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Abstract— We present a velocity controller for persistent
monitoring applications that minimizes the maximum eigen-
value of the Kalman filter covariance for any initial sensing
position and any initial covariance. A set of points of interest
in the environment can be measured along a closed static path
by an autonomous, mobile robotic sensing platform. We model
the environmental phenomenon at the points of interest as a
Wiener process that is estimated by a Kalman filter. We propose
a Greedy Knockdown Algorithm to determine the optimal
number of observations for each point of interest per cycle
and formulate the problem as a linear program with a set of
robustness constraints. In simulation, the proposed controller is
compared to constant velocity and existing first-order velocity
controllers in the literature. The proposed method outperforms
existing methods across test cases with a range of different
parameters: number of points of interest, noise level of the
observation model, and maximum velocity.

I. INTRODUCTION

The objective of persistent monitoring is to continually

measure a dyanmic environment to provide accurate esti-

mates. These estimates of phenomena can be used in models

to predict future conditions (e.g. monitoring windspeed, tem-

perature, and humidity to predict future weather) or predict

current conditions at unobserved locations (e.g. interpolating

air pollution measurements in regions between stationary

measurement sites). Many environmental phenomena can be

predicted using models with additive Gaussian noise or as

Wiener processes. For linear observation and state transition

models with Gaussian noise, the Kalman filter is an optimal

solution for state estimation. Many works in informative

path planning utilize Gaussian process regression, but the

Kalman filter implementation provides a known framework

for efficient updates from a large number of observations,

each over a limited subset of states.

Traditional approaches to persistent monitoring have uti-

lized fixed sensors to maximize gathered information, lever-

aging Kalman filters when estimating phenomena or pro-

cesses obscured by Gaussian noise. Le Ny et al. [1] have

proposed policies for open-loop periodic sensor scheduling

and formulate a bound for linear Gaussian systems using

continuous-time Kalman filters. Greedy algorithms work well

in many instances [2], [3] and have even been shown to

be optimal for specific cases of uncorrelated noise [4]. but

since environmental phenomena are highly temporally and

1The authors are with the Electrical and Computer Engineering De-
partment, University of California, San Diego, La Jolla, CA 92093, USA
{mosterta, natanasov}@ucsd.edu

2The author is with the Computer Science Engineering Depart-
ment, University of California, San Diego, La Jolla, CA 92093, USA
tajana@ucsd.edu

spatially correlated, static deployments provide less infor-

mation than a comparable sensor on mobile robotic sensing

platforms.

In recent years, researchers have focused on developing

trajectories for persistent monitoring of phenomena and

targets thanks to increased processing capabilities and lower

costs of mobile robotic sensing platforms, which can carry

sensors to measure more interesting and useful locations. Ap-

proximate controllers with bounded error can be calculated

[5], but finding optimal solutions is NP-hard that requires

solving for both an optimal path and velocity. Researchers

have shown that decomposing trajectory generation into

separate path planning and velocity control problems allows

for developing optimal solutions for constrained problems

with reduced complexity [6].

Smith et al. [7] proposed the first optimal velocity con-

troller for a linear, continuous accumulation model, format-

ting the optimization problem as a linear program. Cas-

sandras et al. [8] expanded the use of an optimal velocity

controller to a different objective and new accumulation

model that clears in linear proportion to the distance of

nearby robotic platforms. The work was later expanded into

two-dimensional space using the concept of infinitesimal per-

turbation analysis, but with limited guarantees of optimality

[9], [10]. Song et al. [11] extended the results to symmetric,

non-linear accumulation models and proposed a method to

determine optimal initial placements.

Yu et al. [12] utilized a similar set of models but proved

that optimal accumulations can be achieved by using dwell

times as constraints. The dwell times are calculated as the

time the sensing platform must be within the sensing region

of a point of interest until its accumulation reaches 0. Along

a set path, the results closely mirror those of Smith et al.

[7], but for certain situations of homogeneous targets, the

dwell times in combination with solutions to the traveling

salesman problem can result in optimal trajectories.

Rapidly exploring random cycles [13] have been used

for sampling-based path formation and minimizing infinite

horizon cycle costs. The work is similar to the presented

methods whereby a Kalman filter is used for estimation of

a target phenomenon, and the objective is to minimize the

largest eigenvalue of the covariance of the estimate.

