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ON NUMERICAL INVERSE SCATTERING FOR THE KORTEWEG-DE VRIES EQUATION
WITH DISCONTINUOUS STEP-LIKE DATA

DENIZ BILMAN AND THOMAS TROGDON

ABSTRACT. We present a method to compute dispersive shock wave solutions of the Korteweg-de Vries
equation that emerge from initial data with step-like boundary conditions at infinity. We derive two different
Riemann-Hilbert problems associated with the inverse scattering transform for the classical Schrodinger
operator with possibly discontinuous, step-like potentials and develop relevant theory to ensure unique
solvability of these problems. We then numerically implement the Deift-Zhou method nonlinear steepest
descent to compute the solution of the Cauchy problem for small times and in two asymptotic regions. Our
method applies to continuous and discontinuous initial data.

1. INTRODUCTION
Consider the Korteweg—de Vries (KdV) equation in the form
(1) Uy + 6uux + Uyxx = 0/ x € ]R/

which is completely integrable [11] and admits soliton solutions that decay exponentially fast as x —
+o0. For initial initial data with sufficient smoothness and decay on a zero background, the solution of
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FIGURE 1. The spatial extent solution of the KdV equation at t = 1 when u(x,0) =
2, x < 0and u(x,0) =0, x > 0,c = V/2. The initial data is discontinuous and the
solution is highly oscillatory for all + > 0. Note that this solution does not satisfy (3) but
Remark 1.1 gives the method for obtaining this solution directly from one that does.

the Cauchy initial-value problem is given asymptotically by a sum of 1-solitons in the (soliton) region
x/t > C for some constant C > 0 as t — +oco [14]. Presence of non-zero boundary conditions at
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infinity, however, gives rise to a fundamentally different long-time solution profile. Monotone initial
data u(x,0) = g(x) with boundary conditions

(2) Jim g(x) =q and  lim q(x) =g,

gives rise to generation of a number of dispersive shock waves (DSWs) if 1 > g, [15]. If g1 < qr, however,
the dynamics generate a rarefaction fan and the solution is asymptotically given by (x — x¢)/(6t) for
qit < x —x9 < qrt ast — +o0 [1]. An asymptotic description for the solution is much more complicated
in the former case, where DSWs emerge [8].

The generation of DSWs is also closely related to the regularization of shock waves in Burgers’ equa-
tion uy + 6uu, = 0 using the small-dispersion KdV (sKdV) equation u; + 6uu, + Uy =0,x € R,0 <
¢ < 1. The initial-value problem for the sKdV equation with so-called “single hump” initial data was
considered in the seminal work of Lax and Levermore [17] and the subsequent series of papers [18-20]
where inverse scattering transform methods were used to obtain the limiting solution as ¢ | 0 for fixed
t > 0. The methodology of Lax-Levermore was then extended by Venakides [34] to “single potential-
well” initial data where the reflection coefficient plays a significant role as € | 0. Formation of DSWs,
relevant asymptotics and the relation to the boundary conditions (2) in this small dispersion limit ¢ | 0
of the sKdV equation were studied numerically in the works of Grava and Klein [12,13]. Recently, the
generation of DSWs have been studied in various physical contexts, such as viscous fluid conduits [21].
For a review on DSWs, see [2] and the articles in this special issue (in particular, see [3,9,10,22,27,29]).

We consider solutions of (1) from computational special functions point of view. Owing to the spe-
cialized integrable structure of the KdV equation, solutions should be computable in much the same
way as Airy functions are computable in nearly any software package. This philosophy, when imple-
mented by performing numerical inverse scattering, allows one the freedom of performing nonlinear
superpositions that are otherwise beyond reach [30, 31]. Specifically, we consider the solution of the
KdV equation with Heaviside initial data, as displayed in Figure 1, to be a special function. Taking a
more ambitious stance, we aim to compute solutions of (1) with (2) for all x and t. This paper is the first
step in that direction. We anticipate that this full development will allow the investigation and classi-
fication of new and well-known phenomena within the KdV equation such as identifying the spectral
signature of a DSW.

More precisely, we consider solutions of the KdV equation (1) with step-like asymptotic profile

(3) u(x,t) = He(x)| = 0(1), |x] = oo,
for all t € R>(, where

—c2 x>0,
(4) Hc(x) =
0 x <0,

for ¢ € R~g. To specify the initial data for the KdV equation, we write
(5) u(x,0) = up(x) + He(x)

and uy is a real-valued function. Our theoretical developments require 1, which we refer to as a per-
turbation, to be in a polynomially-weighted L! space while our computational results require more:
should be at least piecewise smooth and in an exponentially-weighted L! space. We develop the rele-
vant Riemann-Hilbert (RH) theory for the inverse scattering transform (IST) associated with the KdV
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equation (i.e., for the classical Schrodinger operator with step-like potentials u(-, t)) and pose two differ-
ent RH problems that are amenable to numerical computations using the framework introduced in [32].
We then make use of this RH theory to compute the solution of the Cauchy initial-value problem for the
KdV equation with the boundary conditions (3) for small ¢t > 0. Figure 1 gives the solution of the KdV
equation with ug(x) =0,¢c = V2att=1.

Remark 1.1. Let i solve (1) with

(6) ii(x,0) = u(x,0) —a,
then
7) u(x,t) = i(x — 6at, t) + a.

This is the so-called Galilean boost symmetry of the KdV equation. Using this, any solution @ of (1)
satisfying (2) with q; > g, can be obtained from a solution u satisfying (3) by

(8) i(x, t) =u(x —6qit,t) +q, = q1 — Gr-

1.1. Outline of the paper. In Section 2, we present the necessary scattering theory for Schrodinger
operators with step-like potentials in context of the direct scattering transform for the KdV equation (1).
Some of this material is based on the work of Kappeler and Cohen [5,16], and also on the work of Deift
and Trubowitz [7]. As smoothness and decay properties of various spectral functions are important in
obtaining a robust numerical inverse scattering transform, we include the details on scattering theory as
they become necessary. In Section 3, we define the right and left reflection coefficients on IR, derive their
decay and smoothness properties as well as relations between left and right scattering data. We then
pose two RH problem formulations of the inverse scattering transform for the KdV equation, one using
the left scattering data and another using the right scattering data. We note that one needs to use both of
these problems to have an asymptotically accurate computational method. This discussion unifies the
work in [8] with that of Cohen and Kappeler.

In Section 4, we give integrability conditions on the perturbation 1 necessary for the deformations of
the RH problems to be made in the subsequent sections and give details on computation of the scattering
data. In Section 5 we introduce contour deformations (analytic transformations) of RH Problem 3 and
RH Problem 4 to apply the Deift-Zhou method of nonlinear steepest descent and compute the inverse
scattering transform associated with the KdV equation for all x € R at t = 0. Having done that, we
extend these deformations to small + > 0 in Section 6 to compute the solution u(x, t) of the Cauchy
problem for the KdV equation in two asymptotic regions of the (x, t)-plane. In Section 7 we present the
computed solutions u(x, t) for various step-like initial data.

The inclusion of solitons (if any) by incorporating residue conditions in these RH problems and
derivation of the time dependence for the scattering data is performed in Appendix A. We prove theo-
rems on the unique solvability of these RH problems in Appendix B. We apply the dressing method [35]
to establish a posteriori that the RH problems we pose produce solutions of the KdV equation, see The-
orem 3.16. Establishing unique solvability of the RH problems, without assuming existence of the solu-
tion of the KdV equation, is necessary to apply the dressing method. Additionally, in the process, we
show that a singular integral operator that we encounter in the numerical solution of a RH problem is
invertible. For these reasons we expend considerable effort in Appendix B.
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Remark 1.2. We consider the setting g; > g,. The case q; < g, can be treated by mapping (x, t) — (—x, —t)
as this leaves (1) invariant, noting that Theorem 3.16 applies.

Notation. We use the following notational conventions:

o We denote the following weighted LP spaces on an oriented (rectifiable) contour I':

©) vt dn) = { T €| [17©rdnts) <o},

Also, LP(T') := LP(T, | ds|) where | ds| refers to arclength measure.
We use o1 to denote the first Pauli matrix

(10) 01 = [0 1] .

10

In the discussion of RH problems we use the following notation. For a function f defined on a subset of
C with a non-empty interior, we will use f(z) to refer to the values of f. For a function f defined on a
contour T C C we will use f(s) to refer to values of f.

Given a point s on an oriented contour T C C, f*(s) (resp. f~(s)) denote the non-tangential boundary
values of f(z) as z — s from left (resp. right) with respect to orientation of T.

We use bold typeface to denote matrices and vectors with the exception of oy defined in (10).

2. THE SCATTERING PROBLEM AND ITS SOLUTION
The spatial part of the Lax pair for the KdV equation is the spectral problem
(11) Ly = Ey, L=~y —u(x,t), E=2°

where u satisfies the KdV equation (1) and £ is the Schrédinger operator. The temporal part of the Lax
pair is the evolution equation

(12) lpt - PIP, ,Pll] = _411[]xxx - 31/[(x, t)l,b - 6u(x, t)lpx.

To compute scattering data associated with the given Cauchy initial data we proceed with the construc-
tion of the Jost solutions of the spectral problem (11). We first solve the scattering problem at t = 0. It is
convenient to define the complementary functions u§*(x) by

13) u})(x) _ {uo(x) x <0, {uo(x) x>0,

and ugy(x) =
up(x) —c> x>0, up(x) +c® x<0.

Recall that we assume that the Cauchy initial data is

(14) u(x,0) = up(x).

2.0.1. Asymptotic spectral problem as x — —oo. On the left-end of the spatial domain, formally, (11) is
asymptotically

(15) P = =279,

which has a fundamental set of solutions given by {e*izx, e*izx}. Therefore, for z € R, (11) has the
following two independent solutions that are uniquely determined by their asymptotic behavior as
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x — —oo0:
(16) PP (z;x) = e (1+0(1)), x— —oo,
(17) ¢™(z;x) = e (1 +0(1), x— —co.

These functions can be defined through Volterra integral equations
PP(7) = o7+ o [* (D e ()P (2:8) e,
(18) 2iz J o
(670 — =0 )ul ()¢ (2:¢) de.

m —izx 1 *
gz = e [
which can be solved by Neumann series for z € R and up € L'(RR, (1 + |x|) dx). See [5, Chapter 1] and
also [7, Section 2] for a detailed construction.

X

2

2.0.2. Asymptotic spectral problem as x — —+o0. Since u(x) — —c* as x — +o0, we consider, formally, the

problem (11) asymptotically:
(19) R e

and the eigenvalues associated with this differential equation are doubly-branched. More precisely, we
have the fundamental set of bounded solutions to (19) given by { ¥, e71**}, where A depends on z
through the algebraic relation A2 = z2 — ¢? (characteristic equation for the eigenvalues iA of the constant
coefficient equation (19)) which defines a Riemann surface with genus 0. To be concrete, we define A(z)

to be the function analytic for complex z with the exception of a horizontal branch cut
(20) Yo :=[—c ] CR,

between the branch points z = +¢, whose square coincides with z? — ¢? and satisfies A(z) = z+ O(z!)
as z — oo. With these properties, A(z) is a scalar single-valued complex function that is analytic in the
region C \ X.. We now define two more independent solutions of the problem (11) that are determined,
for A(z) € R (ie., z € R\ L), by their asymptotic behavior as x — +oc:

(21) PP (z;x) = ¥ (140(1)), x — 400
(22) P (z;x) = e M1 40(1)), x — Foo.

The existence of such solutions is again established through Volterra integral equations
- : 1 [/ : -
Plr-r) — pi2X |~ iz(x—¢) _ iz(E—x)\,,r Pl
Przx) = e+ [ (e =0 ) (£)§P (2:8) 2,
o (0 = D g (zig) de.
X

2iz

(23)
lpm(Z,'X) — e—izx .

with pP/™(z; x) = P/™(A(z2); x). Again, the solutions /™ (z; x) are well-defined for z € R, and hence
$P/™(z; x) are well-defined for A(z) € R (i.e., for z € R\ &) and up € L}((1 + |x|) dx). See again [5,
Chapter 1] and also [7, Section 2] for details.

2.1. Left and right reflection coefficients. The left (resp. right) reflection coefficient R; (resp. R) are
defined through the scattering relations for z € R \ X

YP(z;x) = a(2)¢P (z;x) +b(2)9™ (2 %),

(24)
¢™(z;x) = B(2)yP(z;x) + A(2) 9™ (z; x).



6 DENIZ BILMAN AND THOMAS TROGDON

Remark 2.1. Tt is important to note that while ¢P/™ and ¢P/™ are each sets of two linearly independent

})/ " with ug in the

solutions of the same differential equation for all x € R, if x = 0, we can replace u
associated integral equations (18) and (23). Then the scattering theory is interpreted as the traditional
scattering theory for the one-dimensional Schrédinger operator, where one set of eigenfunctions is mod-

ified via the z — A(z) transformation.

