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Abstract—A  distinctive feature of game-based learning
environments is their capacity for enabling stealth assessment.
Stealth assessment analyzes a stream of fine-grained student
interaction data from a game-based learning environment to
dynamically draw inferences about students’ competencies
through evidence-centered design. In evidence-centered design,
evidence models have been traditionally designed using statistical
rules authored by domain experts that are encoded using Bayesian
networks. This article presents DEEPSTEALTH, a deep learning-
based stealth assessment framework, that yields significant
reductions in the feature engineering labor that has previously
been required to create stealth assessments. DEEPSTEALTH utilizes
end-to-end trainable deep neural network-based evidence models.
Using this framework, evidence models are devised using a set of
predictive features captured from raw, low-level interaction data
to infer evidence for competencies. We investigate two deep
learning-based evidence models, long short-term memory
networks (LSTMs) and n-gram encoded feedforward neural
networks (FFNNs). We compare these models’ predictive
performance for inferring students’ knowledge to linear-chain
conditional random fields (CRFs) and naive Bayes models. We
perform feature set-level analyses of game trace logs and external
pre-learning measures, and we examine the models’ early
prediction capacity. The framework is evaluated using data
collected from 182 middle school students interacting with a game-
based learning environment for middle grade computational
thinking. Results indicate that LSTM-based stealth assessors
outperform competitive baseline approaches with respect to
predictive accuracy and early prediction capacity. We find that
LSTMs, FFNNs, and CRFs all benefit from combined feature sets
derived from both game trace logs and external pre-learning
measures.

Index Terms—Computational Thinking, Deep Learning,
Educational Games, Game-Based Learning, Stealth Assessment

I. INTRODUCTION

Recent years have seen growing interest in intelligent game-
based learning environments because of their potential to

Manuscript received September 10, 2018; revised March 13, 2019; accepted
May 25, 2019. This work was supported by the National Science Foundation
under Grants CNS-1138497 and DRL-1640141. (Corresponding author:
Wookhee Min.)

W. Min is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695 USA (e-mail: wmin@ncsu.edu).

M. H. Frankosky is with the Intelligent Devices Group at Lenovo,
Morrisville, NC 27560 USA (e-mail: meganfrankosky@gmail.com).

B. W. Mott is with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27695 USA (e -mail: bwmott@ncsu.edu).

create personalized and engaging learning experiences [1].
These environments simultancously merge adaptive
pedagogical functionalities delivered through intelligent
tutoring system functionalities with the engaging learning
experiences provided by digital games [2], [3], [4], [5]. Recent
work on game-based learning has explored a broad spectrum of
subject matter ranging from K-12 mathematics [4], [6],
elementary school social behaviors [7], middle school computer
science [8], anti-bullying [9], social language and culture
learning [3], science inquiry [10], and biosafety training [11].

A key benefit of game-based learning environments is their
ability to embed problem-solving challenges within interactive
virtual environments, which can enhance students’ motivation
[1], [12]. These environments facilitate learning through
customized narratives, feedback, and problem-solving support
[13], [14], [15]. Game-based learning environments are a
promising laboratory for a wide range of artificial intelligence-
driven student modeling efforts to infer development of
competencies [14], [16], study affective states centering around
learning [17], [18], and monitor progression towards learning
goals [19] by utilizing fine-grained streams of students’
interaction data that represent problem-solving behaviors.

A significant design challenge posed by intelligent game-
based learning environments is understanding how to robustly
measure learning without disrupting engagement. Stealth
assessments address this challenge by embedding unobtrusive
assessments within game mechanics, offering a real-time non-
disruptive assessment method [14]. Stealth assessment
examines student interaction data to provide real-time behind-
the-scenes measurement of students’ learning processes and
outcomes [16], [20]. Specifically, students’ learning is inferred
by analyzing detailed sequences of observed behavioral cues
that indirectly reveal competencies for knowledge and skills
without conducting explicit formative assessments. This
information can be utilized to provide tailored problem-solving
support for individual learners in a way that is both timely and

J. P. Rowe is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695 USA (e-mail: jprowe@ncsu.edu).

A. Smith is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695 USA (e-mail: pmsmith4@ncsu.edu).

E. Wiebe is with the Department of STEM Education, North Carolina State
University, Raleigh, NC 27695 USA (e-mail: wiebe@ncsu.edu).

K. E. Boyer is with the Department of Computer & Information Science &
Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
keboyer@ufl.edu).

J. C. Lester is with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27695 USA (e-mail: lester@ncsu.edu).



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES

contextually appropriate [20], [21]. It can also inform teachers
of potential pedagogical adaptations or integration with
additional curricular activities, which are key components of
distributed and integrated scaffolding [22], [23], [24].

Stealth assessment is methodologically grounded in
evidence-centered design (ECD), a process for designing valid
knowledge assessments [25]. ECD features task, evidence, and
competency models for diagnostic measurement of multiple
aspects of students’ proficiency and performance. Built on the
three models presented in ECD, stealth assessments utilize a
rich stream of student interactions (i.e., an evidence model)
collected from various problem-solving tasks (i.e., a task model)
in game-based learning environments to draw inferences about
student knowledge and skills (i.e., a competency model). The
evidence model provides the connections between the
competency model and the stream of low-level observations
from student interactions with the task, enabling the
competency model to update competency variables in the
respective topic or skill [20]. Real-time processing of these three
models points the way toward intelligent, adaptive game-based
learning environments with development of robust evidence
models being a key goal.

Developing stealth assessments is a labor-intensive process
requiring highly skilled subject matter experts to manually
design reliable evidence and competency models to accurately
infer student knowledge and skills. This typically demands
stealth assessment designers to undertake manual feature
engineering efforts and design probabilistic graphical models
(e.g., [14], [20], [26]). As an approach to reducing this cost, we
present DEEPSTEALTH, a stealth assessment framework that
leverages deep learning (DL) for automatically devising
evidence models [16]. DL is a family of machine learning
algorithms that utilize deep neural networks to automatically
extract hierarchical features from low-level data (e.g., a
sequence of student behaviors in a game-based learning
environment) [27]. DEEPSTEALTH has shown significant
promise for alleviating the expensive and labor-intensive
process of designing evidence models [8], [16]. Findings
indicate that an evidence model implemented as a long short-
term memory network, which is a particular type of DL
architecture, outperforms an n-gram encoded feedforward
neural network, an alternative type of DL architecture, as well
as non-DL models that were induced using expert-engineered
features [8]. This current work further investigates the
capabilities of DEEPSTEALTH focusing on three key research
questions (RQs):

RQ1. Can DEEPSTEALTH-based evidence models outperform
other competitive approaches with respect to predictive
accuracy when models are trained using only raw, low-level
action sequences along with external pre-learning measures?