Our work extends the existing research by developing

a controller for autonomous, mobile robotic sensing plat-

forms that results in an optimal minimum bound on the

maximum eigenvalue of the Kalman filter covariance for an

unknown initial sampling position. We compare our method

to controllers that approximate Kalman filtering estimation



Fig. 1. Persistent monitoring example of 2 points of interest (q1 and q2)
by a drone at position θ(t) with sensing area B(θ).

with linear accumulation models and show that our proposed

approach is robust to initial sampling position.

II. PROBLEM FORMULATION

Consider a compact environment E ∈ R
d that contains a

set of N points of interest for an environmental phenomenon

q = [q1, ..., qN ]T where qi ∈ E . These points of interest lie

on a stationary closed curve contained within the environ-

ment γ : [0, L] → R
d, where L is the perimeter length and

γ(0) = γ(L). The points are sensing locations at which an

autonomous robotic platform can measure values x of the

phenomenon, such as the intensity of a fire at a particular

location or the concentration of a pollutant.

We assume that the environmental phenomenon is time

varying and the value of the phenomenon x ∈ R
N evolves

as a Wiener process. Wiener processes increase with inde-

pendent, Gaussian increments, for which we define the mean

and covariance with a model of the environment M(q). A

Gaussian distribution is a natural choice for environmental

models, such as those used for the spread of wildfires, since

the evolution between states is typically the summation of a

large number of smaller physical interactions for which de-

tailed input data cannot reasonably be obtained. For a given

timestep, τ the environmental model evolves as follows:

x(t+ τ) = x(t) +M(q) M(q) ∼ N (μ, τ W ) (1)

where the independent increments are drawn from a Gaussian

distribution with mean μ and full-rank covariance τ W that

is directly proportional to the step size of the increment τ .

To simplify the description of the robotic platform along

the path, the curve γ is parameterized by arc-length θ ∈
[0, L], and the position of the robotic platform at time t is

defined as γ(θ(t)) where θ : R≥0 → E and θ̇(t) = v(t),
where v(t) is the velocity at time t and v(t) ∈ (vmin, vmax].
The minimum and maximum velocities can be set to adhere

to local regulations, expert advice, or physical limitations of

the robotic platform.

The robotic platform has a set sampling rate fs, and at

every sampling time point, any point of interest qi within the

finite sensing footprint B(θ) ⊂ E is sensed. A binary obser-

vation model is used with the observation y(t) corrupted by

zero-mean Gaussian noise with covariance matrix V and is

expressed as follows:

y(t) = H(θ(t))x(t) + nobs nobs ∼ N (0,V ) (2)

hi,j =

{
1 i = j and qi ∈ B(θ(t))

0 otherwise
(3)

Fig. 2. Riccati update procedure for a discrete Kalman filter.

where y(t) is the observation at time t, H(θ(t)) is a binary

matrix describing the link between observed and environ-

mental states that depends on the current position of the

platform with elements hi,j , x is a vector of true values at all

points of interest q, and nobs is the observation noise drawn

from an uncorrelated zero-mean Gaussian distribution with

diagonal covariance V and elements Vi along the diagonal.

The notation for H(θ(t)) is simplified to H for convenience.

The robotic platform estimates the true value of the

phenomenon x(t) by inputting noisy observations y(t) into

a Kalman filter, which tracks estimates of the environmental

state s(t) with associated covariance Σs(t). The discrete

Riccati equation is used to maintain the states of the Kalman

filter with observations taken every 1/fs. The iterative flow

can be seen in Fig. 2. The Riccati implementation of the

Kalman filter provides value for the estimate and uncertainty

immediately preceding an update (s− and Σ−
s ) and following

an update (s and Σs), but the precise values can be calculated

at any point t using the following:

Σ̇s(t) =

{
W + c(q, tk) δ(t− tk) , qi ∈ B(θ(t))

W , otherwise
(4)

c(q, t) = −Σs(t)H
T (HΣs(t)H

T + V )−1HΣs(t)

where c(q, t) is the result of the Riccati Kalman filter update,

δ(t − τ) is the Dirac delta function, and tk = k/fs ∀k ∈
Z≥0. Tracking the covariance matrix in this method is a

representation of the reality of a continuous growth model

and the discrete capture rate of real systems.

