea of
using relative features stemmed from our prior work in domain
adaption [49]–[51]. Domain adaptation considers adaptation
between labeled source-domain data and unlabeled target-
domain data but with the same categories in both domains.
The meta-learning stage learns auxiliary knowledge for clas-
sification, which is a transformation from a sample to its cor-
responding class prototype. This idea is related to the work of
Wang and Hebert [52], where they learned to transform small-
sample-model parameters to large-sample-model parameters.

The work on few-shot learning without forgetting [53] also
used a category-agnostic transformation but with a different
distance metric and without any procedure to avoid negative
transfer. The overall framework of our proposed few-shot
learning approach is shown in Fig. 2.
Our proposed few-shot learning image recognition system is

trained using a large database of Nbase base categories, which
consists of a large number of samples from each category.
Each of these categories contains a large amount of data that
we can use to learn some useful generalizable knowledge.
This knowledge should help the recognition of Nnovel novel
categories for which only a few labeled samples per category
are available.
The knowledge can be learned using traditional supervised

learning, where training is generally carried out by feeding
instances from the base categories in the form of mini-
batches and then optimizing some loss function. The model
is generally tested on the same set of categories on which it
is trained. If we want the trained model to work on novel
categories, then the model can be fine-tuned on the new
training dataset [54]. However, the procedure of fine-tuning
might not work if the novel categories have very few samples
in each category. In fact, the fine-tuning procedure might cause
the model to overfit on the few training samples, causing it
to under-perform on novel category test samples. The main
reason for overfitting is that the number of training samples
per category is much less compared to the dimensionality of
the feature space and therefore the variance of the few samples
is inaccurate to capture the distribution of the class.
We address these shortcomings of high dimensionality and

variable variance by proposing the use of relative features,
variance estimator and category-agnostic transformation. Still,
the traditional training procedure involving mini-batches from
a large dataset would not be able to produce a satisfactory
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model since it does not simulate the test condition well. Each
test category contains only a few samples and extracting mini-
batches for training is impossible. Hence, an episodic training
strategy inspired from [25] needs to be deployed.
In episodic learning, the set of few labeled samples available

from each of the novel categories is known as the support set.
The set of unobserved testing samples of the novel categories
is often called the query set. If the support set were large,
we could have just trained the model on the support set.
However, since the support set is small, traditional training
of a model would result in over-fitting and consequently
the model would produce unsatisfactory performance on the
testing data. However, the episodic training strategy can avert
poor performance by simulating the test conditions. In each
training episode, we first select N classes randomly from
among the Nbase base categories. From each of those selected
N classes, we randomly select K and Q disjoint samples from
it. This sampling strategy is called the N-way K -shot sampling
strategy. In general, K is same as the number of support
samples present per novel category. Q is user-specified and
is generally set in the range of 5 to 15 per category. Using
this N-way K -shot sampling strategy, we form the training
support set S = {(xi , yi )}nsi=1, where ns = K×N , and also the
training query set Q = {(x j , y j )}nqj=1, where nq = Q×N . In
the training episode, the support set is used to represent the
class while the query set is used for the evaluation.

B. Relative-Feature-Space Representation

The first step of our proposed few-shot learning framework
requires feature extraction from the raw samples. This is done
by feeding the support set samples xi from S and the query set
samples x j from Q through the feature extraction module fφ
to produce the embeddings fφ(xi ) and fφ(x j ), respectively.
The dimensionality of this absolute feature map fφ is very
large compared to the total number of support and query
samples. This sparsity in the number of samples compared to
the dimension volume generally leads to over-fitting and poor
generalization performance. To address this dimensionality
problem, we propose the relative-feature-space representation,
which has a dimensionality comparable to the total number of
support and query samples in an episode. The dimensionality
of this relative feature space will therefore be much less than
the original absolute feature space.
The relative feature of a sample in an episode is computed

by calculating the squared pairwise Euclidean distance with
itself and to all other samples in the episode. Hence, if there
are r = ns+nq samples in an episode, counting all ns support
and nq query samples regardless of the categories, then the
dth dimension of the relative feature fρ of a sample xk is
given as

[fρ(xk)]d = ||fφ(xk) − fφ(xd)||22, (1)

where k, d ∈ {1, 2, . . . , r} and || · ||2 is the Euclidean norm.
Note that [fρ(xk)]d = 0 for k = d . The dimensionality of this
relative feature map is therefore r . Since this relative feature-
space dimensionality is comparable to the number of samples
and that these features contain important structural information

Fig. 3. This figure shows an example on how the low-dimensional
relative-feature representation is computed from the original high-dimensional
representation space. The original high dimensional feature space contains
three data points. Accordingly, we would obtain a 3D feature space if we
compute pairwise distances of a data-point with itself and other points.

about the data, we expect that the inclusion of this feature
would increase few-shot testing performance.
In Fig. 3, we show a simple example on how to compute the

relative-feature representation from the absolute-feature repre-
sentation. Consider that there are three image samples – x1,
x2 and x3 in an episode whose absolute-feature representations
are p1 = fφ(x1), p2 = fφ(x2), and p3 = fφ(x3), respectively.
They are pairwise separated through Euclidean distances of 1,
2 and 3 as shown in the figure. From Eq. (1), the relative-
feature representation is obtained by squaring the pairwise
Euclidean distances. Since there are three points in the episode,
these points will lie in a 3D relative-feature representation
space and they would be represented as p′

1 = fρ(x1) =
[0, 9, 1]T , p′

2 = fρ(x2) = [9, 0, 4]T and p′
3 = fρ(x3) =

[1, 4, 0]T .

