Application Performance Prediction and
Optimization Under Cache Allocation Technology

Yeseong Kim*, Ankit More**, Emily Shriver**, Tajana Rosing*
* University of California San Diego {yek048, tajana}@ucsd.edu
** Intel Corporation {ankit.more, emily.shriver} @intel.com

Abstract—Many applications running on high-performance
computing systems share limited resources such as the last-
level cache, often resulting in lower performance. Intel recently
introduced a new control mechanism, called cache allocation
technology (CAT), which controls the cache size used by each
application. To intelligently utilize this technology for automated
management, it is essential to accurately identify application
performance behavior for different cache allocation scenarios.
In this work, we show a novel approach which automatically
builds a prediction model for application performance changes
with CAT. We profile the workload characteristics based on
Intel Top-down Microarchitecture Analysis Method (TMAM),
and train the model using machine learning. The model predicts
instructions per cycle (IPC) across available cache sizes allocated
for the applications. We also design a dynamic cache management
technique which utilizes the prediction model and intelligently
partitions the cache resource to improve application throughput.
We implemented and evaluated the proposed framework in Intel
PMU profiling tool running on Xeon Platinum 8186 Skylake
processor. In our evaluation, we show that the proposed model
accurately predicts the IPC changes of applications with 4.7%
error on average for different cache allocation scenarios. Our
predictive online cache managements achieves improvements
on application performance of up to 25% as compared to a
prediction-agnostic policy.

Index Terms—Performance prediction, cache allocation tech-
nology, top-down analysis methodology

I. INTRODUCTION

Modern computing systems execute diverse applications
that have significantly different requirements and priorities.
The applications share limited resources such as the last-level
cache (LLC) and memory. This consequently limits the quality
of service (QoS) and performance of individual applications.
For example, previous work showed that a few applications,
also known as noisy neighbors, use disproportionately large
amounts of shared resources in a cloud server [1].

To address the resource contention issue focusing on the on-
chip cache, Intel recently announced a new control mechanism,
called Cache Allocation Technology (CAT), as a feature of
Resource Director Technology (RDT) [2]. The CAT mech-
anism has been supported in recent commercial processor
families, e.g., Xeon E5 v4 processor. This technology allows
allocating different amounts of cache sizes for the running
applications. Prior research have also explored how to utilize
the CAT technique for different optimization goals [3]-[7],
e.g., providing system fairness and clustering cache ways for
application groups. Some of the techniques estimate cache
requirements of applications by utilizing historical traces of
different metrics such as a set of performance monitoring
counter (PMC) events. Although these management techniques
are very important to effectively manage the limited cache
resource in different scenarios, high-level models which accu-
rately describe application performance behavior for different
cache allocations are also essential for runtime managements.

978-3-9819263-2-3/DATE19/©)2019 EDAA

This paper identifies a novel approach to the application per-
formance prediction using Intel Top-down Microarchitecture
Analysis Method (TMAM) [8]. The TMAM provides a robust
way to quantify workload characteristics of applications. Since
this method is readily available in most existing x86 mi-
croarchitectures, our approach can build the prediction models
without the additional need for expert domain knowledge of
target systems exploited in previous work [5]-[7].

In this paper, we show how the Intel TMAM metrics
can describe application behavior changes for different cache
allocations. We then present our modeling technique which
automatically captures the relationship between the TMAM
metrics and application performance changes with CAT. Our
model estimates application performance in terms of instruc-
tions per cycle (IPC) across available cache sizes. We also
present a model-based cache management technique for ap-
plications which have different characteristics and priorities.
The management technique identifies the IPC changes by col-
lecting the TMAM metrics, without ever having to run them on
the new cache configurations. Based on the prediction results,
it can intelligently partition the cache for each application.

We implement the proposed technique on Intel PMU profil-
ing tool [9] running on Xeon Platinum 8186 Skylake processor.
In our evaluation conducted with SPEC benchmark suites [10],
the proposed model can accurately predict the IPC changes
of applications running on CAT with only 4.7% average
error. The experimental results also show that the model-based
management policy improves application performance by up
to 25% by utilizing our models for online optimization, as
compared to another online management policy which does
not use the prediction model.

