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In this paper the authors discuss various results on universality in numerical computation with random data,
obtained by the aurhors and their collaborators — C. Pfrang, G. Menon, S. Olver and S. Miller — at various
stages over the last 6 to 7 years. The paper follows closely the plenary talk with the same title give the the first
author at ICMP Montreal 2018. The reader wishing to follow more closely the evolution and development of
the ideas in this paper is invited to consult Deift et al. in the arXiv 2012-2019.

I. INTRODUCTION

A few years ago, Christian Pfrang, Govind Menon and PD
[1], initiated a statistical study of the performance of various
standard algorithms to compute the eigenvalues of random
real symmetric matrices H. In each case, an initial matrix
H) is diagonalized either by a sequence of isospectral iterates
Hy,

Hy—H —Hy,— - —H;— -
or by an isospectral flow
t— H(t) with H(t =0) = Hp.

In the discrete case, as k — oo, H} converges to a diagonal
matrix. Given € > 0, it follows that for some (first) time k, the
off-diagonal entries of Hj are O(g), and hence the diagonal
entries of Hy, give the eigenvalues of Hy to O(¢). The situation
is similar for continuous algorithms # — H(t) as t — oo.

The QR algorithm is a prototypical example of such a dis-
crete algorithm:

1. Write Hy = QoRy, Qo orthogonal, Ry upper triangular,
(Ro) i > 0

2. Set H, = RoQo = Q} HoQo
3. Write H; = Q1R
4. Set Hy = R0

And the Toda algorithm is an example of such a continuous
algorithm: Solve
dH(t)

L [H(1),B(H(t))] = HB— BH,

H(0) = H
- (0) = Hy
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where B(H) = H_ — H”, and H_ is the strictly lower-
triangular part of H. Both of these are completely integrable
Hamiltonian flows, a fact to which we will return later.

The main finding in [1] was that, surprisingly,

the fluctuations in the stopping times were universal (I.1)

independent of the ensemble considered for the matrices H.
More precisely,

e for N x N real symmetric matrices H,
e chosen from an ensemble &, and

e for a given algorithm <7, and

e adesired accuracy €,

let
T(H)=Ten.e(H) (1.2)

be the stopping time (see later) for the algorithm <7 applied to
the N x N matrix H chosen from the ensemble &, to achieve
an accuracy €.

Let T(H) = T; y o7 & (H) be the normalized stopping time

TenasH) = (Tena )
O¢ N, ot &

Tenoe(H) = (L3)

where (T y ) is the sample average and o2, , , =

(Te N6 — (Tg,N‘,,Q/‘g>)2> is the sample variance, taken over
a large number (5,000-15,000) of samples of matrices H cho-
sen from & . Then for a given algorithm 7, and € and N in a
suitable scaling region,

the histogram for T v ./ #(H) is independent of &.  (1.4)

In general, the histogram will depend on <7, but for a given
&/ and € and N in the scaling region, the histogram is inde-
pendent of &

Such two-component universality is analogous to the
classical central limit theorem for iid {X;} with mean y and



variance 0?2

X4+ Xy — uN
1Ay 4 standard Gaussian.
G\/ﬁ

Two examples, the first is for the QR algorithm and the sec-
ond is for the Toda algorithm are given in Figure 1(a). Note
that for both algorithms, the histograms for the very distinct
ensembles, discrete Bernoulli and continuous GOE, are re-
markably close to one another and, suggestively, to some uni-
versal histogram. Note, however, the histograms for QR and
Toda are clearly very different.

The stopping times, or halting times, for a given algorithm
can be chosen in various ways, depending on which aspects
of the given algorithm one wants to investigate. In the above
figures, the stopping times take into account the phenomenon
known as deflation, i.e., Tg y o7 «(H) is the first time k (or ¢ in
the continuous case) such that Hy, (or H(t)) has block form

_ (Hn Hipp
= (H21 sz)’

with Hy; jx j, Hyp (N — j)x (N —j) such that

[Hiz| = [[Ha|| < €

for some 1 < j <N — 1. Then the eigenvalues {4;} of H differ
from the eigenvalues {A ;} of the deflated matrix

H= ( 0 H22) ’
by O(¢). The algorithm is then applied to the (smaller) matri-
ces Hyy and Hy, etc.