RQ2. Which features of game interaction logs and external
learning measures serve as strong predictors for evidence
modeling with respect to predictive accuracy?

RQ3. Can DEEPSTEALTH evidence models outperform other
competitive approaches with respect to early prediction?

To answer RQI1, we examine four computational methods
including two DEEPSTEALTH models (long short-term memory

networks and n-gram encoded feedforward neural networks),
conditional random fields (probabilistic models dealing with
sequential inputs), and n-gram encoded naive Bayes models
(probabilistic models dealing with fixed size inputs), where the
input for these models are pre-learning measures and low-level
sequences of student actions instead of engineered features, and
the output of the models is evidence for one of the core
competencies in a computational thinking curriculum.

To address RQ2, we investigate the independent influence of
the game interaction log feature set (i.e., action-level student
behaviors in our game-based learning environment) and the
external pre-learning measure feature set (i.e., content
knowledge pre-test scores, self-efficacy questionnaire scores
[28], and self-reported computer science attitudes [29]
measured prior to gameplay). We evaluate the predictive
capacity of the two independent feature sets by devising two
distinct evidence models per computational approach. We
compare these two models to a combined model that utilizes
both feature sets together. This feature set-level analysis
investigates how different machine learning techniques handle
data from two different modalities.

To address RQ3, we evaluate the early prediction capability
of the four computational methods. Early prediction is
particularly important in game-based learning environments
because run-time adaptive scaffolding is a central objective of
stealth assessment. We measure models’ early prediction
capacity using standardized convergence point, which is a
metric that estimates how early predictions converge to the
correct competency level in each sequence [30]. For this metric,
a lower score is more desirable since it indicates that model
predictions converge to the correct label sooner.

This article is organized as follows. Section II presents
related work on intelligent tutoring systems and stealth
assessment. Section III describes ENGAGE (Figure 1), a game-
based learning environment for computational thinking targeted
in middle school, which is used as a testbed environment for
DEEPSTEALTH. Section I'V describes the student data corpus and
instruments administered in multiple classroom studies across
four public middle schools in the southeastern United States.
Section V introduces the DEEPSTEALTH framework, and
Sections VI and VII present empirical results centering on the
three research questions along with a discussion of the findings.
Finally, the article concludes with directions for future work.

II. RELATED WORK

A. Intelligent Tutoring Systems

Intelligent game-based learning environments are situated at
the intersection of (1) digital games that increase students’
motivation through rich settings, engaging characters, and
compelling plots in virtual environments, and (2) intelligent
tutoring systems (ITSs) that foster students’ learning through
tailored scaffolding and context-sensitive feedback [1]. A rich
body of work on ITSs has explored a broad range of
computational approaches for student knowledge modeling,
particularly inferring competencies in knowledge and skills
using observed sequences of performance on tasks. Examples
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Fig. 1. Screenshots from the ENGAGE game-based learning environment: (A) an instructional video that explains how to run a device program, (B) a
moving platform task in the Introduction level, and (C) a bubble-sort task in the Big Data level.

include factor analysis techniques, such as learning factors
analysis [31], performance factors analysis [32], [33] and
matrix/tensor factorization [34], [35], [36], which have been
investigated for modeling latent knowledge states based on
student performance on exercises. Item response theory (IRT)
adopts a logistic function to model the probability of correctly
answering an exercise [37]. For example, one variant of IRT
models features three parameters: the difficulty of an exercise,
the random guess, and the discrimination, in which the
probability is inferred depending on the student’s skill level
associated with the exercise.

Bayesian knowledge tracing (BKT) assesses students’ latent
knowledge and skills in the context of cognitive modeling to
predict their performance on future exercises [38]. Based on
hidden Markov models, standard BKT models aim to predict
students’ latent knowledge utilizing four parameters: the initial
probability of knowing a skill a priori, the probability of
transitioning knowledge of a skill from unknown to known, the
probability of a slip (i.e., making a mistake when applying a
known skill), and the probability of a guess (i.c., successfully
applying a skill without having mastered it). Parameter values
can be fit using optimization techniques such as expectation
maximization and conjugate gradient search [39].
Individualized BKT models that consider learner-specific
aspects such as initial probability of mastery [40], speed of
learning [39], and student-based parameter fit [41] have
demonstrated improved predictive performance compared to
classical BKT approaches.

More recently, deep knowledge tracing (DKT) has
demonstrated an approach to knowledge tracing that uses
recurrent neural networks [42]. Instead of requiring hand-
crafted model parameters as well as labeling a skill for each
exercise, DKT takes as input a sequence of a student’s exercise
results (i.e., correctness of exercises) in order to predict the
probability of answering the next exercise correct at the
following time step, thereby exhibiting improved scalability for
student knowledge modeling compared to BKT.

B. Stealth Assessment

Evidence-centered design (ECD) is an assessment framework
that harnesses evidentiary arguments to connect task-level
evidence (e.g., what students do, say, or create) with higher-
level skills and knowledge concepts in order to infer ones’
competencies [25], [43], [44]. Specifically, the conceptual
assessment framework in ECD defines three operational

models, centering around what is being learned (competency
model), where the knowledge is being demonstrated (task
model), and how to connect the two models (evidence model),
which together can be used to deliver student-adaptive learning
content and feedback [43].

Stealth assessment extends ECD to game-based assessment
[26]. Student interactions with game-based learning
environments produce fine-grained evidence in the form of raw
game trace logs, such as a history of places that the students
have visited, interactions with non-player characters, and a
sequence of steps taken to solve a task situated within the
learning environment.

Various families of machine learning techniques have been
investigated for evidence modeling in these environments. Kim
and colleagues investigated Bayesian network-based evidence
modeling, which requires two primary steps: (1) defining
targeted competency and observable variables and building a
directed graphical model, and (2) specifying the conditional
probabilities between parent nodes and corresponding child
nodes [26]. Falakmasir et al. presented the SPRING data
analysis pipeline that does not require costly domain knowledge
engineering [45]. Specifically, SPRING trains two hidden
Markov models (HMMs), one for high-performing and the other
for low-performing students per game level. Two log-
likelihoods of an observed sequence of student events are
computed based on the two HMMs, and the difference between
the two log-likelihoods for each game level is used as an
independent variable for a linear regression model that predicts
post-test scores.

