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In this paper the authors discuss various results on universality in numerical computation with random data,

obtained by the aurhors and their collaborators — C. Pfrang, G. Menon, S. Olver and S. Miller — at various

stages over the last 6 to 7 years. The paper follows closely the plenary talk with the same title give the the first

author at ICMP Montreal 2018. The reader wishing to follow more closely the evolution and development of

the ideas in this paper is invited to consult Deift et al. in the arXiv 2012-2019.

I. INTRODUCTION

A few years ago, Christian Pfrang, Govind Menon and PD

[1], initiated a statistical study of the performance of various

standard algorithms to compute the eigenvalues of random

real symmetric matrices H. In each case, an initial matrix

H0 is diagonalized either by a sequence of isospectral iterates

Hm

H0 → H1 → H2 → ·· · → Hm → ·· ·

or by an isospectral flow

t 7→ H(t) with H(t = 0) = H0.

In the discrete case, as k → ∞, Hk converges to a diagonal

matrix. Given ε > 0, it follows that for some (first) time k, the

off-diagonal entries of Hk are O(ε), and hence the diagonal

entries of Hk give the eigenvalues of H0 to O(ε). The situation

is similar for continuous algorithms t 7→ H(t) as t → ∞.

The QR algorithm is a prototypical example of such a dis-

crete algorithm:

1. Write H0 = Q0R0, Q0 orthogonal, R0 upper triangular,

(R0)ii > 0

2. Set H1 = R0Q0 = QT
0 H0Q0

3. Write H1 = Q1R1

4. Set H2 = R1Q1
...

And the Toda algorithm is an example of such a continuous

algorithm: Solve

dH(t)

dt
= [H(t),B(H(t))] = HB−BH, H(0) = H0
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where B(H) = H− − HT
− , and H− is the strictly lower-

triangular part of H. Both of these are completely integrable

Hamiltonian flows, a fact to which we will return later.

The main finding in [1] was that, surprisingly,

the fluctuations in the stopping times were universal (I.1)

independent of the ensemble considered for the matrices H.

More precisely,

• for N ×N real symmetric matrices H,

• chosen from an ensemble E , and

• for a given algorithm A , and

• a desired accuracy ε ,

let

T (H) = Tε,N,A ,E (H) (I.2)

be the stopping time (see later) for the algorithm A applied to

the N ×N matrix H chosen from the ensemble E , to achieve

an accuracy ε .

Let T̃ (H) = T̃ε,N,A ,E (H) be the normalized stopping time

T̃ε,N,A ,E (H) =
Tε,N,A ,E (H)−〈Tε,N,A ,E 〉

σε,N,A ,E
(I.3)

where 〈Tε,N,A ,E 〉 is the sample average and σ2
ε,N,A ,E =

〈
(
Tε,N,A ,E −〈Tε,N,A ,E 〉

)2〉 is the sample variance, taken over

a large number (5,000-15,000) of samples of matrices H cho-

sen from E . Then for a given algorithm A , and ε and N in a

suitable scaling region,

the histogram for T̃ε,N,A ,E (H) is independent of E . (I.4)

In general, the histogram will depend on A , but for a given

A and ε and N in the scaling region, the histogram is inde-

pendent of E .

Such two-component universality is analogous to the

classical central limit theorem for iid {Xi} with mean µ and
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variance σ2

X1 + · · ·+XN −µN

σ
√

N

d⇒ standard Gaussian.

Two examples, the first is for the QR algorithm and the sec-

ond is for the Toda algorithm are given in Figure 1(a). Note

that for both algorithms, the histograms for the very distinct

ensembles, discrete Bernoulli and continuous GOE, are re-

markably close to one another and, suggestively, to some uni-

versal histogram. Note, however, the histograms for QR and

Toda are clearly very different.

The stopping times, or halting times, for a given algorithm

can be chosen in various ways, depending on which aspects

of the given algorithm one wants to investigate. In the above

figures, the stopping times take into account the phenomenon

known as deflation, i.e., Tε,N,A ,E (H) is the first time k (or t in

the continuous case) such that Hk (or H(t)) has block form

Hk =

(
H11 H12

H21 H22

)

,

with H11 j× j, H22 (N − j)× (N − j) such that

‖H12‖= ‖H21‖ ≤ ε

for some 1≤ j ≤N−1. Then the eigenvalues {λ j} of H differ

from the eigenvalues {λ̂ j} of the deflated matrix

Ĥ =

(
H11 0

0 H22

)

,

by O(ε). The algorithm is then applied to the (smaller) matri-

ces H11 and H22, etc.