Subsequent to [1], Govind Menon, Sheehan Olver, Tom
Trogdon and PD [2], raised the question of whether the uni-
versality results in the study [1] were limited to eigenvalue
algorithms, or whether they were present more generally in
numerical computation. And indeed the authors in [2] found
similar universality results for a wide variety of numerical al-
gorithms, including

(A) more general eigenvalue algorithms such as the Jacobi
eigenvalue algorithm, and also algorithms for Hermitian
ensembles,

(B) the conjugate gradient and GMRES algorithms to solve
linear N X N systems Hx = b,

(C) aniterative algorithm to solve the Dirichlet problem Au =
0 on a random star-shaped region Q C R? with random

boundary data f on 0<,

(D) a genetic algorithm to compute the equilibrium measure
for orthogonal polynomials on the line, and

(E) decision making algorithms.

II. SOME COMMENTS ON (A): MORE GENERAL
EIGENVALUE ALGORITHMS

In all the calculations in [1], M was real and symmetric
with independent entries. Here the authors considered N x N
Hermitian M = M* from various unitary invariant ensembles
with distributions proportional to

o~ NaV M) gps

where V (x) : R — R grows sufficiently rapidly. The entries are
independent iff V is proportional to x*: Note that it is a non-
trivial matter to sample ensembles for general V (see Olver,
Rao and Trogdon [3] for an effective algorithm).

Histograms for the deflation time fluctuations are given in
Figure 2.

Definition II.1.

e The Gaussian Unitary Ensemble (GUE) is a complex,
unitary invariant ensemble with probability distribution

. 2
proportional to e V™" M.

e The Quartic Unitary Ensemble (QUE) is a complex,
unitary invariant ensemble with probability distribution

. 4
proportional to e “N"™"dM.

e The Cosh Unitary Ensemble (COSH) has its distribu-
tion proportional to e~"OhM gpg.

III. SOME COMMENTS ON (B): CONJUGATE GRADIENT
FLUCTUATIONS

Here the authors started to address the question of whether
two-component universality is just a feature of eigenvalue
computation, or is present more generally in numerical com-
putation. In particular, the authors considered the solution of
the linear system of equations Wx = b where W is a real and
positive definite, using the conjugate gradient (CG) method.

The method is iterative and at iteration k of the algorithm an
approximate solution x; of Wx = b is found and the residual
re = Wx; — b is computed. For any given € > 0, the method
is halted when ||r¢]|2 < €, and the halting time k¢ (W,b) is
recorded.

Here the authors considered N X N matrices A chosen from
two different positive definite ensembles & and vectors b =
(bj) chosen independently with iid entries {b;}. Given &
(small) and N (large), and (W,b) € &, the authors record the
halting time k¢ (W,b) = ke n v 5, A = CG, and compute the
fluctuations 7¢ yv o7 £ (W, b) over a large number of samples as
in (I.3). The histograms for 7¢ y . ¢ are given below, and
again, two-component universality is evident, see Figure 3.

Definition III.1.

e The critically-scaled Laguerre Orthogonal Ensemble
(cLOE) is given by XX T /m where X is an N x m matrix
with iid Gaussian (mean zero, variance one) entries.
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FIG. 1. Universality for T&N“ﬂ/ﬁ when (a) 7 is the QR eigenvalue algorithm and when (b) .« is the Toda algorithm. Panel (a) displays the
overlay of two histograms for T&N,,;zi/,op in the case of QR, one for each of the two ensembles & = BE, consisting of iid mean-zero Bernoulli

random variables and & = GOE, consisting of iid mean-zero normal random variables. Here € = 1070 and N = 100. Panel (b) displays
the overlay of two histograms for T y s & in the case of the Toda algorithm, and again & = BE or GOE. And here £ = 10~8 and N = 100.
Reproduced from Proceedings of the National Academy of Sciences of the United States of America 111, 14973 (2014) [2].

e The critically-scaled positive definite Bernoulli ensem-
ble (cPBE) is given by XX /m where X is an N x m
matrix consisting of iid Bernoulli variables taking the
values 1 with equal probability.