III. ENGAGE GAME-BASED LEARNING ENVIRONMENT

To investigate deep learning-based evidence models for stealth
assessment, we utilize a game-based learning environment
designed to introduce computational thinking to middle school
students, ENGAGE (Figure 1). ENGAGE features a rich immersive
3D storyworld built with the Unity multi-platform game engine
and Flare user interface toolkit [46]. The curriculum underlying
ENGAGE is based on the AP Computer Science Principles course
[47] with adapted learning objectives that are developmentally
appropriate for U.S. middle school students (ages 11-13).
Computational thinking is an approach to problem solving
that involves several key practices, including abstracting,
algorithmic thinking, systematic information processing, and
leveraging computational tools for data analysis, modeling, or
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TABLE I

DESCRIPTIONS OF ENGAGE’S THREE GAME LEVELS

Levels Key Concepts to Learn CS Principles Objective Statements
. Game mechanics (e.g., controlling player character, e Programming languages are a tool through which people
Introducti using the visual programming language) implement algorithms to solve problems using their creativity and
ntroduction

Introductory programming skills and interactions with
gameworld devices (e.g., moving platforms, cranes)

skills.

Digital World

The concept that binary numbers can represent various
types of data such as decimal numbers, alphabetical
characters, and colors

Intermediate programming skills (e.g., iteration,
conditionals, data conversion) using various gameworld
devices (e.g., binary locks/lifts for numbers, floor tiles for
colors and alphabetical characters)

Binary is an abstraction that computers use to communicate, and
the meaning of any binary sequence will depend on its
interpretation and use.

Big Data

Data analysis including filtering, sorting, visualizing, and
discovering empirical findings from the analysis

Advanced programming skills that require programming
based on computational thinking (e.g., developing
algorithms) using various gameworld devices (e.g.,
bubble sorting device, screen devices for filtering,

People use computers to analyze data and discover new
information with practical applications to real-world problems.

sorting, and visualization)

simulations [48], [49]. The problem-solving challenges within
ENGAGE were designed to develop computational thinking
skills and strategies through the creation and analysis of
computational artifacts. In addition to focusing on development
of computational thinking strategies, these challenges also aim
to increase interest in computer science and provide a
foundation for more advanced computer science work in high
school.

In ENGAGE, students play the role of the protagonist who has
been sent to an underwater research facility to restore its
communication systems, which have been sabotaged by a non-
player villain character. As students explore the research
facility, they progress through each level of the game, which
consists of a series of interconnected rooms. Each room
presents students with a set of computational challenges
students must solve by either programming devices located in
the room or interacting with devices to appropriately execute
written programs. To program devices, students use a visual
programming interface to drag and drop “blocks” that represent
functional units to create programs that contain an ordered
series of commands and controls to be executed by the device.
Programming in ENGAGE is inspired by the Scratch visual
programming environment [50]. As students develop block-
based programs, scaffolding is provided through brief
instructional videos (Figure 1A) and non-player character
dialogue, which unfolds using animated vignettes sequenced in
three thematic levels: Introduction (Figure 1B), Digital World
(Figure 2), and Big Data (Figure 1C). Table I introduces key
learning concepts and the Computer Science Principles
Objective Statement associated with each level. Each level was
iteratively refined and developed through a series of curriculum
design activities with middle school teachers and students based
on the AP Computer Science Principles course [47]. Through a
series of highly interactive learning activities, students repair
the communication systems and stop the villain from causing
further harm on the research station.

Several studies have investigated student learning in the
ENGAGE game-based learning environment. One thread of
research investigates how to achieve gender equity in ENGAGE
with respect to learning gains through collaboration [51] and
levels of frustration through a learning companion [52].
Students who interacted with ENGAGE and had no prior
programming experience increased their confidence subscale of
the computer science attitudes survey [29] to nearly the level of
those who also interacted with ENGAGE but came with prior
programming experience [53]. Frankosky and colleagues
conducted a latent class growth analysis on students’
interactions on six programming challenges within the ENGAGE
game [54]. They identified three distinct groups of students: (1)
the “steady performance” group (consistently spending less
programming time than average), (2) the “quickly improving”
group (after spending higher than average time for the first two
challenges, trending rapidly downward in programming time),
and (3) the “gradual lag” group (exhibiting higher than average
programming time). In addition, students’ interaction trace data
have been analyzed to infer their learning outcomes in the
context of stealth assessment [8], [16], [55].

In this work, we focus on students’ problem-solving
activities within ENGAGE’s Digital World level, in which
students investigate how binary sequences are used to represent
digital data. In problem-solving activities, students find the
binary representation of a base-ten number to activate a lift
device (Figure 2, Left), which requires them to review an
existing program for the lift device (Figure 2, Right) to
determine what base-ten number activates the lift. Students
thereby gain an understanding of the concept of bits in binary
numbers and the weight assigned to each bit. Students first pair
the lift device, which is the process of registering a device with
their virtual in-game computer in order to manipulate or view a
device’s program. Then, students read the program using the
visual programming interface, and flip binary tiles on the lift
device (e.g., the white squares at the top of the lift device in
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Fig. 2. (Left) A lift device with an existing program in the Digital World level, and (Right) the programming interface displaying the lift’s program.

Figure 2, Left) to change the binary sequence until it matches
the given base-ten number (Figure 2, Right). Upon executing
its program, the lift device evaluates whether the binary
sequence equals the base-ten number, and if they match, the
device ascends and waits for one minute, which enables the
student to navigate a previously inaccessible area. In these
tasks, students are provided immediate feedback on the base-
ten interpretation of the binary sequence as they flip tiles
through a display above the binary sequence (e.g., see numeral
20’ in Figure 2, Left).

In the Digital World level, students solve eleven binary
representation tasks associated with binary lifts or binary lock
devices. The eleven tasks introduce several symbols to
represent binary numbers such as “True and False,” “Yes and
No,” and “White and Black,” as well as the typical way of
denoting them using “1” and “0” to teach the concept of binary
representations. Figure 3 illustrates a sample sequence of steps
to solve a binary problem for a base-ten number, 20, by a
student who is learning the conceptual knowledge about binary
numbers. Initially, all binary tiles are off (0), which results in
the default base-ten value of 0. If the students flip the fifth (i.e.,
left-most) bit as in step (a), the base-ten value is updated to 16.
Then, if the fourth bit is flipped as in step (b), the value is
updated to 24. Then, she notices that the current binary
representation makes the value greater than the target value of
20 and decides to flip the fourth bit back to 0 as in step (c). She
continues in this manner to find a binary representation that
matches 20, executes the program, operates the binary device,
and eventually advances to the next task.