Subsequent to [1], Govind Menon, Sheehan Olver, Tom

Trogdon and PD [2], raised the question of whether the uni-

versality results in the study [1] were limited to eigenvalue

algorithms, or whether they were present more generally in

numerical computation. And indeed the authors in [2] found

similar universality results for a wide variety of numerical al-

gorithms, including

(A) more general eigenvalue algorithms such as the Jacobi

eigenvalue algorithm, and also algorithms for Hermitian

ensembles,

(B) the conjugate gradient and GMRES algorithms to solve

linear N ×N systems Hx = b,

(C) an iterative algorithm to solve the Dirichlet problem ∆u=
0 on a random star-shaped region Ω ⊂ R

2 with random

boundary data f on ∂Ω,

(D) a genetic algorithm to compute the equilibrium measure

for orthogonal polynomials on the line, and

(E) decision making algorithms.

II. SOME COMMENTS ON (A): MORE GENERAL

EIGENVALUE ALGORITHMS

In all the calculations in [1], M was real and symmetric

with independent entries. Here the authors considered N ×N

Hermitian M = M∗ from various unitary invariant ensembles

with distributions proportional to

e−NtrV (M)dM

where V (x) :R→R grows sufficiently rapidly. The entries are

independent iff V is proportional to x2: Note that it is a non-

trivial matter to sample ensembles for general V (see Olver,

Rao and Trogdon [3] for an effective algorithm).

Histograms for the deflation time fluctuations are given in

Figure 2.

Definition II.1.

• The Gaussian Unitary Ensemble (GUE) is a complex,

unitary invariant ensemble with probability distribution

proportional to e−NtrM2
dM.

• The Quartic Unitary Ensemble (QUE) is a complex,

unitary invariant ensemble with probability distribution

proportional to e−NtrM4
dM.

• The Cosh Unitary Ensemble (COSH) has its distribu-

tion proportional to e−trcoshMdM.

III. SOME COMMENTS ON (B): CONJUGATE GRADIENT

FLUCTUATIONS

Here the authors started to address the question of whether

two-component universality is just a feature of eigenvalue

computation, or is present more generally in numerical com-

putation. In particular, the authors considered the solution of

the linear system of equations Wx = b where W is a real and

positive definite, using the conjugate gradient (CG) method.

The method is iterative and at iteration k of the algorithm an

approximate solution xk of Wx = b is found and the residual

rk = Wxk − b is computed. For any given ε > 0, the method

is halted when ‖rk‖2 < ε , and the halting time kε(W,b) is

recorded.

Here the authors considered N ×N matrices A chosen from

two different positive definite ensembles E and vectors b =
(b j) chosen independently with iid entries {b j}. Given ε
(small) and N (large), and (W,b) ∈ E , the authors record the

halting time kε(W,b) = kε,N,A ,E , A = CG, and compute the

fluctuations τε,N,A ,E (W,b) over a large number of samples as

in (I.3). The histograms for τε,N,A ,E are given below, and

again, two-component universality is evident, see Figure 3.

Definition III.1.

• The critically-scaled Laguerre Orthogonal Ensemble

(cLOE) is given by XXT/m where X is an N×m matrix

with iid Gaussian (mean zero, variance one) entries.
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FIG. 1. Universality for T̃ε,N,A ,E when (a) A is the QR eigenvalue algorithm and when (b) A is the Toda algorithm. Panel (a) displays the

overlay of two histograms for T̃ε,N,A ,E in the case of QR, one for each of the two ensembles E = BE, consisting of iid mean-zero Bernoulli

random variables and E = GOE, consisting of iid mean-zero normal random variables. Here ε = 10−10 and N = 100. Panel (b) displays

the overlay of two histograms for T̃ε,N,A ,E in the case of the Toda algorithm, and again E = BE or GOE. And here ε = 10−8 and N = 100.

Reproduced from Proceedings of the National Academy of Sciences of the United States of America 111, 14973 (2014) [2].

• The critically-scaled positive definite Bernoulli ensem-

ble (cPBE) is given by XXT/m where X is an N ×m

matrix consisting of iid Bernoulli variables taking the

values ±1 with equal probability.