Critical scaling refers to the choice m = N +2|+/N|. Note
that if M/N — p > 1 then the equation Wx = b is extremely
well-conditioned and the behavior of the CG algorithm is es-
sentially deterministic (see [4]). On the other hand if M/N —
1 too rapidly, rounding errors begin to play a dominant role
(observe, a fortiori, that if M < N, the equation Wx = b is sin-
gular). The scaling M = N +2[+/N strikes a balance between
these two extremes.

IV. MORE COMMENTS ON (B): THE GMRES
ALGORITHM

The authors again considered the solution of Wx = b but
here W has the form I+ X and X = X,, is a random, real
non-symmetric matrix and b = (b;) is independent with uni-
form iid entries {b;}. As W =TI+ X is (almost surely)
no longer positive definite the conjugate gradient algorithm
breaks down, and the authors solve (I + X)x = b using the
Generalized Minimal Residual (GMRES) algorithm.

Again, the algorithm is iterative and at iteration k of the al-
gorithm an approximate solution x; of (/+X)x = b is found
and the residual r, = (I +X)x; — b is computed. As before,
for any given € > 0, the method is halted when ||r||2 < € and
ke n.c7 (X ,b) is recorded. For these computations X is cho-
sen from two distinct ensembles. As in the conjugate gradient
problem, the authors compute the histograms for the fluctua-
tions of the halting time ¢ , ./ ¢ for two ensembles &, where

now A = GMRES. The results are given below, where again
two component universality is evident, see Figure 4.

Definition IV.1.

e The critically-scaled shifted Bernoulli Ensemble
(cSBE) is given by I+ X /v/N where X is an N x N
matrix consisting of iid Bernoulli variables taking the
values 1 with equal probability.

e The critically-scaled shifted Ginibre Ensemble (cSGE)
is given by 7+ X /y/N where X is an N x N matrix of
iid Gaussian variables with mean zero and variance one.

The scaling in this definition is chosen so that

P(||[X /v/N|| — 2| > &) tends to zero as N — oo.

V.  SOME COMMENTS ON (C): INFINITE-DIMENSIONAL
PROBLEMS

Here the authors raised the issue of whether two-component
universality is just a feature of finite-dimensional computa-
tion, or is also present in problems which are intrinsically in-
finite dimensional.

What about PDEs?

In particular, is the universality present in numerical com-
putations for PDEs? As a case study, the authors consider the
numerical solution of the Dirichlet problem Au = 0 in a star-
shaped region Q C R? with u = f on dQ. Recall that in this
case, the boundary is described by a periodic function of the
angle 0, r = r(6), and similarly f = f(6),0< 0 <2m.



Matrix size = 70 Matrix size = 150

0.5 — 05—

0.4 104 f
g 03 1803 f
[0} ;] O
- E
2 02 12 02¢ ]
i3 gl

0.1} 100t f

0004 L T 001

-2 0 2 4 6 -2 6
Halting Time Fluctuations Halting Time Fluctuations

FIG. 2. The observation of two-component universality for Tstﬂ,g when &7 = QR, & = QUE, COSH, GUE (see Definition II.1) and
€ = 10710, Here we are using deflation time ( = halting time), as in [1]. The left figure displays three histograms, one each for GUE, COSH
and QUE, when N = 70. The right figure displays the same information for N = 150. All histograms are produced with 16,000 samples. Again,
we see that two-component universality emerges for N sufficiently large: the histograms follow a universal (independent of &) law. This is
surprising because COSH and QUE have eigenvalue distributions that differ significantly from GUE in that they do not follow the so-called
semi-circle law. Reproduced from Proceedings of the National Academy of Sciences of the United States of America 111, 14973 (2014) [2].
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FIG. 3. The observation of two-component universality for 7, y oz & When &/ = CG and & = cLOE, cPBE (see Definition I11.1) with £ = 10~ 10,
The left figure displays two histograms, one for cLOE and one for cPBE, when N = 100. The right figure displays the same information for
N =500. All histograms are produced with 16,000 samples. Again, we see two-component universality emerges for N sufficiently large: the
histograms follow a universal (independent of &) law. With the chosen scaling, we see two-component universality emerge for N sufficiently
large: the histograms follow a universal (independent of &) law. Reproduced from Proceedings of the National Academy of Sciences of the
United States of America 111, 14973 (2014) [2].
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FIG. 4. The observation of two-component universality for T¢ y s o when &7 = GMRES, & = cSGE, cSBE (see Definition IV.1) and € = 1078,
The left figure displays two histograms, one for cSGE and one for ¢SBE, when N = 100. The right figure displays the same information for
N =500. All histograms are produced with 16,000 samples. We see two-component universality emerge for N sufficiently large: the histograms
follow a universal (independent of &) law. Reproduced from Proceedings of the National Academy of Sciences of the United States of America

