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Abstract Galectins are a family of B-galactoside-binding lectins characterized by
a unique sequence motif in the carbohydrate recognition domain, and evolutionary
and structural conservation from fungi to invertebrates and vertebrates, including
mammals. Their biological roles, initially understood as limited to recognition of
endogenous (“self”’) carbohydrate ligands in embryogenesis and early development,
dramatically expanded in later years by the discovery of their roles in tissue repair,
cancer, adipogenesis, and regulation of immune homeostasis. In recent years, how-
ever, evidence has also accumulated to support the notion that galectins can bind
(“non-self”’) glycans on the surface of potentially pathogenic microbes, and function
as recognition and effector factors in innate immunity. Thus, this evidence has estab-
lished a new paradigm by which galectins can function not only as pattern recognition
receptors but also as effector factors, by binding to the microbial surface and inhibit-
ing adhesion and/or entry into the host cell, directly killing the potential pathogen
by disrupting its surface structures, or by promoting phagocytosis, encapsulation,
autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacte-
ria, and protistan parasites take advantage of the aforementioned recognition roles of
the vector/host galectins, for successful attachment and invasion. These recent find-
ings suggest that galectin-mediated innate immune recognition and effector mecha-
nisms, which throughout evolution have remained effective for preventing or fighting
viral, bacterial, and parasitic infection, have been “subverted” by certain pathogens
by unique evolutionary adaptations of their surface glycome to gain host entry, and
the acquisition of effective mechanisms to evade the host’s immune responses.
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7.1 Introduction

Based on unique sequence motifs in the carbohydrate recognition domain (CRD) and
their structural fold, lectins from protistans, fungi, invertebrates, and vertebrates have
been classified into families that include galectins (formerly S-type lectins), C-type,
F-type, X-type, R-type, P-type, and others (reviewed in Vasta and Ahmed 2008).
Rigorous structural and phylogenetic analyses of individual lectin families among
extant animal species have yielded critical information about their evolutionary his-
tory and biological role(s). For example, C- and F-type lectins and galectins are of
ubiquitous taxonomic distribution, and highly diversified from the functional stand-
point (Zelensky and Gready 2005; Vasta et al. 2012). However, while C- and F-type
lectins are structurally heterogeneous lectin families (Vasta et al. 2017), galectins
are generally considered as structurally and evolutionary conserved (Cooper 2002;
Cummings et al. 2017).

Galectins constitute a family of B-galactoside-binding proteins characterized by
a canonical sequence motif in their CRDs, that are widely distributed in eukary-
otic taxa, including fungi, sponges, and both invertebrates and vertebrates (Cooper
2002). Most galectins are non-glycosylated soluble proteins, although exceptions
with transmembrane domains have been reported (Lipkowitz et al. 2004). Galectins
are synthesized in the cytosol, and can be translocated into the nucleus where they
can form part of the spliceosome (Cho and Cummings 1995a, b; Tsay et al. 1999)
(Fig. 7.1a). Moreover, although galectins lack a typical secretion signal peptide, they
can be secreted into the extracellular space by direct translocation across the plasma
membrane (Cleves et al. 1996).

Although galectins have been evolutionarily conserved from a structural stand-
point (Houzelstein et al. 2004), the galectin repertoire in any given mammalian
species is diversified, and constituted by multiple galectin types, subtypes, and
isoforms (Vasta and Ahmed 2008; Cooper 2002). The distinct domain organization
of mammalian galectins has led to their classification into three major types: “proto”,
“chimera”, and “tandem-repeat” (TR) (Hirabayashi and Kasai 1993) (Fig. 7.1b).
The peptide subunits of the proto-type galectins contain a single CRD and can
form non-covalently linked homodimers, with a dimerization equilibrium Kd of
7 uM (Cho and Cummings 1995a, b). The chimera galectins also house a single
CRD, but display an N-terminal domain rich in proline and glycine that enables the
formation of oligomers. Finally, TR galectins display two CRDs that are bridged by
a functional linker peptide that can range from 5 to over 50 amino acids in length.
Within each galectin type, up to 15 distinct galectin subtypes have been identified,
numbered following the order of their discovery. Among these, galectin-1, -2,
-5, -7, -10, -11, -13, -14, and -15 are proto-type, galectin-3 is a chimera-type,
and galectin-4, -6, -8, -9, and -12 are TR-type (Hirabayashi and Kasai 1993).
In invertebrate species, galectins may have unique structural features, including
multiple CRDs per polypeptide, such as the 4-CRD galectins described in clams,
oysters, and snails (Tasumi and Vasta 2007; Feng et al. 2013, 2015a, b; Kurz et al.
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Fig. 7.1 Expression, secretion, and functions of galectins, and galectin types. a Galectins are
synthesized in the cytosol, and can be translocated into the nucleus and interact with ribonucleo-
protein (RNP) particles. Galectins can be transported and secreted to the extracellular space, where
they interact with glycans in the extracellular matrix, bridge cell surface receptors, or recognize
microbial glycans (red box). b Galectins are classified into three main types: proto, chimera, and
tandem-repeat types. Proto-type galectins contain one carbohydrate-recognition domain (CRD) per
subunit and are usually homodimers of non-covalently linked subunits (galectin-1, -2, -5, -7, -10,
-11, -13, -14, and -15). In contrast, chimera-type galectins are monomeric with a carboxy-terminal
CRD, joined to an amino-terminal peptide that contains a collagen-like sequence rich in proline
and glycine, and can oligomerize as trimers (galectin3). In the tandem-repeat galectins, two CRDs
are covalently joined by a linker peptide (galectin-4, -6, -8, -9, and -12)

2013; Vasta et al. 2015), or the shrimp galectin MjGal that resembles a chimera-type
galectin, although the CRD is located at the N-terminal end (Shi et al. 2014).

In addition to the three major galectin types, other galectin-related proteins that do
not follow the canonical structure of the typical family members have been described.
Among these, two notable exceptions have been reported to display transmembrane
domains (Lipkowitz et al. 2004; Gorski et al. 2002). In addition, soluble galectin-
like proteins, such as the eye lens galectin-related inter-fiber protein (GRIFIN), the
galectin-related protein (GRP) (previously HSPC159; hematopoietic stem cell pre-
cursor), and the Charcot-Leyden crystals (galectin-10), have been identified, and their
structural and functional aspects are characterized to various levels of detail (Su et al.
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2018; Zhou et al. 2008; Ogden et al. 1998). Mammalian GRIFIN lacks carbohydrate-
binding activity (Ogden et al. 1998), but the fish (Ahmed and Vasta 2008) and chicken
(Garcia Caballero et al. 2016) equivalents actively recognize B-galactosides. Other
unusual galectins are the sheep protein ovgalll (galectin-11; Preston et al. 2015),
and the proto-type galectin-13 (“pregnancy protein 13”’) which in solution forms a
dimer stabilized by a disulfide bridge between Cys136 and Cys138 (Than et al. 1999,
2004).