Critical scaling refers to the choice m = N +2⌊
√

N⌋. Note

that if M/N → ρ > 1 then the equation Wx = b is extremely

well-conditioned and the behavior of the CG algorithm is es-

sentially deterministic (see [4]). On the other hand if M/N →
1 too rapidly, rounding errors begin to play a dominant role

(observe, a fortiori, that if M < N, the equation Wx = b is sin-

gular). The scaling M =N+2⌈
√

N⌉ strikes a balance between

these two extremes.

IV. MORE COMMENTS ON (B): THE GMRES

ALGORITHM

The authors again considered the solution of Wx = b but

here W has the form I + X and X ≡ Xn is a random, real

non-symmetric matrix and b = (b j) is independent with uni-

form iid entries {b j}. As W = I + X is (almost surely)

no longer positive definite the conjugate gradient algorithm

breaks down, and the authors solve (I + X)x = b using the

Generalized Minimal Residual (GMRES) algorithm.

Again, the algorithm is iterative and at iteration k of the al-

gorithm an approximate solution xk of (I +X)x = b is found

and the residual rk = (I +X)xk − b is computed. As before,

for any given ε > 0, the method is halted when ‖rk‖2 < ε and

kε,n,A ,E (X ,b) is recorded. For these computations X is cho-

sen from two distinct ensembles. As in the conjugate gradient

problem, the authors compute the histograms for the fluctua-

tions of the halting time τε,n,A ,E for two ensembles E , where

now A = GMRES. The results are given below, where again

two component universality is evident, see Figure 4.

Definition IV.1.

• The critically-scaled shifted Bernoulli Ensemble

(cSBE) is given by I + X/
√

N where X is an N × N

matrix consisting of iid Bernoulli variables taking the

values ±1 with equal probability.

• The critically-scaled shifted Ginibre Ensemble (cSGE)

is given by I +X/
√

N where X is an N ×N matrix of

iid Gaussian variables with mean zero and variance one.

The scaling in this definition is chosen so that

P(|‖X/
√

N‖−2|> ε) tends to zero as N → ∞.

V. SOME COMMENTS ON (C): INFINITE-DIMENSIONAL

PROBLEMS

Here the authors raised the issue of whether two-component

universality is just a feature of finite-dimensional computa-

tion, or is also present in problems which are intrinsically in-

finite dimensional.

What about PDEs?

In particular, is the universality present in numerical com-

putations for PDEs? As a case study, the authors consider the

numerical solution of the Dirichlet problem ∆u = 0 in a star-

shaped region Ω ⊂ R
2 with u = f on ∂Ω. Recall that in this

case, the boundary is described by a periodic function of the

angle θ , r = r(θ), and similarly f = f (θ), 0 ≤ θ ≤ 2π .
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FIG. 2. The observation of two-component universality for T̃ε,N,A ,E when A = QR, E = QUE, COSH, GUE (see Definition II.1) and

ε = 10−10. Here we are using deflation time ( = halting time), as in [1]. The left figure displays three histograms, one each for GUE, COSH

and QUE, when N = 70. The right figure displays the same information for N = 150. All histograms are produced with 16,000 samples. Again,

we see that two-component universality emerges for N sufficiently large: the histograms follow a universal (independent of E ) law. This is

surprising because COSH and QUE have eigenvalue distributions that differ significantly from GUE in that they do not follow the so-called

semi-circle law. Reproduced from Proceedings of the National Academy of Sciences of the United States of America 111, 14973 (2014) [2].
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FIG. 3. The observation of two-component universality for τε,N,A ,E when A =CG and E = cLOE, cPBE (see Definition III.1) with ε = 10−10.

The left figure displays two histograms, one for cLOE and one for cPBE, when N = 100. The right figure displays the same information for

N = 500. All histograms are produced with 16,000 samples. Again, we see two-component universality emerges for N sufficiently large: the

histograms follow a universal (independent of E ) law. With the chosen scaling, we see two-component universality emerge for N sufficiently

large: the histograms follow a universal (independent of E ) law. Reproduced from Proceedings of the National Academy of Sciences of the

United States of America 111, 14973 (2014) [2].
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FIG. 4. The observation of two-component universality for τε,N,A ,E when A =GMRES, E = cSGE, cSBE (see Definition IV.1) and ε = 10−8.