It is possible, but not optimal, for the tasks to be solved in a
brute-force manner without understanding the concept of binary
representations or the programs that control the devices.
Therefore, it is critical to dynamically assess students’
competency levels in order to provide tailored instructional
support for helping students acquire the knowledge. In the
following section, we describe the studies we conducted with
ENGAGE, which yielded the dataset that we use to investigate
deep learning-based stealth assessment.

IV. CLASSROOM STUDIES WITH ENGAGE

ENGAGE was deployed in multiple teacher-led classroom
studies conducted in four public middle schools in the

southeastern United States. In each round of the study, teachers
led a 9-week in-school implementation of ENGAGE. Teachers
who led the ENGAGE activities participated in professional
development and training sessions before beginning the
implementation. Prior to starting the activities students
completed pre-surveys (e.g., demographics questionnaire,
computer science content knowledge assessment, self-efficacy
and computer science attitude surveys). ENGAGE gameplay
sessions alternated with classroom activity sessions, and
students completed content knowledge tests after completing
each ENGAGE game level. Final post-surveys for content
knowledge, computer science attitudes, and engagement were
administered at the end of the game.

During game-play sessions, ENGAGE was played in either
single-player or two-player mode, the latter of which was
inspired by prior work on paired programming for introductory
computer science [56]. In two-player mode, one student
assumed the role of the “driver,” who controlled the game using
the keyboard and mouse, and the other student assumed the role
of the “navigator,” who provided guidance and feedback. They
collaboratively solving the programming challenges. Students
switched roles at pre-defined checkpoints within the game. We
posit that paired students shared problem-solving strategies and
skills while collaboratively playing the game. Therefore, the
same sequence of problem-solving logs was associated with
both students in every pair.

A. Assessments and Instruments

Among the assessments and instruments administered during
the studies, we utilized (1) a self-efficacy survey, (2) a computer
science attitude survey, and (3) a content knowledge
assessment. We use students’ responses on these instruments

0 16
(a) flip
—)
(b) flip
24 16
B
(c) flip

Fig. 3. An example of binary representation learning activities, in which
there are three flip actions, step (a), step (b), and step (c).
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and their assessment scores to train DEEPSTEALTH’s evidence
models.

Self-efficacy is the belief in one’s capabilities to mobilize the
motivation, cognitive resources, and courses of action needed
to meet given situational demands [57]. We measure student
self-efficacy because previous work has demonstrated that self-
efficacy predicts several important work-related outcomes
including job performance [58]. Student self-efficacy was
measured using the new general self-efficacy (NGSE) scale
[28]. Empirical studies suggest that NGSE achieves higher
construct validity than Sherer et al.’s general self-efficacy scale
(SGSE) [59], while the NGSE scale (8 items) is shorter than
SGSE (17 items).

The computer science attitudes (CSA) survey measures
attitudes towards computer programming and computer science
[29]. The instrument consists of five subscales measuring
confidence in learning, usefulness, effective motivation in
computer science and programming, attitude towards success in
computer science, and attitude on computer science as a male
domain. In this work, students completed the three subscales
mapping to confidence in learning, perceptions of usefulness,

and effective motivation in computer science and
programming.
Finally, students completed knowledge assessments

developed by the research team to assess how well students
mastered concepts in the computational challenges within
ENGAGE [60]. We focus on pre- and post-test scores for the
items that specifically assess knowledge of computational
concepts covered in the Digital World level centering on binary
representation. Figure 4 shows example questions in the
knowledge assessment.

Q1. How many bits does the binary number 100 have?
1. 3
2. 4
3. 50
4. 100

Q2. Interpret the following binary number as a base-ten number: 10110
1. 3

2. 13

3. 22

4. 10110

Fig. 4. Two sample questions from the concept knowledge assessments.

B. Participants

We analyze interaction data from 191 students (101 males,
88 females, 2 unreported) from a teacher-led deployment of
ENGAGE in four public middle school classrooms. Students
achieved improvements in content knowledge covered in the
Digital World level. A paired ¢-test comparing pre-test
(M=0.44, SD=0.21) to posttest (M=0.60, SD=0.25) indicated
that students’ learning gains were statistically significant with a
sizable effect size, #(184) = 12.18, p <.001, d = .70, where 185
out of 191 students took both the pre- and post-knowledge tests.

Of the 191 students, 182 students completed all of the binary
representation learning tasks and pre-external learning
measures (i.e., NGSE, CSA, knowledge assessment)

investigated in this work. Although it is possible to deal with
student data with missing values using imputation techniques
(e.g., mean imputation) as in [8], [16], we only use data from
the 182 students with all valid scores and game interaction logs
to minimize any potential noise that might be introduced.

V. DEEPSTEALTH: DEEP LEARNING-BASED
STEALTH ASSESSMENT FRAMEWORK

Stealth assessment based on evidence-centered design
utilizes three models:

e  Task Model: We use 11 binary tasks from the Digital
World level, the objective of which is finding the binary
representation that matches the base-ten number specified
in an in-game device’s program.

o FEvidence Model: Observed sequences of actions in the
game reveal evidence of student competencies. A generic
feature set is used to represent actions. For ENGAGE, there
are 19 possible actions, and thus 19 distinct features are
used to represent each action using one-hot encoding, a
technique that represents a categorical variable with a
binary vector. In addition to the game interaction evidence,
students’ five pre-learning measures on the knowledge
assessment, self-efficacy, and three measures of computer
science attitudes are utilized as evidence (i.e., 24 features
in total). The evidence model informs the competency
model in order to update the stealth assessor’s measure of
student competencies.

o Competency Model: We examine one competency model
variable with respect to students’ overall knowledge about
binary representation, where the actual labels for their
competency levels are acquired from students’ post-test
performance on the content knowledge assessment.

As noted above, students interact with 11 binary-lock/lift
challenges in ENGAGE, which are defined in the task model.
Game interaction logs featuring the series of student behaviors
taken to solve these challenges were recorded to a remote
MySQL database for post-hoc analyses [61]. Interactions with
the tasks reveal action-level evidence about various
competencies including one defined in our competency model.

The evidence model processes the raw interaction log data
and estimates beliefs about the state of competency variables
defined in the competency model. Evidence models generally
consists of evidence rules and statistical models [62]. Evidence
rules produce observable, predictive features that effectively
summarize students’ performance from work products, while
statistical models, often designed as Bayesian networks,
account for estimating beliefs about competency variables
given observations.