7.2 The Galectin CRD: Structure
and Carbohydrate-Binding Properties

The structure of galectin-1 (Gall) in complex with N-acetyl-lactosamine (LacNAc)
enabled the identification of the specific amino acid residues of the CRD that interact
directly or indirectly, through water molecules and hydroxyl groups on the disac-
charide, as well as the nature of the interactions (hydrogen bonds, electrostatic, and
van der Waals) (Liao et al. 1994). The 135 amino acids-long polypeptide subunit of
Gall folds into a B-sandwich that comprises two anti-parallel p-sheets of five and
six strands each (S1-S6 and F1-F5). In the Gall dimer, the subunits are related by a
two-fold rotational axis perpendicular to the plane of the B-sheets. The single carbo-
hydrate recognition cleft is formed by three continuous concave strands (S4—-S6) in
which H*, B*, R*® H2, B!, W E’! and R73 establish direct interactions with
LacNAc, and determine the carbohydrate specificity of galectin-1 (Liao et al. 1994).
The non-reducing terminal galactose ring is maintained in place by a hydropho-
bic interaction with W, while additional water-mediated interactions between H>2,
D>, and R”? and the nitrogen of the N-acetyl group determine the higher affinity for
LacNAc over lactose. The dissociation constants of bovine Gall for lactose, Lac-
NAc, and thiodigalactoside (TDG) measured by microcalorimetry are in the range
of 107> M, with two binding sites per Gall dimer (Schwarz et al. 1998). The crys-
tal structures of additional galectin types (human galectin-2, -3, and -7) in complex
with mono- or disaccharides, or biantennary oligosaccharides were later resolved
(Seetharaman et al. 1998; Caldararu et al. 2019; Si et al. 2016; Ramaswamy et al.
2015). More recently, the structures of the individual N- and C-terminal CRDs of
TR galectins, such as galectins-4, -8, and -9, were resolved by either crystallization
or NMR spectroscopy (reviewed in Di Lella et al. 2011).

In addition to the primary binding cleft in the galectin CRD described above,
additional carbohydrate-binding areas (extended binding site) can enhance affinity
for larger or more complex glycans. In the galectin-3 (Gal3) CRD, for example,
the carbohydrate-binding site is shaped as a cleft open at both ends, exposing the
GIcNAc of the LacNAc to the solvent (Seetharaman et al. 1998). This extended
binding site in Gal3 results in increased affinity for polylactosamines and ABH blood
group oligosaccharides [Fucal, 2; GalNAcal,3(Fucal,2); and Galal,3(Fucal,2)]
(Seetharaman et al. 1998). For TR galectins, the two CRDs are structurally similar
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but show either different affinities for the same ligand such as galectin-4 (Gal4), or
different fold and specificities altogether, such as galectin-8 (Krejcirikova et al. 2011;
Ideo et al. 2003, 2011). For galectins from invertebrates, such as the Caenorhabditis
elegans 16-kDa galectin and the oyster (Crassostrea virginica) galectins CvGall and
CvGal2, their binding specificity for blood group oligosaccharides is determined by
a shorter loop 4 in the primary binding cleft in the galectin CRD (Ahmed et al. 2002;
Feng et al. 2013; Vasta et al. 2015).

The dimerization of proto-type galectins such as Gall is critical for their function
in mediating interactions between cells, or cells and glycans in the extracellular
matrix (ECM) (Gabius 1997). The binding of galectins to multivalent glycans on the
cell surface may promote lattice formation, as supported by the structure of Gall
complexed with a biantennary glycan, in which the ligand is cross-linked between
two Gall dimers (Bourne et al. 1994). Similar interactions via the N terminus domain
leading to the formation of oligomers (trimers and pentamers) have been proposed for
Gal3 (Morris et al. 2004; Fortuna-Costa et al. 2014). For the vertebrate TR galectins
and the multi-CRD galectins from invertebrates, the carbohydrate specificity of the
CRDs present in the polypeptide is similar but not identical (Carlsson et al. 2007;
Nagae et al. 2009; Vasta et al. 2015; Houzelstein et al. 2004; Krejcirikovaetal. 2011).
This is supported by the capacity of TR galectins to cross-link cells with different
synthetic glycoconjugates (Tomizawa et al. 2005; Ideo et al. 2011). The multivalency
of galectins attained by the presence of multiple distinct CRDs in a single subunit
polypeptide as described above for the TR galectins, or by oligomerization of the
galectin subunits, such as in the proto or chimera types, enables cross-linking of two
or more cells, and adhesion of cells to glycosylated surfaces, as well as the formation
of lattices at the cell surface that are critical for signaling or receptor endocytosis
(Nabi et al. 2015; Kutzner et al. 2019; Garner and Baum 2008; Rabinovich et al.
2007a, b) (Fig. 7.2a).

The compact B-sandwich structure of the galectin CRD in the presence of bound
ligand determines the resistance of Gall to protease activity (Liao et al. 1994), while
the resistance to oxidative inactivation in the extracellular environment can be ratio-
nalized by changes in the dimerization equilibrium which are determined by the
oxidation state of cysteine sulfhydryl groups (Stowell et al. 2009). Six key cysteine
residues, some of which are located on the surface of the molecule on the face oppo-
site to the CRD, are potentially susceptible to oxidation (DiLella et al. 2010; Liao
et al. 1994; Lobsanov et al. 1993). Upon secretion to the oxidative extracellular
environment, some of these cysteines establish intramolecular disulfide bonds, caus-
ing conformational changes that hinder dimerization (Lopez-Lucendo et al. 2004).
Therefore, the oxidation state of cysteine sulfhydryl groups, the presence of car-
bohydrate ligand, and the dimerization equilibrium play critical roles in a dynamic
interplay in which specific binding to glycan ligands enhances dimerization of Gall,
and reduces its sensitivity to oxidative inactivation (Stowell et al. 2009).
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Fig. 7.2 Recognition of
“self” and “non-self” glycans
by galectins. a In the
extracellular space, galectins
form multivalent oligomers
that cross-link cell surface
glycoproteins and
glycolipids, form
microdomains and lattices,
and activate signaling

pathways. b Proto, chimera, Host glycans
and tandem-repeat galectins _
can function as pattern (b) Microbial glycans

recognition receptors (PRRs)
and establish
trans-interactions with the
host cell surface and
microbial glycans

Host glycans

7.3 Functional Aspects: Recognition of Endogenous
(“Self”’) Glycans

While proto and chimera type galectin subunits possess a single CRD, they can form
oligomeric structures that can interact with and cross-link multivalent ligands, either
soluble glycoproteins or glycolipids, and complex glycans on the cell surface or
ECM with increased avidity (Dam and Brewer 2008; Cho and Cummings 1995a,
b). TR galectins possess two CRDs in a single polypeptide, and can function simi-
larly. The density and presentation of the cell surface glycans modulates affinity of the
CRD-ligand interaction via negative cooperativity and thus, multivalent galectins can
cross-link them into lattices that induce their clustering into lipid raft microdomains
(Dam and Brewer 2008; Cho and Cummings 1995a, b; Nabi et al. 2015; Kutzner et al.
2019). Therefore, galectin—ligand interactions can modulate cell function by induc-
ing reorganization or association of cell surface components, regulating turnover
of endocytic receptors, and activating or attenuating signaling pathways (Dam and
Brewer 2008; Garner and Baum 2008; Rabinovich et al. 2007a, b). Moreover, because
the various galectin types and subtypes exhibit differences in carbohydrate specificity
and affinity, and bind a broad range of glycans that display the requisite topologies, the
galectin repertoire is endowed of substantial diversity in recognition properties. This,
together with the galectins’ unique tissue-specific expression, distribution, and local
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concentrations, supports extensive functional diversification (Cooper 2002; Vasta
and Ahmed 2008; Vasta 2009). Accordingly, the biological function of a particular
galectin may vary among cells, tissues, and fluids depending on their concentration,
the redox properties of the intra- or extracellular environments, and the availabil-
ity and multivalent presentation of carbohydrate ligands at the cell surface or ECM
(Vasta and Ahmed 2008; Vasta 2009).