The left figure displays two histograms, one for cSGE and one for cSBE, when N = 100. The right figure displays the same information for

N = 500. All histograms are produced with 16,000 samples. We see two-component universality emerge for N sufficiently large: the histograms

follow a universal (independent of E ) law. Reproduced from Proceedings of the National Academy of Sciences of the United States of America

111, 14973 (2014) [2].

Two ensembles, BDE and UDE (see Definition V.1),

are derived from a discretization of the problem with spe-

cific choices for r, defined by a random Fourier series.

The boundary condition f is chosen randomly by letting

{ f ( 2π j
N
)}N−1

j=0 be iid uniform on [−1,1]. Histograms for the

halting time τε,N,A ,E for these computations are given be-

low and again, two-component universality is evident, see

Figure 5. More precisely, the authors proceeded as follows.

Let Ω be the star-shaped region interior to the curve (x,y) =
(r(θ)cos(θ),r(θ)sin(θ)) where r(θ) is given by

r(θ) = 1+
m

∑
j=1

(X j cos( jθ)+Yj sin( jθ)), 0 ≤ θ < 2π

and X j and Yj are iid random variables taking values in

[−1/(2m),1/(2m)]. Dividing by 2m eliminates the possibility

that r vanishes. The double-layer potential formulation of the

boundary integral equation

πu(P)−
∫

∂Ω
u(P)

∂

∂nQ

log |P−Q|dSQ =− f (P), P ∈ ∂Ω,

is solved by discretizing in θ with N points and applying the

trapezoidal rule choosing N = 2m, and then applying the GM-

RES algorithm to the matrix problem that results.

Definition V.1.

• The Bernoulli Dirichlet Ensemble (BDE) is the case

where Xm and Ym are Bernoulli variables taking values

±1/(2m) with equal probability.

• The Uniform Dirichlet Ensemble (UDE) is the

case where Xm and Ym are uniform variables on

[−1/(2m),1/(2m)].

Figure 6 conflates the previous computations from GMRES

applied to the shifted ensembles and GMRES applied to the

Dirichlet problem given above. What is surprising, and quite

remarkable, about these computations is that the histograms

in the case of the Dirichlet problem are the same as the his-

tograms for the shifted ensembles. In other words, UDE and

BDE are structured with random components, whereas cSGE

and cSBE have no structure, yet they produce the same statis-

tics. This brings to mind the situation in the 1950’s when

Wigner introduced random matrices as a model for scattering

resonances of neutrons off heavy nuclei: the neutron-nucleus

system has a well-defined and structured Hamiltonian, but

nevertheless the resonances for neutron scattering are well-

described statistically by the eigenvalues of an (unstructured)

random matrix.

VI. SOME COMMENTS ON (D): A GENETIC

ALGORITHM

In all the computations discussed so far, the randomness in

the computations resides in the initial data. In the next set

of computations in [DMOT14], the authors considered an al-

gorithm which is intrinsically stochastic. In particular, they

considered a genetic algorithm, which they used to compute

Fekete points. Such points P∗ = (P∗
1 ,P

∗
2 , . . . ,P

∗
N) ∈ R

N are
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FIG. 5. The observation of two-component universality for τε,N,A ,E when A = GMRES, E = UDE, BDE and ε = 10−8. The left figure

displays two histograms, one for UDE and BDE, when N = 100. The right figure displays the same information for N = 500. All histograms

are produced with 16,000 samples. We see two-component universality emerge for N sufficiently large: the histograms follow a universal

(independent of E ) law. Reproduced from Proceedings of the National Academy of Sciences of the United States of America 111, 14973

(2014) [2].
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FIG. 6. This figure consists of four histograms, two taken from GMRES applied to the previous shifted ensembles (Figure 4) and two taken

from GMRES applied to the Dirichlet problem (Figure 5). Reproduced from Proceedings of the National Academy of Sciences of the United

States of America 111, 14973 (2014) [2].

the global minimizers of the objective function

H(P) =
2

N(N −1) ∑
1≤i6= j≤N

log |Pi −Pj|−1 +
1

N

N

∑
i=1

V (Pi)

for real-valued functions V = V (x) which grow sufficiently

rapidly as |x| → ∞. It is well-known that as N → ∞, the count-

ing measures δP∗ = 1
N ∑

N
i=1 δP∗

i
converge to the so-called equi-

librium measure µV which plays a key role in the asymptotic

theory of the orthogonal polynomials generated by the mea-
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sure e−NV (x)dx on R. Genetic algorithms are particularly use-

ful for large scale optimization problems, such as those that

occur, for example, in the financial industry, and involve two

basic components , “mutation” and “crossover”. The authors

implemented the genetic algorithm in the following way.