The system (24) can be solved for a(z),b(z) and A(z), B(z) using Wronksians W(f,g) = fg' — gf’.
Doing so, we define for z € Rand A(z) € R,

_blz) _ WHP(z:) ¢"(z:))
(25) R(z) := 22) = WP, pm(z))
(26) Re(z) == B(z)  W(¢™(z-),9v™(z-))

S Al W(M(z) 9P(z )
These are the so-called left (R)) and right (R;) reflection coefficients. We note that W(¢P, ¢™) = —2iz and
W(yP,p™) = —2iA(z). Other important formulee are

ey = WEPE) ™) W™ (e, 49(z:)
W(gP(z;-), 9™ (z;)) 2iz ’
by = WPE L) W), ()
(27) W(gP(z-), 9™ (2 ) 2iz ’
Az = WEP(E), 7 (E) _ WM ()¢9 (z:0)
W(yP(z;-), ™ (z;)) 2iA(z) '
by WO (@) 0 E) W e )¢ )
W(yP(z;-), p™(z;)) 2iA(z)

Remark 2.2. Presence of the step-like boundary conditions rules out the existence of reflectionless solutions
(e.g., pure solitons). Indeed, setting both reflection coefficients R (z) and R;(z) equal to 0 enforces A(z) =
z, which holds if and only if ¢ = 0, resulting in a zero-background (vanishing boundary conditions at
infinity). Additionally, u(x,t) = H.(x) is not a stationary solution of (1).

2.2. Regions of analyticity. To analyze regions of the complex plane where the functions ¢P/™(z; x), $P/™(z; x)
are analytic in the variable z, we consider the Jost functions

NP(z;x) := ¢P(z;x) e ™, N™(z;x) := ¢™(z; x) e,
(28) MP(z;x) := ¢P(z;x) e 2,  M™(zx) := $™(z; x) e,

MP(z;x) := MP(A(z);x), M™(zx) := M™(A(z); x).

From (18) and (23) it immediately follows that the functions NP/™(z; x) and MP/™(z; x) satisfy the fol-
lowing Volterra integral equations for z € R

29) NPz =145 [ (1= 509 )i (@ONP(z:0) de,
(30) N™(z;x)=1-— 21? /j; (] - e&z(x—?))u%)(é')Nm(Zl )dE,
(31) MP(z;x) =1+ 21Tz /xoo 1 — e2iz(¢—x) ub (&) MP(z; &) dE,

(32) Mm(z;x) =1- l/
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For (29) and (30) x — ¢ > 0 and x — ¢ < 0 for (31) and (32). This immediately implies that (29) and (32)
can be analytically continued for Im z < 0 while (30) and (31) can be analytically continued for Imz > 0.
It also follows from the asymptotics of A(z) that (Imz)(ImA(z)) > 0 for z ¢ R. We note that these
considerations immediately imply that a(z) and A(z) are analytic for Imz > 0.

We now consider the large z asymptotics of the above solutions, NP/™ and MP/™ assuming z is in the
appropriate region of analyticity.

Lemma 2.3. Ifug € LY(R) then for fixed x € R, NP/"(z;x) = 1+ O(z ') and MP/"(z;x) =1+ O(z™ ') as
Z — 0.

Proof. We concentrate on one function, N™, as the proof is the same for all. For |z| > 1 consider the
Volterra integral equation

(33) N™(z;x) + —— / ’ (1— X8 ) (@)™ (z;¢) dg = 1
’ 212 o 0 7 7
which can be rewritten as (Z + IC;)N™(z; -) = 1, where K, is the Volterra integral operator given as
. R 1 g _ 2iz(x=9) ), 1 .
(34) Kefl@x) = o [ (1= S0 0)up(@)f(z:0) de.

We proceed by showing that the Neumann series for the inverse operator (Z + K.) ! converges in the
operator norm on C%((—o0, X]) for fixed X € R. Standard estimates yield
(35)

X X rX X n
Kooy < [ [ [ [ TTlublspidsn- - ds

Sn-1j=1

X X X X1 d X | ¢ nt
= — . ug(s)|ds | ds,— ug(si)| dsy—g--- ds
LU aat (i) Sy CCIEERRES

1
< H(HMOHU(]R) +X|)", neZso

This implies that |[(Z + K2) | co((—eox]) < elltolliiwy +e1X1 o |z] > 1.Then directly estimating (33), we
have that

u +c?|X
(36) |Nm(z;x) _1’ < || OHLI(T)’ | | eH”O||L1(IR)+C2|X" ‘Z’ > 1,
z
proving the result for N™. Note that for X < 0, we can omit the c?| X| term from these estimates. O

Remark 2.4. The reason it is enough to assume uy € L!(R) to prove Lemma 2.3 is because z is away from
zero. The additional decay assumption uy € L'(RR, (1 + |x|) dx) in construction of the Jost solutions is
required to handle the case when z = 0, i.e., in general, for z € R.

We now compute the coefficients of the terms that are proportional to z~! in the large-z asymptotic
series expansions of these functions.

Lemma 2.5. For fixed x, As |z| — o0, Imz > 0,

2iz(N™ (2 %) — 1) — / il () d¢,
(37) o

2iz(MP(z;x) — 1) — /:’ (&) dé.
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For fixed x, As |z| — o0, Imz < 0,

X

2N () 1) = — [ uh(@)dz,
@) e

[oe]

2iz(NI" (z;x) — 1) — —/ 1l (&) dE.

X

Proof. We only prove this for N™. The proofs for other functions are similar. Consider, as |z| — oo,
Imz >0,
X .
2iz(N™(z;x) — 1) = / (1- 00 uh(@)(1+0(= 1)) dg

X

(39) = [ (1= )up(@) g+ 0"

= [ w@de- [ e u@)de+ o).

The claim follows if we show [*_ e?Z(*=0yl(#)d¢ = o(1) as |z| — o, Imz > 0. Indeed, this is the case
since setting v := ¢ — x we have

0 .
(40) /_0o e M yf(y+x)dy =0, |z| = oo

by the Riemann-Lebesgue lemma. ]

It is important to note that from this lemma we obtain

L lim  2iz(MP(z ) 1) = |Z|_>Oloi’rﬂnz>0Ziﬁ/\(z)(Mp()\(z);x) 1) = /xw ut () dé,

(41)

[ee]

Tim 2iz(Mm(z;x)—1):—/ b (8) dé.

|z] =00, Imz<0 x

Lemma 2.6. If ug € L'(R), forImz > 0, a(z) = 1+ O(z ') as z — oo. Furthermore

[ee]

42) lim  2iz(a(z) — 1) = / 0o (&) dé.

z—00, Imz>0 —00

Proof. We use the representation of a(z) given in (27) in terms of a Wronskian

(43) a(z) = V@), ¥ (z))

2iz !

with
qu(Z;x) — efiszm(Z; X),

aa(,bm(Z,' x) — eizxaaNm(Z; .X') —iz efiszm(Z; x)/
(44) X . X
YP(z;x) = el/\(z)xMP(z;x),
0

. d .
Y oP(rer) — oiA@)x Y oArp(s. : iA(z)x P(~-
axlp (z;x) = e axM (z;x) +iA(z) e xMP(z; x).
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We find, by evaluating at x = 0,

a(z) = ﬁ <¢m(z;x)£c¢P(z;x) - ¢P(z;x)£c¢m(z;x)>

_(z2+ A=)\ ymy.. P (o
(45) = ( > )N (z;0)MP(z;0)
+ o (N7 (2523 MP(20) = MP(23) 2N (30)
2iz =% 5% Z' =% 5% z ’
It then follows that 2 N™(z;0) = O(z™!) and 2 MP(z;0) = O(z~!) so that
(46) Jim iz(a(z) 1) = / 0o () dE.
Z|—00 —00

2.3. Differentiability with respect to z on R. We now consider the conditions on 1y under which P/™
and (pP/ m and their first-order x, derivatives both evaluated at x = 0, are differentiable k times with
respect to z for z € RR.

Lemma 2.7. Let k be a non-negative integer and suppose that ug € L'(R, (1+ |x|)**! dx). Then for each fixed
xeR

47) P (5x), P x), P (5 x), P (5 x) € CH(R).

Furthermore, for fixed x, the {-th derivative with respect to z, ¢ < k, is continuous as a function of ug €
LYR, (1 + |x|)**'dx) and z € R.

Proof. We prove this only for ¢™(z; x) as the proofs for the others are similar. And to prove this for
¢$™(z; x), it suffices to prove this for the renormalized function N™(z; x). We begin with rewriting the
Volterra integral equation (30) as

(a8) NP2~ [ K- QuENTED A =1, K(5x) = 5 (1),
which has the form (Z + IC;)[N™(z; -)] = 1 with K, denoting the Volterra integral operator
9) KoAA) == [ Kx - ub(@f @) de.

For h # 0, the difference function NJ*(z; x) := N™(z + h; x) — N™(z; x) satisfies the equation
(50)
NP(x) — [ KEx - Ouh@ONREE) A8 = [ K+ hix—§) = K(zx - Hub(EN™(z + 1;8) &,

Because the operator (Z + K) on the left-hand side is invertible on C°((—oc0, X]), for any fixed X € R,
uniform continuity of N™(z; x) in the spectral variable z follows if we show that the right-hand side
tends uniformly to zero as h — 0. We fix X € R. The modulus of the expression on the right-hand side
of (50) is bounded above by

(51) I(x) := / 8 ‘

—00

K(z+4h;x — &) — K(z;x — &)ub(6)N™(z +h;C)‘ d¢, x€ (-0, X),
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since z € R. Thus, we will show that I(x) — 0 as h — 0. We write K(z; x) =: x(zx)x, with

(52) K(s) == { -1 seR\{0},

1 s =0,

which is bounded and differentiable for s € IR, with all of its derivatives being also bounded for all
s € R. Now, since for any fixed x, N™(z; x) is bounded uniformly in z € R (see the proof of Lemma 2.3)
by, say, M > 0, we have

6 10 <M [ KGR - 0) - (- OIS @I+ D e, x € (~e0,)

Now, let € > 0. Because « is a bounded function and ug € L'((1 + |x|) dx) there exists £ = £(e) < X
such that

(54 M [ ()= ) — (el IR

for all x < X. Therefore

S @)1+ J2N) de < e

(55) I(x) < €+M/€X k(2 +h)(x = §)) = x(z(x = §))|lx = ¢llup()| g, x € (—o0,X]

since z € R. On the other hand, by the Fundamental Theorem of Calculus we have

z+h
6 K((z+)(x =) ~x(z(x =) = (x=8) [ K(s(x—2) s,

which tends to zero, uniformly for ¢ € [¢, x|, for any x < X, as h — 0 because «’ is bounded (|x’(s)| < 1
for all s € R). Since € > 0 in (55) can be made arbitrarily small, this establishes uniform continuity of
N™(z; x) with respect to z € R.

To generalize this to existence and continuity of the z-derivatives of N™(z; x) for z € R, we first use
boundedness of x and all of its derivatives on R and immediately obtain the estimate

(57) 0LK(zx)| < Cjlx[i*, j=0,1,2,....

We then use integral equation satisfied by the difference quotient N (z; x) := Ni*(z; x) / h:
(58)

Np(x) - [

—0

X

K(zx— Oub(@Np () ag = |7 KEFBXZE ZKEXZE) ) nme 11y a

—00

If we can show that the right-hand side converges to

59) | oK (- ub(@N"(z:0) g

in C%((—o0, X]), for fixed X € R, as h — 0 then we have shown that 9,N™(z; x) exists, and is given by
(60) N (zx) = (T+K)" [ 0.K(zx— ub(@N™(z:8) de.

To establish this, we proceed as before. Fix X € R, x < X, and consider the difference

1) | oK@ - ub@N™ =) de - [ aK(Ex - ub(@NT (8 dE
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whose modulus is bounded above by

X v F) — Kz v —
I e e e ) LUGI A AIE
Using the bound

(63) |K(Z+h;x_§)_K(Z;x_€>‘ Scl‘x—(ﬂz/

1]
for h # 0 and the fact that ug € L'((1 + |x|)? dx), for any € > 0 there exists £ = £(¢) < X such that

¢ v _ oy
o [ |(FEEEEEEEEEE a0 Jb@Npe )| dE <
and hence

(65) L(x) <e+ /EX

K(z+hx—¢)—K(z;x —
(X OKEIZE ok 0) b(@Np (e + )|
Multiplying and dividing by the factor (1 + |&|)? inside the integral, using uy € L'((1 + |x|)>dx) and
boundedness of N™(z; x) for x € R, it now remains to show that
(66) lim  sup 1 i K(z4+hx—¢)—K(z;x =)
=0 pczyex (1418 h

To this end, we set s = x — ¢ > 0, and observe that

K(Z+h;s;>l —K(zs) 9K (2:5) = S<K((z+h)2) —x(zs) K’(zs)s>

—9.K(zx — g)' ~0.