In prior work, we hand-authored evidence rules to create four
features from the raw problem-solving interactions and train
deep feedforward neural network (FFNN)-based evidence
models [16]. The four key features derived from the evidence
rules include the number of binary tile flips, the number of
binary tile double flips (i.e., a binary tile flipped and then
immediately flipped again), the number of times the device
programs were executed, and the amount of time students spent
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in the programming interface, which appeared to be important
for inferring one’s understanding about the concept of binary
representations. The features were engineered based on a
speculation that students knowledgeable about binary
representations were more likely to show fewer binary tile flips,
fewer program executions (i.e., they found solutions with fewer
attempts), and interpret programs written on the programming
interface more quickly. Similarly, for students who gradually
learned the concept, they may have exploited double-flip
actions to learn the weight associated with each bit in the early
phase, but showed fewer double flips as they progressed
through and mastered each bit’s weight.

While manually engineered features are useful for devising
reliable evidence models as demonstrated in [16], feature
engineering is a labor-intensive process that requires domain
experts’ knowledge and substantial effort. Domain experts must
scrutinize observable sequences of interactions with given
tasks, identify salient characteristics from the observation that
could be useful to infer students’ levels of proficiency for a set
of constructs, and design hand-crafted features that capture the
identified characteristics. Further, compared to raw, observed
interaction logs, feature engineering often fails to capture fine-
grained, sequential information in students’ learning behaviors
by extracting aggregated, static evidence from low-level trace
data.

This work presents the low-level action-based generic
feature set that can represent any type of action without being
bound to a specific learning environment, thereby yielding
enhanced scalability for the stealth assessment framework. In
ENGAGE, the binary learning tasks allow 19 possible actions,
including 11 pairing actions associated with 11 devices
described in the task model (e.g., binary lock device in Figure
2, Left), 5 bit-click actions (e.g., clicking a binary tile in Figure
2, Left), two actions for operating the programming interface
(open and close; Figure 2, Right), and a program execution
action to run the device’s program. Thus, this action-level
feature set is composed of 19 low-level features, where each
action is represented using one-hot encoding, which is an
encoding process that produces a bit vector whose length is the
size of the vocabulary of tokens (i.e., 19 actions), where only
the associated token bit is on (i.e., 1) while all other bits are off
(i.e., 0).

To effectively learn from a sequence of raw action features,
we investigate a recurrent neural network (RNN) based
evidence modeling approach. RNNs are a type of deep neural
network particularly designed for sequence labeling of temporal
data. RNNs extract patterns in sequential data and learn
predictive features through backpropagation-based training
techniques without human interventions. In contrast to FFNNs
that assume a fixed length of inputs and outputs, RNNs take
variable length sequential inputs while predicting a single
output or sequential outputs depending on the task.

Finally, for the competency model, we consider a single
competency variable that aggregates students’ understanding of
binary representations informed by their post-test score on the
content knowledge assessment. Each student’s data is labeled
with a discretized measure of post-test performance that is

based on a tertile split (i.e., Low, Medium, or High). Thus, the
evidence model’s task is cast as a three-class classification
problem that infers beliefs about student competency from their
raw low-level game trace data and pre-learning measures.

Under this problem formulation, four machine-learning
techniques are explored, including two deep learning-based
models (deep feedforward neural networks and long short-term
memory networks) and two competitive baseline models
(linear-chain conditional random fields and naive Bayes),
where every method learns evidence models utilizing low-level
action sequences represented with one-hot encoding. Because
feedforward neural networks and naive Bayes classifiers do not
support time-series inputs, we adopt n-gram encoding that
encodes the most recent n actions instead of taking into
consideration the entire sequence of actions. Below we describe
the two deep learning models utilized in DEEPSTEALTH.

A. Feedforward Neural Networks Pre-Trained Using Stacked
Denoising Autoencoders

Deep learning is a family of machine learning techniques
grounded in deep artificial neural networks, which are capable
of extracting hierarchical representations by inducing multi-
level abstractions of training data [27]. Researchers have
undertaken a rich line of investigation into how to effectively
train deep neural networks (DNNs), including (1)
improvements in hardware (e.g., fast CPUs, GPU acceleration,
parallel computing), (2) increasing amounts of data including
both labeled and unlabeled data, (3) novel neural network
architectures along with effective optimization/regularization
techniques, and (4) unsupervised pre-training techniques,
among others [63]. Deep learning forms the basis for state-of-
the-art techniques for a broad range of classification tasks
associated with computer vision, speech recognition, and
natural language processing [27].

An approach to pre-training DNNs leverages an
unsupervised method called autoencoders (AEs), which aim to
minimize the reconstruction error of the original input ina DNN
without using labels associated with the input [64], [65]. This
unsupervised pre-training technique helps to find a region of
parameter space that can reach a better local optimum in a non-
convex optimization graph, without which optimizing deep
neural networks often becomes challenging due to
vanishing/exploding gradient issues [66].

More formally, AEs feature (1) encoding (f) that
deterministically maps (W;) an input vector (x) into a hidden
representation f(x) using a non-linear transformation
characterized by an activation function, s (Equation 1) and (2)
decoding (g) that maps (W,) the hidden representation f (x)
back to g(f (x)), a reconstructed vector of the input vector (x),
using s (Equation 2). The objective in AEs is learning
representations (W, and W,) along with two bias terms (b; and
b,) by minimizing the reconstruction error between the input x
and the reconstructed input g(f (x)) through backpropagation
methods (e.g., stochastic gradient descent).

f(x) =s(Wyx + by) )
9(f (X)) = s(W,f (x) + b,) @)
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Fig. 5. Illustration of stacked denoising autoencoders; red crosses denote
corruption [65].

As a regularized variant of AEs, a denoising autoencoder
(DAE) performs a corruption process by injecting noise (we set
random units to 0 such as in the dropout mechanism [67]) into
the original input vector (x). A DAE aims to recover the
original uncorrupted input from the corrupted input as
illustrated in Figure 5. In this method, the input vector x is
partially corrupted into x” based on the corruption level that
defines the probability of corrupting input units. Then, x’ is
deterministically mapped to f(x") via an encoding process, and
f(x") is recovered to the original input x by a decoding process,
g(f(x")), by following the standard AE process. A key
difference in DAE is that the objective function is to minimize
the reconstruction error (L) between the uncorrupted input x
and the decoded output based on the corrupted input, g(f (x")),
interpreted as denoising corrupted inputs.