Fix a distribution D on R. Draw an initial population

P0 = P = {Pi}n
i=1 consisting of n = 100 vectors in R

N , N

large, with elements that are iid uniform on [−4,4]. The ran-

dom map FD(P) : (RN)n → (RN)n is defined by one of the

following two procedures:

P

P1

P2

P100

× × ·· · ×
× × ·· · ×

...

× × ·· · ×
︸ ︷︷ ︸

N

a. Mutation. Pick one individual P ∈ P at random

(uniformly). Then pick two integers n1, n2 from {1,2, . . . ,N}
at random (uniformly and independent). Three new individu-

als are created.

• P̃1 — draw n1 iid numbers {x1, . . . ,xn1
} from D and

perturb the first n1 elements : (P̃1)i = (P)i + xi, i =
1, . . . ,n1, and (P̃1)i = (P)i for i > n1.

• P̃2 — draw N −n2 iid numbers {yn2+1, . . . ,yN} from D

and perturb the last N−n2 elements of P: (P̃2)i = (P)i+
yi, i = n2 +1, . . . ,N, and (P̃2)i = (P)i for i ≤ n2.

• P̃3 — draw |n1 −n2| iid numbers {z1, . . . ,z|n1−n2|} from

D and perturb elements n∗1 = 1+min(n1,n2) through

n∗2 = max(n1,n2): (P̃3)i = (P)i + zi−n∗1+1, i = n∗1, . . . ,n
∗
2,

and (P̃3)i = (P)i for i 6∈ {n∗1, . . . ,n
∗
2}.

b. Crossover. Pick two individuals P, Q from P at

random (independent and uniformly). Then pick two numbers

n1, n2 from {1,2, . . . ,N} (independent and uniformly). Two

new individuals are created.

• P̃4 — Replace the n1th element of P with the n2th ele-

ment of Q and perturb it (additively) with a sample from

D.

• P̃5 — Replace the n1th element of Q with the n2th ele-

ment of P and perturb it (additively) with a sample from

D.

At each step, the application of either crossover or mu-

tation is chosen with equal probability. The new individu-

als are appended to P (after mutation we have P̃ = P ∪
{P̃1, P̃2, P̃3} and after crossover we have P̃ = P ∪{P̃4, P̃5})

and P 7→ P ′ = FD(P) ∈ (RN)n is constructed by choos-

ing the 100 Pi’s in P̃ which yield the smallest values of

H(P). The algorithm produces a sequence of populations

P1,P2, . . . ,Pk, . . . in (RN)n, Pk+1 = FD(Pk), n = 100,

and halts, with halting time recorded, for a given ε , when

minP∈Pk
H(P)− infP∈RN H(P)< ε .

The histograms for the fluctuations τε,N,A ,E , with A =

Genetic, are given below, for two choices of V , V (x) = x2

and V (x) = x4 −3x2, and different choices of E ≃D. Again,

two-component universality is evident, see Figure 7.

VII. SOME COMMENTS ON (E): DECISION MAKING

MODEL

In the final set of computations in [2], the authors picked

up on a common notion in neuroscience that the human brain

is a computer with software and hardware. If this is indeed

so, then one may speculate that two-component universality

should be present certainly in some cognitive processes.

The authors focused on recent work of Bakhtin and Cor-

rell [5], who have conducted and analyzed the data obtained

from experiments with 45 human participants. The partici-

pants are shown 200 pairs of images. The images in each pair

consist of nine black disks of variable size. The disks in the

images within each pair have approximately the same area so

that there is no a priori bias, see, for example, Figure 8.

The participants are then asked to decide which of the two

images covers the larger (black) area. Bakhtin and Correll

then record the response time T that it takes for each par-

ticipant to make a decision. For each participant, the deci-

sion times for the 200 pairs are collected and the fluctuation

histogram is tabulated. Whether the participant decided cor-

rectly, is not relevant, and is not recorded: only the time T is

recorded. They then compare their experimental results with

a dynamical Curie–Weiss model frequently used in describing

decision making processes, resulting in good agreement. His-

tograms for participants 16, 21, 26, 31, and 41, for example,

are displayed in Figure 9. The solid curve in Figure 9 is the

(shifted and scaled) Gumbel distribution

fBC(x) = σg(σx+µ), g(z) = exp(−x− e−x)

predicted by the Curie–Weiss model of Bakhtin–Correll.