II. PROPOSED DESIGN
A. Overview of Proposed Design

Figure 1 shows the overview of the proposed framework,
called Performance predictor and Optimizer for CAT, in short
POCAT. POCAT is performed in two stages: an offline stage
for prediction model building and an online stage for dynamic
cache management based on the built model. In the online
model building stage, it runs a set of benchmark applications,
while collecting the TMAM metrics for different cache size
settings. With the collected TMAM metrics, we build the pre-
diction model with three steps: automated modeling, feature
selection, and model complexity optimization. The result is
the final prediction model, which uses TMAM metrics as the
inputs and predicts IPC of an application over all available
cache size settings.

Our prediction model can be exploited for various perfor-
mance optimization and management problems. We propose
a dynamic cache management technique that allocates cache

1285

Target System Target System
Processor Processor
EEREEN Intel Cache Allocation Technology [ERS N |ntel Cache Allocation Technology
Cache Ways I [T [T T [1f:|cacheways| Pl [1T [[<)
Monitoring 1 T Change Higg-psr/iori;y[HP)a;lnptsd Lcwt;pri;rity(Lg) ap;?s
‘ e.g., QoS/ena-user related e.g., background service
TMAM Metrics Cache Size £ — B & =
Prediction Model Building Momtonng_ JL c angg
NIoHE) TMAM Metrics Cache Size
ode!
Autom:fted JEET Complexity Dynamic Cache Management
Modeling Selection e
Optimization
App

Performance
Prediction

Predictive
Cache Allocation
Policy

Prediction Model

; {:: % IPC

<
Prediction
Model

(i) Offline (i) Online

Fig. 1. Overview of Proposed POCAT Framework

sizes for different applications to maximize average IPC on
a target system in which each application has either high or
low priority. POCAT monitors the TMAM metrics online to
predict IPC of applications across available cache settings, and
activates CAT with the identified optimal cache configuration.

B. Workload Analysis Based on TMAM

The proposed framework utilizes the TMAM metrics [8] to
understand how the application behavior changes for different
cache allocation configurations. Since the TMAM works on
most x86 processors, POCAT can capture the application pro-
files without losing generality for various microarchitectures. It
also simplifies the event selection procedure which is not often
an obvious task for application performance analysis [11].
The TMAM metrics have four top-level categories: ‘frontend
bound’, ‘bad speculation’, ‘retiring’, and ‘backend bound’.
At a high level, the ‘frontend bound’ and ‘backend bound’
metrics account for two major pipeline components of modern
processors; the frontend fetches and decodes the program code,
i.e., architectural instructions, whereas the backend monitors
the availability of operands for the decoded micro operations
to execute them. Each top-level metric has their subevents in
a tree structure, e.g., ‘L3 bound’ is a descendant event of
the ‘backend bound’ event; ‘ICache misses’ belongs to the
‘frontend bound’ event.

We present our analysis on experiments conducted on Xeon
Platinum 8168 CPU at 2.70GHz with SPEC2006 suite. The
processor supports the CAT mechanism for its LLC (L.3) which
has 11 ways in total. Figure 2 shows how the number of
allocated cache ways influences on the TMAM metrics for
four representative benchmarks. Since the ‘frontend bound’
metric for gobmk and sjeng benchmarks takes a relatively
high percentage, we can classify them as compute-intensive
workloads. In contrast, the omnetpp and GemsFDTD are
memory-intensive benchmarks, as indicated by the high per-
centage value of the ‘backend bound’ metric.

In the analysis, we observe that the workload characteristics
are changed with CAT primarily due to two factors: i) LLC
utilization and ii) instruction/data cache contention.

LLC utilization: As shown in the results, the ‘backend
bound’” metric typically decreases when reducing the number
of allocated cache ways toward 2. This trend occurs for both
the compute-intensive and memory-intensive workloads. The

1286

| ® Frontend Bound ® Bad Speculation Retiring Backend Bound
gobmk sjeng omnetpp GemsFDTD
;\? 100
; gp MoE-R-E L T
o
2 e
g
o 40 n
= \‘L\ ," ,)
< 20 = -
? H1 A
0
11 5 2 1 1 5 2 1 11 5 2 1 1 5 2 1

Number of Allocated Cache Ways

Fig. 2. TMAM Metric Changes with CAT

increased amount of the ‘backend bound’ metric varies for
different benchmarks. For example, omnetpp shows higher
increment in the ‘backend bound’ than GemsFDTD, although
both are memory-intensive benchmarks. It is because the
processor can handle most cache requests of GemsFDTD in
upper-level caches such as L1 and L2. For example, a sub-
level TMAM metric, ‘L3 bound’, belonging to the ‘backend
bound’ is 28% for omnetpp and 8% for GemsFDTD.