The observation that galectins in chicken muscle were developmentally regulated
suggested that their biological roles were related to embryogenesis and early devel-
opment. The finding that these galectins preferentially recognized polylactosamines
present on the myoblast surface and the ECM led to hypothesize that galectins pro-
mote myoblast fusion (reviewed in Cummings et al. 2017). Subsequent studies on
murine Gall and Gal3 revealed key roles in the development of notochord, skeletal
muscle, and central nervous system (Colnot et al. 1997, 2001; Georgiadis et al. 2007).
More recently, the increasing availability of null mice for selected galectins enabled
analyses of developmental phenotypes, and the elucidation of the unique functions
of the multiple galectin types and subtypes in the complex mammalian galectin
repertoires. In the past few years, genetically tractable models such as Drosophila,
C. elegans, and zebrafish (Danio rerio) have become useful systems for address-
ing the biological roles of galectins (Pace et al. 2002; Ahmed et al. 2002; Vasta
et al. 2004; Nemoto-Sasaki et al. 2008; Feng et al. 2015a, b; Nita-Lazar et al. 2016).
For example, anti-sense knockdown approaches in zebrafish revealed key roles of
galectins in early differentiation and development of the myotome (Ahmed et al.
2009a, b), and retinal repair and regeneration (Craig et al. 2010; Eastlake et al.
2017).

The multiple roles of galectins in cancer have been addressed with increasing inter-
est over the past two decades (Reviewed in Méndez-Huergo et al. 2017). Melanoma,
prostate, and ovarian cancer may overexpress galectin-1,-3, -7, -8 and -9, and in some
cases their expression profiles can be associated with malignancy stage or metastatic
potential (Blidner et al. 2015; Hill et al. 2010). Expression of Gall in the vascular
endothelium promotes tumor angiogenesis, by a mechanism that involves binding of
Gall to complex N-glycans on VEGF receptor 2 (VEGFR?2) and activation of VEGF-
like signaling (Croci et al. 2014). In the early stages of prostate adenocarcinoma, Gal3
expression can be silenced by promoter methylation (Ahmed et al. 2009a, b; Ahmed
and Al Sadek 2015), but in later stages, together with its preferred ligand on the cell
surface—the Thomsen-Friedenreich disaccharide (Galp1,3GalNAc)—Gal3 has key
roles in tumor angiogenesis, tumor-endothelial cell adhesion, metastasis, and eva-
sion of immune surveillance by killing of activated T cells (Guha et al. 2013). Since
the 1990s, the roles of galectins as regulators of both innate and adaptive immune
homeostasis have firmly established and characterized in detail (Di Lellaetal. 2011).
Galectins are ubiquitously expressed and distributed in mammalian tissues, includ-
ing most cells of the innate (dendritic cells, macrophages, mast cells, natural killer
cells, gamma/delta T cells, and B-1 cells) and adaptive (activated B and T cells)
immune system, and as in other cell types (Stowell et al. 2008; Rabinovich et al.
2007a, b). Immune challenge by viruses, bacteria, and eukaryotic parasites, how-
ever, can significantly alter their expression and secretion (Rabinovich et al. 2012;
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Stowell et al. 2008). Endogenous glycans recognized by galectins on the surface of
immune cells and other cell types include B-integrins, CD45, GM1, CD44, Tim3,
MUCI, podoplanin, CD166, ABH-type oligosaccharides CD43, CD45, CD7, CD71,
CD44, TIM3, CTLA4, MUC1, MUC16, and MerTK (Rabinovich and Toscano 2009;
Guzman-Aranguez et al. 2009; Hirabayashi et al. 2002; Wu et al. 2002; Krzeminski
etal. 2011; Zhu et al. 2005). Galectins can function as pro- or anti-inflammatory fac-
tors in innate immune responses. For example, Gall can block or attenuate signaling
that promote leukocyte infiltration, migration, and recruitment (Stowell et al. 2008).
Gal3 expression in epithelia, macrophages, and dendritic cells is upregulated during
inflammation, and can promote macrophage recruitment and anti-microbial activity
(Liu et al. 2012; Toledo et al. 2014). Galectin-9 (Gal9) functions as a chemoat-
tractant for eosinophils and further promotes their activation, oxidative activity, and
degranulation (Hirashima et al. 2002).

The functions of galectins as modulators of lymphocyte development and adap-
tive immune responses have been the focus of intense research in the past few years
(Rabinovich et al. 2012; Liu et al. 2012). In the bone marrow and thymic compart-
ments lymphocyte precursors interact with stromal cells via Gall, which is critical
to their development, selection, and migration to the periphery (Rossi et al. 2006).
Additionally, Gall can either drive apoptosis or enhance proliferation of T-cells,
depending on the microenvironment in which the exposure takes place, as well as
the T cell developmental stage and activation status. For Gal3, however, pro- or
anti-apoptotic effects on T-cells are determined by whether the exposure is extracel-
lular or intracellular, respectively (Hsu and Liu 2008). Galectins can also modulate
cytokine synthesis and secretion by T cells, and determine the Th1/Th2 balance of
the immune (Rabinovich et al. 2012; Liu et al. 2012; Hsu and Liu 2008). More
recently, it was shown that Gall can induce tolerogenic phenotypes in dendritic cells
leading to expansion of regulatory T cells that can promote feto-maternal tolerance
and suppress autoimmune neuroinflammation (Blois et al. 2007, 2019). Thus, it has
become firmly established that galectins can modulate immune homeostasis with
either beneficial or detrimental effects on pathological conditions that result from
depressed or exacerbated immune function, such as cancer, inflammation, allergy,
and autoimmune disorders (Rabinovich et al. 2012; Liu et al. 2012; Hsu and Liu
2008).