We induce feedforward neural network (FFNN)-based
stealth assessors pre-trained with stacked denoising
autoencoders (SDAEs) [65]. We adopt an approach to training
stacked denoising autoencoders using greedy, layer-wise pre-
training. Instead of training the deep autoencoders at once, we
construct multiple DAEs sequentially from the bottommost
layer (i.e., input layer) to the top hidden layer, where previously
pre-trained parameters serve to create an input for the next
DAE. The objective of each pre-training step is to minimize the
reconstruction error of the uncorrupted input. Once the pre-
training process is complete, we use pre-trained weight
configurations as initial weights for the original network and
the entire network gets fine-tuned using the supervised learning
criterion. As a result, it has been demonstrated that SDAEs
leveraging perturbed input data provide benefits over stacked
AEs by effectively dealing with noisy input data utilizing
denoising techniques and preventing weights from reaching a
trivial solution (i.e., identity function) that could cause
overfitting [65].

To fine-tune SDAE-pre-trained models, the input layer is fed
with a student’s action sequence (the number of actions to
consider should be determined prior to training an evidence
model) along with the external pre-learning measures, and the
output layer is set with the student’s competency level.

B. Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) are a variant of
recurrent neural networks (RNNs) that are specifically designed
for sequence labeling [68]. LSTMs have achieved high
predictive performance in various sequence labeling tasks,
often outperforming standard RNNs by preserving a longer-
term memory and effectively addressing the vanishing gradient
problem [69]. LSTMs have achieved state-of-the-art

performance in a diverse set of computational sequence-
labeling tasks, including speech recognition and machine
translation [63].

LSTMs (Figure 6A) feature a sequence of memory blocks.
Each memory block includes one self-connected memory cell
along with three gating units: an input gate, a forget gate, and
an output gate. In LSTMs, the input and output gates modulate
the incoming and outgoing signals to the memory cell, and the
forget gate controls whether the previous state of the memory
cell is preserved or forgotten. The three gating units (input gate,
output gate, and forget gate) featured in LSTMs enable
modeling long-term dependencies within temporal sequences
by allowing gradient information to flow over many time steps.

In an implementation of LSTMs, the input gate (i,), forget
gate (f;), candidate value of the memory cell (¢;), and output
gate (o, ) at time ¢ are computed with Equations 3-6,
respectively, in which W and U are weight matrices for
transforming the input (x,) at time ¢ and the cell output (h;_,)
at time -1, b is the bias vector of each unit, and o and tanh are
the logistic sigmoid and hyperbolic tangent functions,
respectively:

iy = o(Wyx, + Uihy_y + by) (3)
fe = o(Wpx, + Ushy—y + by) 4
¢; = tanh(W,x, + U h._, + b,) 5)
o, = o(Wox; + Uyhi_y + b,) (6)

As described in Equation 7, the current memory cell’s state
(c¢) 1s calculated by modulating the current memory candidate
value (¢;) via the input gate (i;) and the previous memory cell
state (c;_,) via the forget gate (f;). Through this process, a
memory cell decides whether to keep or forget the previous
memory state and regulates the candidate of the current memory
state via the input gate. The current memory cell state (c;) is
controlled by the output gate (0,) to compute the memory cell
output (h;) of the LSTM block at time ¢. This step is described
in Equation 8:

Ce = 1;Ce + fr€rq @)
h; = o, tanh(c;) ®)

Lastly, we use the final memory cell output vector (h;) to
predict the class label, which is the belief of the competency
level of the student. This step is executed in a softmax layer
(top-right in Figure 6A), which is interpreted as a calculation of
posterior probabilities of the possible class labels. The LSTM
is end-to-end trainable, where all the parameters such as W, U,
and b are machine-learned using backpropagation through
time.

C. Configuring Deep Neural Networks for Evidence Models

While the output layer of DNN models is fixed to three units
(Low, Medium, and High) that represent students’ post-test
performance (i.e., competency), the input layer size varies
according to the model.

Since FFNNs take fixed size inputs, we design an n-gram
encoded FFNN architecture to partially capture sequences of
actions. N-gram encoding formulates an input using the most
recent n actions (i.e., the current action along with [r-1]
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Fig. 6. (A) An illustration of an LSTM memory block that features three gating units and a memory cell [68]. (B) An illustration of how an original input (input:)
is transformed to a trainable format (x;). The discrete action variable, a;, is one-hot encoded into a 19-dimensional vector using bit 1 to 19, and then the induced
vector is concatenated with numeric external learning measure variables (e to es) to create the final input, x; [8].

immediately preceding actions) by concatenating the » actions.
In our work, each action is represented in one-hot encoding with
24 features (19 action types + 5 external pre-learning
measures), and thus the total number of features is 24 X n. In
this work, we set n to 200, by which we consider the past 200
actions to predict students’ competencies. On the other hand,
LSTMs can deal with sequential inputs without constraining the
input set to a static size. Thus, as illustrated in Figure 6B, 24
input features are utilized, which consist of 19 action types (bit
1 to bit 19) + 5 external pre-learning measures (e1 to es), and the
model extracts temporal patterns from the time-series training
data.

As in other machine learning techniques, selecting
hyperparameters for deep neural networks often must be
empirically determined [70]. We investigate FFNNs with two
hidden layers exploring the number of units (256 or 512) per
hidden layer. Further, we explore the corruption level (0.5 or
0.75), which is fractional rate of corrupted input units during
pre-training, for SDAEs. In a similar fashion, we explore two
hyperparameters for LSTMS: the number of hidden units (70 or
140) and the dropout rate (0.5 or 0.75) [67], a regularization
technique applicable to neural networks. A grid search method
is adopted for each of the DEEPSTEALTH models to perform
hyperparameter optimization.

Other than these two hyperparameters, we have fixed the
following: (1) for FFNNSs, the number of hidden layers is set to
two, and Rectified-Linear-Unit and Softmax activation
functions are used for hidden layers and the output layer,
respectively, and mean squared error and categorical cross
entropy are adopted as loss functions for pre-training and fine-
tuning, respectively, and (2) for LSTMs, we investigate a

single-layer LSTM with the categorical cross entropy as the loss
function. For both models, we use the Adam stochastic
optimization method [71]. Finally, we set the maximum number
of epochs to 100, and model training stops if there is no
improvement in the validation accuracy rate within the last
seven epochs.

VI. EVALUATION

To answer our three research questions, we conducted an
empirical evaluation of DEEPSTEALTH. We first investigate the
predictive performance of the four evidence modeling
techniques, including two deep learning-based models induced
using the DEEPSTEALTH framework. The evaluation was
conducted using student-level ten-fold cross-validation, where
the student split is fixed across different evidence models to
conduct a fair comparison. Then, we explore how each of the
sub-feature sets influence the top-performing models’
performance during cross-validation, and lastly we report early
prediction capacity of the top performing models. Below, we
briefly introduce two additional competitive baseline models,
conditional random fields and naive Bayes classifiers. Among
the 182 students, 55, 51, and 76 are labeled as Low, Medium,
and High performing students based on a tertile split,
respectively. Thus, the majority-based baseline accuracy is
41.76%.