C. Variance Estimation

After embedding the support and query points in the
absolute-feature space (fφ) and the relative-feature space (fρ),
our goal is to use these features for classification. We do not
want to tie our model to any category. We want to make
our model generalizable to novel categories and therefore
we do not use a classification layer that is commonly used
for traditional neural networks. Instead, a nearest-class-mean
approach is used [27], where the query point embeddings are
compared to the prototype representation of each class. The
prototypes of a class prφc and prρc can be found by averaging
the embedded support points of its class for both the absolute
and relative representations, respectively, as follows

prφc = 1
|Sc|

∑

(xi ,yi )∈Sc

fφ(xi ), (2)

prρc = 1
|Sc|

∑

(xi ,yi )∈Sc

fρ(xi ), (3)

where Sc is the set of samples of the support set S, which
belongs to class c. Using these prototypes, we can proceed to
calculate the probability distribution over classes pφ(y = c|x)
and pρ(y = c|x) for a query point x. This is done using the
softmax operation with distance metrics dφ(·) and dρ(·) for the
absolute and relative representations, respectively, as follows

pφ(y = c|x) = exp(−dφ(fφ(x),prφc ))∑
c′ exp(−dφ(fφ(x),prφc′ ))

, (4)

pρ(y = c|x) = exp(−dρ(fρ(x),prρc ))∑
c′ exp(−dρ(fρ(x),prρc′ ))

, (5)
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Fig. 4. This figure shows an example where different classes can have
different variances. As a result, the Mahalanobis distance maybe preferred
over Euclidean distance for classifying a test query point into one of these
classes.

where the summation
∑

c′ is over all the classes present
in the episode. In Eqs. (4) and (5), the distance metrics
dφ(·) and dρ(·) need to be defined in order to compute the
probability distributions. Snell et. al [26] compared cosine and
Euclidean distances and found Euclidean distance to perform
better for few-shot testing. They argued that the Euclidean-
distance metric is an example of Bregman Divergence. As a
result, prototype computation and inference can be thought of
as performing a mixture density estimation with exponential
family distributions. However, if the Euclidean distance is
used, we assume that all the classes have the same spread
in the embedding space. This assumption may lead to poor
classification performance because all the classes may not have
the same variance. Thus, we propose to use the Mahalanobis
distance to measure and include the spread of each class in
the classification scheme.
The Mahalanobis metric measures the distance between a

data point x and a distribution D. If the distribution D has an
associated mean µ and an invertible covariance matrix S, then
the Mahalanobis distance dM is calculated as

dM =
√
(x − µ)T S−1(x − µ), (6)

where S−1 is the inverse of the covariance matrix S. In case
the distribution is spherically Gaussian with a variance σ 2 for
all the feature dimensions, the Mahalanobis distance dM is
reduced to

dM =
√
(x − µ)T S−1(x − µ) =

√
(x − µ)T (σ 2I)−1(x − µ)

=
√
(x − µ)T (x − µ)

σ 2 =

√
||x − µ||22

σ 2 = ||x − µ||2
σ

, (7)

where I is an appropriate identity matrix.
The importance of using the Mahalanobis distance over the

Euclidean distance is illustrated in Fig. 4 in which we have
three classes with prototypes centered at prφ1 , prφ2 and prφ3 .
The spread of the classes is quantified through the standard
deviations σ1, σ2 and σ3. The goal is to classify the query
points x1, x2 and x3 into one of the three classes. If we
use the Euclidean distances for comparison, point x1 would
yield equal probabilities for classes 1 and 2 since the point is
equidistant from those classes. This classification does not take
into consideration that the spread of class 1 is more than the
spread of class 2; that is, σ1 > σ2. If we use the Mahalanobis

distance,
||x1−prφ1 ||22

σ 2
1

<
||x1−prφ2 ||22

σ 2
2

, and accordingly the query
point x1 will yield a higher probability for class 1. Similar
treatment can also be applied to query points x2 and x3.
In our model, we expect each class to have its own

covariance matrix S. Therefore, there is a need to model
the covariance S as a function of each class’s prototype.
However, the covariance matrix S ∈ RD×D is very high-
dimensional, requiring lots of parameters to model it. Fur-
thermore, the covariance matrix S is required to be positive
definite, the constraints of which need to be satisfied strictly.
Hence, we settle with using a spherical Gaussian distribution
with the same variance for all the feature dimensions. Since
we let the class variance be a function of the class’s prototype,
we can write

σ 2
c = fV (prφc ), (8)

where σ 2
c and prφc are the variance and prototype of class c,

respectively. This concept of predictable variance may be
difficult to grasp initially. However, one can think of it as
curve fitting of a function, where the input is the prototype
and the output is the variance of the corresponding prototype.
The corresponding function is fit using lots of data available
from the base categories. Since we expect the function to be
smooth, prototypes closer to each other should produce similar
variances. After training is over, this function can then be used
to predict the variance of novel-class prototypes. The variance
estimating function fV can therefore be implemented by a
neural network. Hence, using Eqs. (7) and (8), the distance
metric dφ(·) in Eq. (4) can be expressed as the square of the
Mahalanobis distance as follows

dφ(fφ(x),prφc ) =
||fφ(x) − prφc ||22

σ 2
c

= ||fφ(x) − prφc ||22
fV (prφc )

. (9)

For the relative-feature space, the concept of having a variance
does not have any physical meaning. As a result, we just use
the square of the Euclidean distance metric for dρ(·) such that

dρ(fρ(x),prρc ) = ||fρ(x) − prρc ||22. (10)

The representation is learned by minimizing the negative log-
probability averaged over all the query points. The negative
log-probability of a query point is given as

L($,V) = − log pφ(y = c|x) − λρ log pρ(y = c|x), (11)

where $ and V are composed of all the trainable parameters
of the feature extractor (fφ) and the variance estimator ( fV ),
respectively, and λρ is a hyper-parameter for the regularization
in Eq. (11). The negative log-probability averaged over all the
query points in the batch needs to be minimized.