(67) 2 pz+h
- %/Z («'(ts) — «'(zs)) dt,

and since z < T < z + h, by the Mean Value Theorem «’(ts) = «'(zs) + (1) (ts — zs) for some
Ty € (zs,Ts). Then, since k" is bounded on R, say, by L € R, we have

2 3 3  pz+h L
: : < e = SIsPInl

z+h z+h
ﬁ/z (' (ts) — «'(zs)) dt ﬁ\/z k" (&) (t—z)dt .

Therefore I (x) — 0 as h — 0, and we have indeed shown that the right-hand side of (58) converges in
C%((—o0, X]), implying that 9,N™(z; x) exists and is given by (60). We also, then note that for fixed x,

(68)

(60) is continuous as a function of uy € L'(R, (1 + |x|)?dx) and z € R because K, as an operator on
C%((—o0, X]), is continuous as a function of these same variables, and (59), as an element of C%((—o0, X])
is then continuous as a function of 1y € L!(RR, (1 + |x|)?dx) and z € R.

We then can proceed as before, to show that 0,N™(z;x) is (uniformly) continuous and then show
that 92N™(z; x) exists and is uniformly continuous if L!(RR, (1 + |x|)®dx). Higher derivatives follow,
inductively, in a similar manner because all derivatives of x with respect to s are bounded.

U

3. TWO RIEMANN-HILBERT PROBLEMS

In this section we assume that a(z) # 0 for z € CT (hence there are no solitons in the solution of the
Cauchy problem), and relax this assumption in the following sections. See the notational remark at the
end of Section 1.1 for the notational conventions.
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We continue with some basic definitions for Riemann-Hilbert problems. The following sequence of
definitions can essentially be found in [32].

Definition 3.1. (1) As a point of reference, we first define the classical Hardy spaces on the upper-
and lower-half planes. The Hardy spaces H(C*) consists of analytic functions f : C* — C
which satisfy the estimate

(69) sup || f(- £ir) || 2(r) < co.

r>0

(2) T C C is said to be an admissible contour if it is finite union of oriented, differentiable curves
I'=T1U---UTY, called component contours, which intersect only at their endpoints and tend to
straight lines at infinity, the connected components of C \ T can be grouped into two classes C
and C_ such that for 3, ), € Cy the arclength of 902 Nd, is zero,and —T = {—s:s €T} =T
with a reversal of orientation.

(3) For a connected component Q C C \ T, the class £2(Q)) is defined to be the set of all analytic
functions f in Q) such that there exists a sequence of curves (yy),>1 in Q) satisfying

(70) sup/ |S’Clsa||2 < oo, forsome acC\Q,
n n -

that tend to dQ2 in the sense that ,, eventually surrounds every compact subset of () such that
(71) sup [ |f(s)]*|ds| < oo.
n Tn

(4) For an admissible contour I, define the Hardy space H4 (T') to be the class of all analytic functions
f : C\T — C such that f|o € £%(Q) for every connected component ) of C \ I'. This is a
generalization of (1). We also use the notation H3 (T) if just modification of the orientations of
the component contours make I' admissible.

For f € L?(T), define the Cauchy integral
_ 1 [ f)
(72) Crf(Z) — ﬁ T ; dS, z g r
We have the following standard facts.

(1) From standard theory (see, [32], for example) it follows that Cr : L*(T') — H3 (T).

(2) Furthermore, the Cauchy operator Cr maps L?(IR) onto H3 (T), and therefore every function f €
H3 (T) has two L?(T) boundary values on T, one taken from C; and the other taken from C_. We
use Ci f(s) to denote these boundary values, and note the identity that C; f(s) — Cy f(s) = f(s)
forae.s €T.

(3) The last fact we need is that Cﬁt are bounded operators on LZ(F) if T is admissible'.

Definition 3.2. An L? solution N to an RH problem on an admissible contour T

(73) N*(s) =N"(9)](s), seT, N(z)=[1 1]+0("),

is a solution N(+) — {1 1] € H2% (T) such that N*(s) = N~ (s)]J(s) is satisfied for a.e. s € T.
Note that an L? solution does not necessarily satisfy the uniform O(z~!) condition at infinity.

The necessary and sufficient condition is that I is a Carleson curve [4].
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3.1. Left Riemann-Hilbert Problem. We use the scattering relation, combined with another equation,
forz € Rand A(z) € R,

YP(z;x) = a(z)¢P (z;x) + b(2)9™ (2 x)
P™(z:%) = b(2)¢P (z;x) + a(2)9™ (2 x).

These two equations are used to formulate jump conditions for a sectionally analytic function.

(74)

Remark 3.3. To deduce properties of a,b, 51,19 we need only evaluate this relation at x = 0 and recall
Remark 2.1 and apply Lemma 2.7 at x = 0, for example.

3.1.1. Jump relation for s> > c?. First, note that ™ (—z; x) = P(z; x) since A(z) isodd forz ¢ (—c,c). Ad-
ditionally, there is a conjugate symmetry because u is real-valued: y™(z; x) = ¢P(z; x), and YP/™(z; x)
enjoys the same symmetry. Thus, we find that b(z) = b(—z) = b(z) and a(z) = a(—z) = a(z). We also
know that ¢P and ™ are analytic functions of z in the lower-half plane while the others, ¢™ and P, are
analytic in the upper-half plane. Define the sectionally-analytic function

[lpp(z?x) CPm(Z;X)} Imz >0,
#) Li(z) = Li(zx) :=
[‘Pp(Z?x) l/’m(z;x)} Imz < 0.

Then assuming that a(z) # 0 for Imz > 0, we have for s> > ¢?

LE(s) = [pP(si) ¢™(si)]

= — bls) b=s) : b(s) 1 pms. 1 pm(g. ) _ b(=s) ) a(s) 0
(76) N Hl a(s) ”(*5)]¢p(s'x) Ta s) ﬂ(*s)l/} (s7%) a(*s)lp (s;x) a(fs)‘sz(sfx)} [ 0 1
a0 Q1= IR)P —Ri(=s)] [als) 0
:“@k A Re 1 (o1
a(—s) (S |
We now define
4 _L 0-
Li(z) [ Imz >0,
0 1
1 0
Li(z) . Imz <0,
L 0 a9

which is analytic on C \ R and satisfies

(78) K{ (s) = K; (s)

1%&@?—&hﬁ 22
Ry(s) 1 ’ -

3.1.2. Jump relation for —c < s < c. We find that for —c <s <c¢

(79) P(s;x) = limyP(s +ie; x) = limyp™ (s —ie; x).
€l0 €l0

Then, again for —c < s < ¢ we define d(s) and b(s) by

(80) ¥(s;x) = a(s)¢P (s; %) + b(s)p™ (s; x),
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because 1 is a solution of (11). From this, it follows that

0 _a(s)
(81) K () =Ky ()| oy ar(y| —c<s<e
at(s) b(s)

But then we solve for b and 4 to find

2is ’
2 o) = WO, 9(s5)
2is
Since both 1 and ¢P have analytic continuations for Im z < 0, it follows that b(z) has an analytic contin-
uation for Imz < 0. And then for Imz > 0
N W(yp™(—z;-),dP(—z; - W(p™(z;-), wP(z; -
- ey = - WOMCEAR(E) W) _
This implies that a*(s) = b~ (—s) = b(—s). It also follows that d(z) = a(z) for Imz > 0 so that
at(s)=a"(s).So,

0 _at(s)
(84) Ki(s) =K (s)| oy "0V, —c<s<e
ZOHE
To finish the setup of the RH problem we extend the definition of R; as
be) 25 2
(85) Ry(s) = a+s()_ ) ,
”a+(5§ —c<s<g,
and define
(86) Ni(z) = Ki(z)e %, z ¢R.

Remark 3.4. This definition of R(s) for —¢ < s < c can be justified by noting that if u( decays exponen-

tially so that $P/™ and ¢P/™ have analytic extensions to a strip containing the real axis then, b(z) has an

extension to a set (B \ [—¢,¢]) NCT where [—¢,¢] C B, Bis open, and R)(s) = Zigzg for —c <s <vc.

Theorem 3.5 ([5,7]). For all x € IR, componentwise, we have
(87) Ni(-) — [1 1] € H2(R).

Using the jump conditions (78) and (81) satisfied by K; and the extension of R; given in (85) we have
arrived at the following RH problem satisfied by Nj.

Riemann-Hilbert Problem 1. The function Ny : C \ R — C'*2 is analytic on its domain and satisfies

1—[Ry(s)]* —Ru(s) e

(88) Nii_ (S) = Nl_ (S) Rl(S) e—Zisx 1

], seER, Nl(z):[l 1}+O(z‘1), z€ C\R,

with the symmetry condition
(89) Nl(—Z) =N; (Z)O’l, zeC \ RR.

Remark 3.6. While setting up this RH problem one verifies that
(90) lim  z (Nl (z) — {1 1} ) = lim  z (Nl (z) — {1 1} >,

|z] =00, Imz>0 |z] =00, Imz<0
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using Lemmas 2.5 and 2.6. This is a necessary condition for the solution of a singular integral equation
we pose below in (147) to have an integrable solution. We are purposefully vague about in what sense
the limits N7 exist as this is made precise below.

3.2. Right Riemann-Hilbert Problem. We now use the other scattering relation, combined with yet
another equation, forz € R,A(z) € R,

¢™(z;x) = B(2)9P(z;x) + A(2)9™ (2 x)
PP (z:x) = A(2)yP (2 x) + B(2)yp™ (z; x).

A(
We find that B(z) = B(—z) = B(z) and A(z) = A(—z) = A(z) and A(z) has an analytic continuation
d to determine the jump relations for another sectionally

91)

into the upper-half plane. This is now use
analytic function.

3.2.1. Jump relation for s> > c>. Define the sectionally-analytic function
[™(z2) gP(za)| mz>0,
(92) Ly(z) = La(z; x) :=
[ymzx) ¢P(zx)| mz<o.
Then assuming that A(z) # 0 for Imz > 0, we have for s2 > 2
Li(s) = [p™(552) ¢P(s;)]
— B(s)B(s) B(s) pp (g 9P(six) _ B(s) ymg.
4@ = 2252 om0+ Ggenen G - Fen )]

) o B(s)B(s) B(s)
— [ (1) 1- A((s))A s) A5 A(S) O]
B(s ’
A(s) Als) 1 0 1
In a similar way as above define
( B 1 O'
Ly(z) | 4@ Imz >0,
0 1
(94) Ka(z) =
1 0
Ly(z) ) Imz < 0.
0 6]

so that for s> > ¢ we have the jump relation

1_’Rr(s>‘2 —Ri(—s) ‘

(95) KE=K6E ¢ h

3.2.2. Jump relation for —c < s < c. For —c <'s < ¢, the second entry of L; (s) is equal to the first entry
of L, (s). From (80) it follows that

(96) (Pm(S;x) = a+(_s)¢(5;x) - El+(—S) ¢p(5;x)'
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For —c <'s < c this gives the relations

i 1
(97) L;(s)sz‘(s)[“éfé% ]

which implies

+ fsl s 1
(98) K3 (s) = K5 (s) | “ S &l 0],
at(—s)AT(s)
and then
1
(99) Ky (s) =Ky ()| "0 O].

The definition of R,(s) for —c¢ < s < ¢ is much more complicated that for Rj(s). We first establish
an identity involving R;(s) and a™ (s), A" (s) under the assumption that u((x) decays exponentially as
x — too implying that there exists neighborhoods of V¢, V_. of ¢ and —c, respectively, such that R;(s)
has an analytic extension to Vi \ [—c, c¢]. For € > 0 sufficiently small, and for —c < s < —c + € we claim

. . . . 1
(100) lgiger(S+1€)—lgger(—(S—le)) = m
The left-hand side is equal to
B*(s)A"(—s) —B"(—s)A"(s)

+lo) _ RH(_o) —

(101) R{ (S) R; ( S) A+(—S)A+(S)
We then use a™ (s) = A%(S)AJ“ (s) to write

AT(s) BT (s)AT(—s) — BT (—s)AT(s)

o) RY(_e) — _
(102) R (s) — R} (—s) 5 2T (=5)AT(5) .
From the Wronskian representations we obtain A" (—s) = — A%(s)lﬁ (s) from which it follows that
+(s\p+ +(_g\pt(—

(103) Rj(s)—Rj(—s):B (s)b™(s) + BT (—s)b™ ( s)‘

at(—s)A*(s)
Then working with Wronskians for functions f, g, h, k we find by brute force
(104) W(f, h)W(g k) —W(g h)W(f k) = W(f, g)W(hk).