Problem 1 (Minimizing Steady-State Uncertainty). For a
robotic platform continuously monitoring points of interest
q along a closed path γ, the objective is to find the optimal
velocity controller v∗ to minimize the maximum eigenvalue
λ∞

max of the steady-state Kalman filter covariance matrix Σs

at an infinite-time horizon for any initial sampling position.

v∗ = argmin
v:R≥0→R

(
λ∞

max

)
(5)

s.t. θ̇(t) = v(t)

vmin < v ≤ vmax

where v∗ is an optimal continuous-time velocity controller,
the Kalman filter covariance evolution is defined in Eq. (4),
and λ∞

max is defined as:

λ∞
max = lim sup

t→∞

[
max

t≤τ≤t+T
λmax(τ)

]
(6)



where λmax is the maximum eigenvalue of Σs and T is the
time required to complete one cycle of the closed loop γ.

We chose to minimize the maximum eigenvalue of the

steady state covariance matrix, which intuitively represents

a bound on the uncertainty of the model at any point of

interest and is commonly referred to as the spectral radius,

but researchers in informative path planning and persistent

monitoring have used a number of different objective func-

tions. Other potential objective functions include the trace of

the covariance matrix, which is the sum of the uncertainty,

or the determinant of the covariance matrix, which is the

volume of uncertainty [14].

Since persistent monitoring involves monitoring a phe-

nomenon over long timeframes, we are concerned with the

minimization of the objective function at an infinite-time

horizon. At an infinite-time horizon with a periodic con-

troller, Σs converges at an exponential rate from any initial

covariance to a cyclic pattern of values (Sec IV.A in [15]).

By optimizing for the steady state cycle of Σs, the developed

controller may perform suboptimally for initial cycles along

the path γ, but it provides two benefits: the controller is

robust to any initial assumptions of the phenomenon and

will quickly converge to the optimal solution.

The general optimization formulation is complex, requir-

ing solutions for a continuous velocity controller and a hybrid

Kalman filter for estimation. In the following section, we

show how the general optimization can be simplified into a

linear program.

III. TECHNICAL APPROACH

We transform the general optimization problem into a lin-

ear program using approximation techniques and properties

of the discrete Kalman filter. We also make the assumption

that the points of interest have non-overlapping sensing

regions, such that if qi ∈ B(θ(t)) then qj �∈ B(θ(t)), ∀ i �=
j.

A. Velocity Controller Approximation

In order to make the optimal velocity controller v∗ in Eq.

(5) more tractable, we focus on a specific class of appropriate

controllers termed periodic position-feedback controllers and

approximate the controller using basis functions. These ap-

proximations allow the optimization problem to be formatted

as a linear program instead of a search through continuous

space.

Assuming that a controller exists that positions a robotic

platform to capture a series of observations that result in a

minimum uncertainty, it has been shown in sensor scheduling

research that the optimal solution can be arbitrarily closely

approximated by a controller with a periodic schedule [15].

The situation in which a robotic platform constrained to a

path is simply a constrained version of the sensor scheduling

problem with non-zero switching costs.

At an infinite-time horizon, a periodic controller will be

able to closely approximate the optimal solution, so we

constrained the solution space to periodic position-feedback

controllers, similar to previous works [7], [11]. These ve-

locity controllers depend only on the position of the robotic

platform along the closed loop γ and not on time, such that

v : [0, L] → R>0. Using a position-dependent controller

results in a constant time to complete one cycle (T ):

T =

∫ L

0

v−1(θ)dθ (7)

A continuous function can be approximated by a series of

basis functions, reducing the complexity of the optimization

with a small drop in accuracy. We approximate the inverse

of the velocity controller by a series of weighted basis

functions, a technique that has been used in the literature [7],

[11]. We chose to use a rectangular basis function that divides

θ into J segments with identical arclength. A rectangular

basis function allows for precise control of the velocity of a

sensing platform over a region where adjusting J can tune

the length of individual regions.

v−1(θ) =

J−1∑
j=0

αjβj(θ) (8)

βj(θ) =

{
1 , jL

J ≥ θ > (j+1)L
J

0 , otherwise

The functional approximation of v allows optimization

over a discrete number of variables, enabling a solution from

a linear program. Eq. (8) allows the cycle time T to be

calculated from only the variables αj and known values L
and J as follows:

T =

∫ L

0

J−1∑
j=0

αjβj(θ)dθ =
L

J

J−1∑
j=0

αj (9)

where αj is the inverse velocity along the segment βj .

B. Loop and Sampling Cycle Timing

For a periodic velocity controller, the position of the

robotic platform repeats every T , such that θ(t + T ) =
θ(t), but the sampling locations for consecutive loops will

typically differ. Only in limited cases where T is evenly

divisible by 1/fs will robotic platform sample at the same

locations for each iteration of the loop. In order to ensure

that the point of interest has at least di observations per loop

for any initial position, we introduce a robustness constraint.