111, 14973 (2014) [2].

Two ensembles, BDE and UDE (see Definition V.1),
are derived from a discretization of the problem with spe-
cific choices for r, defined by a random Fourier series.
The boundary condition f is chosen randomly by letting
{3} be iid uniform on [~1,1]. Histograms for the
halting time 7y . ¢ for these computations are given be-
low and again, two-component universality is evident, see
Figure 5. More precisely, the authors proceeded as follows.
Let Q be the star-shaped region interior to the curve (x,y) =
(r(8)cos(6),r(0)sin(0)) where r(0) is given by

m
r(8) =1+ Y (Xjcos(j6)+Y;sin(j6)), 0< 6 <2mw
j=1
and X; and Y; are iid random variables taking values in
[—1/(2m),1/(2m)]. Dividing by 2m eliminates the possibility
that r vanishes. The double-layer potential formulation of the
boundary integral equation

u(P) —/aQM(P)ilogua— 0ldSp = —f(P), PeaQ,

8nQ
is solved by discretizing in 6 with N points and applying the
trapezoidal rule choosing N = 2m, and then applying the GM-
RES algorithm to the matrix problem that results.

Definition V.1.

e The Bernoulli Dirichlet Ensemble (BDE) is the case
where X, and Y, are Bernoulli variables taking values
+1/(2m) with equal probability.

e The Uniform Dirichlet Ensemble (UDE) is the
case where X,, and Y,, are uniform variables on

[=1/(2m),1/(2m)].

Figure 6 conflates the previous computations from GMRES
applied to the shifted ensembles and GMRES applied to the
Dirichlet problem given above. What is surprising, and quite
remarkable, about these computations is that the histograms
in the case of the Dirichlet problem are the same as the his-
tograms for the shifted ensembles. In other words, UDE and
BDE are structured with random components, whereas cSGE
and cSBE have no structure, yet they produce the same statis-
tics. This brings to mind the situation in the 1950’s when
Wigner introduced random matrices as a model for scattering
resonances of neutrons off heavy nuclei: the neutron-nucleus
system has a well-defined and structured Hamiltonian, but
nevertheless the resonances for neutron scattering are well-
described statistically by the eigenvalues of an (unstructured)
random matrix.

VI. SOME COMMENTS ON (D): A GENETIC
ALGORITHM

In all the computations discussed so far, the randomness in
the computations resides in the initial data. In the next set
of computations in [DMOT14], the authors considered an al-
gorithm which is intrinsically stochastic. In particular, they
considered a genetic algorithm, which they used to compute
Fekete points. Such points P* = (P{,P5,...,Py) € RN are
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FIG. 5. The observation of two-component universality for T¢ y s »# When @/ = GMRES, & = UDE, BDE and ¢ = 1078, The left figure
displays two histograms, one for UDE and BDE, when N = 100. The right figure displays the same information for N = 500. All histograms
are produced with 16,000 samples. We see two-component universality emerge for N sufficiently large: the histograms follow a universal
(independent of &) law. Reproduced from Proceedings of the National Academy of Sciences of the United States of America 111, 14973
(2014) [2].
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FIG. 6. This figure consists of four histograms, two taken from GMRES applied to the previous shifted ensembles (Figure 4) and two taken
from GMRES applied to the Dirichlet problem (Figure 5). Reproduced from Proceedings of the National Academy of Sciences of the United
States of America 111, 14973 (2014) [2].