At its essence the model is Glauber dynamics on the

hypercube {−1,1}N with a microscopic approximation of

a drift-diffusion process. Consider N variables {Xi(t)}N
i=1,

Xi(t) ∈ {−1,1}. The state of the system at time t is

X(t) = (X1(t),X2(t), . . . ,XN(t)). The transition probabilities

are given through the expressions

P(Xi(t +∆t) 6= Xi(t)|X(t) = x) = ci(x)∆t +o(∆t),

where ci(x) is the spin flip intensity. The observable consid-

ered is

M(X(t)) =
1

N

N

∑
i=1

Xi(t) ∈ [−1,1],

and the initial state of the system is chosen so that M(X(0)) =
0, a state with no a priori bias, as in the case of the experi-

mental setup.

Given ε ∈ (0,1), which may not be small, the halting (or

decision) time for this model is k = inf{t : |M(X(t))| ≥ ε},

the time at which the system makes a decision. In other

words, schematically, there are N “registers” in the brain, each

recording +1, say, if the register determines that the right side

of the image has greater area, and −1, say, if the left side

of the image is determined to have greater area: Only when

there is a sufficient preponderance of the +1’s, or −1’s, does

the partcipant make a decision.
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FIG. 7. The observation of two-component universality for τε,N,A ,E when A = Genetic, ε = 10−2 and E ≃D where D is chosen to be either

uniform on [−1/(10N),1/(10N)] or taking values ±1/(10N) with equal probability. The top row is created with the choice V (x) = x2 and the

bottom row with V (x) = x4 −3x2. Each of the plots in the left column displays two superimposed histograms, one for each choice of D when

N = 10. The right column displays the same information for N = 40. All histograms are produced with 16,000 samples. The equilibrium

measure for V (x) = x2 is supported on one interval whereas the equilibrium measure for V (x) = x4 − 3x2 is supported on two intervals. It

is evident that the histograms collapse onto a universal curve, one for each V . Reproduced from Proceedings of the National Academy of

Sciences of the United States of America 111, 14973 (2014) [2].

Following standard procedures, this model is simulated by

first sampling an exponential random variable with mean

(

∑
i

ci(X(t))

)−1

to find the time increment ∆t at which the system changes

state. With probability one, just a single spin flips.

One determines which spin flips by sampling a random

variable Y with distribution

P(Y = i) =
ci(X(t))

∑i ci(X(t))
, i = 1,2, . . . ,N,

so producing an integer j. Define

Xi(t + s)≡ Xi(t) if s ∈ [0,∆t) for i = 1,2, . . . ,N,

Xi(t +∆t)≡ Xi(t), if i 6= j,

X j(t +∆t)≡−X j(t).

This procedure is repeated with t replaced by t +∆t to evolve

the system.

Central to the application of the model is the assumption on

the statistics of the spin flip intensity ci(x). The authors in the

present paper raised the following question:

If one changes the basic statistics of the ci’s, will the limiting
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FIG. 8. A sample pair of images generated for use in the experiment. Each of the 45 participants is shown 200 such pairs of images. Reproduced

with permission from J. Math. Psych. 55, (2012) [5]. Copyright 2012 Elsevier.

FIG. 9. Histograms for the response times of participants 16, 21, 26, 31, and 41. The solid curve is given by fBC(x) where σ and µ are chosen

on a participant-by-participant basis. Reproduced with permission from J. Math. Psych. 55, (2012) [5]. Copyright 2012 Elsevier.

histograms for the fluctuations of k be affected as N becomes

large?

In response to this question the authors considered the fol-

lowing choices for E ≃ ci(x) (β = 1.3):

1. ci(x) = oi(x) = e−βxiM(x) (the case studied by [5]),

2. ci(x) = ui(x) = e−βxi(M(x)−M3(x)/5),

3. ci(x) = vi(x) = e−βxi(M(x)+M8(x)).