Lemma 1 (Robustness Constraint). A robotic sensing plat-
form must be within the sensing range of point qi for at least
di/fs seconds to ensure di observations are performed for
any initial sampling position.∫

{θ|qi∈B(θ)}

J−1∑
j=0

αj βj(θ) dθ ≥ di
fs

(10)

where {θ|qi ∈ B(θ)} describes the sensing region of qi and
the velocity controller is described in Eq. (8).

Proof: For any initial starting position, the robotic

platform will capture an observation in the range [φ1 −
vmax/fs, φ1) due to periodic nature of sampling where



[φi, φ2] is the min and max θ from the continuous sensing

region {θ|qi ∈ B(θ)}. For θ(0) ∈ [φ1 − vmax/fs, φ1), the

worst possible initial position would be immediately prior to

the start of the sensing region at φ1. In order to achieve di
observations starting at φ1 − ε where ε is very small, the

robotic platform must spend a minimum of di/fs within the

sensing region as described in Eq. (10).

The Robustness Constraint is important for discrete sam-

pling estimation using position-dependent velocity con-

trollers because the velocity controller has no notion of

where the sensors are in their sampling cycle, and unless

the loop cycle time is evenly divisible by the sampling

period, the robotic platform will take observations at different

positions within the sampling region for each cycle. If the

optimization is performed without the robustness constraint,

then the robotic platform may fail to capture an observation

of a point of interest, leading to unbounded uncertainty in

the worst case.

Lemma 2 (Maximum Velocity). The robotic platform should
always travel at the maximum allowable velocity. When no
points of interest are within the sensing region (i.e. qi �∈
B(θ)), the optimal velocity is v(θ) = vmax. When points of
interest are in the sensing region (i.e. qi ∈ B(θ)), the optimal
velocity is the maximum velocity that meets the Robustness
Constraint in Lemma 1.

Proof: The objective of the robotic platform is to

minimize the maximum eigenvalue of the Kalman filter

covariance matrix. The covariance matrix has a linear rela-

tionship with W such that Σs(t+ τ) = Σs(t) + τW . Since

W is a covariance matrix, all eigenvalues are positive, and

the linear combination increases the eigenvalues of Σs. The

loop cycle time T is inversely proportional to the velocity.

Therefore, to minimize the loop cycle time and the growth

of the eigenvalues due to the addition of W , the velocity

should be at the maximum permitted velocity for segment βj .

For unobserved regions {θ|qi �∈ B(θ)}∀ i ∈ {1, ..., N}, αj

should be 1/vmax. For observed regions {θ|qi ∈ B(θ)}, αj

should be the minimum allowable (i.e. maximum velocity)

that adheres to Lemma 1.

On account of the different sampling position for each

cycle, the loop cycle time between observations in a given

range of interest [φ1, φ2] may change per loop cycle. In

order to calculate a bound on the maximum uncertainty, we

need to use the worst-case loop time between the end of an

observation series and the start of the next.

Lemma 3 (Worst-Case Interobservation Time). For a robotic
agent moving along closed path γ and sampling all points of
interest within its sensing range (i.e. when qi ∈ B(θ(t))) with
frequency fs, the worst-case interobservation Twc between
observation series of di consecutive samples is calculated as
follows:

Twc = (
Tfs�+ 1− di)/fs (11)

where 
·� is the ceiling function and di is the number of
consecutive observations of qi with di ≥ 1.

Proof: The average number of observations per loop

is calculated by Tfs, the product of the loop cycle time

and sampling frequency. Since the number of observations

per loop is an integer by definition, some loop iterations

have 
Tfs� observations and others have �Tfs
 with the

ratio between the two equal to the fractional portion of the

average. The length of time spent observing qi does not

change due to the Robustness Constraint in Lemma 1.

The length of time spent in an observation series is calcu-

lated as the difference between the first and last observation.

For di observations, this amounts to (di − 1)/fs. The time

difference between the last observation of a cycle and the

first observation of the next cycle is the difference between

the total cycle time T = 
tfs�/fs and the time spent in an

observation series. The result is shown in Eq. (11).

As the sampling rate fs increases, the difference between

the average and worst-case loop cycle times decrease. In

applications where the sampling rate is low, such as in air

quality sampling, the relative alignment of the loop and

sampling cycle can have significant implications on the

steady-state uncertainty bound.