D. Category-Agnostic Transformation

After the feature-extraction model and the variance esti-
mator are trained, we proceed to the next stage of train-
ing. In this training stage, we propose to find a category-
agnostic transformation from a mean-sample representation of
a class to the prototype representation of the corresponding
class. Learning this transformation is important because the
novel categories have very few support samples and so the
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Fig. 5. Example depicting the choice of factors affecting the category-
agnostic transformation from a support data-point to the corresponding
prototype.

mean-sample representation will not accurately represent the
prototype. The existence of this category-agnostic transfor-
mation may be questionable. However, previous work by
Wang and Hebert [52] suggested the existence of a similar
transformation. In that work, the authors proposed the exis-
tence of a transformation between model parameters trained
using less number of samples to model parameters trained
using large number of samples. Since model parameters and
samples are dual of each other, we conjecture the existence of
a transformation between the mean-sample representation and
the prototypes. We next determine this category-agnostic trans-
formation and the factors that this transformation depends on.
In addition to the mean-sample representation, the location

of the novel-class prototype would also depend on the nearby
base-class prototypes. This is illustrated through an example
in Fig. 5 in which we have one support sample point for a
novel class. But this support data-point may not always be able
to represent a class prototype because it might be present on
the edge of the distribution as in this example. The transforma-
tion function mapping the support point to the unknown class
prototype should depend on the support point as well as on the
nearby similar base categories. This is because the neighboring
class prototypes condition the possible locations of the novel-
class prototype. In this example, base classes 1 and 3 form the
neighboring categories on which the location of the novel-class
prototype should depend. Base class 2 is far from the novel
class in the feature space and therefore it should have little
effect on the location of the novel-class prototype. We next
describe the construction of the transformation function fT.
The prototype of a novel category c depends on the mean-

sample representation and the base-category prototypes col-
lected in Pr , where Pr ∈ Rnp×D consists of the np base-
category prototypes stacked vertically in a matrix, and D is
the dimension of the absolute-feature space in which the pro-
totypes lie. Ideally, the prototype matrix should be calculated
using the base categories. Since each base category has a large
number of samples, the mean representation will be used as
an accurate estimate of the prototype. Thus, the prototype p′

rφc
of a novel class c can be represented as

p′
rφc = fT(prφc ,Pr ), (12)

where prφc is the mean-sample representation of the novel
class c. We can decompose the function fT(prφc ,Pr ) into
two functions, fT(prφc ,Pr ) = fT1(prφc )+ fT2(prφc ,Pr ), where
fT1 is the contribution due to the mean-sample representation
and fT2 is the contribution due to the base-class prototypes Pr .
Since the contribution of the base-class prototypes depends on
the closeness of prφc to the prototypes in Pr , fT2 will also
depend on prφc . We next discuss the construction of functions
fT1 and fT2 .
1) Contribution of Novel-Class Samples Using Residual

Connection: The function fT1 is a complex non-linear function
that transforms the mean-sample representation prφc towards
the prototype p′

rφc . In case the number of samples in the novel
category is large, prφc should identically map to p′

rφc . Hence,
it is important for the function fT1 to model identity mappings.
Residual connections and networks have been shown to model
identity functions smoothly [55]. In our case, the correspond-
ing meaningful residual connection will be fT1(prφc ) = prφc +
fT11(prφc ), where fT11(prφc ) is a bias term and does not have a
scaling effect on the mean-sample representation. Thus, if we
include a scaled residual connection, then

fT1(prφc ) = prφcW1 + fT11(prφc ), (13)

where W1 ∈ RD×D is the scaling matrix. Letting fT12(prφc ) =
prφcW1, the bias term fT11(prφc ) will be a complex non-linear
term and can be modeled using a multi-layer neural network.
2) Contribution of the Base Classes: The function fT2

models the contribution of base-class prototypes to the novel-
class prototype. Base classes that are similar to the novel
class will have more contribution. This similarity can be
measured in terms of Euclidean distance between a novel class
mean-sample representation and a base-class prototype. The
contribution of a base class l to a novel class c is quantified
through a probability distribution,

pp(c, l) =
exp(−||[Pr ]l − prφc ||22)∑
l′ exp(−||[Pr ]l′ − prφc ||22)

