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Abstract—Educational games offer significant potential for
supporting personalized learning in engaging virtual worlds.
However, many educational games do not provide adaptive
gameplay to meet the needs of individual students. To address this
issue, educational games should include game levels that can self-
adjust to the specific needs of individual students. However,
creating a large number of adaptable game levels requires
considerable effort by game developers. A promising solution to
this problem is to leverage procedural content generation to
automatically generate levels for educational games that
incorporate the desired learning objectives. In this paper, we
propose a multistep deep convolutional generative adversarial
network for generating new levels within a game for middle school
computer science education. The model operates in two phases: (1)
train a generator with a small set of human-authored example
levels and generate a much larger set of synthetic levels to augment
the training data for a second generator, and (2) train a second
generator using the augmented training data and use it to generate
novel educational game levels with enhanced solvability. We
evaluate the performance of the model by comparing the novelty
and solvability of generated levels between the two generators.
Results suggest that the proposed multistep model significantly
enhances the solvability of the generated levels with only minor
degradation in the novelty of the generated levels.

Keywords—Educational Game, Procedural Content Generation,
Generative Adversarial Networks

1. INTRODUCTION

Digital games for learning have been recognized as a
promising tool for education and training [1]. Educational
games have been shown to enable the effective integration of
problem solving and adaptive instruction, while promoting
engaged learning [2]. They provide rich, virtual worlds for
students to develop enhanced problem solving, critical thinking,
and other twenty-first century skills [3][4]. A common design
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approach for educational games is to present students with a
series of challenges incorporating progressively advanced
learning objectives [5]. However, students who are unable to
master prior learning objectives might either give up playing the
game or resort to a trial-and-error approach to completing
challenges. Likewise, students come to educational games with
vastly different prior game-playing experience [6]. Providing
students with an adaptive environment that presents a series of
tailored challenges that directly build on their demonstrated
competency with respect to educational outcomes and gaming
skills has the potential to support mastery learning and
engagement [7]. Instead of utilizing a static sequence of
challenges, by presenting students with challenges that target
specific learning objectives for which mastery has not been
demonstrated, educational games could provide personalized
learning experiences for all students [9]. However, this requires
game developers to create vast libraries of challenges tailored
to specific learning objectives and gaming skills, which is
prohibitive from a development perspective.

Procedural Content Generation (PCG) is automatically
generating content (e.g., rules, levels, and stories) for games
using algorithms requiring limited human input [10]. Because
PCG enables the efficient generation of large volumes of
content, it has received significant attention in the game
industry as an approach to reducing development costs, while
at the same time providing players with immense worlds to
explore. Search-based and solver-based approaches to PCG
have been widely used to generate new content for games via
searching predefined content spaces [11][12]. PCG via Machine
Learning (PCGML) is an emerging approach to generating
novel game content using machine-learned models trained on
existing content [13]. Unlike search-based and solver-based
methods that generate content through searching a content



space, PCGML methods generate content using a trained model
directly. In parallel to these efforts, researchers have started
exploring the application of PCG to educational games to
reduce content development time as well as to adapt content to
specific needs of students [5][14][15].

In this paper, we investigate a machine learning-based
approach to generating novel levels in a game-based learning
environment that supports middle school students in learning
computer science concepts and practices. We present a
multistep deep convolutional generative adversarial network
(DCGAN) [16] for generating educational game levels with the
ultimate goal of creating adaptable levels to meet individual
student needs. We first train a DCGAN generator using a small
set of solvable human-authored levels. This generator is used to
generate a large set of training examples that are then filtered
based on their solvability. These solvable levels are then used
in combination with the human-authored levels to train another
DCGAN generator with the objective of creating solvable
levels. With only a small reduction in the novelty of the
generated levels, the resulting generator exhibits significantly
enhanced performance by generating a higher percentage of
solvable levels compared to the generator trained only on
human-authored levels.

II. RELATED WORK

Procedural content generation has been widely used in digital
games. However, relatively little work has explored its use in
educational games. In this section, we describe prior PCG work
on level generation in games for entertainment as well as initial
work exploring the use of PCG in educational games.