Then using that the boundary values from above of ¥P/™ are even in s and ¢P(—s;x) = ¢™(s;x), we
find that BT (s)b™ (s) + BT (—s)b*(—s) = 1 and the claim (100) follows. Then, compute

1 —Rf(=s)[ [0 1|| 1 0| _ |zrgam !
0 1 1 O||Rf(s) 1| 1 0|

Note that R, (—s) can be extended to an open set in the lower-half plane, R, (s) can be extended to an

(105)

open set in the upper-half plane. The same factorization holds near c on [c — €, c].
Removing the assumption of exponential decay of ug, but keeping the condition 1y € L'(R, (1 +
|x])® dx), we extend the definition of R, to [—c, ] so that it has an approximate analytic extension. This
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extension is given by

B(s) 2 2
A(Ss) s =
%+ £(s)
(106) R(s) = u*(js% —c+e<s<c—eg,
f\i—((ss)) s€(—c,—c+e)U(c—e¢,0),

where /(s) is an even function of s on (—c,¢). The intent of this definition is for it to make sense even
when € = 0, and the third case never applies. Furthermore, we have

1
at(—s)At(s)’

Now choose ¢ to match the behavior of R; at —c in the following way. Set
(108) 0(s) = as® + BV/c2 — 2,

and assume

(107) R;(s) — Re(—s) = s € (—cc).

1 J—
at(—s)At(s)

as s — —c, s > —c. Such an expansion is valid by Lemma 2.7. We find

(109) k1vVs+c+xa(s+c¢)+0(|s +c>?)

1 £(s)
2T svVe2—s? ‘X\[ B Déﬁ
(110) m—— \/E +<2 KlC—KZ\/E>\/S+C+O(|S+CD, s— —C,S> —cC.

We choose « so that x; f = 1 and choose B so that 5 —Kig B _ Ko ”‘f = —i7y where 1y is determined by

(111) Ri(s)=—-14+9vV—s—c+O(s+c|), s— —c s<—c.
This process succeeds because x; # 0. This implies that”
Ri(s) = =14+79g(s) +O(|s+¢|), s— —c¢, s< —c,
- z—i_cg)sz——l—l—'yg (s)+O(|s+¢c|), s— —c, s> —c
F(=s)A™(s) ’ ' ' '
where g(z) = \/—z — ¢ has an analytic extension to the upper-half plane, using the principal branch of

the square root.
Then, as a consequence of R,(—s) = R;(s), s> > ¢? and the fact that a* (—s) A" (s) is an odd function
of s, we have

Ri(s) =—=14+9vVs—c+O(s—c|), s—c s>c¢

(113) 1
—x1vVe—s+ —ka(c—s)+0(s —c|*?), s—¢ s<c,

at(—s)At(s)

and therefore

3+ el ay/c K B a\/c
sve2—s> _ AyC L T A — .
T (—)AT(s) K1 NG +< > R Kz\/i>\/c s+O0(c—s|), s—rc s<gc,

=—1+(—-iy—x1)Vc—s+0(jc—s]), s—¢c s<cg
=-14i7Vc—s+0(lc—s|), s—c¢ s<g,

(114)

2The fact that lims—y ¢, s<—c Rr(s) = —11is established in Theorem 3.13 below directly from a ratio of Wronskians.



18 DENIZ BILMAN AND THOMAS TROGDON

because the following lemma holds.
Lemma 3.7. Ifup € LY(R, (1 + |x|)?dx), —iy — 1 = iY.

Proof. If the initial condition has compact support, we have local analytic continuations of R; to the
upper-half plane in the neighborhood of £c and therefore using that R;(—z) = R(z)

Rf(s)=—-1—iyvs+c+O(|s+c|), s— —c, s> —c.

115
) Ri(s) = -1+iyvc—s+0(|s—c|), s—¢c s<ec.
The identity
1
(116) R (s) = Rf(—s) =

at(=s)A*(s)’

establishes the claim for initial data with compact support. For general data, we approximate it in
LY(R, (1 + |x|)?>dx) with data having compact support and then Lemma 2.7 implies the claim in the
limit because y and x; are continuous as functions on L! (R, (1 + |x|)? dx).

U

Remark 3.8. The definition of R, on [—c + €, ¢ — €] can be modified, assuming uo € L(R, (1 + | x| Y+l dx),
so that more terms in its series expansion at ¢ match from the left and right.

We finally define
(117) Ny (z) = Ky (z) (2)*0s
and arrive at the following problem satisfied by N.

Riemann-Hilbert Problem 2. The function Ny : C \ R — C'*2 is analytic on its domain and satisfies

1= IR(s)?  —Ri(—s) e 2A(s)x ,
N; (s) = N5 (s) R (s) M) . , S>>,
e2AT (s)x e
- - 1 —Ry(— —2iA" (s)x 1 0
N; (s) = N5 (s) | at(—s)A*(s) 1 N, (s) (=s)e o 200 (5) , —c<s<g
1 0 0 1 R:(s) 1
Na(z) = [1 1] +0(z""), zeC\R,
with the symmetry condition
(118) No(—z) =Na(z)oq, ze€ C\R.

3.3. Decay properties of R/, on R.

Definition 3.9. Define D,,, n > 2 to be the class of functions f on R such that f € L}(RR, (1 + |x|) dx) has
n — 1 absolutely continuous derivatives in L'(R), f*) is piecewise absolutely continuous” and in L! (R),
and f"*1) € LI(R).

If n = 1 define D, to be the class of functions f on R such that f € L'(R, (1 + |x|) dx), f is absolutely
continuous and f(!) is piecewise absolutely continuous and in L' (R), and f(®) € L'(RR).

If n = 0 define D, to be the class of functions f on R such that f € L'(R, (1 + |x|) dx), f is piecewise
absolutely continuous and f(!) € L'(RR).

3A function f is piecewise absolutely continuous on R if there exists a partition —co = xg < x; < ... < xy = 400 such that
flixy,x,.1) €an be made absolutely continuous by modifying the values of f(x,) and f(x+1).
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Lemma 3.10 ( [16]). For n > 0, suppose that uy € D,,. Then
(119) Ry/:(s) = O(|s|727") as s — =oo.

Remark 3.11. In [16] the author imposes moment conditions on derivatives of ug in the proof of a more
general version of Lemma 3.10 that gives decay rates of the derivatives of the reflection coefficients.
Since we only focus on the decay rate of the function itself in the present work, these conditions are
unnecessary.

3.4. Relations between left and right scattering data. In some of the calculations that follow, it is con-
venient to have specific equalities that relate A, B,a and b. First, consider the system (74) for z € R,
A(z) € R, combined with its derivative with respect to x

(120) [le(Z;x> 1/Jm(2;x)] PP (z; x) qu(z;x)] [aizi b(—z;].

B [¢5(Z;X) ¢ (2 x)

Yi(zx) ¥R(zx) b(z) a(—z
This gives
_ WyP(z-), 9™ () _ Mz)
(121) a(m)a(~2) =~ blz)b(~2) = W(gP(z;-),9™(z;-))  z '
A(z)A(~z) — B(z)B(~z) = A(ZZ)
From this, one finds,
_ A2) 1 B 1
(122) 1= Riz)Ri(=2) = z a(—z)a(z) A(z)a(-z)
Next, we claim that for z € R, A(z) € R
(123) B(z) = —b<_f()i()_z) e

This follows because P (—z;-) = Pp™(z;-), pP(—z;-) = ¢™(z;-), and A(z) = a(z)%.

3.5. Smoothness properties of R/, on RR.
Definition 3.12. The initial perturbation uo(x) = u(x,0) — H.(x) is said to be generic if
(124) W(¢™(c;-), ¢P(c;-)) #0 and  W(p™(0;-),¢P(0;)) # 0.

The term genericity is used because this is expected to hold on a open, dense subset of initial data [7].
We note that this fact was not established in [16]. We do not establish this here because we can verify it
numerically in all cases we consider. It will be considered in a future work.

Genericity implies, by evaluating at x = 0,

(125) W(g™(c;-), ¢P(0;-)) # 0,
giving
(126) 0 7# W(@™(c;-), 9P (0;-)) = W(PP(c;-), ™ (0;-)) = W(@™ (=), §P(0;))-

Next, by again evaluating at x = 0,

(127) 0 # W(p™(0;-),¢P(0;-)) = W™ (c; ), 9P (0;-)).
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Here ™ and ¢P are solutions of the same Schrédinger equation with decaying potential u(x). We find
that (127) with u(x) replaced with ug(—x) is the same condition as (126).

Theorem 3.13. Let k be a non-negative integer and suppose that ug € L'(R, (1 + |x|)¥*1 dx) and assume uy is
generic. Then Ry(s) satisfies*

k
Z (V=s—cY +o(Js+c["'?), s— —c, s< —c

(128)
k
Z V=s—c). +o(ls+c[/?), s— —c s> —c,

and ¢; = ¢ for j = 0,1,..., k. Furthermore, Ry, are C* functions on R\ {c, —c} satisfying

(129) Ri(£c) = -1, Ry(0) = —1.
Proof. Recall that from (25) and (85)

b—sg Is| > ¢,
(130) Ry(s) = Z+s(_s)

0] ls| <c

Consider the truncation uo,1 (x) = 10(x)G{|x<1}(¥), L > 0, which has compact support so that

ZC]L (V=s—cY +o(ls+c|'?), s— —c,s<—c
(131)
ZC]L —s—o)\ +o(ls+c['?), s— —c s> —c

and ¢j; = ¢ forj =0,1,.. .,k. Next, we show that these expressions remain valid as L — oo, im-
plying (128). Indeed this follows by Lemma 2.7 as the limit can be applied term-by-term in the Taylor
expansion. A similar argument holds at 4-c. The argument for R, is simpler as once we know the Taylor
expansions exist, (106) gives the result.

Now,

(132) ot (s) = W(wm(s;z-i)sf ¢P(s;-))

so that for s # 0 we have
(133) a*(s) — W(l/)m(s;-),(l)p(s,'-))
at(=s)  W(pm(=s;-),¢P(=s;"))
Then, under the condition that W(¢™(0;-), $P(0;-)) # 0 we find that R;(0) = —1. Then to establish
the required equalities at +-c we consider for s> > ¢?, assuming the corresponding denominators do not

vanish
(134) Re(ke) = WO 4200

But then P (0; -) = $™(0; -) so that R,(+c) = 1.
(135) Ry(c) = — W(zl{;ﬂp(o‘;.-),qbp(ic; )

4A similar condition at s = c is implied by R;(—s) = Ry(s).
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O

3.6. The final Riemann-Hilbert problems. To finalize the setup of the RH problems, we must introduce
time-dependence and residue conditions from the existence of solitons in the solution whenever a(z) has
a simple zero. This process is detailed in Appendix A. Specifically, it follows from the decay assumptions
on ug thata(z) = a(z;0) does not vanish on R and has a finite number of simple poles {z1, ..., z,} in the
open upper-half plane, all lying on the imaginary axis [5]. Then define ¥4, ...%, to be disjoint circular
contours in the open upper-half plane of radius 6 > 0 with z4,...,z, as their centers and clockwise
orientation. Additionally, give —%; := {—z : z € ¥;} counter-clockwise orientation.

Riemann-Hilbert Problem 3. The function N; : C\ R — C'*?, Ni(z) = Ni(z;x,t) is analytic on its
domain and satisfies

B [ 1— ‘RI(S) ’2 —Ri(—s) e2isx+8is’t
+ _
N1 (S) - N1 (S) R](S) e—Zisx—Sis3t 1 , SER,
. N 1 0]
Ny (s) =Ny ()| e “2izx-8izlt (s S €L
(136) |7 € |
1 _clz) e—Zizjx—8iz]3t'
N{(s) = Np(s) |1 T , se-x,
0 1

Ni(z)
with the symmetry condition

(137)

[1 1} +0(zY), ze€C\R,

Nl(—Z) :N1(Z)0'1, ZEC\F, FZRUU(Z]U—Z])

]

Theorem 3.14. There exists a unique L? solution of RH Problem 3 provided R is any function on R that is

continuous, decays at infinity and satisfies Rj(—s) = Ry(s).

For the proof of Theorem 3.14, see Appendix B.1.

Riemann-Hilbert Problem 4. The function N, : C\ R — C'*2, Ny(z)

domain and satisfies

Ny (z; x,t) is analytic on its

- o IR ()2 —Ry(—s) o—2A(s)x—8ip(s)t
+le) — 2 2
N; (s) = N (s) Ri(s) @2iA(s)x+8ig(s)t 1 R
B _1 —Rr(—s) efzi/\’(s)foi(p’(s)t 1 0
+re) —
N; (s) =N, (s) 0 1 01 Re(s) XA ()x+8ig ()t 1|’ —CSs<g
(138) NI 1 0]
N;_ (S) = NZ (S) _C(z;) eZi)\(Zj)X-i-Si(p(zj)t 11’ s € 2],
L s—z |
1 —CE) Q2iA(z))x+8ig(z)t ]
Ni(s) =Ny (s)|L 5 , se-x,
_0 1 -
(s) = A%(s) + 3¢°A(s),
with the symmetry condition
(139) No(—2z) =Na(z)oq, ze€C\R.



22 DENIZ BILMAN AND THOMAS TROGDON

Theorem 3.15. Assume

(1) a,b, A, B : R\ [—c,c] — C are 1/2-Holder continuous functions such that a(s) and b(s), can be extended
to 1/2-Holder continuous functions on R \ (—c,c).

(2) The symmetries (122) and (123) hold for s* > c2.