C. Steady-State Kalman Filter Bounds

The goal of the problem statement (Eq. 5) can be refor-

mulated with the goal of finding optimal velocity controller

v∗ that results in a minimum bound on the maximum steady-

state uncertainty λ∞
max of the Kalman filter estimate. We begin

the development of a bound on the maximum steady-state

uncertainty by proving the Kalman filter covariance matrix is

bounded and then show how to calculate the bound directly.

The uncertainty of an estimate using a discrete Kalman

filter is guaranteed to be bounded if every point of interest

is measured at least once per cycle. This result is well

documented within the sensor scheduling literature, and it

can be extended to our persistent monitoring application.

Lemma 4 (Bounded Uncertainty Guarantee). If all points
of interest q are observed at least once during a cycle
of duration T , the steady state Kalman filter estimation
covariance Σs will be bounded (i.e. lim

t→∞λmax(Σs(t)) < b).

Proof: The uncertainty for a given point of interest

qi will grow at a rate consistent with the noise in the

environmental model W . For a single cycle, the covariance

Fig. 3. Example uncertainty of Kalman filter estimate for one point with
a cycle time of T , di observations, and covariance of the environmental
process W . The shaded regions indicate when the point of interest qi
is within sensing range B(θ). The maximum steady-state value of the
uncertainty λ∞

max immediately precedes the first observation.



matrix grows immediately following the last consecutive

observation in a series, such that for an observation taken

at t and time between observation To, the covariance matrix

evolves as:

Σs(t+ T ) = Σs(t) + ToW (12)

Using the Courant-Fischer min-max principle [16], the max

eigenvalue of the Kalman filter covariance matrix evolves as

follows:

λmax

(
Σs(t+ T )

)
= λmax

(
Σs(t) + ToW

)
= max

x �=0

xTλmax(Σs(t) + ToW )x

xTx

≤ max
xA �=0

xT
Aλmax(Σs(t))xA

xT
AxA

+ To max
xB �=0

xBλmax(W )xB

xT
BxB

= λmax

(
Σs(t)

)
+ Toλmax

(
W

)
(13)

where λmax(·) represents the maximum eigenvalue of an

input matrix. The principle holds because both Σs and W
are positive, semi-definite matrices. The covariance matrix

Σs grows until an observation occurs, after which, the

uncertainty is reduced as seen in Eq. (4).

For binary observation matrices with diagonal covariance

V , the maximum eigenvalue for the observed point of

interest qi is Vi and the bound will decrease monoton-

ically for consecutive observations of the same point of

interest. Since each point is measured at least once per

cycle, λmax

(
Σs(t)

) ≤ maxi Vi for a t immediately after

the observation with max Vi. The maximum amount of

uncertainty gain between the last observation of a cycle and

the first observation of the next cycle can be calculated by

setting To equal to Twc from Lemma 3 and di to dmin =
mini di, such that the uncertainty bound is calculated as:

λmax(Σs) ≤ max
i

Vi +
(
(
Tfs�+ 1− dmin)/fs

)
λmax(W )

(14)

Eq. (14) holds for any time t.

For a periodic sequence of observations with period Tper,

the periodic discrete Riccati formulation of the Kalman filter

is below:

Σs(k + 1) = Σs(k) +W /fs

− Σs(k)H(k)
(
H(k)TΣs(k)H(k) + V )−1H(k)TΣs(k)

(15)

Σs(k) = Σs(k + Tper) H(k) = H(k + Tper) (16)

where Tper = gminT

gmin = argmin
g

mod(gT, 1/fs) = 0

Remark (Uncorrelated Assumption). If T is divisible by the
sampling period 1/fs, then the resulting periodic observa-
tion matrix H can be determined relatively easily and Σs

can be solved using methods such as the structure-preserving
algorithm proposed by Chu et al. [17]. In the more common
case when T is not divisible by 1/fs, the observations are
at different locations for gmin loop cycles, resulting in an
observation matrix that can have intercycle differences in the

numbers of samples between sensing regions for neighboring
points of interest.

To handle the intercycle differences, we chose to limit the
noise of our environmental model to uncorrelated models
with a diagonal covariance matrix W with elements Wi and
examine the worst case loop scenario. For uncorrelated noise
in the observation (Vi) and environmental model (Wi), we
can directly calculate the worst-case bound on the uncer-
tainty at steady state. Determining worst-case observation
patterns in correlated covariance matrices is a path of
ongoing research.