, (14)

where [Pr ]l is the prototype belonging to the lth base class.
The computation of probability is carried out for all the base
classes l = 1, 2, . . . , np . These are stacked together to form a
probability vector pc for the novel class c. After that, we use
a threshold th on the probability vector pc ∈ R1×np . Only the
elements above the threshold th are kept while other elements
are set to zero. This thresholding step is important as it ignores
the effect of base classes that have very little contribution to
the novel classes. From the feature-space perspective, novel
classes that are distant from the base classes are ignored.
This step is our attempt to prevent negative transfer [56],
where irrelevant base classes contributing to learning novel-
class recognition will reduce the recognition performance. The
thresholded probability vector is set as pthc . This is used to
combine the base-class prototypes such that

fT2(prφc ,Pr ) = pthc PrW2, (15)

where W2 ∈ RD×D is the scaling matrix. The factor
pthc Pr linearly combines the contributing base-class prototypes.
The presence of W2 is important in scaling the effect of this
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term to the whole transformation function fT. Next, we dis-
cuss the procedure to learn this category-agnostic transforma-
tion fT, using the large labeled dataset available from the base
categories.
3) Training Strategy: In the second stage of training, we

follow the episodic training strategy similar to the first stage.
In each training episode, we randomly sample Npn categories
from among the Nbase categories. We call these Npn cate-
gories as pseudo-novel categories. We refer to the remaining
Nbase−Npn categories as pseudo-base categories. The goal of
this training strategy is to simulate the testing scenario where
we have novel classes as well as already known base classes.
In a training episode, the prototypes of the pseudo-base cat-

egories are calculated using the mean-sample representation.
These prototypes can be stacked together to form the prototype
matrix Pr . For each pseudo-novel category, we randomly select
Kpn and Qpn disjoint samples. From this, we form the training
support set Spn = {(xi , yi )}mpn

i=1 , where mpn = Kpn × Npn

and also the training query set Qpn = {(x j , y j )}npn
j=1, where

npn = Qpn×Npn . For a category c belonging to one of the
Npn categories, we calculate the corresponding class prototype
p′
rφc using Eqs. (12)-(15). Using this modified prototype p′

rφc ,
we can proceed to calculate the probability distribution over
classes for a query point x. This is done using the softmax
operation with the Mahalanobis distance metric as described
previously

p′
φ(y = c|x) =

exp(−dφ(fφ(x),p′
rφc ))∑

c′ exp(−dφ(fφ(x),p′
rφc′

))
, (16)

where the summation
∑

c′ is over all the Npn pseudo-novel
classes present in the episode.
The training is carried out by minimizing the negative log-

probability averaged over all the query points. The nega-
tive log-probability of a query point is given as L(&) =
− log p′

φ(y = c|x), where & consists of the scaling matrices

W1, W2 and all the trainable parameters of the residual
network fT11 . We also include a regression-based regularization
involving the ground truth and predicted prototypes of these
Npn pseudo-novel classes. If the ground truth prototype of
class c is pgtrφc and the predicted prototype is p′

rφc , then
the corresponding regularization becomes Lr (&) = ||p′

rφc −
pgtrφc ||22. This regularization is averaged over all the prototypes
of pseudo-novel classes. The regularization coefficient is set
as λr .
After the training is done, testing is also carried out in an

episodic fashion. For each episode, we randomly sample Ntest
classes from the novel test classes. From each novel class,
Ktest support samples and Qtest query samples are drawn ran-
domly. The class prediction for a query point x is given as the
class c which minimizes − log p′

φ(y = c|x) − λρ log pρ(y =
c|x). The overall training procedure of the proposed two-stage
few-shot learning method is provided in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Datasets

To evaluate our proposed few-shot learning approach, we
performed experiments on four datasets – the Omniglot [11],

Algorithm 1 Proposed Two-Stage Few-Shot Learning
Procedure

the miniImagenet, the CUB-200 [57] and the CIFAR-100 [58]
datasets. These datasets provide a large variety of category-
level granularity, image resolution and categories to test upon.
The Omniglot dataset consists of 1623 handwritten characters
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Fig. 6. Instances of the dataset used in our experiment for (a) Omniglot,
(b) miniImagenet, (c) CUB-200, and (d) CIFAR-100.

taken from 50 alphabets. Each character has 20 examples
associated with it. Each example is written by a different
person, resulting in sufficient intra-class variation. According
to the procedure of Vinyals et al. [25], the images are
resized to 28×28. Each character class is augmented with
more samples by having rotations in multiples of 90 degrees.
So around 1200 character classes (total of 4800 includ-
ing rotations) are chosen as the training (i.e., base) cate-
gories and the remaining classes are chosen as the testing
(i.e., novel) categories. The miniImagenet dataset is a subset of
the ILSVRC-12 dataset [59]. It consists of RGB color images
of size 84×84, consisting of 100 classes with 600 examples
in each class. The 100 classes are divided into 64 for training
(base), 16 for validation and 20 for testing (novel).
The CUB-200 and CIFAR-100 datasets have been intro-

duced long before but have only recently been used as a bench-
mark for few-shot learning algorithms. The CUB-200 dataset
is a fine-grained dataset consisting of 11,788 images of size
84×84×3, distributed across 200 categories of bird species.
Using the class splits in [60], we have 100, 50 and 50 cate-
gories used for training, validation and testing, respectively.
The CIFAR-100 dataset consists of 60000 low-resolution
images of size 32×32×3. These images are distributed across
100 fine-grained categories or 20 coarse-grained categories.
Using the class splits in [61], we have 64, 16 and 20 cate-
gories used for training, validation and testing, respectively.
Figures 6(a), (b), (c) and (d) show some of the examples
from the Omniglot, the miniImagenet, the CUB-200 and the
CIFAR-100 datasets, respectively.