(3) Fors? > c?,a(s) = a(—s) and b(s) = b(—s)

(4) a*t,A" : (—c,c) = C are 1/2-Holder functions such that sa™(s), Ay (s)A™(s) can be extended to 1/2-
Holder continuous functions on [—c, c] and a*(£c) = a(*c).

(5) a, b satisfy

a(s) =a1,_ +ao /—s—c+0O(s+c|), s— —c, s*>c

b(s) = —a1,_ +B2 V—s—c+O(s+c|), s— —c, s >c
(140) a(s) =a1, +aoVs—c+O0O(s—c|), s—c s >c

b(s) = —a1 +B2 Vs—c+O(s—c|), s—c s*>c

for some a1, Bj+ € C.
(6) a™ satisfies
at(8)=01,-+0-Vs+c+O(s+c|), s——¢c s>-—c
at(s)=—01,- +l+Vec—s+0(s—c|), s—¢c s<g
for some y and {1 € C.
(7) AT (s) = a*(s)ﬁ(s)fors € (—cc)
(8) Neither a(s) nor sa™ (s) vanish within their domains of definition.
(9) Ry(s) is given by (85).
(10) R.(s) is given by (106) and (112) and (114) hold.
(11) R/ (s) = O(s71) as |s| — oo.

(141)

Then there exists a unique L? solution of RH Problem 4.

For the proof of Theorem 3.15, see Section B.2 of the Appendix. We can now prove our theorem about
the existence of solutions of the KdV equation via RH problems.

Theorem 3.16. Suppose uy is generic. Then the following hold:

(1) Ifup € LY(R, (1 + |x|) dx) then RH Problem 3 has a unique solution.

(2) Ifug € LY(R, (1 + |x|)® dx) then RH Problem 4 has a unique solution.

(3) Ifeither u(-,0) € Dsorug € LY(R, e’ dx) for some & > 0 then by the Dressing Method these solutions
produce the solution of the KAV equation for t > 0:

lim 2iz(N1(z) — [1 1]) = [— [Fou(x, t)ydx [T u(x,t) dx’},

lim 2iz(No(z) - [1 1]) = [_ IO, ) +Adx [P, ) + ) dx'].

Proof. Parts (1) and (2) follow from Lemma 2.7 and Theorems 3.14 and 3.15. Part (3) is the application
of the Dressing Method and the conditions imposed are sufficient for the solution of the RH problem
to be differentiable both in x and ¢ the required number of times. For u(-,0) € D3 see Lemma 3.10 and

(142)

for up € L'(RR, e’*l dx), see the deformations in Section 6 which induces exponential decay of the jump

matrix. O
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Rez
FIGURE 2. The domain S for varying values of v when ¢ = 1. Specifically, this plot gives

the level curves of | Im A(z)].

Remark 3.17. It is important to note that if one solves RH Problem 3 for large values of x, the recovery
formula (142) produces a quantity that grows as x increases. This indicates that the operator one is
inverting is not well-conditioned in this limit. Thus there is a reason based on numerical stability for
including both RH Problem 3 and RH Problem 4.

4. CONTOUR DEFORMATIONS AND NUMERICAL INVERSE SCATTERING

Throughout this section we assume uy € L!(e?/*dx) for some v > 0. This immediately implies
that, in addition to other analyticity properties, ¢P/™ and P/™ and their x-derivatives have analytic
extensions as functions of z within the open strip S, := {z € C : |Imz| < v} and continuous in the
closure. Define

(143) S} ={zecC:|ImA(z)| < v}.

See Figure 2 for a plot. It is clear that R \ [—c,c] C S} for any choice of A. Then, for example, it follows
that P (z; x) is an analytic function of z within the region

(144) Shi=CTuUSH\ [—c,c],
while ™ (z; x) is an analytic function of z within the region
(145) ShTi=C USM\ [—¢,q].

It then follows that R;(s) has a meromorphic extension to )" while R, (s) has a meromorphic extension
to only Sj* N S)~. These regions of analyticity are sufficient to make all the deformations outlined
below.

4.1. Computing R,;. We note that the computation of the reflection coefficients is no different than that
in the case of decaying data [33]. Indeed, we compute the scattering data by evaluating at x = 0, see
Remark 2.1.

4.2. Computing {z;}, C(z;) and c(z;). The authors in [33] used Hill’s method [6] to compute the (nega-
tive) eigenvalues of the operator (11) at = 0 and therefore find the zeros a(z) in the upper-half plane.
This required initial data with decay, so that one can approximate the eigenvalues with those from a
operator on a space of periodic functions. Here, we choose L > 0 so that |uy(x)| < € for |[x| > L and € is
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on the order of machine precision. Then (11) can be approximated by
(146) —Df,, — diagu(¥n,1,0)

where Dy 1 is the first-order Chebyshev differentiation matrix [28] for ¥y, the vector of Nth-order
Chebyshev points scaled to the interval [—L, L]. For sufficiently large L, N, the eigenvalues of (146) near
the negative real axis approximate the eigenvalues of (11).

4.3. The numerical solution of Riemann-Hilbert problems. The numerical solution of an L? RH prob-
lem is based around the representation of HZ (T') functions as the Cauchy integral of L?(T') functions and
consequently, the equivalency between solving the RH problem for N and solving the singular integral
equation

(147) u—Ciu-(G-1)=G-1, N=Cru+L

This integral equation is discretized (see [25,32]) using mapped Chebyshev polynomials. The conver-
gence rate is closely tied to the smoothness of solutions [26] and invertibility of the associated operator
on high-order Sobolev spaces is required [32]. Fortunately, this is immediate following Theorems 3.14
and 3.15, and the fact that the jump matrix G we encounter, after deformation, will satisfy the kth-order
product condition [32, Definition 2.55] for every k. Full details on the numerical solution of RH problems
is relegated to the references, particularly [32].

The deformation of a RH problem is an explicit transformation (G,T) + (G, T) such the solutions
of the two problems are in correspondence. The goal is for the operator u — u —C.u - (G —1) to be
better conditioned than the original operator (147), i.e. have a smaller condition number. To have any
analytic expressions for the solution, one needs the condition number to tend to one in an asymptotic
limit, while numerically, one just aims to have a bounded quantity.

4.4. Recovery of u(x,t). Once the solution of (147) has been computed, one then seeks d,u = uy, see
(142). To do this, we solve the equation solved by u,:

(148) ux - Cljux . (G - I) - (Cl?u + I)Gx, Nx - Crux.
And then, formally,

. - 1
(149) Zh_}rgo zNy(z) = —E/rux(s) ds.

Assuming the operator in (147) is invertible, these formal manipulations are justified provided G, €
L'NL®(T)and Cfu+1€ L2(R).

5. NUMERICAL INVERSE SCATTERING AT f = 0

We divide this computation into two cases, x < 0 and x > 0. We first ignore the jumps on the
contours Zj, —Zj.

5.1. x < 0. Under our assumptions, R; has a meromorphic extension to v > Imz > 0, decaying at

infinity within this strip. And because R; has a finite number of poles in this strip, we can use the

factorization

1—Ri(s)Ri(—s) Ry(—s)e
_ R](S) eZixs

1 Ry(—s)e 2

(150) . '

=M (s)Py ' (s) = [

1 0
~Ry(s) ¥ 1|’
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noting that Ri(s) = Rj(—s), to deform RH Problem 3 within a possibly smaller strip « < é. One does

this by the so-called lensing process: Given N; define

Ni1(z)Pq(z O0<Imz < a,

(151) Ny (z) = § NP i
Ni(z)M;(z) —a<Imz <0,

and then N (z) satisfies the RH problem depicted in Figure 3. The jumps matrices decay exponentially
to the identity matrix as x — —oo.

2“ @) ©)

FIGURE 3. The initial deformation of RH Problem 3 for t = 0, x < 0. The jumps on the
contours ¥; and —X; are unchanged at this stage.

5.2. x > 0. The situation for x > 0 is more complicated because the jump condition in RH Problem 4 is
discontinuous. Furthermore, we can only lens the jump matrix within as subregion of Sj. See Figure 4
for a depiction of the jump contours and jump matrices after lensing. But this RH problem, even though
it is uniquely solvable in an L? sense, has a jump matrix that is not smooth, in the sense of the product
condition [32, Definition 2.55] at £c. A local deformation is required, using (236) below with jump
matrices and jump contours depicted in Figure 4. Then define two neighborhoods B-.. of +c, by first
defining B, shown in Figure 5 and setting B_. = {—z : z € B.}. Now, define a new unknown
1
(152) Ro(z) = Ry(e) | W ) 2 € B
I otherwise.

where W is defined in (236). We point out that this definition is made to both solve the jump on the
small intervals near £c and to preserve the symmetry condition: If a function satisfies N(—z) = N(z)o
and we want a new function N(z) = N(z)C(z) to satisfy the same condition, then:

A

(153) N(-z) = N(-2)C(-z) = N(z)1C(~z),

and one concludes that 09C(—z) = C(z)oy is a sufficient condition. In the case of W, we see that
AW (—z)o = W(z).
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FIGURE 4. The initial deformation of RH Problem 4 for t = 0, x > 0. The jumps on the
contours ¥; and —X; are unchanged at this stage.

FIGURE 5. The second deformation of RH Problem 4 for t = 0, x > 0. The jumps on the
contours ¥; and —Z%; are unchanged at this stage.

5.3. Jump matrices on ;. Consider a RH problem with jump conditions the form

/o -

1 0
N 1 s € Z]',
L 5—%) J
(154) N*(s) = N (s)
B
! stz s € —Z]'.
\ —O 1 .
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P!
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P!

FIGURE 6. A zoomed view of the second deformation of RH Problem 4 fort = 0, x >
0. All contours intersecting the real axis make the same angle with the real axis. The

angle 71/3 is chosen so that et (2) decays exponentially, for large z, in the appropriate
quadrants.
Define
G B
. Z+Zj - .
Q(z) = |, M) =NET(Ezw8),
L O Z—Zj
Q(z) zoutside X;and — %,
- -
(155) 24z “=5) |z inside 3,
T(z;z]-,(x,ﬁ) )L oc(z+z]) |
0 z—z)]
g 'B(Zﬂj 2 zinside —%;.
L L ﬁ(z—z]-) z—z; |
Then the jump conditions satisfied by M(z) are given by
(156)
r 5=z 1 fr 1 E
Q*l(s) 1 0 s+zj a(s+z)) se Z], 1 a(s—z;) s e Z],
7 1 |-as+z) 0 0 1
M*(s) =M (s) =M (s)
5 _ps—z)| [1 £ 1 0]
{ ) o ])] { SH]] Q(s) se-%, ) s€ -3,
B(s—z;) 0 0 1 [ LB(s+z))

When « and S are both large, this transformation allows us to convert the jump to one that is near-
identity. We will only need to apply this transformation in the case & = f, in which case we use the

notation T(z; zj, a) =T(z; zj, &, B).
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To see how to employ this in the context of the KdV equation define two index sets, depending on x
and t

(157) Si(x,t) = {j: le(z) e 2| > 1}, Sy(x, 1) = {j: |Clz)) e 2ME—S9len)| > 13,
and two matrix functions defined on C \ (U]-(Z]- U —Zj)>

158) Q)= [ Tz —cz)e ™), Q)= [] T(zz, —Clzj)e ) 80),
jesi(xt) j€S2(xt)

Our final step before solving the RH problem for N; will be to instead consider the RH problem for
N;Q;. This includes our calculations for > 0 below. We do not present the final RH problem, after this
modification, as the preceding calculations allow one to directly derive the new jumps.

6. NUMERICAL INVERSE SCATTERING FOR TWO ASYMPTOTIC REGIONS

We now discuss simple deformations that lead to asymptotically accurate computations in two re-
gions. The full deformation of the RH problem to compute asymptotic solutions in the entire (x, t)-plane
will be presented in a forthcoming work.

6.1. x > —2c*t. We begin with a simple but important calculation. For s € (—c,c) and € R consider

(159) h(s) = 2107 (s) + 8igp™ (s) = —v/ 2 — s2[27 + 12¢* — 8(c* — 5%)].
This function, evidently, has a local minimum at s = 0 where h(0) = —|c|(27 + 4c?). This remains non-

positive provided that { > —2c?. Thus the jump in RH Problem 4 on (—c¢, ¢) has its (1,1) entry less than
unity, in absolute value, provided that x > —2c?t. For this regime, we can use the deformation depicted
in Figures 5 and 6, using RH Problem 4.

Before the deformed RH problem is solved numerically, the deformation detailed in Section 5.3 is
performed.