A. Baseline Approaches: Conditional Random Fields and
Naive Bayes Classifiers

Conditional random fields (CRFs) are discriminative,
undirected graphical models, which are specifically designed to
learn interdependencies among output variables for structured
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prediction [72]. CRFs are regarded as a sequential extension of
logistic regression models or a discriminative analog of hidden
Markov models [73]. As a sequence-labeling approach, CRFs
have yielded encouraging results in a broad range of structured
prediction tasks in natural language processing as well as
computer vision and bioinformatics by effectively modeling
spatial, contextual relationships characterized in data. We
investigate linear-chain CRFs that extract flat, sequential
patterns from a series of learning behaviors. Similar to the
hyperparameter optimization applied to neural networks, we
run a grid search for choosing CRFs’ hyperparameters. We
investigate two optimization techniques between a one-slack
cutting plane method solved using CVXOPT [74] and block-
coordinate Frank-Wolfe [75], and the regularization parameter
(C) for both optimization techniques among {1.0, 1.5}. The
maximum number of iterations over a dataset to find constraints
and perform updates is set to 100.

Naive Bayes classifiers (NBs) are a type of Bayes network
that uses a naive assumption of conditional independence
across features. The posterior probability p(y|X) is
proportional to the prior, p(y), multiplied by the likelihood of
the features, [[; p(x;|y). The distribution of the likelihood,
p(x;ly) , such as a Gaussian distribution or Bernoulli
distribution, should be determined depending on the
characteristics of the data. Our feature set includes (1) pre-
learning measures, which are continuous variables, and (2)
game interaction logs, which are a categorical variable that are
represented in a one-hot encoded binary feature vector. Due to
this heterogeneity in the features, we discretize the pre-learning
measure features into binary features using a median split
obtained from the training set, and then train Bernoulli naive
Bayes classifiers that model both in-game actions and learning
features. As in FFNNs, NBs utilize the past 200 actions to
predict students’ competencies for the current action.

B. Predictive Performance of Evidence Models

Table II shows the results of student-level ten-fold cross-
validation results of the four computational evidence modeling
approaches using all available features. The rows and columns
represent the hyperparameters for each evidence model, and the
average predictive accuracy is reported within a corresponding
cell associated with a pair of hyperparameters. The performance
of the four techniques are evaluated using the same data split
per fold for a pair-wise comparison. Each evidence model infers
students’ competencies derived from their post-test
performance utilizing their action sequences and external pre-
learning measures.

Results indicate that LSTM-based evidence models (number
of hidden units: 140, dropout rate: 0.75, accuracy rate: 63.71,
standard deviation: 4.78) outperform the other competitive
baselines: FFNNs (number of hidden units: 256, corruption
level: 0.5, accuracy rate: 58.80, standard deviation: 5.84), CRFs
(one-slack cutting plane method, regularization parameter=1.5,
accuracy rate: 61.70, standard deviation: 11.10), and NBs
(accuracy rate: 46.63, standard deviation: 14.10) as well as the
majority class baseline (accuracy rate: 41.76) in terms of the
average competency prediction accuracy. Notably, the LSTM-
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based models exhibit the lowest standard deviation in test
accuracies across ten folds as well as the highest average
predictive accuracy.

TABLE I
PREDICTIVE PERFORMANCE: AVERAGE CROSS-VALIDATION
ACCURACY RATES OF LSTM, FFNN, CRF, AND NB MODELS

LSTM Dropout Rate of 0.50 Dropout Rate of 0.75
70 Hidden Units 57.19 63.22
140 Hidden Units 57.66 63.71
FFNN Corrupt(;(.)snoLevel of Corrupt(;c.)’;lSLevel of
256 Hidden Units 58.80 57.14
512 Hidden Units 55.53 53.24
CRF Cof 1.0 Cofl5
One Slack 60.53 61.70
Frank Wolfe 60.53 60.53
NB 46.63
TABLE III

FEATURE SET-LEVEL ANALYSIS: AVERAGE CROSS-VALIDATION ACCURACY
RATES OF THE HIGHEST PERFORMING LSTM, FFNN, CRF, AND NB MODELS

External

Game Log Combined
Measure
Feature Feature
Feature
LSTM 60.50 49.47 63.71
FFNN 56.05 50.06 58.80
CRF 56.67 52.75 61.70
NB 38.00 46.77 46.63

C. Feature Set-Level Predictive Performance

To further investigate the features examined in the evidence
modeling work, we split the combined feature set into the
external pre-learning measure feature set and the game
interaction log feature set, and we analyze individual predictive
performance of the two sub-feature sets on the best performing
LSTM, FFNN, CRF, and NB evidence model architectures
presented in Section VI.B. This evaluation is conducted using
the same method as in Section VI.B; we use the same student
split in ten-fold cross-validation, but we re-train the models
utilizing game features or pre-learning measure-based features.
As reported in Table 111, results demonstrate that the combined
feature set yields the highest predictive performance for every
model but naive Bayes, while the external measure feature set
yields a higher accuracy rate than the game log feature set for
most of the models.

D. Early Prediction Analysis

Since the highest performing evidence models take
advantage of the combined feature set, we measure early
prediction using all the features except for NB. We adopt
standardized convergence point (SCP) as a metric to measure
models’ early prediction capacity [30].

SCP is calculated by )%, (k;/n;) /m, in which m is the total
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number of action sequences, and n; is the total number of
actions in the ith action sequence. k; is contingent on whether
predictions on the ith action sequence converged to the correct
label or not; if converged, k; is the number of actions after
which the stealth assessor consistently makes accurate
predictions as in the conventional convergence point metric
[76]; otherwise, k; is n; + p;, where p; that is greater than zero
is the penalty parameter for the ith action sequence. Thus, a
lower value is better for this metric.

For example, suppose we have two action sequences (AS,
and ASp ) from two different students (4 and B), who
demonstrated three and four actions, respectively, and an
evidence model’s prediction results are as follows:

AS, = Incorrect, Correct, Correct
ASy = Incorrect, Incorrect, Incorrect, Incorrect

SCP for AS, is 2/3 since the model consistently makes
correct predictions after observing the first two actions, and
SCP for AS is (4 + pg)/4 since it does not converge to the
correct prediction. The penalty parameter (p) should be
determined  considering the learning environments’
characteristics. Our stealth assessment corpus shows that a
student’s action sequence to complete 11 binary representation
learning tasks often takes place in one classroom period (40
minutes). To deal with possible long-term inefficiency driven
by learning environments with poor stealth assessment models,
we set p; to n;, so that every non-converged sequence gets
penalized to have SCP of 2.