B. Implementation

In this sub-section, we discuss the details of our neural net-
work architecture and the training procedure. For the feature
extractor module (fφ) of our trainable neural network architec-
ture, we use four convolutional blocks. This feature extractor
architecture is the same as used in previous works [25], [26].
This is done for the sake of fair comparison. Most of these
previous works selected the feature-extraction architecture
empirically. For shallow convolutional architecture and there-
fore more high-dimensional feature space, the performance
is poor because the features extracted are not robust and
not class-discriminative enough. But, as the depth of the

convolutional architectures increases to a certain limit,
we obtain a more informative low-dimensional feature space
and therefore better recognition performance. The authors
of [25], [26] experimented and found that the presented four-
convolutional-blocks-based architecture is lightweight and
optimal. Each of these blocks consists of a 64-filter 3× 3
convolution layer with SAME padding, batch normalization
layer, and a ReLU activation followed by a 2×2 max-pooling
layer all stacked upon another. The batch normalization [62]
results in better recognition performance because it prevents
internal covariate shift. When a 28×28 Omniglot image is
applied as an input to these four convolutional blocks, its
output results in a 64-dimensional feature space.
The variance estimator fV consists of two convolutional

blocks. Each convolutional block consists of 1×1 convolution
layer with SAME padding, batch normalization layer and a
ReLU activation layer. The first and the second convolutional
blocks consist of 32 and 1 filters, respectively. The last layer
producing the variance has softplus operation as the activation
function. This is selected to produce only positive outputs.
The transformation layer fT11 consists of three fully con-

nected layers of 128, 96 and 64 dimensions. Except the last
layer, all the layers contain batch-normalization and ReLU
activation functions. The last layer does not have a ReLU
activation so that it can provide both negative and positive
transformation shifts as output. The overall architecture of
all the modules used for the Omniglot dataset is shown
in Fig. 7(a).
The neural-network structure was trained using the stochas-

tic gradient descent variant Adam [63] with an initial learning
rate of 10−3. The first-stage training was carried out using 60-
way 5-shot with 5 query points per episode. The higher way is
chosen in training so that the model can learn a more difficult
task of distinguishing more classes and therefore produce a
more discriminative feature space. In this paper, the second-
stage training episodic setup is always kept the same as the
testing episodic setup for all the experiments; that is, if the
testing setup is N-way K -shot, so is the second-stage training
setup.
The hyper-parameters λρ , λr , and th were set to 0.1, 10−4,

and 0.02, respectively. It is important to note that these hyper-
parameters are kept fixed for a particular dataset. This is
mainly because cross-validation is not always feasible for the
few-shot learning setting, which contains only a few samples
from the target category. Also, the validation classes are not
representative of the test classes.
For reporting the recognition performance, 1000 random

test episodes were selected and accuracy was obtained by
averaging over all the test episodes. Each episode contained
the corresponding N-way K -shot support samples and 5 query
samples per way for testing.
For the miniImagenet dataset, we used the same feature

extraction network architecture as the Omniglot dataset. How-
ever, since the miniImagenet dataset has images of size 84×
84×3, the convolution module produces a 1600-dimensional
feature vector. The variance estimator is also the same as that
of the Omniglot dataset except that this estimator contains
a 2× 2 max-pooling stage before the non-linearity. This is
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Fig. 7. Network architecture used for different modules fφ , fV and fT11 . (a) For the Omniglot dataset, fφ produces a 1×64 dimensional feature map from a
28×28×1 dimensional input image. The fV module produces a scalar variance from the feature map. The fT11 regresses a 64-dimensional output from the
feature map. (b) For the miniImagenet dataset, fφ produces a 5×5×64 dimensional feature map from a 84×84×3 dimensional input image. The fV module
produces a scalar variance from the feature map. The fT11 regresses a 1600-dimensional output from the feature map.

required to reduce the 5×5 ×64 (1600-dimensional) feature
map to a scalar variance value. The transformation layer fT11
consists of three fully connected layers of 3200, 2400 and
1600 dimensions. The overall architecture of all the modules
used for the miniImagenet dataset is shown in Fig. 7(b).
The hyper-parameters λρ , λr and th were set to 0.1, 10−4

and 0.02, respectively. For testing on the 5-way 1-shot and
5-way 5-shot episodic strategy, we used a 20-way 1-shot and
20-way 5-shot sampling strategy, respectively, in the first-stage
training. Each episode contained the corresponding N-way
K -shot support samples and 15 query samples per way for
testing. Results were reported by computing the average
accuracy over 600 such randomly sampled episodes with 95%
confidence interval.
For the CUB-200 and CIFAR-100 datasets, we used the

same four-convolutional-blocks-based architecture as the fea-
ture extractor that has been previously used on the mini-
Imagenet and Omniglot datasets. This embedding results
in 1600 and 256 dimensional feature spaces for the CUB-200
and the CIFAR-100 datasets, respectively. The transformation
layer fT11 for the CUB-200 dataset consists of three fully
connected layers of 3200, 2400 and 1600 dimensions. The
architecture of fV for the CUB-200 dataset is the same as that
of the miniImagenet dataset. The transformation layer fT11 for
the CIFAR-100 dataset consists of three fully connected layers
of 512, 384 and 256 dimensions. The architecture of fV for

the CIFAR-100 dataset is similar to that of the miniImagenet
dataset except that the 2 × 2 max-pooling step is applied
only on the second convolutional block. The hyper-parameters
λρ , λr and th were set to 1.0, 10−3 and 0.5 on both the
CUB-200 and the CIFAR-100 datasets. It is important to note
that for a fair comparison, we only report previous work that
used the simple four-convolutional-block-based embedding
instead of the more sophisticated ResNet [55] architecture.