In recent years, associations of type 2 diabetes, obesity, and inflammation with
adipogenic roles of galectin-12 (Gall2) and Gal3 have been identified and char-
acterized in detail (Yang et al. 2011a, b, c; Hsu et al. 2018; Pejnovic et al. 2013;
Pang et al. 2013). Gall2 was shown to function as a negative regulator of lipolysis
and insulin sensitivity (Yang et al. 2011a, b, c¢; Hsu et al. 2018). In contrast, Gal3
null mice exhibit increased adiposity, systemic inflammation, dysregulated glucose
metabolism, diabetes-associated kidney damage, and diet-induced atherogenesis
(Pejnovic et al. 2013; Pang et al. 2013).
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7.4 Role(s) of Galectins in Infection: Recognition
of Exogenous (‘“Non-self”’) Glycans and Effector
Functions

The recent finding that galectins can bind exogenous (“non-self”’) glycans on the
surface of viruses, bacteria, protistan parasites, and fungi has led to a new paradigm
about their potential roles in innate immunity as pattern recognition receptors (PRRs)
(reviewed in Vasta 2009) (Fig. 7.2b). For example, Gall can bind to complex-
type N-linked oligosaccharide on the HIV-1 gp120 envelope glycoprotein and to
Trichomonas vaginalis lipophosphoglycan, whereas Gal3 recognizes both terminal
and internal N-acetyllactosamine units in lipopolysaccharides from meningococcus
(Neisseria meningitidis), gonococcus (N. gonorrhoeae), Haemophilus influenzae,
and Helicobacter pylori, polysaccharide type XIV from pneumococcus (Streptococ-
cus pneumoniae), LacdiNAc from Schistosoma mansoni, and oligomannans from
Candida albicans. The lipophosphoglycan from Leishmania major is recognized
by both Gal3 and Gal9, while Gal4 recognizes Escherichia coli strains that dis-
play blood group B oligosaccharides. The substantial diversity of the galectin reper-
toire(s), including the presence of isoforms, and unique specificity of each galectin
subtype toward glycan ligands, suggests a broad recognition capacity for non-self
carbohydrate moieties. In addition to the TR galectins that have at least two CRDs (up
to four CRDs in invertebrate galectins; Vasta et al. 2015), the proto- and chimera-type
galectins can form oligomers with two or more CRDs per molecule. Thus, all three
galectin types are endowed with multivalent binding properties that enable not only
the formation of lattices at the cell surface but also the capacity to cross-link cells.
These properties enable galectins to participate in direct recognition of pathogens
and parasites, as well as effector factors in downstream processes that lead to modu-
lation of innate and adaptive immune responses. As will be discussed below, binding
of host galectins to surface glycans either on the surface of pathogens and parasites
or to their receptors on the host cell surface can lead to various outcomes benefi-
cial to the host, including hindering or blocking their attachment to or entry into
the host cells, direct killing of the pathogen, opsonization followed by phagocytosis
and intracellular killing, encapsulation, or granuloma formation. In most cases, these
galectin-mediated innate immune defense mechanisms take place simultaneously or
subsequently upon challenge of any given pathogen. Furthermore, as multiple lectin
families and other innate immune receptors such as TLRs are present in any sin-
gle species, cooperative/synergic defense functions of galectins with other receptors
have been described (Esteban et al. 2011; Jouault et al. 20006).

It should be noted that as invertebrates lack the adaptive immune response typical
of vertebrates characterized by immunoglobulins and B and T cells, their galectins
function as recognition and effector molecules as part of innate immune responses,
exerting defense roles through the various mechanisms described below. In verte-
brates, however, in addition to innate immune responses similar to those operative in
invertebrates, several galectin-mediated key immunoregulatory functions (discussed
in Sect. 7.3) triggered by the infectious challenge further contribute to maintain
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immune homeostasis and to potentially develop an efficient and long-lasting adaptive
immunity against the potential pathogen. The recognition of pathogens and parasites
by galectins from both invertebrate and vertebrate hosts, however, can also lead to
contrasting outcomes, either by promoting effective host defense mechanisms as dis-
cussed above, or by facilitating pathogen attachment, entry and infection of the host.
In this regard, whether the recognition of pathogens and parasites by host galectins
is beneficial to the host, or constitutes a pathogen’s host attachment and entry strate-
gies, can be interpreted as the outcome of the host—pathogen co-evolutionary process
(Vasta 2009).

1. Blocking of pathogen attachment to the host cell surface: Gall can bind to
the envelope glycoprotein of influenza A virus (IAV) and reduce infection severity,
possibly by hindering viral attachment to the cell surface sialylated glycan receptors
(Yangetal.2011a, b, c) (Fig. 7.3a). However, the detailed mechanisms involved have
not been fully elucidated yet (reviewed in Machala et al. 2019). Similarly, Hattori
et al. reported that Gal9 bound to the influenza A virus (PR8/HINI strain) and
blocked virus attachment to the host cells in a lactose-specific manner (Hattori et al.
2013). Furthermore, in the experimentally IAV-infected mice, Gal9 expression was
upregulated (Hattori et al. 2013), an observation consistent with the elevated levels
of Gal9 observed in patients with IAV infection (Katoh et al. 2014). In contrast,
Gal3 can function as an anti-viral galectin not by direct interactions as reported by

() (b)

Y

Galectin 1
or? 9 >|<C?OG C

Virus receptor

g

Inhibition of attachment Attachment and infection

Fig. 7.3 Galectins can inhibit or facilitate attachment of enveloped viruses to the host cell surface.
a Gall can block the attachment of viruses such as dengue by binding to and “coating” the envelope
oligosaccharides (influenza A and IHNV), or by hindering access to the viral receptors (IHNV and
dengue) on the host cell surface. b Gall can also cross-link the viral envelope to the host cell surface
receptors facilitating attachment (Nipah and HIV)
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Gall and Gal9, but by activating signaling via the JAK-STAT pathway, leading to
an enhanced innate immune response (Jeon et al. 2010). A recent study reported
that Gall can directly interact with dengue virus (DENV), a mosquito-transmitted
enveloped RNA virus that can cause hemorrhagic fever. Gall directly binds to DENV
and inhibits in vitro viral adhesion and internalization into host cells (Toledo et al.
2014). Prior exposure of the cells to dimeric Gall, however, resulted in inhibition of
viral attachment and infection that was greater than exposure of the virus alone. The
role of Gall was also examined in vivo using Gall knockout mice, and demonstrated
that the expression of endogenous Gall contributes to resistance against DENV
infection (Toledo et al. 2014). During infection by Nipah virus (NiV) Gall can
cross-link the N glycans displayed in the NiV envelope glycoproteins and reduce
cell—cell fusion, thereby attenuating the pathophysiologic effects of NiV infection
(Levroney et al. 2005). However, the beneficial effects of Gall in NiV infection are
conditioned by the timing of the virus—galectin interaction, as during early stages of
the viral exposure, Gall can enhance viral attachment and entry (Garner et al. 2015).