For di consecutive observations in a cycle, the worst-case

steady state uncertainty λi,∞ (i.e. the uncertainty immedi-

ately preceding the first observation) can be solved using the

following equations:

λi,∞ = λi,1 −Wi/fs − (λi,1)
2(λi,1 + Vi)

−1

λi,1 = λi,2 −Wi/fs − (λi,2)
2(λi,2 + Vi)

−1

...

λi,di−1 = λi,∞ − TwcWi − (λi,∞)2(λi,∞ + Vi)
−1 (17)

where Wi and Vi are the noise in the environmental model

and observation model for point qi, respectively, and Twc is

the worst-case interobservation time outlined in Lemma 3.

Solving for λi,∞ using the nesting functions grows expo-

nentially complicated due to the number of terms, but once

converted into quadratic form, the solution can be easily

computed. The nesting equations can be simplified into a

general form offline and then be hardcoded into a device as

functions that depend on T , Wi, Vi, and d, which we express

as Fd : R>0 × R>0 × R>0 → R>0 ∀ d ∈ {1, ..., �T/fs
}
where Fd(T,Wi, Vi) = λi,∞.

D. Greedy Knockdown Algorithm

For multiple points of interest around a path, the optimal

controller problem becomes finding the optimal dwell time at

each point of interest and moving at maximum velocity when

no points are within the sensing radius. We propose to find

the dwell times that result in a minimum bound of maximum

uncertainty using a greedy algorithm, termed the Greedy

Knockdown Algorithm. For sensor scheduling problems,

greedy algorithms were proven optimal when state and sen-

sor noise were uncorrelated [4] and periodic controllers over

finite loops, such as those formed by a position-dependent

velocity controller, can arbitrarily closely approximate the

optimal steady state solution [15]. We assume W and V
are uncorrelated, and that each point of interest is measured

for only a single series of observations for a cycle.

Our proposed solution, the Greedy Knockdown Algorithm,

determines the optimal number of observations for uncorre-

lated points of interest using the location of the points q, the

uncertainty in the environmental model W , the covariance

of the noise in the observation model V , the length of the

path L, and the maximum velocity vmax. For each iteration

within the algorithm, the maximum steady state uncertainty

for all points is calculated, and an observation is added to the

point with the highest uncertainty. The algorithm continues



until a desired depth Na or the end conditions are met. The

algorithm was developed to find the optimal upperbound

uncertainty within the Kalman filter covariance matrix for

points of interest that have non-overlapping sensing regions

and are uncorrelated, but we will later show that the algo-

rithm still performs well for overlapping cases.

Algorithm 1 Greedy Knockdown Algorithm

Input: q, W , V , L, vmax, N , Na

Output: d
1: d = 0Na×N , T = 0Na×1, λ∞ = 0Na×N

2: d[0, :] = 1
3: for a = 1 to Ndepth do
4: Calculate T [a− 1] with d[a− 1, :] using Eq. (18)

5: Calculate λ∞[a, :] using Es. (17)

6: c_max = argmaxc λ∞[a, c]
7: d[a, :] = d[a− 1, :]
8: d[a, c_max] = d[a, c_max] + 1
9: if End Condition Met then

10: break

11: end if
12: end for
13: r_min = argminr (maxc λ∞[r, c])
14: return d[r_min, :]

The Greedy Knockdown Algorithm is initialized by as-

suming each point is visited at least once per loop, so the

number of consecutive measurements associated with each

point of interest i (di) at a = 0 is set to 1.

For each iteration of the Greedy Knockdown Algorithm,

the loop cycle time is calculated using the fact that when

the robotic platform is not within measurement range of any

point of interest, it is optimal for the platform to be moving

at maximum velocity as outlined in Lemma 2.

The loop cycle time is calculated for each iteration of the

Greedy Knockdown Algorithm using the following:

Ta =

∫
{θ|q �∈B(θ)}

dθ

Vmax
+

N∑
i=1

max
(∫

{θ|qi∈B(θ)}

dθ

Vmax
,
di
fs

)
(18)

where Ta is the loop cycle time at algorithm depth a, the

integrals are over {θ|q �∈ B(θ)} and {θ|qi ∈ B(θ)}, which

stand for all locations θ that are and are not in range of any

point of interest qi, respectively.

For each iteration, the maximum steady state uncertainty

for each point of interest qi is calculated using Eq. ??. The

point with the highest maximum steady state uncertainty

has an additional observation added, incrementing di and

increasing the total accumulation at all other points of inter-

est. The result is the length of time that a robotic platform

must be within range of each point of interest in order to

achieve an optimal minimum bound on uncertainty for any

initial starting location.