6.2. /¢ > ¢+ 0. In this region we use RH Problem 3 exclusively. Recalling that R;(s) = Rj(—s) we

consider, formally,

(160)
1— Rl(S)Rl(—S) Rl(—S) e72isx78153t M P—l B 1 R](—S) e721x578153t 1 0
_Ry(s) e2isxt8is’t 1 =Mi(s)Py (s) = 0 1 _Ry(s) 2wt
1 0 T(S) 0 1 Ri(—s) efZixsfSisg’t
=L(s)D(s)U 1(s) = e T(s) ,
(S) (S) (S) [_ 1;1((55)) e21xs+81s3t 1] [ 0 1/T(S)] 0 1
with
(161) T(s) :== 1~ [Ri(s)[* = 1 — Ry(s)Ri(~s).
The first factorization is valid for s € R. The second factorization fails when |R;(s)| = 1 which occurs

fors € [—c,c].
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As is customary, we use the stationary phase points z* = +./—x/(12t) to guide the deformation.
Given « > 0 define six polygonal regions in C:
O ={z:0<Imz<a, Imz<Rez—2z"},
M ={z:0<Imz<a, Imz< —Rez+2z* Imz<Rez+2z*},
O ={z:0<Imz<a, Imz< —Rez—2z"},
(162)
Qy={z:—a<Imz<0, Imz>—Rez+2z"},
Os={z:—a<Imz<0, Imz>Rez—2z* Imz>—Rez—2z"},
Qs ={z:—a<Imz <0, Imz>Rez—2z"}.
There exists « > 0, sufficiently small, so that L has an analytic extension to (34 U ()¢ and U has an
analytic extension to (2; U Q)3. Similarly, P; and M; have analytic extensions to (), and Q)s, respectively.
So, define
U(z) zeOUQs,
,. P, (Z) z € (),
(163) Ni(z) = Ni(z)
L(z) ze€Q4UQy,
M; (Z) z € O3.

The jump contours and jump matrices for the Ny are depicted in Figure 7. We aim to have jumps that

Ut U!
D D
L L

FIGURE 7. The jump contours and jump matrices for the unknown N defined in (163).
The contours are deformed within a strip of width 2a.

are localized at +z*, and need to remove the jump on (—co, —z*) U (z*,00). Consider the RH problem
(164) At (s) = A" (s)D(s), s€ (—o0,—z")U(z*, ), A(s)=I+0(s!) s co.

This is easily solved via the Cauchy integral

' B 1 log T(s)
_ 1 - 08 11s)
(165) A(z) = diag(A(z), A7 (z)), IOgA(Z)_Q.TCi/(oo,Z*)U(Z*,OO) sz
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Now, fix 0 < r < 4, and define

(166)

A(z) z & (—o0,—z*) U (z%,00), |z2z*| >,
I lz+z | <r, 3 <arg(z+z*)<m,
D(z) |z+2z*| <r, —m<arg(z+z") < —-31/4,
L(z)D(z) lz+z <r, =3 <arg(z+2z*) < %,
P(z2)U Yz) |z+zf|<r, —F<arg(z+z*)<Z,

£(2) U-1(z) lz+z* <r, I <arg(z+z*) <3,

zZ) =

I |z -z <r, 0<arg(z—z*) <7,
D(z) |z —z*| <r, —§ <arg(z—1z*) <0,
L lz—z*|<r, -3 <arg(z—z*) < %,

(z)D(z)
P(z2) U Yz) |z—z'|<r, - < arg(z —z*) < —%T,
(

2 U l(z) |z—z"|<r, F <arg(z—z") <,

(U 1(z) lz—z"| <r, I <arg(z—z") <3

From this we define

(167)

N1 (z) = N;(2)Z(z2).

The jump contours and jump matrices for N1 (z) are displayed in Figure 8 with a zoomed view given in

Figure 9. Before this RH problem is discretized and solved, the transformation discussed in Section 5.3

is performed.

.
AU~IA-! 'AP; A AU-TA-1

c c
ALA™! —z* AM;A~! z* ALA™!

FIGURE 8. The jump contours and jump matrices for the unknown N defined in (167).
The contours are deformed within a strip of width 2x.

This deformation, following the arguments in [32], give accurate computations for all (x, t) such that

z* > c+6,evenast — co. As t increases, one has to vary r and r ~ t~1/2 is seen to be an acceptable
choice [33].
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1 0
-1 — . .
AS]'A S]'(Z) = _;(_ZZ e—21zjx—81z]3t 1
AU AT AP AT AP A1 AUIAT!

ALA™? AM;A~! AMA~! ALA!
—T(_\A-1
ASTT(—)A
FIGURE 9. A zoomed view of the jump contours and matrices for Ny.

7. NUMERICAL EXAMPLES

Combining the two deformations discussed in the previous section, numerical computations will be
accurate asymptotically’ for

(168) x < —12(c+ 5)2 and —27%t < x.

This leaves a rather large sector of the (x, t) plane unaccounted for. A future work will focus on properly
filling this gap.

Nevertheless, we can compute the entire solution profile for a restricted interval of ¢ values, provided
that c is not too large. To accomplish this, we made an ad hoc modification of z*:

(169) zy, = max{z*,c+ 9},

where, in practice we set 6 = 1/10. And then we use the deformation and RH problem displayed in
Figure 8 for x < —2c?t with z* replaced with z}, and the deformation and RH problem displayed in
Figure 5 for x > —2¢2t,

5This means that computations will be accurate for all x and ¢ in these regions including both large and small values.
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The initial data u(x,0) in our examples satisfies
(170) u(x,0) — ?, x— —o and u(x,0) -0, x— +oo.

It is simple to use the Galilean boost to map such a solution to one satisfying (5), see Remark 1.1.

Remark 7.1. Evaluating u(x,t) for small ¢ can be difficult if Rj(z) and R;(z) do not decay quickly as
z — *oo. This issue is analogous to computing the Fourier transform of a function that decays slowly at
infinity — one cannot truncate the domain of integration enough to allow for the capturing of oscillation.
But for t > 0, the deformations outlined in the previous section induce exponential decay, alleviating
this issue to an extent. Indeed, as t | 0 the additional decay is reduced.

For infinitely smooth initial data u(x,0), from Lemma 3.10, this is not an issue even as t approaches
zero. So, we are able to evaluate the solution profile for all x and ¢ € [0, T|. In our computations T ~ 1.

For discontinous initial data u(x,0), t | 0 is a singular limit and the deformations described only
allow for the computation for all x but t € [¢, T], € > 0.

7.1. up = 0. When uy = 0, the functions A, B, 2 and b can be determined explicitly
1 z 1 z
40 =5(155) Bo=30-x)
_z+A(z) _z—A(z)
az)=—% - W) =

We display the solution of (1) with u(x,0) = H(x) + c? for various values of ¢, all evaluated at t = 1.

(171)

7.2. Smooth soliton-free data. An example of smooth data that fits into the described framework is
1
(172) u(x,0) = 1(1 + erf(x))?,

where erf(x) is the error function [24]. In this case, computing R; and R, is non-trivial. We display these
functions in Figures 11a and 11b, noting that the decay of ug makes A, B, a and b analytic functions of z
for all z off the cut [—c, ¢]. The corresponding solution is given in Figure 12

7.3. Smooth data with a soliton. An example of smooth data that fits into the described framework but
produces a soliton is

(173) u(x,0) = }1(1 + erf(x))? +2e /2,

The reflection coefficients are given in Figures 13a and 13b. The data associated to the pole in the RH
problem is given by

z1 ~ 0.950681i,
(174) c(z1) ~ 3.48119j,
C(z1) ~ 3.90351i.
The corresponding solution is displayed in Figure 14.
Remark 7.2 (Soliton speed). The speed of the soliton can be easily read off from the RH problem. For
example, the jump on %; in RH Problem 3 is determined by

_2iz:x—8iz3 9%, 2
(175) e 2izjx—8iz}t _ e 21zj(x+4z].t)‘
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FIGURE 10. The solution of the KdV equation at t = 1 when u(x,0) = Hc(x) +c%,c =1

(top), c = V2 (middle) and ¢ = v/3 (bottom).

This indicates a velocity of —42]2- for x < 0, in the case of data decaying to 0 at —co and tending to —c?
at +oo. In the current setting, this gives a velocity of —4z]2- + 6¢2. Similarly, for x > 0 we consider the
exponential in the jump on %; in RH Problem 4

(176) eZiA(zj)x+8iA3(zj)t+121¢:2/\(zj)t _ eziA(zj)(x+6c2t+4(z]2—c2)t)_

This indicates a velocity of —42]2 — 2¢2, in the case of data decaying to 0 at —co and tending to —c? at
+oo. For the current setting of (173), the velocity is —4z + 4c?, a decrease in velocity of 2c?,
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of Rj(z) when u(x,0) is given in (172). R:(z) when u(x,0) is given in (172).

FIGURE 11. The right and left reflection coefficients for (172).

APPENDIX A. SOLITONS AND TIME-DEPENDENCE

We derive time dependence of the scattering data under the assumption that ug(-,t) = u(-,t) — He(+)
and its x derivative decay rapidly at infinity for all ¢t. After the time dependence is determined, one can
appeal to the so-called Dressing Method to show that if the solution of the RH problem exists and is
unique, then it produces a solution of the KdV equation (see [32, Proposition 12.1], for example).

We have defined the (partial) scattering map Sup = (R}, Ry). Define R;(z;t) and R|(z;t) by the
mapping

(177) S(u(-,t) = He) = (Ri(71), Re (1))

where u(x,t) is the solution of the KdV equation with initial data ug + Hc.. The map gives only the
partial scattering data because we have not yet incorporated discrete spectrum, i.e., solitons. Define
a(z;t), b(z;t), A(z;t) and B(z; t) to be the functions corresponding to u(-,t) — H.

Extend the solutions ¢P™(z; x) and ¢P™(z; x) to functions ¢pP™(z; x,t) and YP™(z; x, t) by replacing
up(x) with u(x, t). These functions satisfy the following scattering and evolution equations (scalar Lax
pair):

—Pux —u(x, 1) = 2°9,
¢ = (422 = 2u(x, 1))y + (ux(x, 1) + 1)

The compatibility condition ¢yt = ¢trx With the condition z; = 0 gives the KdV equation (1). Consider,
now with time dependence, for z € R,

(178)

YP(z;x,t) = a(z; t)PP (z; x, t) + b(z; £) 9™ (z; x, 1),
¢ (z;x,t) = B(z )PP (z; x,t) + A(z; £)p™(z; x, t).

So, for t and z? > ¢? fixed, we have

(179)

(180) at(z;t)PF + a(z; t)PF + be(z; £) ™ + b(z; t)p™
= (422 = 2u(x, t))a(z; t) Pk + (42% — 2u(x, ))b(z; )™ + (ux(x, t) +1)(a(z; t)pP + b(z; t)p™).
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FIGURE 12. The solution of the KdV equation at t = 1,2,3 when u(x, 0) is given by (172).
The gray curve indicates the initial condition.

Then as x — —oo,

(181) P (zx,t) = iz¢P(z;x,t) (1 +0(1)), o™ (z;x,t) = —izp™(z; x,t) (1 +0o(1)).
Using that u(x, t), ux(x,t) — 0as x — —oo, we find

(182) (ar(z;t) — 4iz°a(z; 1)) PP + (be(z; 1) + 4iz°b(z; 1) )™ = 0(1), x — —co.
This implies that

(183) a(z;t) = a(z;0)e ¥ b(z;t) = b(z;0) e 42"

35
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(A) The real (solid) and imaginary (dashed) parts (B) The real (solid) and imaginary (dashed) parts of
of Rj(z) when u(x,0) is given in (173). R:(z) when u(x,0) is given in (173).