C. Comparison Against Related Approaches

Since our proposed few-shot learning method has both
meta-learning and metric-learning components, we compared
our proposed method against recent meta-learning [30], [33],
[39] and metric-learning [24]–[26], [28] methods. We also
compared against recent memory-based models [38], [64] and
the Neural Statistician method [65] that learns how to represent
statistics of the data. The results of the comparisons on the
Omniglot dataset are shown in Table I.
As seen from Table I, most of the recent methods achieved

almost perfect recognition performance on the Omniglot
dataset (8 out of 10 methods obtained an average accuracy
of more than 98% for the 5-way 1-shot task). Our proposed
method obtained an average accuracy of 99.2% and 97.2% for
the 5-way 1-shot and 20-way 1-shot tasks, respectively, which
are better than most of the previous approaches. However,
Relational Network [28] produced the best result; that is,
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TABLE I

RESULTS OF FEW-SHOT CLASSIFICATION ON THE OMNIGLOT DATASET. ACCURACIES IN % ARE REPORTED AS AVERAGED OVER 1000 TEST
EPISODES. SOME OF THE STUDIES REPORT 95% CONFIDENCE INTERVAL WHILE SOME DO NOT REPORT RESULTS AS SHOWN BY ‘−’

TABLE II

RESULTS OF FEW-SHOT CLASSIFICATION ON THE MINIIMAGENET
DATASET. ACCURACIES ARE REPORTED AS AVERAGED OVER

600 TEST EPISODES. MOST OF THESE STUDIES REPORT
95% CONFIDENCE INTERVAL WHILE UNREPORTED

RESULTS ARE SHOWN AS ‘–’

99.6% and 97.6% for the 5-way 1-shot and 20-way 1-shot
tasks, respectively, because it learned a distance metric while
our proposed method used a predefined Mahalanobis dis-
tance metric. The confidence interval of our proposed method
(98.9%-99.5%) also overlapped with that of the Relational
Network approach (99.4%-99.8%) for the 5-way 1-shot task.
The confidence interval overlapped for the 20-way 1-shot task
as well. As expected, higher shots during the testing produced
better results (98.9%>97.2% for the 20-way task) for our
proposed method because they represented the class statistics
better than by just using one shot. Also, higher ways produced
worse result (97.2%<99.2% for the 1-shot task) because there
were more potential classes to choose from and the chances
of misclassification were higher.
For the miniImagenet dataset, the comparison is more

challenging and there is more room for improvement towards
perfect performance. The results of the comparison are shown
in Table II. From Table II, we can see that our proposed
method produced an average accuracy of 52.68% and 70.91%
on the 5-way 1-shot and 5-way 5-shot tasks, respectively,
which are better than most of the previous methods. This
can be mainly attributed to our two-stage training procedure,
where the model learns to both represent and classify in a low-
shot regime. However, the methods – Predicting Parameters
from Activation [42] (PPA) and Transductive Propagation Net-
works [35] (TPN) produced better results than our proposed

TABLE III

RESULTS OF FEW-SHOT CLASSIFICATION ON THE CUB-200 DATASET
WHERE OUR ACCURACY IS REPORTED AS AVERAGED

OVER 600 TEST EPISODES

TABLE IV

RESULTS OF FEW-SHOT CLASSIFICATION ON THE CIFAR-100 DATASET
WHERE THE ACCURACY IS REPORTED AS AVERAGED OVER

10000 TEST EPISODES. MOST OF THESE STUDIES
REPORT 95% CONFIDENCE INTERVAL

method in the 1-shot setting. Upon inspection, we realized
that the PPA method used pre-trained embedding while most
other few-shot learning methods and our training method of
the embedding/feature extractor were done from scratch. Using
a pre-trained embedding implies that datasets beyond the base
and novel categories have been used in training the model and
therefore the model would not be suitable for comparison.
However, we still included the results for PPA in Table II
for the sake of completeness. Also, the TPN method uses a
transductive approach which assumes all the test/query data
are available as a batch. The improvement in performance of
this method is mainly due to the fact that the authors used
the manifold of the unlabeled test data as well as support data
to do inference. However, the method might not work if the
number of query points is less or the query points arrive in a
streaming fashion as in a real-world situation.
The results of our proposed method in comparison with

previous work for the CUB-200 and CIFAR-100 datasets are
shown in Table III and Table IV, respectively. In Table III,
on the CUB-200 dataset, our proposed method produced
about 6 points improvement over the second best method.
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TABLE V

ABLATIVE STUDY OF OUR APPROACH ON THE MINIIMAGENET DATASET. AVERAGED ACCURACY IS REPORTED AS THE TRAINING WAY IS VARIED.
ABLATIONS INCLUDE THE VARIANCE ESTIMATOR (V), RELATIVE FEATURES (R), AND CATEGORY-AGNOSTIC TRANSFORMER (T).

THE BASELINE IS THE PROTOTYPICAL NETWORK (PN)

Similarly, in Table IV, on the CIFAR-100 dataset, our pro-
posed method produced around 2 points improvement over
the second best method. This suggests that our proposed
method can provide competitive performance on fine-grained
and low-resolution datasets as well. Also, the average per-
formance on the CUB-200 dataset is less than that on the
CIFAR-100 dataset. This is because the CUB-200 dataset
contains more fine-grained categories compared to the
CIFAR-100 dataset and therefore classes overlap more in the
CUB-200 dataset.
From these comparative studies, it is not clear how all

the modules in our trainable neural-network architecture con-
tributed to the performance. Therefore, we resort to further
analyzing each component of our proposed method in the
following sub-sections.