the global minimizers of the objective function for real-valued functions V = V(x) which grow sufficiently
rapidly as |x| — . It is well-known that as N — oo, the count-

| N ing measures Op+ = %):?/:] 6P;* converge to the so-called equi-

Z log|P —Pj| ™' + v Z V(P) librium measure py which plays a key role in the asymptotic
I<i#j<N i=1 theory of the orthogonal polynomials generated by the mea-

2

1= N



sure e~ VY@ dx on R. Genetic algorithms are particularly use-

ful for large scale optimization problems, such as those that
occur, for example, in the financial industry, and involve two
basic components , “mutation” and “crossover”. The authors
implemented the genetic algorithm in the following way.

Fix a distribution ® on R. Draw an initial population
Py =P = {P}!_, consisting of n = 100 vectors in RV, N
large, with elements that are iid uniform on [—4,4]. The ran-
dom map Fp(£2) : (RV)" — (RN)" is defined by one of the
following two procedures:

P x x - x
P x x .- X
&
Plo()XX---X
~—_—————
N

a. Mutation. Pick one individual P € & at random
(uniformly). Then pick two integers np, np from {1,2,...,N}
at random (uniformly and independent). Three new individu-
als are created.

e P, — draw n; iid numbers {xl,.;.,xnl} from ® and
perturb the first ny elements : (Py); = (P); +x;, i =
1,...,n1,and (P); = (P); fori > n;.

e P, — draw N — n, iid numbers {yn,+1, ... Q’N} from ©
and perturb the last N —n, elements of P: (P)i=(P)i+
yi.-i=ny+1,...,N,and (B); = (P); fori < ny.

e Py — draw |n) — np| iid numbers {zy, ...,z _p,|} from
® and perturb elements nj = 1+ min(n;,n) through
ny =max(ni,m): (P3)i = (P)i+2ziyiy1, i =nj,....n5,

and (P3); = (P); fori & {n},...,n}.

b. Crossover. Pick two individuals P, Q from & at
random (independent and uniformly). Then pick two numbers
ny, np from {1,2,... N} (independent and uniformly). Two
new individuals are created.

o P — Replace the n;th element of P with the n;th ele-
ment of O and perturb it (additively) with a sample from
D.

e P; — Replace the n;th element of Q with the nth ele-
ment of P and perturb it (additively) with a sample from

D.

At each step, the application of either crossover or mu-
tation is chosen with equal probability. The new individu-
als are appended to & (after mutation we have & = &2 U
{Py,P,, Py} and after crossover we have &2 = & U {P,,P5})
and P — P = Fp(2) € (RV)" is constructed by choos-
ing the 100 P’s in % which yield the smallest values of
H(P). The algorithm produces a sequence of populations
ng s 92, ceey gk, ... in (RN)", ‘@k—kl = F@(:@k), n = 100,
and halts, with halting time recorded, for a given &, when
minpe o H(P) — infppy H(P) < €.

The histograms for the fluctuations 7¢y . &, With A =
Genetic, are given below, for two choices of V, V(x) = x?
and V(x) = x* —3x?, and different choices of & ~ ©. Again,
two-component universality is evident, see Figure 7.

VII. SOME COMMENTS ON (E): DECISION MAKING
MODEL

In the final set of computations in [2], the authors picked
up on a common notion in neuroscience that the human brain
is a computer with software and hardware. If this is indeed
so, then one may speculate that two-component universality
should be present certainly in some cognitive processes.

The authors focused on recent work of Bakhtin and Cor-
rell [5], who have conducted and analyzed the data obtained
from experiments with 45 human participants. The partici-
pants are shown 200 pairs of images. The images in each pair
consist of nine black disks of variable size. The disks in the
images within each pair have approximately the same area so
that there is no a priori bias, see, for example, Figure 8.