FIGURE 13. The right and left reflection coefficients for the data (173).

and therefore
(184) Ri(z;t) = Ry(z;0) e 8,
This also holds for —¢ < z < ¢. Now, consider
(185)  Bi(z t)¢P + B(z )gr + Anlz )™ + Az )y
= (42% — 2u(x,t))B(z; )% + (42% — 2u(x, t)) A(z; )P + (uy(x, 1) + 1) (B(z; )P + A(z; t)p™)
and then as x — oo,
(186) YE(z 1) = iM2)¢P(zx, H)(1+0(1), YR (zxt) = —iA(Z)p™(zx, 1) (1+0(1)),

and u(x,t) = —c?, uy(x,t) — 0. Therefore as x — +oc0

(187) (Bi(z;t) —iA(z) (422 + 2¢)B(z; 1) )YP + (Ai(z;t) +iA(z) (422 + 2¢%) A(z; 1)) ™ = o(1).
Therefore,
(188) B(Z, t) — B(Z, 0) e4i/\3(z)t+i6c2/\(z)t’ A(Z, t) — A(Z, O) ef4i/\3(z)tfi6c2/\(z)t'

This then gives for s> > ¢?
(189) RI(S} i’) — Rl(S,' 0) eSi/\3(s)t+i6c2A(s)t’
and R(s;t) = R(s;0) eBAL(OHH6CAL () for 0 < 5 < .
Next, assume a(z) = a(z;0) (and hence A(z)) has a simple zero at z’ € C". We then must incorporate

a residue condition because N1 and N will no longer be analytic for z € IR. So, consider
(190)
1

— 0 : . . ', o
Res,_ N; (Z) = Res,_ L; (Z) [a(z) 1] o izxX0s [Resz:z’ IPE;E?J;)J) e izx 0] — [¢:/(é/%,)t) e—lZX—4123t 0

0

because the second entry is analytic at z = z’. Then the fact that a(z’x, ) = 0 implies that there exists
by (t) € C such that

(191) PP (233, 8) = b ()™ (23x,),  bu(t) = b (0) e 42"
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FIGURE 14. The solution of the KdV equation at t = 1,2,3 when u(x, 0) is given by (173).
The gray curve indicates the initial condition.

and therefore

a’(z/,0) a’(z/,0) e 2 )e72iz/x78iz’3t 0

37

', . . i 0 0
(192) PPt —izx—4iz’t 0} — [(pm(z’; x,t) b(0) o iz/x—8iz°t 0} = lim Ny (z) [ b/ (0 .

a’(z';0)
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Similarly, atz = —2’
(193)
Res,—_» Ni(z) = Res,—_»Nj(—z)oy = lim (z+2z')Ni(—z)oq = lim (—z + 2’ )Ny (z)oq

z——z/ z—z/

. 0 0 .
- —Zh_r>rz1/ Ni(z) [ b (0) —2iz'x—8iz"t ](71 = lim Ni(z)oy

o
7Z0) 0 z——z

0 0
by(0) -2iz'x-8iz% |1
a’(z;,0)

Completing the analogous calculation for N»(z), we find

Res,—,» N2 (z) = Res,—, Ly(2) [é ?] eM2)xos — [Reszzz/ % eiM2)x O}
Az

(194) _ {%;g)t) QA (2)x+4A () 1+6icA (2 )t 0}

= lim N»(z) [ 1 Zi/\(z’)(J)CJrSi/\(z’)t+121c2A(z’)t 0]

722 A0 © 0
and
(195) Res,—_»Na(z) = lim Ny(z)oy [ 1 21A(z9)x+8m(z/)t+121c2A(z/)t 0] 01
72—z A=) © 0

For such a value of Z/, define
(196) o(z) = ab(zﬁog)) () = W

A.l. From residues to jumps. It will be inconvenient in what follows for us to treat residue conditions
directly. So, we deform them to jump conditions on small circles. Assume N(z) is a vector-valued
analytic function in a open neighborhood U of z’ that satisfies

z—z! —x 0

(197) Res,—. N(z) = lim N(z) [ 0 O] , aeC.

Choose € > 0 small enough so that {|z — 2’| = €} C U and define

1 0
N(z) |z —2| <e,
(198) M(z) = I
N(z) otherwise.
Then it follows that M is analytic in U \ {|z —Z/| = €} and if {|z — 2| = €} is given a clockwise
orientation, then
+ - 1 0 /
(199) M7 (s) =M (s)| , 1| s —Z'| =e.
s—z

In such a way, residue conditions are equivalent to rational jump conditions.

APPENDIX B. UNIQUE SOLVABILITY OF THE RIEMANN-HILBERT PROBLEMS

B.1. Unique solvability of RH Problem 3. Before proving Theorem 3.14 we establish some elementary
facts.
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Lemma B.1. Assume I is an admissible contour that satisfies I = —TI', with a reversal of orientation. Then
F(z) = {Fl (2) Fz(z)}, where Fy, F, € H3 (T) satisfies

(200) F(—z) =F(z)o1, ze€C\T
if and only if F(z) = Crf(z) for some £ € L2(T) (componentwise) satisfying
(201) —f(—s) =f(s)oy, sel.

Proof. Assume f € L?(T) satisfies (201). And consider, for z € T,

1 fs) . 1 f(—s) , 1 f(s) B
(202) F(z) = TM/rs—zds_ 27'(1/475—1—2 ds = TM/rs+zalds =F(—z)0y.
Conversely, we have that F = Crf for some f € L?(T') and if F satisfies (200) then forallz € C\ T
1 ds
(203) 0=-— /r(f(S) +(=s)on) —.
Because C; f(s) — Cy £(s) = f(s) for a.e. s € T, we find that (201) holds. O

Definition B.2. If I" is admissible, define
L) =0 ={f=|fi p|, fifrelPD), &s)=—f(-s)n},

20y [2,(T) = {f: [fl fz}, fi, f € LAT), £(s) = f(—s)crl}.

Lemma B.3. If I is admissible then

(205) L*(T) = L2(T) @ L% ,(T).

Proof. Foru € L?(T') define

(206) Pu(s) = %(u(s) —u(=s)n).
Then P is a projection onto L2(T). It also follows that Z — P maps L?(T') onto L2 ,(T). O
Lemma B.4. Suppose I is admissible.
e Ifu € L3,(T) then
(207) Cru(—s)oq = £C{u(s),
and therefore
(208) Clu(—s)oy = £Cr u(s).

e IfM,P:T — C?*2,M,P € L*(T) satisfy
(209) M(s) = i P(—s)oq
then the operator
(210) u—Ciu-P-Cu-M=u—Cru-(P-M)

maps L% (T) to itself.
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Proof. The calculation above implies the first part. Let u € L3,(T). Then the second part follows from
Clu(—=s)P(—s)oy — Cru(—s)M(—s)o1 = Cfu(—s)nM(s) — Cr u(—s)o1P(s)

— = £ (Cru(s)M(s) — Cfu(s)P(s)) = F(Cfu(s)P(s) — Cr u(s)M(s)).

O

Theorem B.5. Suppose T is admissible and M, P : T — C2*2, M, P € L™(T) satisfy (209). Further, suppose
the operator

(212) u—Cu:=u—Cru-(P-—M)
is invertible on L2(T). Then C| 12(r) is invertible on L2(T).

Proof. 1t suffices to show that if Cu = f where f € L2(T') then u € L2(T'). Suppose u = v + v_ where
ve € [3,(T),and v_ # 0. Then Cv_ € L*(T), and Cv_ # 0. But this contradicts that f € L2(T). O

So, we find that any L2 solution N; of RH Problem 3 must satisfy N1 = Cru for some u € L2(T') and

u(s) = Cu(s) - Oa(s) =1 = [1 1] - 0a(s) — 1),

1— |R1(S)|2 _E(S) eZisx+Sis3t
Rl(S) efzisx78i53t 1 sER,
(213) o i 1 0|
Jl §) = c(zj) —2izjx—8iz3t 5 € Z‘]’
1 _cz) ~2izx—8iz}t |
stz s € —X.
0 1

We note that the operator u — u — Cy u - (J; — I) does not map L2(T) to itself. So, we need to decompose
J1 first. Write

1 —R ( _ s) e2isx+Sis3t
0 1

Ji(s) =Py'(s), Mi(s) =1, s€X,

Ji(s) = My(s), Pi(s) =1, se—X;

Ji(s) = My (s)Py ' (s) =

1 0
[R1<S) efZisfois3t 1] , SER,
(214)

Lemma B.6. The operator

(215) u—u-Pp—Cru-(M; —Py)
is bounded on L2(T) to itself and if Ry € L*>(IR) then

(216) 1 1] (M) = Pi()) € (D).
Proof. It follows that

(217) 1M1 (—s)o1 = Py(s).

Then from Lemma B.4 the lemma follows.
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Lemma B.7. The operator
(218) ur—>u-P1—C1?u~(M1—P1)
is Fredholm on L2(T) with index zero provided that Ry is continuous and decays at infinity.

Proof. The fact that this operator is Fredholm on L?(T) follows from standard arguments [32]. This
implies Fredholm on the invariant subspace L2(T'). Then replace R; with aR; for 0 < a < 1. For &
sufficiently small, the operator is invertible and is therefore index zero. It must therefore be index zero
for all a. U

Proof of Theorem 3.14. The unique solvability of RH Problem 3 is implied by the invertibility of (218).
And to this end, because the Fredholm index of the operator is zero, it suffices to show that the kernel is
trivial. Assume u € L2(T) is an element of the kernel and define N(z) = Cru € H2 (T). It follows that
N solves the L2 RH problem

(219) Nt(s) =N"(s)Ji(s), s€Tl, N(z)=N(-z)o;, z€C\T.

We use another symmetry of the contour I'. If U is a connected component of C \ T then sois U := {z :
z € U}. Thus for f € E2(U), f(7) € E2(U) and if f € £2(U) and g € £*(U) then

(220) . f(s)g(5)ds = 0.

We select U to be the connected component in the upper-half plane that contains the real axis in its

boundary. The positively oriented boundary for U is then the real axis, and U;%; with reversed orienta-
tion. Therefore

(221) o_/N+ ds—Z/N SNT(3) ds,
- —T

(222) 0= / N~ (s)N*(5) ds — 2/ N*(s)N-(3) ds.

R R

] ]
Here the second line arises from similar considerations for U. Taking orientation into account and using
the symmetry of N
(223) / N~ (s)N*(3) ds = / N~ (—s)N*(—3) ds = —/ N*(s)N(3) ds.
—2 —Z
Thus, adding (221) and (222), we have
(224) 0= Re/ N*(s)N-(5) ds.
R

We use this to show that N(z) = 0 for z ¢ R which implies thatu = 0. If we set N(z) = [Nl (2) Nz(z)} ,
we find

N*(s)N~(s) ds = /[}Nf( VP = [Ri(s)2) + NS (5)]P
(225) R . o

+ N+( )N+( )Rl( ) 2isx+8is”t + N+( )N—i-( )RZ(S) e—21sx—81s t} ds.
Taking the real part of this expression, we find

(226) oz/R[\Nj( 21— Ri(s) 2] + [N (5) ] s
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implying that N (s) = 0 and therefore N(z) = 0, because |R(s)| < 1 fora.e. s € R [16]. O

B.2. Unique solvability for RH Problem 4. The jump matrix for RH Problem 4 is discontinuous and
the Fredholm theory no longer applies. We have to perform a lengthy regularization process and then
we use the fact that RH Problem 3 has a unique solution to show that RH Problem 4 has a unique
solution. We peform deformations under the assumptions of Theorem 3.15. In this section when we
refer to Assumption (j), we are referring the jth assumption in Theorem 3.15. For simplicity we assume
n = 0, i.e., no solitons. Because all deformations are performed in a neighborhood of the real axis the
result immediately applies to the case of n > 0.
The remainder of this section constitutes the proof of Theorem 3.15

Proof of Theorem 3.15. From Assumptions (1,4-6,8,10), R(s) is continuous for s € R and satisfies
(227) Ri(s) =L_c(s) +E_c(s), E_c(s)=0(s+c|), s— —c

and L_, has an analytic extension to a neighborhood {|z + ¢| < €,Imz > 0}. Note that Rj(s) = R;(—s)
follows from Assumptions (2,3,7,9). Then

—R,(—s) e 2iMs)x—8ig(s)
(228) Nj(s) = N5 (s)Ma(s)P; ' (s) = N; (s) 1 —Ry(—s)e 2AE)r8ig(s)t

1 0
Rr(s) eZiA(s)x+8i<p(s)t 11"

0 1
We factor
1 —L s e—Zi/\(s)x—Siq)(s)t 1 —F S e—ZiA(s)x—Sigo(s)t

Mz(s) = [0 ( ) 1 0 ( ) 1 = MZ,O(S)M2,6(5>/

(229)
1 0 1 0

Py(s) = [_LC(S)eZi/\(s)x-i-Siqo(s)t 1 [_EC(S)eZi/\(s)x+Si(p(s)t 1] = Pp,(5)Pae(s).

Then, consider the jump matrix near s = —c, s > —c:
+ — 0 1/,
(230) N5 (s) = N, (s)Ma(s) 10 P, (s).
Fixe > 0,and forz ¢ RU{z: |z + ¢| = €} define
I |z+c| > ¢,

(231) N21(z) = N2(2)S Mp,(z) Imz < Oand |z +c| <e€,

Pyo(z) Imz>O0and|z+c|<e.

Then the sectionally analytic function N ; has the following jumps when we give the circle {s: |s+¢| =
€} a clockwise orientation:

M, (s)P, ! (s) s<—c—eands >¢,

Mz,e(s)Pz_,el(s) —c—€e<s< —c
(232) NZ1(S) = N,,(s) lee(s)aleg(s) —c<s< —c+e,
My, (s) Ims <0, [s+c|=¢,

0
P;,(s) Ims >0, |[s+c|=e.
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The jump on the real axis, inside the circle, is nearly of the form:

o4 s> —¢,
I s< —c.

(233) WH(s) =W (s) {

To find such a solution W we first perform an eigen decomposition

@ | T | P

Then we solve a matrix problem (keeping an identity condition at infinity)

(235) VH(z) = V- (2) [_1 U [\/T 0].

0 1 0 1

We find the solution

(236) wie = 1] ! 1] [\/T 0] 1 _11]

1| 3 1 -] 1 |yEE+T 1-/E
1 1] 21—, [z [z

We note that W(—z) is also a solution. Then, perform the transformation, forz ¢ RU {|z + ¢| = €},

237) Naa(z) = Noj (z){I [2tel>e
Wlz) |z+4+c¢| <e.
For —c — e <z < —c+ ¢,z # 0, the resulting jump for the function Ny,(z) is given by
(238) G_c(5) = W_(s)Ma(s)W ' (s)W, (5)P5 2 (s) W' (s).
We want this to be continuous and equal to the identity jump at s = 0. Note that for x(z) = |/ &<

(239)  H(s) = Wx(s) [(1) f ﬂwil(@zi

1 1 2—f(s)  f(s)rx(s)| |1 -1
—1 1| |—f(e)xIi(s) 2+ f(s) [|1 1|
So, if f(s) = O(|s+c|) ass — —c, H(s) = I+ O(Js +c|'/?) as s — —c. While the jump condition for
Ny (z) behaves nicely near z = —c, we do not know that the solution itself does.