D. Ablation Study With Varying Training and Testing
Conditions

The contribution of this paper consists of the following
modules on top of the Prototypical Network (PN) – a variance
estimator (V), the relative features (R), and the category-
agnostic transformer (T). We thus performed an ablative study,
where we added all combinations of the modules on the PN
and observed the change in performance. Results of this exper-
iment are reported in Table V as the training way is varied for
the 5-way 1-shot and 5-way 5-shot testing conditions.
We provided our own implementation of PN in this experi-

ment and future experiments. From Table V, it reveals that
the addition of the relative features (R) has the most sig-
nificant effect on the performance followed by the variance
estimator (V) and the category-agnostic transformer (T). This
is because relative features try to diminish the difference
between feature dimensionality and the number of samples,
and thus try to alleviate overfitting. On the other hand, PN+T
has negligible improvement or slightly worse performance
compared to the PN baseline. This is because prototypical
networks tend to cluster same-class samples very close to
one another and therefore additional transformation stage (T)
to map samples to prototype might be redundant. In certain
cases, the complex non-linear transformation might over-fit to
produce worse performance. It should be noted that higher
ways in training do not always produce better performance.
For example, in a 5-way 1-shot testing, PN+R produced a
peak in performance for the 15-way training strategy with a dip
in performance on either side. Similar pattern can be observed

for the 5-way 5-shot testing results. The effect of relative
features is also significant in case pairs of modules are added
to the PN baseline. In Table V, we can see that PN+V+R and
PN+R+T reached accuracy levels over 50% and 70% for the
5-way 1-shot and 5-way 5-shot testing cases, respectively, but
PN+V+T failed to do so. An interesting observation is that the
combined effects of R+T mostly provided better performance
than V+R even though V provided better performance than T.
This suggests that adding modules upon the PN baseline did
not always produce additive effects but they also produced
interactive effects between the two modules.

E. Parameter Sensitivity Studies

We also performed experiments to find how the performance
of PN+R varied with changing λρ . The results are shown
in Fig. 8 for both 5-way 1-shot and 5-way 5-shot testing
conditions. The training condition for 5-way 1-shot testing
is 20-way 1-shot and that for the 5-way 5-shot testing is
20-way 5-shot. The PN baseline is shown using the dotted line.
From the plot, it is shown that the accuracy followed a bell-
curve with the maximum accuracy observed at λρ = 1.using
It is recommended not to use λρ > 1 as it caused degradation
in performance, which was sometimes worse than the PN
baseline. This is because putting excess weight on relative
features diminishes the effect of absolute features that are
crucial for recognition.
We also studied the effect of changing th and λr on the

recognition performance for different testing shots. In Fig. 9,
we see that the performance varied for different thresholds
with a peak performance obtained for a value of th between
0 and 1. In fact, for the higher shot configuration, the peak per-
formance was obtained at a higher threshold. This is because
for higher shots, the contribution of the few-shot sample mean
was much more compared to the contribution of the base
categories. As a result, a higher threshold th was required to
reduce the contribution of the base classes. In Fig. 10, we
observed how the recognition performance changed as λr was
varied for different shots. As expected, the peak performance
was better than the baseline λr = 0 shown in dashed lines.
However, the sensitivity at the 5-shot configuration was less
compared to that in the 1-shot configuration. This is because,
for higher shots, the constraint corresponding to λr - that the
sample mean should be close to the prototype is automatically
satisfied and therefore changing the value of λr did not change
the performance much.
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Fig. 8. Plot of accuracy with respect to λρ for 5-way 1-shot (5w1s) and
5-way 5-shot (5w5s) testing conditions with the prototypical network baseline.
The dataset used is miniImagenet.

Fig. 9. Plot of accuracy with respect to th for 5-way 1-shot (5w1s) and
5-way 5-shot (5w5s) testing conditions with the prototypical network baseline.
The dataset used is miniImagenet.

TABLE VI

PERFORMANCE SENSITIVITY WITH RESPECT TO THRESHOLD th
OVER A SMALL RANGE. THE DATASET USED IS MINIIMAGENET

We did additional sensitivity studies of th and λr
over a smaller range of values. The results are reported
in Tables VI and VII for th and λr , respectively. From the
results, it showed that there was very little change when the
parameters were varied over such a small range. However,
the response was oscillatory probably because of the non-
convexity of the loss functions used in our framework.

F. Feature Visualization

We also visualized the features in two dimensions using
t-SNE [67] as shown in Fig. 11. From Fig. 11(a), it is clear
that PN produced a very compact feature space, where the
classes were very difficult to distinguish. On the other hand,
the features obtained using PN+R+V as shown in Fig. 11(b)

Fig. 10. Plot of accuracy with respect to λr for 5-way 1-shot (5w1s) and
5-way 5-shot (5w5s) testing conditions. The dataset used was miniImagenet.

TABLE VII

PERFORMANCE SENSITIVITY WITH RESPECT TO λr OVER
A SMALL RANGE. THE DATASET USED IS MINIIMAGENET

Fig. 11. t-SNE plot for (a) PN and (b) PN+R+V (λρ = 1). The dataset
used was miniImagenet. Same color corresponds to different samples of the
same category.

were more distinguishable class-wise. This resulted in better
recognition performance.
It is important to note that removing the outlier from

Fig. 11(a) and rescaling the figure would make the image
similar to Fig. 11(b). This is the point of difference between
using Prototypical Network (PN) and our (PN+R+V) method.
Using PN, we obtained more scaled-down features. Thus, these
features were closer to one another, resulting in more difficult
classification compared to our (PN+R+V) method. However,
distinguishing classes in both cases was complicated and
that is why we used the Euclidean-distance-based differential
nearest-neighbor classifier.