A. Procedural Content Generation for Level Generation

PCG is an emerging area of technology for level generation
within the platform game genre. Search-based PCG uses
evolutionary or stochastic optimization algorithms to search for
content within a predefined content space that has certain
desirable properties. These methods generally follow a
generate-and-test approach that applies domain-specific
evaluation functions to the generated content and tests if it
exhibits the desired properties [17]. Togelius et al. used search-
based PCG to automatically generate maps for a real-time
strategy game, StarCraft, using a fitness function that evaluated
characteristics of the map (i.e., playability, fairness, skill
differentiation, interestingness) [18]. Smith and Mateas
proposed Answer Set Programming as a domain-independent
PCG approach that explicitly represents the design space with
logical representations of the rules used for generating content
[12]. Although these search-based approaches have had success
in generating novel content for games, authoring the
representation of the content space often requires significant
expertise [19]. To address this issue, machine learning
approaches that generate content directly from trained models
have been an active area of PCG research [13]. Dahlskog et al.
[20] examined n-gram models, which were further extended by
Summerville et al. using Monte Carlo Tree Search [21].
Snodgrass and Ontaiidén suggested various types of Markov
models, multidimensional Markov chains, hierarchical

multidimensional Markov chains, and Markov random fields,
to generate tile-based Super Mario Bros. levels by learning
patterns from a training corpus [22][23]. Summerville and
Mateas investigated using long-short term memory recurrent
neural networks that leveraged information about player paths
through levels to generate better tile-based Super Mario Bros.
levels [24]. Most recently, variations of generative adversarial
networks (GANS) [25], a generative method that has produced
significant results in the computer vision field [16], have started
to be applied to level generation [26][27]. An important aspect
of this method is its ability to learn the implicit structure of
levels through multiple levels of abstraction supported by deep
neural networks. Giacomello et al. used GANs to generated
DOOM levels [26]. Volz et al. proposed a deep convolutional
generative adversarial network (DCGAN) using Wasserstein
distance [28] to generate tile-based Super Mario Bros. levels
and evolve a latent vector space to select better input noise for
the generator using an evolutionary method (CMA-ES) [27].
Our approach builds on this DCGAN work [27], and introduces
a multistep DCGAN approach to generating high-quality levels
with enhanced solvability.

B. Procedural Content Generation in Educational Games

Applying PCG for level generation within an educational
game is challenging because it requires the generated content to
not only be creative and solvable, but also to exercise the
intended learning objectives. As a result, there has been limited
work to date on using PCG in educational games. Most of the
prior work has focused on generating content from human-
authored content spaces or following a set of human-authored
rules [5][15]. Hooshyar et al. introduced a data-driven PCG
approach using SVMs to construct a genetic algorithm fitness
function for generating content adaptable to individual students
in an English-learning educational game [8]. Dong and Barnes
proposed a template-based puzzle generator for an educational
puzzle programming game designed to teach loops and
functions [5]. The generator helps reduce the time required to
create new puzzles, while producing more creative content.
However, the input template used by the generator must be
human authored with respect to the desired learning objectives.
Valls-Valgas et al. proposed a PCG approach utilizing a rule-
based graph grammar for generating new levels in a parallel
programming educational game [29]. The system is designed to
work with a player model that targets individual player’s needs.
It is designed to generate a complete solution based on the
desired complexity and concepts, and it then removes some
elements based on the desired difficulty level. In contrast to this
work, we aim to generate levels for an educational game using
a multistep machine-learned model trained on a small corpus of
human-authored levels that implicitly incorporate the desired
learning objectives and level design characteristics.

I11. GAME-BASED LEARNING ENVIRONMENT

Over the past few years, our lab has been developing
ENGAGE (Fig. 1), an educational game for middle school
students (ages 11-13) focused on helping them learn computer
science concepts and practices [30]. ENGAGE is built with the
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Fig. 1. The ENGAGE game-based learning environment (left) and its block-based programming language interface (right).

Unity game engine. The curriculum underlying ENGAGE’s
narrative is derived from the AP Computer Science Principles
course developed in the United States by the College Board
with support from the National Science Foundation [31].

In ENGAGE, students play the role of the protagonist who
has been sent to an undersea research facility to determine why
all communication with the station has been lost. Unbeknownst
to them, the facility has been taken over by a rogue scientist.
As students explore the station, they must progress through
multiple areas consisting of a series of connected rooms. Each
room presents players with a set of computational challenges
they must solve using a block-based programming interface to
control devices within the room in order to advance to the next
area. The overarching narrative is advanced through cinematics
and character dialogue (Fig. 1, Left) while student learning is
scaffolded with onscreen hints and short animated vignettes.

ENGAGE’s visual programming interface (Fig. 1, Right) is a
tool for constructing programs for devices in the game using a
block-based programming language similar to Scratch and
other visual programming languages [32]. The interface
consists of three sub-panels: Devices, Blocks, and Program.
The Devices panel displays the currently paired devices, the
Blocks panel displays the available programming blocks for the
selected device, and the Program panel provides a space for
writing a program for the selected device.

To illustrate, in a sample program for a platform device
(Fig. 1, Right), the player has dragged four Move Forward
blocks and a Wait One Minute block onto the Program panel.