The histograms for the fluctuations τε,N,A ,E of k are given

in Figure 10 for all three choices of ci. Once again, two-

component universality is evident. Thus these computations

demonstrate two-component universality for a range of deci-

sion process models. Said differently, it was not just a matter

of pure luck that Bakhtin and Correll chose the “right” spin

flip intensity ci(x) = e−βxiM(x): because of universality many

other choices of ci would have worked just as well.
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FIG. 10. The observation of two-component universality for τε,N,A ,E when A = Curie–Weiss, E ≃ oi, ui, vi, ε = .5 and β = 1.3. The

left figure displays three histograms, one for each choice of E when N = 50. The right figure displays the same information for N = 200.

All histograms are produced with 16,000 samples. The histogram for E = oi corresponds to the case studied by [5]. It is clear from these

computations that the fluctuations collapse on to the universal curve for E = oi. Reproduced from Proceedings of the National Academy of

Sciences of the United States of America 111, 14973 (2014) [2].

VIII. TWO INTERESTING OBSERVATIONS

A. Google searches

When you perform a Google search, it actually tells you

how long the search took and one can construct the halting

time histogram. Sagun et al. [6] considered ensembles of

3000 english words and 3000 Turkish words and they found

the histograms given in Figure 11. Again universality is evi-

dent, with the same limiting distribution fBC.

B. Universality in incubation times

Figure 12 and its caption is reproduced from [7]. It demon-

strates that the Gumbel distribution appears in a wide variety

of contexts on very different time scales. Bakhtin was able to

reproduce the fBC Gumbel distribution using so-called reac-

tive paths for a simple stochastic ODE

dx(t) = b(x(t))dt +σ(x(t))dW (t)

W — Wiener process

So we are left with an intriguing conundrum. What is it

exactly that is in common with

• the neural stochastics of the participants in the Bakhtin–

Correll experiment

• the universality of the Curie–Weiss model

• the Google searches, and

• the statistics of incubation times?

IX. RIGOROUS RESULTS

All the above results are numerical and experimental. In

order to establish universality as a bona fide phenomenon in

numerical analysis, and not just an artifact, suggested, how-

ever strongly, by certain computations as above, the authors in

[11] analyzed a particular algorithm of interest, viz, the Toda

algorithm to compute the top eigenvalue of a random N ×N

symmetric matrix. More precisely, they considered the Toda

lattice given before

dH

dt
= [H,B(H)], B(H) = H−−HT

−

with H(0) = H, but now with stopping time T = Tε,N,A ,E

given by

E(T ) =
N

∑
j=2

|H1 j(T )|2 = ε2.

By perturbation theory

|H11(T )−λ j| ≤ ε

for some eigenvalue λ j of H = H(0). Here H = H(0) is cho-

sen from a very wide variety of invariant ensembles (IEs) and
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FIG. 11. Normalized histograms for the time it takes for Google’s servers to run a search when choosing words randomly from a dictionary.

Reproduced with permission from Quarterly of Appl. Math (2017) [6]. Copyright 2017 American Mathematical Society.

FIG. 12. Solid curves are Gumbel densities fBC predicted in [8] using a graphical model. (a) Data from an outbreak of food-borne streptococcal

sore throat, reported by Sartwell (1995) [9], time measured in days. (b) Data from a study of bladder tumors among workers following

occupational exposure to a carcinogen in a dye plant, see Goldblatt (1949) [10]. Time measured in years. Reproduced with permission from

Bull. Math. Bio. 81 (2018) [7]. Copyright 2018 Springer.

Wigner ensembles (WEs), and it turns out that the analysis of

T = Tε ,N,A ,E (H) depends in a crucial way on recent results

from random matrix theory (RMT) that are at the forefront of

current knowledge.

As Toda is an ordering algorithm for generic initial data

H = H(0), we must have λ j = λN , the top eigenvalue of H,

and so with high probability as N → ∞, T controls the compu-

tation of the top eigenvalue of H. The gap λN −λN−1 between

the two largest eigenvalues of H plays a central role in describ-

ing the statistics of T . The following definition quantifies the

distribution F
gap

β
of the inverse of λN −λN−1 on an appropriate

scale (β = 1 real symmetric, β = 2 complex Hermitian)

F
gap

β
(t) = lim

N→∞
Prob

(

1

c
2/3
V 2−2/3N2/3(λN −λN−1)

≤ t

)

, t > 0,

(IX.1)

where cV is an explicit constant which depends on the ensem-

ble. It is a non-trivial result in RMT that the limit (IX.1) exists.