Table IV shows SCP results for the high-performing
evidence models identified in Sections VI.B and VI.C. Using
SCP with the aforementioned penalty parameter (lower is
better), LSTM shows the best early prediction capacity
followed by CRF. SCPs of NBs based on the game log feature
set and LSTMs, FFNNs, and CRFs based on the combined
feature set are reported.

TABLE IV
EARLY PREDICTION ANALYSIS: AVERAGE CROSS-VALIDATION SCPS OF THE
HIGHEST PERFORMING LSTM, FFNN, CRF, AND NB MODELS

LSTM FFNN CRF NB

SCP 86.16 104.77 92.32 122.39

VII. DISCUSSION

DEEPSTEALTH demonstrates significant potential for robust
stealth assessment modeling. Addressing RQl (overall
predictive accuracy), the evaluation reported in Section VI.B
indicates that DEEPSTEALTH using long short-term memory
networks (LSTMs) (63.7%) outperform three competitive
baseline models, including the best performing feedforward
neural networks pre-trained with stacked denoising
autoencoders (FFNNs) (58.8%), conditional random fields
(CRFs) (61.7%), and naive Bayes models (NBs) (46.6%) in ten-
fold cross-validation for predicting student competency on
binary representations.

Addressing RQ2 (feature set-level predictive accuracy), the
feature set-level analysis (Section VI.C) for the same dataset
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found that three of the best performing evidence models took
advantage of all available features: the game interaction log
features and external pre-learning measure features. For
LSTMs, a contribution ratio calculated by a feature set-based
model predictive accuracy divided by the combined feature set-
based model predictive accuracy indicates that the external
measure feature set and the game log feature set contributes to
94.96% (= 60.50/63.71) and 77.65% (= 49.47/63.71) of the total
predictive accuracy, respectively (Table III). The external
measure feature set’s high contribution ratio inspired us to
conduct a correlation test between the pre-test score and the
post-test score. A Pearson correlation test indicates that there
was a strong, positive correlation between content knowledge
pre- and post-test scores, which was statistically significant (»
=.702, p <.001). This result suggests why the machine learning
methods significantly benefit from the external measure feature
set.

The game log feature set yields lower predictive performance
than the external measure feature set for the computational
evidence models with the exception of NB. However, when the
two feature sets are utilized together, the combined feature set
further improves the predictive performance compared to
models solely leveraging the external measure feature set. In
contrast to LSTM, FFNN, and CRF, naive Bayes could not take
advantage of the combined feature set. Overall, NB is not a
robust evidence-modeling approach as it achieves low
predictive performance across all the three feature sets. In
contrast, deep learning models and CRFs show improved
performance by utilizing both feature sets over the external
measure feature set, where the normalized gain for LSTM,
FFNN, and CRF are 8.13%, 6.26%, and 11.61%, respectively.
Game interaction logs represent a trajectory of students’
progressive learning process, and they provide granular
evidence about how students have learned over their prior
knowledge. These three models effectively learn from complex
patterns between the external learning measures and students’
problem-solving behaviors, thereby achieving improved
accuracy rates.

Finally, addressing RQ3 (early prediction capacity), because
run-time game and curricular adaptation are central objectives
of stealth assessment, early prediction (i.e., making consistently
correct assessment predictions as early as possible) is an
important measure for evidence models. Results (Section VI.D)
indicate that LSTM is the most reliable evidence-modeling
technique among the set of computational approaches. It
achieves the best early prediction score as well as the highest
predictive accuracy using the standardized convergence point
metric. It is interesting to observe that the rankings for early
prediction echo the predictive accuracy results with the best
performance yielded by LSTMs followed by CRFs, FFNNs and
NBs, while sequence-labeling approaches involving LSTMs
and CRFs outperform the FFNNs and NBs assuming a fixed
length for inputs.

DEEPSTEALTH demonstrates significant predictive accuracy
for stealth assessment, but it is important to note two limitations
in the current work. First, the framework is evaluated with
evidence models that infer a single competency variable in the
ENGAGE game-based learning environment. Evaluating the
framework with a multi-task learning capability [77] to deal
with a broader range of competency variables (e.g., variables
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related to computational thinking practices and computer
science concepts [49]) would strengthen the overall reliability
of the stealth assessment framework. Second, the deep learning-
based framework lacks reliable methods to interpret trained
models and explain how assessment decisions are made. More
investigation is warranted with respect to model interpretability
and explainability to understand deep neural network-based
evidence models devised with DEEPSTEALTH.

VIII. CONCLUSION AND FUTURE WORK

We have introduced DEEPSTEALTH, a deep learning-based
stealth assessment framework for measuring learners’
competency during game-based learning. Adopting a data-
driven approach based on multiple weeks of classroom studies
within four public middle schools, we formulated three research
questions: (1) Do deep learning-based evidence models
outperform other competitive approaches with respect to
predictive accuracy? (2) Which feature set among game
interaction logs, external pre-learning measures, and combined
is the strongest predictors? and (3) Which computational model
achieves the best early prediction performance? Evaluation
results indicate that long short-term memory network-based
evidence models outperform three competitive baselines
including feedforward neural networks pre-trained with stacked
denoising autoencoders, linear-chain conditional random fields,
and naive Bayes models, as well as the majority class baseline,
with respect to predictive accuracy and early prediction
capacity. A further evaluation of the top three modeling
approaches suggests that the highest predictive accuracy is
attained when models are devised using all available feature
sets by modeling complex, sequential patterns within students’
prior knowledge and in-game learning behaviors during
interactions with the game-based learning environment.
DEEPSTEALTH shows promise for scalability to other learning
environments because it directly utilizes low-level action
sequences to predict students’ competencies. Thus, in contrast
to previous work using probabilistic graphical models, evidence
models can be easily devised without labor-intensive feature
engineering.

These findings point toward three promising directions for
future work. First, it will be important to explore other forms of
deep neural network-based evidence models for stealth
assessment. These include stacked LSTMs and neural models
with a self-attention mechanism [78], [79], which may be able
to effectively model students’ complex learning behaviors for
stealth assessment. Alternative fusion approaches handling
different sources of the input feature set [80] might further
improve the predictive performance of the models as well.
Second, in addition to this evidence modeling work, it will be
important to investigate competency models that represent fine-
grained relationships between knowledge and skills. Finally, it
will be important to investigate how game-based learning
environments can most effectively leverage deep stealth
assessment to support individualized learning experiences,
adaptively select learning tasks scaffolding students’ problem
solving, and support teachers in the classroom.
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