When the program executes, this will instruct the platform to
move forward four times and wait until one minute has passed.
When constructing the program, if a block is placed near
another block, they will snap together, and the circular
connectors between the blocks will display a locking animation.
These animations help students easily manipulate the blocks
and also provide visualizations indicating which blocks are
connected together.

The first part of ENGAGE introduces players to the game’s
controls, block-based programming environment, and initial
programming tasks. One room in this part of the game requires
students to pair with a platform device to program it to move
across a water-filled obstacle (Fig. 2, Left). In this room,
students can solve the computational challenge by creating a
program that instructs the platform to move forward four times
and wait one minute to give the player time to walk off the
platform on the other side of the room before the platform resets
to its original position. For the work presented in this paper, we
focus on generating levels in this type of room, and we vary the
gaming skill and computational concepts required by the
challenge. We authored a set of 132 training levels by making
variations of this original room that require the use of loops and
conditions as well as various degrees of navigation and
platforming skills. We use a two-dimensional tile-based
representation of the room to investigate our proposed
framework. The room presented from a top-down view in Fig.
2, Right is the basis for all of the authored training data used in
this work. Details of the 2D tile-based representation of the
levels are given in Section 4.

Pairing
Point

—= Startin 4 e
Point I
Moving
Platform

Fig. 2. In game 3D view of platform device room (left) and top-down view of platform device room (right).



IV. METHOD

In this section, we describe our approach to representing
levels and level categories, our proposed multistep DCGAN
framework, and metrics to evaluate the solvability and novelty
of levels generated by the trained models.

A. Level Representation

A key preliminary step to train generative models for PCG
is devising a method to represent levels in a trainable format.
Our approach is inspired by the 2D tile-based representation
used for Super Mario Bros. level generation [23][27]. In our
work, each level consists of 392 tiles in a 14 by 28 grid, where
each tile is characterized by a specific type. We use eight types
of tiles (Table I), which were designed to construct platform
navigation levels in ENGAGE. Among the eight tile types, four
tile types represent significant locations within the level:
Starting Point, Exit Point, Moving Platform, and Pairing Point.
Before programming the moving platform, players must
navigate to the pairing point to register the device with their in-
game portable computer. Two of the other tile types, Barrier
and Conditional Barrier, encourage the use of loops and
conditions in the programs developed to solve the challenge to
facilitate students’ learning of these concepts. The final two
types of tiles are the Ground and Water tiles, which indicate
where the player can walk and where the moving platform can
move. With this specification of tile types, we created the 132
training levels as illustrated in Fig. 3, Left. These levels serve
as our training data. To accommodate DCGAN model training
for these categorical tile types, each tile type is converted using
one-hot encoding, which is an encoding process that produces
a bit vector whose length is the number of possible tile types
(i.e., 8), where only the associated bit is 1 while all other bits
are 0.

B. Categories of Levels

Levels are classified into 12 categories based on the
combination of three degrees of gaming skills required to solve
the level (i.e., High, Medium, Low) and four variations of two
learning objectives (i.e., Loop, Conditional), which are key
concepts for Algorithms and Programming in the K-12
Computer Science Framework [31]. The four variations consist
of (1) Basic level, which only require basic programming
blocks to operate the moving platform (e.g., Move Forward and
Rotate), (2) Loop level, in which students should write a loop
statement (e.g., Repeat) in addition to basic blocks,
(3) Conditional level, in which students should write a
conditional statement (e.g.,. /f-else) in addition to basic blocks,

TABLE L. TILE TYPES IN TILE-BASED REPRESENTATION OF ENGAGE

Tile Type Symbol Visualization
Ground - [ ]
Water . [ |
Barrier
Moving Platform
Pairing Point
Exit Point
Starting Point
Conditional Barrier

Awnmv W

Fig. 3. Example authored level in text (left) and visual representation (right).

and (4) Loop & Conditional level, which requires
implementation of both the Loop and Conditional concepts to
solve the level.

Gaming skills refer to the degree of navigation and platforming
skill needed by the player to solve the level. While some
students who are familiar with playing games may feel more
engaged and motivated as they encounter levels requiring more
complex character controls and navigation, others with less
game experience may be more likely to struggle in such a level.
This could lead to negative learning experiences for less skilled
students. Thus, based on students’ pre-survey of their game
experience, producing varied gaming skill levels that are
adaptive to individual players is an important functionality for
PCG to provide effective, personalized game-based learning
experiences.

To introduce gaming skill variations in levels in the training
data, we adjust tile types in the ground area. The ground area
consists of ground and water tiles. Players can freely navigate
on the ground tiles, while they need to jump to get across small
holes filled with water. This area is distinguished from the
larger area of water where the player must use the moving
platform to navigate to the other side. Low game skill levels do
not require the player to jump (i.e., no holes in the ground area),
while Medium and High game skill levels contain progressively
more holes requiring more sophisticated character controlling
to successfully navigate.