We update Problem 1 by modifying the minimium steady-

state uncertainty objective with a maximum velocity objec-

tive since by Lemma 2, maximizing the velocity subject to

the Robustness Constraint in Lemma 1 minimizes the steady-

state uncertainty. The Robustness Constraint utilizes the

number of observations provided by the Greedy Knockdown

Algorithm, resulting in the following formulation:

argmin
α0,...,αJ−1

J−1∑
j=0

αj (19)

s.t.

∫
{qi∈B(θ)}

J−1∑
j=0

αj βj(θ) dθ ≥ di
fs

1

vmin
< αj ≤ 1

vmax

∀ i ∈ {1, ..., N}, j ∈ {0, ..., J − 1}
The minimization target is αj , which are the weights of

J known basis functions βj(θ). The program is linear with

the number of constraints increasing with the number of

points of interest, which can be solved using any standard

linear program solver. The solution to Eq. 19 results in a

set {α0, ..., αJ−1} that is used with Eq. 8 to determine the

optimal speed controller to achieve the minimum bound of

the maximum steady state uncertainty of all points of interest.

IV. SIMULATION RESULTS

For our tests, we used a drone model with an observation

window that corresponded to a field of view of 45◦ and 30◦

along the x- and y-axis, respectively, with a constant altitude

of 15 m, resulting in a sensing window B(θ) of 30 m by

17.32 m. The drone followed a simple circle path of length

L, such that θ ∈ [0, L] with points of interest with non-

overlapping sensing regions randomly drawn from a uniform

distribution over [0, L] for position and over [0, 1] for Wi.

The velocity controller was approximated using J = 200
rectangular basis segments.

The tests were run for 600 seconds, and the minimum

upperbound on the steady state error was approximated by

the maximum eigenvalue of the Kalman filter covariance

matrix over the last 150 seconds of each test. For each

test, the steady state eigenvalue was calculated with the

same points of interest and environmental model for three

controllers: constant velocity controller, first-order velocity

controller, and proposed velocity controller. The constant

velocity controller sets αj = 1/vmax ∀j ∈ {0, ..., J−1}.

The first-order controller approximates the discrete Kalman

filter updates in the continuous framework proposed by [7]

by setting the uncertainty reduction (c(qi) from [7]) to the

following:

c(qi) = T0Vifs (20)

where T0 is used as an approximation of the loop time at

steady state, Vi is from the covariance of the environmental

model, and fs is the sampling rate. This value was selected

because at steady state conditions, the increase in uncertainty

(Vi) for each cycle of the loop should equal the reduction

and the majority of reduction occurs with a single sample.

The maximum eigenvalue of the Kalman filter covariance

matrix for each controller was normalized across a trial



Fig. 4. (a) Example simulation setup for N =6 with the robotic platform traveling in the counter-clockwise direction. (b) Example plot of maximum
eigenvalues for the three controllers under test. (c) Result distributions from 1000 runs with box representing 25th and 75th percentile and red line
representing median for following test configurations: (c, Left) N ∈ {2, 4, 6, 8}, vmax = 30 m/s, and Vi = 10. (c, Middle)Vi ∈ {5, 10, 20}, N = 6,
and vmax = 30 m/s. (c, Right) vmax ∈ {10, 30, 50} m/s, N = 6, and Vi = 10.

by the maximum covariance bound output by the Greedy

Knockdown Algorithm.

Normalized λ∞
max = 100

(
λ∞
max(Σs)− λ∞

wc

)
/λ∞

wc (21)

where λ∞
wc is the worst-case maximum bound on the eigen-

values of the Kalman filter covariance matrix. A negative

value represents maximum eigenvalues that are below the

worst-case bound while a positive value represents maximum

eigenvalues that are higher than the worst-case bound. Since

the bound is a maximum bound on the value, we would

expect all results from our proposed algorithm to be negative.

The tests were performed in Python 3.6 using the opti-

mization package PuLP [18] on a laptop with an Intel quad-

core CPU at 2.30 GHz with 8.00 GB RAM.

A. Comparison to First Order Approximation

The number of points of interest (N ), the maximum

velocity (vmax), and the noise in the observation model

(nobs) were varied one at a time while the other variables

were held constant. Each testing configuration was run for

100 randomly drawn trials with each controller tested on

each trial. With an L of 500 m and a minimum vmax of 10
m/s, the drone has sufficient time to complete multiple passes

of the loop, approximating steady state for stable cases. A

summary of the results can be seen in Fig. 4.