Let ® : R — R be infinitely differentiable, non-negative, ®(s) = 1 for |s| < €/4 and ®(s) = 0 for
|s| > €/2. Then consider the L?> RH problem

Riemann-Hilbert Problem 5.

(240) L7(s) =L (8)[I+®(s—¢)(G_c(s) =1)], —c—e<s<c+e L(-)—I€ Hi(R).

For € sufficiently small, it follows that this problem is uniquely solvable because the associated singu-
lar integral operator is a near-identity operator. And because the jump matrix is 1/2-Holder continuous
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by Assumptions (1,4), so is the solution, giving with 1/2-Holder continuous boundary values [23]. Fur-
thermore, det L(z) # 0. Then set

I |z+c| > €,
(241) N2,3 (Z) = N2,1 (Z) 1 1

W (z)L ' (z) |z—c¢| <e.

It follows that N2»(z) has an identity jump in a neighborhood of z = —c.

Lemma B.8. Let I be a differentiable curve parameterized by vy : [—1,1] — T, y(t) = t +14(t), £(0) = 0 and
define Te = v((—1+¢€,1—€)). Assume g is analytic in an the open set Uy |;|<r (T2 + ir) and satisfies

(242) sup /|g(s+ir)\2\ds|<oo,
—R<2r<R, r#0 JTe

for some R > 0and 0 < € < 1/2. Then, assume the branch of z — z~'/? is chosen so that h(z) = z7/2¢(z)
has an isolated singularity at z = 0. Then h is analytic at z = 0.

Proof. First consider f(z) = z'/2¢(z). This has an isolated singularity at z = 0 and it satisfies

(243) sup |f(s +1ir)|?| ds| < co.

0<|r|<R e

It then follows that f € £2(C+) where C1 = Jy,<r/2(Te £ir). For sufficiently small € > 0

dz = / dz + d
/Z)B(O,e)f(Z) z aB(o,e)me(Z) “ aB(o,e)mc,f(Z) “

d _/ dz =0.
+/1"SQB(O,e)f (2)dz rsﬂB(Ore)f(Z) :

The same is true for z* f (z) for all integers k > 0. Thus f is analytic at z = 0. We now claim that f(0) = 0.
Assume

(244)

(245) f(z)=c+o0(1), z—0, c#0.

There exists 6 > O, so that for |z| < J, |f(z)| > |c|/2. Then |h(z)| > |c||z|~/?/2 for |z| < 6. Then
consider for0 < r < R
2
(246) / |h(z +ir)|?| dz| > Je? |z +ir| 7| dz|.
T.NB(0,6) 4 Jr.nB(0s)

Then using the parameterization

_ dz| b2 dt
247 / z+ir| 71| dz >/ | >/ ,
(247) TNB(0,5) | 7zl = renB0d) 1Z| +7 7 Ju 24+ 2(t) 41
Then because £(t) is differentiable and and satisfies £(0) = 0, we have |{(t)| < C|t|, t; < t < t; and we
are left estimating

t1 <0<ty

(248)

/fz dt < /fz dt < 1 loe [ 1+ V1+C2H

h JE+C(E)+r — In VI+CHt +r V14 C? & r '

This right-hand side tends to co as ¥ — 0, contradicting (242). Thus f(0) = 0. Then it follows that
Joz (0) ZFh(z) dz = 0 for all positive integers k and & must be analytic at z = 0. O
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Applying this lemma to Ny 3(z) near z = —c we find that it is indeed analytic in a neighborhood of
z = —c. Specifically, each component of Ny 3, inside the circle |z + ¢| < e will be of the form

(249) I (2)pn (2) + }”\(/ZZ)LE(CZ),

where ¢; are bounded analytic functions for Imz # 0 and ; satisfy the estimate sup;_, 5 [ N sIhi(s £
ir)|>ds < oo for some § > 0, R > 0. So we apply the lemma to

(250) g(z) = Vz+chi(z)p1(z) + ha(2)a(2).
We are led to the following L? RH problem for Nj3:

Riemann-Hilbert Problem 6. Giving the circle {|s + c| = €} a clockwise orientation

(Mz(s)Pz_l(s) s<—c—eands>c,
L_(5)G_c(s)L7(s) —c—€e<s< —c+e,
(251) N3 5(s) = N35(5)J23(s) = N33(5)§ Ma(s)o1 P, 1(s) —ct+e<s<eg,
M,,(s)WL(s)L71(s) Ims <0, [s+c|=F,
Po,(s)W(s)L71(s) Ims >0, |s+c|=¢€.

with N2/3(~) —Ie Hi(]RU {‘S +C’ = 6})

To complete the proof of Theorem 3.15 we perform the following steps:

(1) We perform a similar deformation of RH Problem 4 near z = c using symmetry considerations.

(2) Then we show the resulting singular integral operator is Fredholm, and show that it is index zero
using a homotopy argument.

(3) Then to show the kernel is trivial, we show that every distinct element of the kernel results in a
distinct vanishing solution of RH Problem 3.

Step (1) is given as a RH problem. We separate (2)-(4) into three lemmas. The fact that
(252) (71M2(—S)(71 = Pz(S)
implies
(253)  Ma(—2)P; ' (=2)o1 = 1M (—2)o101 Py (—2)r = Pa(2)M; ! (2) = (Ma(2)P;(2))
This similarly holds for
-1 —1 -1
(254) oMo (—s)on P, (—s)oq = (Mz(s)ale (s)) .

01
10

Orient the circle {|s — ¢| = €} with a clockwise orientation and define an L?> RH problem that is
regular at I-c.

This is a necessary condition for Ny (—z) [ ] = N (z) when N3 is a solution of RH Problem 4.

Riemann-Hilbert Problem 7. The function Np4(-) — {1 1] € H3(T)

(255) N7, (s) = N3, (s)]24(s), s€T,
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where
(256) IF'=RU{|s+c|=¢€e}U{|s—c|=¢€},
and

Jo3(s Res <0,
(257) Jaa(s) = 120

01J,3(—s)o1 Res > 0.

Furthermore, Ny 4 satisfies the symmetry condition

01

(258) N24(—2) [1 0

] = N2,4(Z), z € C\F

Lemma B.9. The operator

(259) u {u(S) —Cru(s)(Jaals) — 1) s €T, Res <0,

u(s)]ﬁ(s) —Cru(s)(I— ]Z’,i(s)) seTl, Res >0,

is Fredholm on L2(T) where T is given in (256). Furthermore, the Fredholm index is zero.

Proof. This RH problem satisfies the zeroth-order product condition [32, Definition 2.55] with continuous
jump matrices. Furthermore, R, in addition to being continuous, decays at infinity by Assumption (11),
thus the operator

(260) u—u—Cru-(Jou—1I)

is Fredholm on L2(T'). This implies that the operator (259) is also Fredholm on L2(T'). Because of the
enforced symmetry of J,4, this operator also maps L2(T) to itself (see Lemma B.4), and is therefore
Fredholm on LE(F). Now, to show that the index is zero, we replace R, with aR; for 0 < a < 1. It
follows that Jo4(s) — Jeo(s), uniformly for s € ', as « — 0 where Jo(s) for Res < 0 is given by

261) ]oo(s) _ {011 —c+e<s <0,
Wi(s) |s+c|=¢€
and
(262) Jo(s) = 1t (=s)o1, Res > 0.
We construct the inverse operator to
(263) u—u—Chu- (Jo—1I) =Chu—Cru- o,
I'=[-c+ec—€lU{|s+c|=€e}U{|s—c|=¢€},

explicitly, and use this to show that the index of (259) is zero.

Consider the operator

(264) u s O (u- WIHW, — Cp(u- W HW,
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and its composition with (263) by considering
(265) Cri((Ciu = Cru-Jo) - WiHWa = Ciiu — G (Cru- WZH) Wy = Crg,
265

Cr((Chu—Cru-Joo) - W HW_ = Cpu.

This shows that (264) is the left inverse of (263). Similar considerations show it is also the right inverse.
Now, this implies an inverse for (259) on L2(T") when s = 0:

A A . wi! Rez <0,
(266) u+— C;(HW)W+ —Cr_,(uW)W,, W(Z) _ + (Z) ez <
W-l(z) Rez>0.

It is then enough to show that this operator maps L2(I") to itself’. This follows from Theorem B.5. [

Lemma B.10. The kernel of the operator (259) is trivial, and therefore RH Problem 7 has a unique L? solution for
any € > 0 sufficiently small.

Proof. The following transformation essentially maps the function N> to N, with the exception of the

exponentials,
[ 1
NZ(Z) e—(i/\(z)x+4igo(z)t)¢73 A(Z) 0 o a(z) 0 Imz >0,
0 1 0 1
(267) TNy(z) :=
Nz(Z) e—(i/\(z)x+4i<p(z)t)¢73 1 0 ) 1 0 Imz < 0.
0 A(—z) 0 5

This should be equal to Ny (z) e3> 422’075 So Jet u be an element of the kernel of (259). Define for
z ¢ T, (I'is given in (256))

(268) Y(z) = {Cru(z) lz+c| <€ |z—c| <e§,

TCru(z), otherwise.

Of particular interest are the jumps on |s £ c¢| = €. On this circle for Ims > 0

(269) Y (s) =Y (s)on [AE)S) aé)s)] P2,(s)W(z)L 7 (z) := Y (s)R(s).

We must compute the inverse of this jump matrix

(270) R_. . (z) = L(z)W(2)Pa,(2) o~ (2iA(z)x+8ip(z)t)o3

Alz 0
0tk
a(z)

®Note that (259) is the identity operator on '\ I for s = 0.
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and we focus on the product, with the notation f(z) = —L_.(z) e?*(2)x+8ip(2)t
(112 o]t 1] 1
WP () = o X
/ 2|1-1 1 o 1/|1 1 ||—-f(2) 1
[ 11, /2 ol [ _
271) _ L1 1B 01+ f(z) 1
2|1-1 1 0o 1][1-f(» 1
111 [(1+f(2) 1/g*g —\/ = .
2(-1 1 1— 1

We know that A(z) blows up as a square rootatz = —c by Assumptions (2,7), so for (270) to be bounded
for |z+¢c| <€ Imz > 0, f(—c) = 1 is required, and because R, is 1/2-Hdélder continuous, we have
L_c(z) = =1+ O(|z + c|'/?). This shows that (270) is a bounded analytic function. Similarly,

(1 1] [ /= o1 —1][1 —f(—
WM () = 5 Ve o s
’ 2(-1 1 0 1111 1 []0
[ 1T z+c 11 _f(_~)
(272) Lt = U
2 _—1 1_ I 0 1_ I 1—
_1foaffyEe \/Z“(( 2 +1)]
shows that
1
. . 0
o7 R . (2) = L(z)W(z) My (z) e~ B0t [a<on ol
g —Z

is a bounded analytic function for {|z + ¢| < €}, Imz < 0 because L_.(—z) = —1 + O(|z + c|/?). If we
define for Rez < 0

Cru(z)R_;+(z) |z+¢|] <eImz >0,
(274) Z(z) = { Cru(z)R__(z) |z+c| <eImz <0,

TCru(z), otherwise.

and Z(z) = Z(—z)oy for Rez > 0, we obtain a function with L?(R) boundary values and no jumps on

|s £ ¢| = e. Then it follows that
(275) Z(z) e(Zizx+Siz3t)¢73

7

is a solution of RH Problem 3, by (122) and (123), with Z € H3 (R), and therefore Z = 0. This implies
u=20. 0

The last step is to establish the following injection.
Lemma B.11. Every L? solution of RH Problem 7 corresponds to one and only one solution of RH Problem 4.

Proof. The careful derivation of RH Problem 7 implies that each solution of RH Problem 4 can be de-
formed to a solution of RH Problem 7 for any e sufficiently small. Because the functions L(z)W(z)Py,(z)
and L(z)W(z)My,(z) are bounded analytic functions in the domains {|z +¢| < €,Imz > 0} and
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{lz+¢| < €,Imz < 0}, respectively. This allows the inversion of the deformations, so that each L?
solution of RH Problem 7 gives an L? solution of RH Problem 4. 4

Given two distinct solutions Nél) and Néz) of RH Problem 4, they must differ at some point z*,

Nél)(z*) # Néz) (z*), z* ¢ R. Then min{|z* —¢|,|z* 4+ ¢|} > I for some § > 0. We perform the de-
formation to RH Problem 7 for 0 < € < ¢ for each solution, and Lemma B.10 gives a contradiction, and

establishes uniqueness. The existence is also guaranteed by Lemmas B.10 and B.11.
O
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