During the past few years we have used the zebrafish model to examine the roles
of galectins in viral adhesion and entry by the infectious hematopoietic necrosis virus
(IHNV), which is responsible for significant losses in both farmed and wild salmon
and trout populations (Nita-Lazar et al. 2016). IHNV enters the host through the
epithelial cells of the skin, the gills, and the gut, but the viral adhesion and entry mech-
anisms are not fully understood (Harmache et al. 2006). These epithelial cells express
all three galectin types. They are secreted to the extracellular space, and are abundant
in the mucus that coats the fish external surfaces. Results of the study showed that the
zebrafish galectins Drgall-L2 and Drgal3-L1 interact directly with the glycosylated
envelope of IHNV significantly reducing viral attachment (Nita-Lazar et al. 2016).
The structure of the complex of Drgall-L2 with N-acetyl-D-lactosamine at 2.0 A
resolution together with models of Drgal3-L.1 and the ectodomain of the IHNV
glycoprotein provided insight into the mechanisms by which the binding of these
galectins to the IHN'V glycoprotein hinders the viral attachment (Ghosh et al. 2019).
The IHNV envelope in glycoprotein is arranged in a honeycomb-like (hexagonal)
arrangement of spikes, decorated by N-linked biantennary oligosaccharides that are
also displayed by the host epithelial cells. Drgal1-L2 dimers can cross-link bianten-
nary oligosaccharides from two spikes, thereby occluding two of the six co-receptor
attachment sites on the surface of the virus, while the single C-terminal CRD of
Drgal3-L1 oligomers can block three sites (Ghosh et al. 2019). Thus, the viral sur-
face coverage by Drgal3-L1 is greater than that for Drgall-L2 by a factor of 3/2
(Ghosh et al. 2019), which is consistent with the ratio of their inhibitory efficiency
of 65%/40% determined in viral attachment experiments (Nita-Lazar et al. 2016).
However, because the Drgall-L2 and Drgal3-L1 secreted to the extracellular space
also bind strongly to the fish epithelial cell surface, they can block IHNV cell sur-
face receptors and hinder viral attachment via an alternative mechanism (Nita-Lazar
et al. 2016). Furthermore, as the secreted galectins also bind strongly to the skin
mucus glycans, a third defense mechanism mediated by these galectins would con-
sist in cross-linking and immobilization of the virus in the mucus matrix, which is
sloughed off periodically from the fish skin (Abernathy and Vasta, unpublished). A
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similar mechanism has been proposed for galectin-4 (Gal4), which is expressed and
secreted by gut epithelial cells. Once in the extracellular space, Gal4 would hinder
attachment of Bordetella pertussis and Helicobacter pylori by binding to their gut
epithelial cell surface receptors (Danielsen and Hansen 2006; Ideo et al. 2005).

In addition to blocking pathogen attachment to the host cell surface described
above, galectins can inhibit interaction of the pathogen’s virulence factors with host
receptors. For example, the glycolipid-binding galectin Lec-8, which is strongly
expressed in sections of the digestive tract of the nematode Caenorhabditis elegans,
contributes to host defense against bacterial virulence by competitive binding to gly-
colipid receptors for the pore-forming toxin Cry5SB from Bacillus thuringiensis, a
nematocidal pathogen (Ideo et al. 2009). Interestingly, nematodes can also be suscep-
tible to galectins from their fungal prey. For example, when the nematotoxic galectin
CGL2 from the fungus Coprinopsis cinerea is ingested by C. elegans, it inhibits devel-
opment and reproduction, and kills the nematode by specifically binding to a trisac-
charide (Galp1,4Fucal,6GIcNAc) displayed on the nematode intestine, suggesting
that fungal galectins constitute a defense mechanism against predator nematodes
(Butschi et al. 2010). Similarly, the mammalian Gal2 can also suppress C. elegans
development by binding to the Galg1,4Fuc glycotope, a moiety that is also recog-
nized on the parasitic nematodes of humans, such as Ascaris, Nippostrongylus, and
Brugia spp., suggesting that it may contribute to anti-parasitic responses (Takeuchi
et al. 2019). Galll may also contribute to host defense in ruminants against the
gastrointestinal nematode parasite, Haemonchus contortus (Preston et al. 2015).

2. Direct killing of the pathogen: Some galectins have been reported to not only
bind to, but also directly kill the pathogens, possibly by disrupting their cell sur-
face integrity and their normal physiology. For example, the tandem repeat Gal4 and
galectin-8 (Gal8), which are expressed in the human intestinal tract, can specifically
recognize and kill Escherichia coli strains that display B-blood group oligosaccha-
rides (BGB+ E. coli), while other E. coli strains or bacterial species are not affected
(Stowell et al. 2010). The killing activity of both galectins is mediated by their C-
terminal domains, and appears to be caused by compromising the integrity of the
bacterial cell surface. Mutation of key residues in CRD revealed that the C-CRD
mediates recognition of the BGB+ E. coli but does not affect its viability, while the
N-CRD might be endowed with killing activity (Stowell et al. 2010).

More recently, Park et al. (2016) reported that recombinant Gal3 agglutinated
Helicobacter pylori and displayed a potent bactericidal effect, as revealed by pro-
pidium iodide uptake and drastic morphological changes. The significance of this
observation was buttressed by the higher bacterial loads in Gal3-deficient mice than
in WT mice that had been experimentally infected with H. pylori via gastric tube, sup-
porting the notion that Gal3 plays an important role in innate immunity to infection
and gastric colonization by H. pylori (Park et al. 2016).

Although galectins can modulate phagocytosis and cytokine responses (IL-17,
IL-23, TNFa, and others) to several fungal pathogens, including Candida albicans
(Linden et al. 2013a, b), Cryptococcus neoformans (Almeida et al. 2017), Histo-
plasma capsulatum (Wu et al. 2013), and Paracoccidioides brasiliensis (Ruas et al.
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2009), the galectin-mediated anti-fungal defense mechanisms may also include bind-
ing to and direct killing of the pathogen. The first two, C. albicans and C. neoformans,
are particularly susceptible to direct recognition and fungicidal activity by galectins,
although the mechanisms involved appear to be different. Gal3 recognizes and kills
Candida species that display f1,2-linked oligomannans on the cell surface, but does
not bind to Candida species or strains, or other fungal species such as Saccharomyces
cerevisiae that lack these glycans. The binding of Gal3 to C. albicans oligomannans
is intriguing, as it is well established that like other members of the galectin fam-
ily, B-galactosyl moieties, particularly LacNAc, are the preferred ligands. Like for
the bacteriocidal activity of Gal4 for E. coli described above (Stowell et al. 2010),
changes in the C. albicans cell morphology upon exposure to Gal3 suggested damage
to the cell membrane as the basis for the fungicidal activity, although the detailed
mechanism has not been elucidated (Kohatsu et al. 2006). In contrast, exposure of C.
neoformans to Gal3 causes lysis of the fungal extracellular vesicles which contain
virulence factors and inhibits fungal growth (Almeida et al. 2017). The disruption of
the extracellular vesicles by Gal3 prevents the efficient delivery of their contents to
macrophages, and together with its fungistatic activity favors the host’s anti-fungal
immune response. The cell surface of C. neoformans appears to lack pB-galactosides,
or the B-oligomannosides recognized by Gal3 on C. albicans, and the ligand(s) rec-
ognized on the C. neoformans capsule or vesicles have not been identified so far
(Almeida et al. 2017).