The main result in [11] is the following.

Theorem IX.1. Universality for the Toda algorithm Let σ >
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5/3 be fixed and let (ε,N) be in the scaling region

logε−1

logN
≥ σ .

Then if H is distributed according to a real (β = 1) or complex

(β = 2) invariant or Wigner ensemble

lim
N→∞

Prob

(

T

c
2/3
V 2−2/3N2/3(logε−1 − 2

3
logN)

≤ t

)

= F
gap

β
(t), t ≥ 0.

Furthermore

ε−1|λN −H11(T )|

converges to zero in probability as N → ∞. Here cV is the

same ensemble-dependent scaling constant as in equation

(8.1).

Thus T , suitably scaled, behaves statistically as N →∞, like

the inverse gap (λN −λN−1)
−1.

Remark IX.2. For β = 2 one can show that for (ε,N) in the

scaling region

E(T ) = c
3/2
V 2−2/3N2/3(logε−1 − 2

3
logN)E(ξ )(1+o(1))

= c
3/2
V 2−2/3N2/3 logN

(
logε−1

logN
− 2

3

)

E(ξ )(1+o(1))

where ξ is a random variable with distribution F
gap

β=2
(t) and an

analogous result for Var(T )1/2. This kind of result

E(T )∼ N2/3 logN

is new: standard results on the statistics of eigenvalue compu-

tation give bounds which are typically too large.

The relavance and precision of the results in Theorem IX.1

is evident in Figure 13: The histograms for the computa-

tion of the top eigenvalues of matrices chosen from two dis-

tinct Hermitian matrix ensembles, the Hermitian Bernoulli

Ensemble (BUE) and the Gaussian Unitary Ensemble (GUE),

are remarkably close to the predicted distribution f
gap
2 (t) =

d
dt

F
gap
2 (t).

Remark IX.3. Note that if ε = 10−16 and N < 109 then

logε−1

logN
=

16

9
>

5

3

so computations that arise in practice typically lie in the above

scaling region.

Remark IX.4. Similar theorems have been proved for other

algorithms such as QR on ensembles of positive definite ma-

trices [13].

Remark IX.5. The proof of the theorem rests on the fact that

the Toda lattice is completely integrable. Using results of

Moser from the 1970’s one obtains an explicit formula for

E(t) in terms of the eigenvalues {λ j} and the first components

of the associated eigenvectors {u1 j} of H, Hu j = λ ju j

E(t) =
N

∑
j=1

(λ j −H11(t))
2|u1 j(t)|2,

H11(t) =
N

∑
j=1

λ j|u1 j(t)|2,

u1 j(t) = u1 je
λ jt/

(
N

∑
i=1

|u1i(t)|2e2λit

)1/2

.

The analysis of the condition

E(T ) = ε2

thus reduces to a problem of calculus with random variables

{λ j},{u j}, whose precise statistical properties have only been

established in the last 3-6 years due to the works of Yau,

Erdős, Bourgade and their collaborators. We refer the reader

to [11] for an extended and detailed list of the references from

Random Matrix Theory needed to prove Theorem IX.1.

Remark IX.6. A surprising aspect of Theorem IX.1 is that,

in particular, the limiting distribution of the stopping time T ,

depends only on the eigenvalues. It is well-known that the

convergence rate of the Toda flow depends on the difference

λ1 −λ2 of the top eigenvalues (and in the case of QR, on the

difference of the logarithms log |λ1|− logλ2| = log |λ1|/|λ2|,
where now the eigenvalues are ordered by magnitude), but

nevertheless one expects that the eigenvectors of the matri-

ces should also play a role. For example, consider the two

matrices

H1 =

(
1 a

a 0

)

and H2 =

(
0 a

a 1

)

,

for some real a. As the Toda algorithm is sorting and produces

the eigenvalues

1±
√

1+4a2

2

on the diagonal in decreasing order, the algorithm diagonal-

izes H1 much faster than H2, which must undergo some re-

ordering process along the way. Clearly H1 and H2 have the

same eigenvalues: their difference lies in their eigenvectors.

So what is surprising is that in the large N limit, the influence

of the eigenvectors completely washes out.

Most recently, together with Steve Miller, we have been in-

vestigating universality properties of cyber algorithms, such

as RSA, see [14].
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