The participants are then asked to decide which of the two
images covers the larger (black) area. Bakhtin and Correll
then record the response time 7 that it takes for each par-
ticipant to make a decision. For each participant, the deci-
sion times for the 200 pairs are collected and the fluctuation
histogram is tabulated. Whether the participant decided cor-
rectly, is not relevant, and is not recorded: only the time T is
recorded. They then compare their experimental results with
a dynamical Curie—Weiss model frequently used in describing
decision making processes, resulting in good agreement. His-
tograms for participants 16, 21, 26, 31, and 41, for example,
are displayed in Figure 9. The solid curve in Figure 9 is the
(shifted and scaled) Gumbel distribution

fec(x) =og(ox+u), gz)=exp(—x—e)

predicted by the Curie—Weiss model of Bakhtin—Correll.

At its essence the model is Glauber dynamics on the
hypercube {—1,1} with a microscopic approximation of
a drift-diffusion process. Consider N variables {X;(r)}Y |,
Xi(t) € {—1,1}. The state of the system at time 7 is
X(t) = (Xi(¢),X2(¢),...,Xn(t)). The transition probabilities
are given through the expressions

P(X)(t 4+ Ar) £ X(1)|X (1) = x) = i (x) A + o( A1),
where c;(x) is the spin flip intensity. The observable consid-
ered is

N

Y Xi(1) e [-1,1],

i=1

1
MX () =
and the initial state of the system is chosen so that M(X(0)) =
0, a state with no a priori bias, as in the case of the experi-
mental setup.

Given € € (0, 1), which may not be small, the halting (or
decision) time for this model is k = inf{z : [M(X(¢))| > €},
the time at which the system makes a decision. In other
words, schematically, there are N “registers” in the brain, each
recording +1, say, if the register determines that the right side
of the image has greater area, and —1, say, if the left side
of the image is determined to have greater area: Only when
there is a sufficient preponderance of the +1’s, or —1’s, does
the partcipant make a decision.
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FIG. 7. The observation of two-component universality for T¢ y ./ & When &/ = Genetic, € = 102 and & ~ © where D is chosen to be either
uniform on [—1/(10N),1/(10N)] or taking values +1/(10N) with equal probability. The top row is created with the choice V (x) = x? and the
bottom row with V (x) = x* — 3x%. Each of the plots in the left column displays two superimposed histograms, one for each choice of © when
N = 10. The right column displays the same information for N = 40. All histograms are produced with 16,000 samples. The equilibrium

measure for V (x) = x?

is supported on one interval whereas the equilibrium measure for V(x) = x* —3x2 is supported on two intervals. It

is evident that the histograms collapse onto a universal curve, one for each V. Reproduced from Proceedings of the National Academy of

Sciences of the United States of America 111, 14973 (2014) [2].

Following standard procedures, this model is simulated by
first sampling an exponential random variable with mean

-1
(zqmmﬂ

to find the time increment A¢ at which the system changes
state. With probability one, just a single spin flips.

One determines which spin flips by sampling a random
variable Y with distribution

P (1)

[ =1,2,....N
Yax@) T

so producing an integer j. Define

Xi(t+5)=Xi(t) if s € [0,Ar) fori=1,2,...,N,
Xi(l+AI) EX,'([), if i 75 7,
Xj(f‘f’Al) = 7Xj(l‘).
This procedure is repeated with ¢ replaced by ¢ + Ar to evolve
the system.
Central to the application of the model is the assumption on

the statistics of the spin flip intensity ¢;(x). The authors in the
present paper raised the following question:

If one changes the basic statistics of the ¢;’s, will the limiting



FIG. 8. A sample pair of images generated for use in the experiment. Each of the 45 participants is shown 200 such pairs of images. Reproduced
with permission from J. Math. Psych. 55, (2012) [S]. Copyright 2012 Elsevier.
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FIG. 9. Histograms for the response times of participants 16, 21, 26, 31, and 41. The solid curve is given by fgc(x) where o and u are chosen
on a participant-by-participant basis. Reproduced with permission from J. Math. Psych. 55, (2012) [5]. Copyright 2012 Elsevier.

histograms for the fluctuations of k be affected as N becomes The histograms for the fluctuations 7.y . ¢ of k are given

large? in Figure 10 for all three choices of ¢;. Once again, two-

component universality is evident. Thus these computations

In response to this question the authors considered the fol- demonstrate two-component universality for a range of deci-
lowing choices for & ~ ¢;(x) (f = 1.3): sion process models. Said differently, it was not just a matter
of pure luck that Bakhtin and Correll chose the “right” spin