3. Opsonization, phagocytosis, encapsulation, and clearance of the pathogen:
As mentioned above, galectins can bind to and promote phagocytosis of pathogens,
which are killed by intracellular oxidative burst, and cleared from the internal milieu.
An example that illustrates the opsonic role of galectins in host defense is the galectin
MjGal from the kuruma shrimp, Marsupenaeus japonicus (Shi et al. 2014). This
galectin is upregulated in circulating phagocytic cells (hemocytes) and hepatopan-
creas upon bacterial infection, and can bind to both gram-positive and gram-negative
bacteria through the recognition of lipoteichoic acid or lipopolysaccharide, respec-
tively. By also binding to the shrimp hemocyte surface, MjGal functions as an
opsonin, cross-linking the potentially pathogenic bacteria to the hemocyte surface
and promoting their phagocytosis and facilitating their clearance from circulation,
as shown in vivo by RNA interference (Shi et al. 2014). There are several reports
of galectins from both invertebrates and vertebrates which have been reported as
opsonic, or at least promoting phagocytosis by more complex mechanisms that
may involve additional receptors on the phagocytic cell surface. Gal3 can recog-
nize surface glycans on the opportunistic fungal pathogens Candida spp. and not
only exert direct fungicidal activity, as described above, but also promote phagocy-
tosis by neutrophils (Linden et al. 2013a, b). In contrast, phagocytosis of Candida
spp. by macrophages appears to require TLR2 (Jouault et al. 2006).

In addition to phagocytosis, a defense response to infectious challenge that is
typical of invertebrates consists of encapsulation of potential pathogens with multiple
layers of cells, particularly when the infectious particle is too large to be phagocytosed
by asingle cell. The encapsulated, immobilized pathogen can then be killed by diverse
mechanisms, such as oxidative stress or melanization (Xia et al. 2018; Vazquez et al.
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2009), which have been conserved in vertebrates from fish to mammals. Parasitic
nematodes (Cucullanus spp.) in the abdominal cavity of the conger eel (Conger
myriaster) are immobilized and encapsulated by layers of cells with the participation
of congerins I and II, which are galectins that can bind to glycans on both the nematode
surface as well as the encapsulating cells (Nakamura et al. 2012). In mammals,
the formation of granulomas appears as an analogous defense mechanism in which
galectins may play a key role for the immobilization of pathogen or parasites. Such is
the case of recognition of LacdiNAc (GalNAcB1,4-GlcNAc) of the eggs and parasite
surface of the helminth Schistosoma mansoni by the host Gal3, and its potential role
on the formation of liver granulomas (van den Berg et al. 2004). Gal3-null mice
experimentally infected with S. mansoni showed reduced liver granulomas in both
the acute and chronic phases, as compared with wild-type mice (Breuilh et al. 2007).
The recognition and clearance of both intra- and extracellular pathogens and
parasites, however, can be accomplished by alternative mechanisms that lead to
autophagy, and Gal8 has been shown to function as a key participant in this process.
Epithelial cells infected with Salmonella typhi, Listeria monocytogenes, or Shigella
flexneri exhibit damage to cytoplasmic endosomes and lysosomes (Thurston et al.
2012). It has been proposed that the damaged vacuolar membranes signal to recruit
Gal8, which by binding to the exposed glycans activates autophagy (Thurston et al.
2012). A recent report describes a related anti-microbial mechanism by which Heli-
cobacter pylori infection causes lysosomal damage in epithelial cells of the gastric
epithelium (Liet al. 2019). Lysosome damage exposes membrane luminal O-glycans
that are recognized by and induce the aggregation of cytoplasmic Gal8, which in turn
increases autophagy activity in the H. pylori-infected cells (Li et al. 2019).

7.5 “Subversion’ of the Galectins’ Defense Functions
by Pathogens and Parasites

In recent years, mounting experimental evidence has shown that some pathogens and
parasites can “subvert” the defense roles of galectins from the host or invertebrate
vector, and use galectin-mediated recognition to attach to, or to gain entry to their
cells (Vasta 2009). These galectin-mediated interactions are clearly beneficial for the
pathogen or parasite and can take place by various mechanisms. One fairly preva-
lent mechanism consists of the direct cross-linking of the pathogen to the host or
vector cells by recognition of similar or different glycans on the cell surfaces, either
by multivalent TR galectin or oligomeric proto- or chimera-type galectins. Another
mechanism that can result as a downstream from the first consists of the downregu-
lation of the host innate and adaptive immune response by galectin overexpression,
secretion, or binding to host cell surfaces upon infectious challenge.

The participation of galectin interactions in the infection mechanisms of HIV
(human immunodeficiency virus) has been widely reported (Ouellet et al. 2005;
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Mercier et al. 2008). Gall, which is abundant in organs that represent major reser-
voirs for HIV-1, such as the thymus and lymph nodes, promotes infection by HIV-1
by cross-linking the LacNAc moieties on the viral glycoprotein gp120 to its cel-
lular glycoprotein receptor CD4 on T cells facilitating viral attachment, increasing
viral residence time on the cell surface, and infection efficiency (Sato et al. 2012)
(Fig. 7.3b). Additionally, Gall would enhance the uptake of the virus by macrophages
acting as a soluble scavenger receptor (Sato et al. 2012). In contrast, Gal3, which
is upregulated by the HIV Tat protein in several human cell lines, has no effect on
HIV-1 attachment or entry (Fogel et al. 1999), but may exert anti-viral activity by
inducing apoptosis of HIV-infected cells (Xue et al. 2017). Gal9 can also enhance
HIV entry into T cells but via an indirect mechanism based on changes in the redox
status of the cell surface (Bi et al. 2011). It is noteworthy that DC-SIGN, a C-type
lectin, also facilitates HIV entry into dendritic cells (Sato et al. 2012), illustrating the
diversity of protein—carbohydrate interactions that may participate in HIV infection
(Ouellet et al. 2005; Mercier et al. 2008). By a mechanism similar to HIV, Gall can
enhance and stabilize attachment of human T-cell lymphotropic virus (HTLV) to
human T cells (Gauthier et al. 2008). Gall can also interact with capsid proteins of
enteroviruses and promote infection of epithelial cells, although the mechanism(s)
involved are not clear (Lee et al. 2015). In contrast, Gal3 would increase cell sur-
vival and inhibit apoptosis of the enterovirus-infected cells, facilitating release of the
mature viral progeny (Huang et al. 2016). As indicated above for the Nipah virus,
if Gall is present during the initial phase of virus exposure, it can enhance NiV
attachment to the endothelial cell surface by bridging glycans on the viral envelope
to host cell glycoproteins (Garner et al. 2015). A similar mechanism has been pro-
posed for the interaction of Gal3 with the herpes simplex virus type 1 (HSV-1). Gal3
enhances HSV-1 attachment to and infection of human corneal keratinocytes, which
can be ameliorated by the presence of MUCI16, a soluble mucin that is secreted
by the corneal cells and is strongly bound by Gal3 (Woodward et al. 2013). In the
zebrafish-IHNV infection model described above, different members of the galectin
repertoire can display opposite functions: while the proto-type galectin Drgal1-L2
and the chimera-type galectin DrGal3-L1 can inhibit viral adhesion to epithelial cells
(Nita-Lazar et al. 2016), the TR galectin DrGal9-L1 can significantly promote viral
adhesion and infection (Mancini and Vasta, unpublished).