Instruction/data cache contention: Limiting the cache
size to a single way shows a distinct behavior in the TMAM
metrics. In this case, the ‘frontend bound’ metric increases
due to the growth of its sub-level metric, ‘ICache misses’,
representing that the instruction and data caches compete for
each other in the single way.

C. Prediction Model Building

POCAT automatically captures the relationship between the
TMAM metrics and IPC behavior using machine learning.
We create the machine learning dataset by collecting the
TMAM metrics and IPC values of benchmark applications
for each cache way setting. We denote v, as the vector for
all TMAM metrics (including sub-level metrics such as ‘L3
bound’) sampled when = ways are allocated for the benchmark
execution. The initial model trained by POCAT is defined as

follows:
I1PC,

1PC,

where IPC, is the IPC monitored with v, for the z-way
configuration and IPC, is the IPC to predict for the y-
way allocation. Since the model usually needs to be self-
explanatory for in-depth managements and run efficiently for
the next online prediction, we evaluated four light-weight
white-box modeling approaches: (i) least absolute shrinkage
and selection operator (Lasso) [12], which builds a linear
regression model while selecting features with regularization,
(i1) random sample consensus (RANSAC) [13] which handles
outliers of the Lasso model, (iii) random forest (RF) [14]
and (iv) AdaBoost.R2 [15]. The last two approaches utilize
regressor decision trees as its base learner.

Figure 3 shows the comparison of cross-validated prediction
accuracy for the different approaches. The TMAM metrics are
measured for the 11-way case and the model predicts the IPC
for the other cache configurations. For the error metric, we use
mean absolute percentage error (MAPE). We observe that the
tree-boosting AdaBoost model shows the best accuracy among
the tested models. For example, as shown in Figure 3a, the tree

fg(vﬁ) = IPOratio =

Design, Automation And Test in Europe (DATE 2019)

20 50

‘\?15 40
= 30
&10 20
E5
= oL D L |
0 0 I II Ill.lllll
£ N O o v s v oa v T T x =
! predicied E2 B8 EEZERETEET
Predicte: gqggsdﬂg:iEﬁ%E'gv
Cache Way Settings T g2 'n'bsg 8 %gﬁg:;
M Lasso B RANSAC a - 33 5355«3«
24"
RF AdaBoost S 5

(a) Average Prediction Error
for Different Way Allocations

(b) Prediction Error of 1-way Case
for Different Benchmarks

Fig. 3. Comparison of Different Modeling Methodologies

boosting model outperforms Lasso model by 7.5% on average.
The underlying reason is that the IPC is usually changed
when the L3 usage exceeds the maximum capacity currently
allocated. The tree-boosting model is able to automatically
capture the appropriate threshold with ‘L3 Bound® metric. In
addition, as shown in Figure 3b, the AdaBoost model also
outperforms other methodologies for the 1-way case which is
related to the instruction/data cache contention.

Once the initial model is trained, POCAT optimizes the
model complexity with two steps, feature selection and model
complexity optimization. In the feature selection step, POCAT
retrains the model through an iterative process by using the
recursive feature elimination method, while only considering
the last-level events. In our experiment, it selects sixteen
events and the model trained with the events has a negligible
difference in the prediction accuracy of less than 0.1%. The
model complexity optimization step creates a compact form of
the model that predicts multiple cache settings by exploiting
multivariate estimation of AdaBoost. Depending on the config-
uration, it may create another model further optimized, called
all-way model with multivariate estimation, which predicts all
pairs of the cache settings by taking the current cache setting
as an additional input of the model.

D. Dynamic Cache Management

We utilize the application performance model to design
our predictive dynamic cache management technique. In our
optimization scenario, we assume that there are either high
or low priority applications. In practice, the QoS/end-user
related applications can be the high priority applications, while
existing background services can be included in the group of
the low priority applications (LP apps.)

Our approach monitors the selected TMAM events for HP
apps running on the system, and predicts the IPCs of each
app if it were executing on different cache way sizes. This
creates a H x (W —t) matrix of IPC prediction results where
H is the number of HP apps, W is the number of ways, and ¢
ways are allocated at least for the LP apps. Our management
technique identifies the optimal combination of cache ways for
the HP apps so that it minimizes a given cost function. The
cost function decides the detailed optimization goal based on
the IPC prediction table. For example, if the goal is to provide
the fairness of IPCs for similar HP apps, the standard deviation
of the predicted IPCs would be a suitable metric to evaluate
the costs. In our implementation, we use the IPC loss as the
cost function to maximize the total IPC of all HP apps. This

Design, Automation And Test in Europe (DATE 2019)

strategy can be formulated with the find_optimal function,
which is solvable using dynamic programming:

find_optimal(A, N ways)

= argmin (find_optimal(A —{app}, N — n ways)
appEAN>1

+ cost(app,n Ways))

where A is the set of HP apps and cost(app, n ways) is the
IPC difference for app if the allocation is changed to n ways.