1. ci(x) = 0i(x) = e PHMY) (the case studied by [5]), flip intensity ¢;(x) = e P%M): because of universality many

2. eilw) (x) = ¢~ BHM0)- Ww)/5) other choices of ¢; would have worked just as well.
L CilX)=uUjlx) =e ! ,

3. ¢i(x) =vi(x) = e Bxi(M)+M°(x)),
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All histograms are produced with 16,000 samples. The histogram for & = o; corresponds to the case studied by [5]. It is clear from these
computations that the fluctuations collapse on to the universal curve for & = 0;. Reproduced from Proceedings of the National Academy of

Sciences of the United States of America 111, 14973 (2014) [2].

VIII. TWO INTERESTING OBSERVATIONS
A. Google searches

When you perform a Google search, it actually tells you
how long the search took and one can construct the halting
time histogram. Sagun et al. [6] considered ensembles of
3000 english words and 3000 Turkish words and they found
the histograms given in Figure 11. Again universality is evi-
dent, with the same limiting distribution fpc.

B. Universality in incubation times

Figure 12 and its caption is reproduced from [7]. It demon-
strates that the Gumbel distribution appears in a wide variety
of contexts on very different time scales. Bakhtin was able to
reproduce the fgc Gumbel distribution using so-called reac-
tive paths for a simple stochastic ODE

dx(t) = b(x(t))dt + o (x(¢))dW (¢)
W — Wiener process

So we are left with an intriguing conundrum. What is it
exactly that is in common with

e the neural stochastics of the participants in the Bakhtin—
Correll experiment

e the universality of the Curie—Weiss model

o the Google searches, and

e the statistics of incubation times?

IX. RIGOROUS RESULTS

All the above results are numerical and experimental. In
order to establish universality as a bona fide phenomenon in
numerical analysis, and not just an artifact, suggested, how-
ever strongly, by certain computations as above, the authors in
[11] analyzed a particular algorithm of interest, viz, the Toda
algorithm to compute the top eigenvalue of a random N x N
symmetric matrix. More precisely, they considered the Toda
lattice given before

dH
—- =IH.B(H)), B(H)=H_ —HT
with H(0) = H, but now with stopping time 7 = T; y o ¢
given by
N
Z Hy(T)]? = €.
By perturbation theory

|Hi1(T) - Ajl < e

for some eigenvalue A; of H = H(0). Here H = H(0) is cho-
sen from a very wide variety of invariant ensembles (IEs) and
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FIG. 11. Normalized histograms for the time it takes for Google’s servers to run a search when choosing words randomly from a dictionary.
Reproduced with permission from Quarterly of Appl. Math (2017) [6]. Copyright 2017 American Mathematical Society.
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FIG. 12. Solid curves are Gumbel densities fgc predicted in [8] using a graphical model. (a) Data from an outbreak of food-borne streptococcal
sore throat, reported by Sartwell (1995) [9], time measured in days. (b) Data from a study of bladder tumors among workers following
occupational exposure to a carcinogen in a dye plant, see Goldblatt (1949) [10]. Time measured in years. Reproduced with permission from
Bull. Math. Bio. 81 (2018) [7]. Copyright 2018 Springer.

Wigner ensembles (WEs), and it turns out that the analysis of
T =Ty N, .5 (H) depends in a crucial way on recent results

scale (B = 1 real symmetric, B = 2 complex Hermitian)

current knowledge.

FE™(¢) = lim Prob

ﬁ N—oo

from random matrix theory (RMT) that are at the forefront of < |

As Toda is an ordering algorithm for generic initial data
H = H(0), we must have A; = Ay, the top eigenvalue of H,
and so with high probability as N — oo, T controls the compu-
tation of the top eigenvalue of H. The gap Ay — Ay_1 between
the two largest eigenvalues of H plays a central role in describ-
ing the statistics of 7. The following definition quantifies the
distribution F Eap of the inverse of Ay — Ay_; on an appropriate

373 <t|, t>0,
CV/ 2-23N2/3(Qy — Av—1)
(IX.1)

where cy is an explicit constant which depends on the ensem-
ble. It is a non-trivial result in RMT that the limit (IX.1) exists.