Galectins can also promote the attachment of bacterial pathogens and facilitate
infection, as shown in a murine model for influenza A infection and pneumococ-
cal pneumonia revealed. Neuraminidases from both influenza A virus (IAV) and
Streptococcus pneumoniae significantly desialylate the airway epithelial surface and
modulate expression and release of Gall and Gal3 to the bronchoalveolar space
(Nita-Lazar et al. 2015a). Studies on the human airway epithelial cell line A549 sup-
ported the observations made in the mouse model, and revealed that both Gall and
Gal3 bind strongly to IAV and to S. pneumoniae. Furthermore, exposure of A549
cells to viral neuraminidase or influenza infection significantly increased galectin-
mediated S. pneumoniae adhesion to the cell surface (Nita-Lazar et al. 2015a). Thus,
these observations suggest that upon influenza infection, pneumococcal attachment
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to the airway epithelial surface is enhanced by the activity of both viral and pneumo-
coccal neuraminidases and the secreted host galectins, and possibly contributes to
the greater susceptibility of influenza patients to secondary pneumonia (Nita-Lazar
etal. 2015a). In addition, the study revealed that the binding of Gall and Gal3 to the
epithelial cell surface downregulates the expression of SOCS1 and RIGI1, and acti-
vation of ERK, AKT, or JAK/STAT1 signaling pathways, leading to overexpression
and release of pro-inflammatory cytokines (Nita-Lazar et al. 2015b). These results
suggest that upon influenza infection, the binding of secreted Gal3 to the desialy-
lated airway epithelia can severely dysregulate the immune response, leading to the
frequently observed “cytokine storm” (Nita-Lazar et al. 2015b).

More recently, the role of Gall in infections by Chlamydia trachomatis, a highly
prevalent sexually transmitted bacterium worldwide, was investigated in detail,
revealing that Gall enhanced C. tfrachomatis attachment to cervical epithelial cells
through recognition of bacterial glycoproteins and N-glycosylated host cell recep-
tors, particularly platelet-derived growth factor receptor (PDGFR)P and B1/aVB3
integrins (Lujan et al. 2018). Bacterial entry was facilitated by exposure to Gall,
mainly in its dimeric form, which favored interactions among C. trachomatis, and
between the bacteria and host cells. In vivo studies in mice lacking Gall or complex
branched N-glycans supported the in vitro results (Lujan et al. 2018).

Interactions of galectins with eukaryotic parasites can also promote their attach-
ment and entry into epithelial or phagocytic cells, the latter by opsonic effect. The
protozoan parasite Trichomonas vaginalis is the causative agent of a sexually trans-
mitted human infection, which can effectively colonize cervical epithelial cells, pla-
centa, endometrial and decidual tissue, as well as prostate (Okumura et al. 2008).
Gall was identified as the receptor for 7. vaginalis on epithelial cells: the parasite
exhibits abundant lipophosphoglycan (LPG) with galactosyl moieties that are rec-
ognized by Gall expressed by the epithelial cells, facilitating parasite attachment to
the cervix linings (Okumura et al. 2008).

Taking advantage of galectin functions as opsonins, the protozoan parasite Perkin-
sus marinus, a facultative intracellular parasite of the eastern oyster Crassostrea
virginica is recognized via the oyster’s 4-CRD galectins CvGall and CvGal2 that
recognize and promote phagocytosis of the parasite by the circulating hemocytes
(Fig. 7.4a). Both CvGall and CvGal2 recognize and bind to microalgae such as
Tetraselmis spp., and potentially pathogenic bacterial species such as Aeromonas
spp., Carnobacterium spp., Streptococcus spp., Bacillus spp., and Vibrio spp., sup-
porting the notion that during filter-feeding, the oyster galectins contribute to feeding
and anti-microbial defense in the gut lumen by promoting phagocytosis of both phy-
toplankton and bacteria, killing by intracellular respiratory burst, and digesting them
in the phagosome compartment by lysosomal enzymes. Therefore, P. marinus par-
asites may have co-evolved with their host to subvert the defense and feeding roles
of the oyster galectins. This would have taken place by adaptation of the parasite’s
glycocalyx to be competitively recognized by the hemocyte galectins over microal-
gal food and microbial pathogens, and phagocytosed by the oyster hemocytes, where
they inhibit respiratory burst and proliferate, eventually causing systemic infection
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Fig. 7.4 Galectins from the host or vector can facilitate attachment of parasites. a The galectins
CvGall and CvGal2 from the oyster (Crassostrea virginica) recognize and opsonize Perkinsus
marinus trophozoites and promote their phagocytosis (a) by hemocytes (phagocytic cells in the
oyster hemolymph and tissues). The phagocytosed P. marinus trophozoites avoid intracellular killing
by inhibiting the hemocyte oxidative burst (b), and transmigrate through the gut epithelium (c, d)
into the internal milieu, where it proliferates (e), causing systemic infection and eventually death of
the oyster host. b The sandfly (Phlebotomus papatasi) TR galectin PpGalec recognizes and binds
to poly-Gal(B1-3) side chains (light blue circles) on the lipophosphoglycan (LPG) of Leishmania
major amastigotes (a) and facilitates attachment of the parasite to the midgut (b), preventing their
excretion along with the digested blood meal. The amastigotes mature into promastigotes (c) and
undergo numerous divisions (d) before differentiating into infective metacyclics (e, f). During
metacyclogenesis, LPG can be capped with arabinose (pink squares), inhibiting recognition by
PpGalec and allowing the free-swimming infective metacyclic promastigotes to detach from the
sandfly midgut and migrate to the salivary glands for transmission to the mammalian host (Adapted
from Vasta 2009)
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and death of the oyster host (Tasumi and Vasta 2007; Feng et al. 2013, 2015a, b;
Kurz et al. 2013; Vasta et al. 2015).

Eukaryotic parasites also take advantage of the binding properties of galectins
not only from the host but also from invertebrate vectors to attach to their cell
surfaces. These can be illustrated by interactions of Leishmania species with the
midgut linings of their insect vectors prior to transmission to the vertebrate hosts
(Fig. 7.4b). Leishmania amastigotes attach to the insect midgut epithelium via the
sandfly galectin PpGalec that binds to the Gal(31-3) side chains on the Leishma-
nia LPG, to prevent their excretion along with the digested bloodmeal (Kamhawi
et al. 2004). During differentiation of the amastigotes into free-swimming infective
metacyclics, modifications of their glycocalyx reduce binding by PpGalec, releas-
ing flagellated metacyclics that migrate to the vector’s salivary glands, and upon the
sandfly’s next feeding will infect a new vertebrate host (Kamhawi et al. 2004).