G. Convergence Results

We also reported the training and testing performance with
increasing training episodes in Fig. 12. We used the 5-way
5-shot and 20-way 5-shot settings for testing and training,
respectively. As shown in Fig. 12, the test accuracy for
PN+V+R rose fast compared to that of PN. Also, the training
accuracy was quite noisy. This is because each training episode
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Fig. 12. Training and test accuracy with increasing number of episodes
for the prototypical network (PN) baseline and our proposed approach using
relative features and variance estimator (PN+V+R).

produced a newer set of categories and therefore there was a
high variance in the training accuracy.

H. Effect of Number of Samples

Since the relative features are constructed using both the
support and query points, it is worthwhile to note the effect
on recognition performance by changing the number of query
points per class in the training and testing stages. We per-
formed two experiments for the PN+R case. The first exper-
iment considered the situation when the number of training
query points per class was fixed at 15 and the number of test
query points was varied. The second experiment considered
the situation when the number of test query points per class
was fixed at 15 and the number of training points was
varied. In Fig. 13, it is shown that as the number of query
points increased, the recognition performance increased and it
became saturated after a while. This is because query points
beyond a certain quantity did not provide additional second-
order structural information. Also, from the poor performance
in the case of one test query sample, it is evident that
having sufficient query samples in the testing stage was more
important than having sufficient quantity of query samples in
the training stage.

I. Effect of Base Categories

We also evaluated how the performance of PN+T varied
as the number of source base categories changed. Results are
shown in Table VIII. The recognition performance increased
with the increasing number of source categories. This is
because the increasing number of source categories trained a
robust feature space. Also, the probability of finding relevant
categories became more for the category-agnostic transforma-
tion stage. The performance of the category-agnostic transfor-
mation became poorer at higher shots compared to PN. This
is because the transformation became closer to identity and its
significance became less.
Till now, we have tested our proposed approach on the

novel categories. It is also important to test our proposed
approach on base categories since they are more common and

Fig. 13. Plot of accuracy when the number of training query points is fixed
and the number of test query points is varied and vice-versa. The dataset used
was miniImagenet.

TABLE VIII

PERFORMANCE ANALYSIS AS THE NUMBER OF BASE CATEGORIES IS
VARIED FOR THE PN+T CASE. THE DATASET USED IS MINIIMAGENET

TABLE IX

PERFORMANCE COMPARISON OF TESTING
ON THE BASE TRAINING CLASSES

are likely to be observed more frequently compared to novel
categories. The results of applying our proposed approach to
the base categories are shown in Table IX for different testing
settings. As expected, the performance on base categories
was better compared to that of novel categories. Furthermore,
our proposed approach (PN+V+R) produced better results as
compared to PN.

J. Analysis of Category-Agnostic Transformation

We also carried out the ablation analysis of PN+T; that
is, the addition of the category-agnostic transformer (T) on
top of the prototypical network baseline (PN). As described
previously, the category-agnostic transformer (T) consists of
three modules - the neural-network-based transformer (T11),
the residual connection (T12), and the contribution of the base
prototypes (T2). From Table X, we can see that the addition
of these modules gradually improved the recognition perfor-
mance, suggesting that the addition of all these modules was
important. The method PN+T11 + T12 + T2 used a threshold
th = 0.02. It is important to note that using PN+T11 + T12
was equivalent to PN+T11 + T12 + T2 with threshold th = 1.
We also performed an additional experiment using the method
PN+T11 + T12 + T2 with threshold th = 0. Using th = 0,
we obtained an accuracy of 47.63% and 62.29% on the
5-way 1-shot and 5-way 5-shot classification tasks, respec-
tively. The recognition performance was worse compared to
using th = 0.02 because th = 0 caused all the base classes
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TABLE X

ABLATION ANALYSIS OF EACH COMPONENT OF THE CATEGORY-
AGNOSTIC TRANSFORMER. THE DATASET

USED WAS MINIIMAGENET

TABLE XI

NOVEL CATEGORIES AND TOP THREE RELEVANT BASE CATEGORIES

and therefore irrelevant classes to contribute to the category-
agnostic transformation thus causing a negative transfer.
The category agnostic transformer consisted of contribution

of the base categories as described mathematically through fT2 .
Using the threshold mechanism, only relevant base categories
were selected for contribution because these categories were
closer to the novel category in the feature space compared
to the irrelevant base categories. Using the thresholded prob-
ability vector pthc , we selected the top three relevant base
categories for a few novel categories. The results are shown
in Table XI. As an example, all the top relevant categories
for the African hunting dog have canine features. The rele-
vant categories for the mixing bowl seem to fit in context.
Pictures of Consomme and Hotdog are generally shown in
plates or bowls. Also, the relevant categories of nematode,
a worm-like organism involved insects and snakes. There
could be erroneous selections like harvestman spider being
the most relevant category for the Golden-retriever dog. This
suggested that an additional class relevance criterion based on
WordNet [68] might be more appropriate.

V. CONCLUSION

We have proposed a two-stage framework for few-shot
learning of image recognition. The framework has contribu-
tions at both the feature extraction stage and the classification
stage of image recognition. At the feature extraction stage,
we proposed the use of relative-feature representation as well
as the Mahalanobis distance metric with predictable variance.
For the classification stage, we proposed a category-agnostic
transformation that produces class prototypes from class sam-
ples. Results on standard few-shot learning datasets showed
our approach to be comparable or even better than previous
approaches. We also provided further analysis on our model
and concluded that the relative-feature component was mostly
responsible for the improvement of the performance of our
proposed approach. In the future, we would like to extend
our work to zero-shot classification, where we do not have
any support samples from the novel class but only high-level
semantic information for each of these classes.
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