The main result in [11] is the following.

Theorem IX.1. Universality for the Toda algorithm Let ¢ >



5/3 be fixed and let (€,N) be in the scaling region

loge™!

logN —

Then if H is distributed according to a real (B = 1) or complex
(B = 2) invariant or Wigner ensemble

T .
lim Prob ( 7 > < t) = Fﬁgdp(t),
N=yeo ¢,/ "2723N?3(loge~! — 3 logN)
Furthermore

8_1|)LN7H11(T)‘

converges to zero in probability as N — o. Here cy is the
same ensemble-dependent scaling constant as in equation
(8.1).

Thus 7', suitably scaled, behaves statistically as N — oo, like
the inverse gap (Ay — Ay_1) .
Remark 1X.2. For 8 =2 one can show that for (&,N) in the
scaling region

E(T) = /22 2AN(loge ™ — glogN)IE(é)(l +o(1))

~1
_ 32230203 oge™ 2\ pisvi 4ol
2N log (RES - 2Y B o)

where & is a random variable with distribution F () and an

analogous result for Var(7T)'/2. This kind of result
E(T) ~ N*31logN

is new: standard results on the statistics of eigenvalue compu-
tation give bounds which are typically too large.

The relavance and precision of the results in Theorem IX.1
is evident in Figure 13: The histograms for the computa-
tion of the top eigenvalues of matrices chosen from two dis-
tinct Hermitian matrix ensembles, the Hermitian Bernoulli
Ensemble (BUE) and the Gaussian Unitary Ensemble (GUE),
are remarkably close to the predicted distribution f5*(z) =

SF().
Remark IX.3. Note that if € = 10~ !¢ and N < 10° then
loge™' 16 5

logN _9>3

so computations that arise in practice typically lie in the above
scaling region.
Remark 1X.4. Similar theorems have been proved for other

algorithms such as QR on ensembles of positive definite ma-
trices [13].

Remark IX.5. The proof of the theorem rests on the fact that
the Toda lattice is completely integrable. Using results of
Moser from the 1970’s one obtains an explicit formula for

12

E(t) in terms of the eigenvalues {A;} and the first components
of the associated eigenvectors {u;} of H, Hu; = Aju;

js
I
1=

(Aj—Hir(t))?u; (1),

~.
Il
-

Ajluy (0],

Il
M=

x

(1)

~.
I

t>0.

N 1/2
(1) = uyje' (Z |u”(z)|2e“ﬂ> .
i=1

The analysis of the condition
E(T)=¢>

thus reduces to a problem of calculus with random variables
{A4;},{u;}, whose precise statistical properties have only been
established in the last 3-6 years due to the works of Yau,
Erd6s, Bourgade and their collaborators. We refer the reader
to [11] for an extended and detailed list of the references from
Random Matrix Theory needed to prove Theorem IX.1.

Remark IX.6. A surprising aspect of Theorem IX.1 is that,
in particular, the limiting distribution of the stopping time 7,
depends only on the eigenvalues. It is well-known that the
convergence rate of the Toda flow depends on the difference
A1 — A3 of the top eigenvalues (and in the case of QR, on the
difference of the logarithms log |A;| —logA2| = log|Ai|/| 2],
where now the eigenvalues are ordered by magnitude), but
nevertheless one expects that the eigenvectors of the matri-
ces should also play a role. For example, consider the two

matrices
1 a 0 a
H, = (a O) and H, = <a 1>,

for some real a. As the Toda algorithm is sorting and produces
the eigenvalues

1+V1+4a2
2

on the diagonal in decreasing order, the algorithm diagonal-
izes H; much faster than H,, which must undergo some re-
ordering process along the way. Clearly H; and H, have the
same eigenvalues: their difference lies in their eigenvectors.
So what is surprising is that in the large N limit, the influence
of the eigenvectors completely washes out.

Most recently, together with Steve Miller, we have been in-
vestigating universality properties of cyber algorithms, such
as RSA, see [14].
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