7.6 Conclusion

It is currently well established that by recognizing endogenous (self) cell surface
and soluble glycans ligands, galectins participate in early development, tissue repair,
regulate immune homeostasis, and contribute to trigger immune responses upon
infectious challenge. As discussed throughout this review, as galectins can recognize
exogenous (non-self) glycans present on the surface of virus, bacteria, and eukaryotic
parasites, they are also considered bona fide pattern recognition receptors (PRRs).
The capacity of galectins to recognize structural topologies (“patterns”) by a galectin
can be illustrated by the recognition with similar binding affinity of the disaccharides
LacNAc and TDG by the proto-type galectin from the South American toad Bufo
arenarum (Bianchet et al. 2000). The crystal structures of the B. arenarum galectin
complexes with LacNAc and TDG allowed us to rationalize the structural basis of
the PRR concept as it concerns the recognition of “self” and “non-self” carbohydrate
moieties by galectins (Fig. 7.5). The structures revealed that the non-reducing termi-
nal galactose, shared by both disaccharide ligands, shows identical interactions with
the protein. The second moiety (GlcNAc in LacNAc and another galactose in TDG)
establishes different contacts in the TDG and in the LacNAc complex, although
the same number and quality of H-bonds are present in both cases (two direct and
one water mediated to the protein) (Fig. 7.5b, c). This structural evidence reveals
that the galectin is exquisitely specific, displaying a surprising structural plasticity
to establish well-defined amino acid/sugar interactions for the two chemically dis-
tinct disaccharides, LacNAc and TDG, resulting in similar binding affinity for both
(Bianchet et al. 2000).

Based on the Medzhitov and Janeway model (Medzhitov and Janeway 2002),
however, PRRs such as the mannose-binding lectin (MBL) recognize pathogens
via highly conserved microbial surface molecules of wide distribution such as
lipopolysaccharide or peptidoglycan (pathogen- or microbe-associated molecular
patterns, PAMPs or MAMPs), which are absent in the host (Fig. 7.6a). Although
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Fig. 7.5 Recognition of topologically similar disaccharides (LacNAc and TDG) by the Bufo are-
narum proto-type galectin. a Structure of the dimer of B. arenarum galectin-thiodigalactoside
(TDG) complex. Bound TDG disaccharides are shown on the binding clefts of both galectin sub-
units. b N-acetyllactosamine (LacNAc) bound to B. arenarum galectin (monomer B). The relevant
CRD residues and the hydrogen bonds (dashed lines) to the sugar are shown. Carbon atoms are in
white, oxygen in red; nitrogen in blue. ¢ Thiodigalactoside (TDG) bound to B. arenarum galectin
(monomer B). The relevant CRD residues and the hydrogen bonds (dashed lines) to the sugar are
shown. Carbon atoms are in white, oxygen in red; sulfur in yellow; nitrogen in blue (Adapted from
Bianchet et al. 2000)

this is true for some galectin ligands such as LacDiNAc in the helminth Schisto-
soma mansoni, the Candida albicans B1,2-linked oligomannans, and the Perkinsus
marinus trophozoite surface glycans, most of the galectin carbohydrate ligands on
the pathogen or parasite surface are identical or highly similar to those endogenous
host ligands (Fig. 7.6b). Therefore, galectins do not rigorously fit the definition of
PRRs, as they can recognize carbohydrate ligands that are displayed on both the
host and the pathogen cell surface. Because TR galectins display in tandem-arrayed
CRDs of similar but distinct specificity in a single polypeptide monomer, the bind-
ing and cross-linking of endogenous and exogenous glycans can be rationalized by
the distinct properties of their binding sites. For other lectins such as the proto- and
chimera-type galectins that display a single binding site per monomer, their capac-
ity to recognize both endogenous and exogenous glycans through the same binding
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Fig. 7.6 Recognition of exogenous (“non-self”) carbohydrate ligands on viruses, bacteria, para-
sites, and fungi by a bona fide pattern recognition receptor (PRR: mannose-binding lectin; MBL)
and galectins: a The mannose-binding lectin (MBL) functions as a bona fide pattern recognition
receptor (PRR) by recognizing oligosaccharides (microbe-associated molecular patterns, MAMPs,
or pathogen-associated molecular patterns, PAMPs) on the surface of potential pathogens (para-
sites, bacteria, and viruses) that are either absent or unavailable for binding in the host cell surfaces.
b Galectin-3 (Gal3) can function as true PRR by recognizing p1,2-linked oligomannans on the
surface of Candida albicans, which are absent from the host, but can also recognize LacNAc and
polylactosamines abundant on the host cell surface. Other galectins such as the oyster CvGall
and CvGal2, Gal4 and the zebrafish Drgal1-L2 can recognize exogenous (“non-self”’) carbohydrate
ligands on viruses, bacteria, parasites, and fungi that may be topologically similar (Perkinsus mari-
nus, recognized by CvGall and CvGal2) or chemically identical THNV envelope oligosaccharides
recognized by Drgal1-L2) to the host’s endogenous ligands

site cannot be rigorously explained with the current evidence. This apparent para-
dox reveals our limited knowledge about the actual diversity in recognition of the
host galectin repertoire and the structural and biophysical aspects of ligand binding
preference (Dam and Brewer 2010). This lack of detailed information particularly
concerns the diverse architectural display of the galectin ligands within the com-
plex carbohydrate moieties of the host cell and the microbial surface, and how these
features impact the affinity and avidity of the oligomeric galectins in the extracel-
lular space. Furthermore, multiple factors pertaining to the local galectin concen-
trations and oligomerization, susceptibility to oxidative inactivation and proteolytic
cleavage, and the biophysical properties of the microenvironment(s) in which the
aforementioned interactions take place warrant further investigation (Vasta 2009).
From a functional point of view, recognition of glycans on the surface of virus,
bacteria, and parasites by host galectins can lead to various and sometimes opposite
outcomes that benefit either the host or the pathogen. For example, as discussed
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above galectins can block pathogen attachment and infection, or directly kill or pro-
mote phagocytosis, intracellular killing, and clearance of the pathogen from the host,
which are defense functions that seem to have arisen early in evolution. In contrast,
galectins can also promote attachment of pathogens and parasites to the host cells, and
facilitate infection. From an evolutionary standpoint, given that host galectins play
key roles in early development, tissue repair, and regulation of immune homeostasis
via recognition of “self” carbohydrate moieties, the substantial conservation of this
lectin family from protistans, and fungi, to invertebrates and vertebrates supports the
notion that strong functional constraints would prevent any dramatic evolutionary
changes in galectin structure and carbohydrate specificity that would be detrimental
to the host. Together with the well-recognized evolutionary plasticity of pathogens
for colonization of host tissues, it seems plausible that pathogens would have rather
evolved their surface glycosomes to mimic their hosts, and subvert the roles of host
galectins by taking advantage of their carbohydrate-binding properties for attachment
and entry into the host cells in a “Trojan horse” model (Vasta 2009).
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