The first configuration used vmax = 30 m/s and Vi = 10
with N ∈ {2, 4, 6, 8}. The number of points of interest was

adjusted to examine the effect of the robustness constraint

and the first-order approximation of the Kalman filter. The

first-order approximation works best when points of interest

only require a single observation. In the case of N = 2,

the number of observations required for the point with the

highest rate of growth is always greater than 1, though,

because the optimal strategy is to repeatedly sample the point

until the uncertainty of the other point surpasses the first. As

the number of points increases, more points of interest can

be optimally measured in only one observation and the first-

order velocity controller performs better.

The next testing configuration examined the controllers

under different levels of observation noise using Vi ∈
{5, 10, 20}, N = 6, and vmax = 30 m/s. For a point of

reference, the maximum eigenvalue bound from the pro-

posed method for the nominal test case (N = 6, vmax =
30m/s, nobs=10) is 23.6 (avg) with a range of (13.4, 52.5)

over 100 tests. The more noise in the observation model, the

more successive observations at a single point can improve

the estimate of that point. Observation models that have very

low levels of noise would obtain a very good estimate from

a single observation, serving as a benefit for the first-order

controller.

The last testing configuration examined the controllers at

different maximum velocities using vmax ∈ {10, 30, 50} m/s,

N = 6, and Vi = 10. At low maximum velocity limits, a

constant velocity controller set to max velocity works com-

parably to other algorithms due to the relative size of sensing

regions to the distance covered between each observation.

Sensing regions at least as large as vmax/fs ensure that

at least one observation is captured; lower velocities allow

multiple observations per point of interest. As the maximum

velocity increases, the controllers need to ensure they observe



each point of interest in order to maintain stability in the form

of a Robustness Constraint. As can be seen in Fig. 4 (Right),

the Constant Velocity controller has poor performance in all

high max velocity test cases.

The Proposed controller achieved a maximum eigenvalue

of 4.0% below the worst-case bound on average with a

range of 0.0% to 15.1% where 0.0% represents the maximum

eigenvalue achieving the worst-case bound. The First-Order

velocity controller achieved maximum eigenvalues in the

range of -3.0% (best at N=6, Vi=10, vmax=10) to 13.0%

(worst at N =2, Vi =10, vmax =30) above the worst-case

bound with 6.0% above on average. The Constant Velocity

controller performed poorly in all test cases except where

vmax = 10 where the performance was comparable to the

First-Order controller. In all trials, the maximum eigenvalue

of the Proposed Controller was below the calculated worst-

case bound.

B. Robustness Results

The proposed controller was developed to be robust to

initial position where more robust controllers have lower

ranges of λ∞
max across different initial sampling locations.

To test the robust guarantee, we compared the first-order

controller to our proposed controller by examining the range

of λ∞
max normalized to the uncertainty bound output from

the Greedy Knockdown Algorithm over 10 different initial

sampling positions for 500 unique trials. Both controllers had

low average ranges (proposed: 0.07%, first-order: 0.39%).

The Robustness Constraint is to handle corner cases of slight

misalignment, though, which can be seen by examining the

worst-case range across all trials (proposed: 2.5%, first-order:

7.1%) and the number of outliers (proposed: 0.8% over 1.0%,

first-order: 8.8% over 1.0%). The first-order approximation

had 10 times as many outliers as the proposed algorithm.

An example of the robustness to initial sampling position

can be seen in Table I. The first-order approximation has

two different possible max eigenvalues due to alignment of

sensing regions, but the proposed algorithm has the same

maximum eigenvalue regardless of initial sampling position

due to the Robustness Constraint.

V. CONCLUSIONS

We have presented a method for developing a velocity

controller with robust optimal bound on the maximum eigen-

value of the Kalman filter covariance with constraints from

an iterative Greedy Knockdown Algorithm. The algorithm

results in a velocity controller that is robust to initial sam-

pling positions and outperforms existing periodic velocity

controllers around closed loops. The optimal bound was only

for uncorrelated environmental and observation models, but

loose bounds and an initial framework for the correlated case

TABLE I

TRIAL 5 OF THE ROBUSTNESS TEST WITH VARYING INITIAL POSITIONS.

Initial Position 0 6 12 18 24
First-Order 22.9 23.9 23.9 22.9 22.9
Proposed 22.3 22.3 22.3 22.3 22.3

was presented and is a topic of future work. The work will

also be expanded to robust open-loop velocity controllers.
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