This function returns the minimal loss (or maximum benefit)
in terms of the total IPC for all HP apps. During the solution
computation, we can also identify the optimal cache allocation
setting for each application. For example, let us assume that
an application is predicted to achieve a higher IPC if one
more cache is allocated. In this case, it checks if there is an
application whose IPC loss is less than the improvement of the
other. We conservatively change the cache allocation settings
when the expected IPC benefit is larger than a configurable
threshold. We set the threshold to 5% which is the average
error of the prediction model.

III. EXPERIMENTAL RESULTS
A. Experimental Setup

We have implemented the proposed framework by modify-
ing Intel PMU profiling tool [9], and controlled the CAT fea-
tures using MSRs [2]. For the statistical analysis, we exploited
Scikit-learn library. The developed framework is evaluated on
Xeon Platinum 8168 skylake CPU running at 2.70GHz, which
has 48 physical cores. The LLC (L3) cache has 11 ways,
in total 33 MBytes. We use the SPEC2006 for benchmark
suite [10]. To evaluate the optimization policy, we generate
random mixes of benchmarks. We vary the number of HP
apps (H) and the number of LP apps (L), and evaluated with
100 different random mixes for each H and L combination.
The number of threads of each benchmark application is also
randomly set in the range from 1 to 4.

We collect the TMAM events at a rate of 2 seconds,
which is the highest sampling rate of the baseline Intel PMU
profiling tool. The runtime overhead for both the model-
based prediction and online management technique is minimal,
e.g., less than 50 ms for each sample in our experimental
setup. The experimental results for the proposed prediction and
optimization techniques are cross-validated using the leave-
one-out method, i.e., evaluating each benchmark by separating
the tested program from the training set.

B. Model Accuracy

Figure 4a shows the cross-validated accuracy of the per-
way model for representative benchmarks, when the TMAM
metrics are collected for the 10-way CAT setting. The result
shows that the per-way model accurately predicts the IPC
changes only with 4.7% error on average. Predicting the IPC
of the 1-way case presents a relatively higher error, but even
in this case, the worst case error is less than 7%. Figure 4b
compares the per-way model to the all-way models. The result
shows that, to achieve the similar level of accuracy, the all-way
model requires more tree depths than the per-way model. For
example, when the depth of the all-way model is 7, it shows
the similar accuracy to the 5-depth per-way model.

We observe that the per-way model achieves the high
accuracy in general. It is because the per-way model creates

1287

Predicted Cache Way Settings
Hlm2 3 w4 m576m7 W8 W9

M Per-way (Depth=5) m All-way (Depth=5)
All-way (Depth=7)
8

8
é 6 ;\E 6
g =
< 2 & 4
Sh (T | TP [[
o I v s A R W = 2 nn
< 5 0
o & 8 S T 2 o4 a
"
b'y%g, v &&&?’ @é' ‘;,,“"c &y‘?,\,&P .‘}0 Predicted Cache Way Settings
& & @

(b) Model Accuracy Comparison

(a) Prediction Error for Different Benchmarks Between Per-Way and All-Way Models

Fig. 4. Prediction Accuracy of Proposed Models

0 50 100 150 200 250 300 350 400

Execution Time (s)

Fig. 5. Example of Prediction Results (bzip2, Per-way Model)

AdaBoost models for each of available cache ways, leading
to the detailed prediction for each different case, whereas the
per-way model only creates 1 model for the target system.
However, the all-way model consumes 60% less memory than
the per-way model.

Figure 5 shows an example of the prediction result for the
bzip2 benchmark, when the TMAM metrics are collected for
the 10-way case and the models predict IPCs for the 1-way
case. The result presents that the proposed tree-boosting model
(AdaBoost) is better than conventional linear regression model
(Lasso), in particular when there is a relatively large change
in IPC due to the lack of the cache capacity. For example,
the proposed model shows superior accuracy for the duration
from 110 to 180 seconds.

C. Evaluation of Optimization Policy

Figure 6 shows the evaluation results of the dynamic cache
allocation management. We exploit the per-way model for the
IPC prediction, and compare our technique with a model-
agnostic policy, called static, which allocates 1 way to LP apps
and splits 10 ways best equally to each HP app. For example,
when there are 4 HP apps, they will be allocated with 2, 2, 3,
and 3 ways, respectively. This scenario is similar to the one
that the work in [3] aimed to optimize. Figure 6a summarizes
the results of the 100 random mixes when there are 8 HP apps
(H = 8) and 8 LP apps (L = 8). The results show that that
the predictive management technique outperforms the static
policy by identifying the suitable cache size for each HP app
based on the prediction models. For example, the predictive
management of POCAT achieves 25% better IPC on average.

Figure 6b summarizes the performance improvement
achieved for different [/ and L combinations. We observe that,
when more HP apps exist, the predictive policy achieves better
improvement, since the HP apps are more likely to compete
with each other in the limited cache size, requiring the more
elaborate cache size adjustments.

1288

N

M Predictive O Static

TR ESTE

> >) A L] @\ H=2 H=4 H=6 H=8

55
N =
Scenario g (L=8)

‘g?

=
«n

30
20

IPC (HP Apps)
-

o
w

Improvement over
Baseline (%)
=
o

H=2, H=4, H=6, H=8,
L=8 L=6 L=4 L=2

(a) IPC Comparison (b) IPC Improvement for Different Scenario Settings

Fig. 6. Impact of Management Policy on IPC

IV. CONCLUSION

In this paper, we present a novel prediction model that
automatically identifies the IPC behavior when using the Intel
cache allocation technology. We analyze how the application
TMAM behavior and performance are affected by cache sizes.
Using the tree-boosting machine learning algorithm, the model
predicts the future IPC changes with 4.7% error without
changing the actual allocation. We show that the model can be
exploited to build a predictive cache management policy. The
experimental optimization policy achieves better application
performance by up to 25% than the prediction-agnostic policy.

V. ACKNOWLEDGEMENT

This work was supported by Intel Corporation, NSF grant
#1730158 and #1527034.

REFERENCES

[1] Intel. Quiet noisy neighbor with intel resource director technology. White
paper, 2017.

[2] Intel. Introduction to cache allocation technology in the intel xeon

processor e5 v4 family. White paper, 2016.

Toannis Papadakis, et al. Improving qos and utilisation in modern multi-

core servers with dynamic cache partitioning. In Proceedings of the

Joined Workshops COSH 2017 and VisorHPC 2017, 2017.

Vicent Selfa, et al. Application clustering policies to address system

fairness with intels cache allocation technology. In Parallel Architectures

and Compilation Techniques (PACT), 2017 26th International Confer-

ence on, pages 194-205. IEEE, 2017.

[5] Lucia Pons, et al. Improving system turnaround time with intel cat by

identifying llc critical applications. In European Conference on Parallel

Processing, pages 603—-615. Springer, 2018.

Yaocheng Xiang, et al. Dcaps: dynamic cache allocation with partial

sharing. In Proceedings of the Thirteenth EuroSys Conference, page 13.

ACM, 2018.

[7] Cong Xu, et al. dcat: dynamic cache management for efficient,
performance-sensitive infrastructure-as-a-service. In Proceedings of the
Thirteenth EuroSys Conference, page 14. ACM, 2018.

[8] Ahmad Yasin. A top-down method for performance analysis and

counters architecture. In Performance Analysis of Systems and Software

(ISPASS), 2014 IEEE International Symposium on, pages 35-44. IEEE,

2014.

Intel pmu profiling tools. https://github.com/andikleen/pmu-tools.

Spec2006. https://www.spec.org/cpu2006/.

Yeseong Kim, et al. P4: Phase-based power/performance prediction of

heterogeneous systems via neural networks. In Computer-Aided Design

(ICCAD), 2017 IEEE/ACM International Conference on, pages 683-690.

IEEE, 2017.

Robert Tibshirani. Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society. Series B (Methodological), pages

267-288, 1996.

Martin A Fischler et al. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated

cartography. Communications of the ACM, 24(6):381-395, 1981.

Andy Liaw, et al. Classification and regression by randomforest. R

news, 2(3):18-22, 2002.

Harris Drucker. Improving regressors using boosting techniques. In

ICML, volume 97, pages 107-115, 1997.

3

[4

[6

[9
[10
[11

[12]

[13]

[14]
[15]

Design, Automation And Test in Europe (DATE 2019)