To encourage the use of certain programming constructs in
solving a level, we configure tiles in the area where the player
must use the moving platform to navigate. Within the game, the
learning objective focus of a level for a specific student is
determined by the student’s competency that can be measured
by knowledge assessment models (e.g., [30]). For example,
while some students might struggle with the conditional
concept (e.g., If-else), others may have mastered the conditional
concept but struggle with the iteration concept (e.g., Repeat), as
observed in their programming pattern of using only basic
programming blocks only even when an iterative pattern could
be used. It is important for PCG to provide content tailored to
individual students’ competency level for each programming
concept thereby helping remediate their knowledge.

To introduce training data that included each of the
programming concepts, we authored levels that included
additional obstacles the moving platform had to navigate
around within the large water area (shown in blue in the middle
of Fig. 3, Right). The water area consists of Water tiles (.), the
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Fig. 4. Overview of the proposed Multistep DCGAN Framework

Moving Platform (M), Barrier tiles (B), and Conditional Barrier
tiles (C). We introduce iteration and conditional concepts by
using variations of the Barrier (B) tile, where the moving
platform (M) cannot navigate, and the Conditional Barrier (C),
which encourages students to master the conditional concept,
by forcing them to check if the Conditional Barrier is active
prior to moving to the corresponding location. Fig. 3 shows an
example of a level containing both iteration and conditional
concepts. After going through the Conditional Barrier (C)
(shown in orange), students encountered a repetitive pattern that
encourages the use of iteration.

C. Multistep Deep Convolutional Generative Adversarial
Network

The PCG models in this work are based on generative
adversarial networks (GANs) [25]. A GAN is a type of zero-
sum game in which a generator and a discriminator are trained
to outdo the other. For each training phase, the generator takes
arandom noise vector as input and generates synthetic data that
looks similar to real data with the goal of deceiving the
discriminator about the source of the data. The discriminator
takes as input either real data or fake data and determines if the
given input is real (i.e., the source of the data is from the real

dataset) or fake (i.e., the source of the data is from the generator).

The goal of training a GAN is to improve the generator’s
performance to the level that even a well-trained discriminator
cannot distinguish the generator-created synthetic data from
real data.

DCGANs (deep convolutional generative adversarial
networks) are a variant of GANs [16]. DCGANs have been
extensively used in the generation of synthetic images.
DCGANSs use (1) deep convolutional neural networks with
feature transposed convolutions for the generator, where the
generator takes a noise vector as input and converts it into
synthetic data, and (2) deep convolutional neural networks with

Minimize Error of

Discriminator j

Enhanced Solvability DCGAN

SIbILI Original
olvable Levels | oo

Generated Levels

DCGAN'’s Generator

[ Enhanced Solvability

normal convolutions for the discriminator, where it takes an
image as an input and predicts whether the input is real or fake.

In our work, a multistep DCGAN approach is utilized for
level generation. We train two DCGANs: The Training
Augmentation DCGAN performs a data augmentation function
(i.e., creating more training data via the generator) and the
Enhanced Solvability DCGAN supports generation of levels
with higher solvability compared to ones generated by the
Training Augmentation DCGAN. Our multistep DCGAN
model is adapted from [27], the generators use ReLU activation
for all transposed convolutional layers and the discriminators
use Leaky ReLU activation for all convolutional layers. Both
the generator and discriminators are trained with RMSprop [33]
for 1,000 iterations with a batch size of 32 and a learning rate
0.00005. The dimension of noise vectors used for the generators
is set to 32, while each feature in the noise vectors are initialized
following a normal distribution range from 0 to 1.

Fig. 4 presents the multistep DCGAN-based PCG
framework. The Training Augmentation DCGAN is used to
generate levels for augmenting the training dataset using a
limited set of hand-crafted training data. The augmentation
process is performed as follows: 1) we train the generator
through the Training Augmentation DCGAN model, and save
the model every 50 epochs between 50 epochs and 1,000 epochs;
2) each candidate model generates 1,000 levels whose novelty
and the solvability scores are computed to choose the best
performing model 3) each of the generated levels from the
chosen model is examined with a Solver, described below,
which checks whether each level is solvable or not; and 4) only
solvable levels are combined with the original training levels as
a process of dataset augmentation.

Then, we train another generator (i.e., Enhanced Solvability
DCGAN) using the augmented dataset. Although only a small



portion of the training data is human-authored data and the
remaining data was created by the Training Augmentation
DCGAN, it should be noted that all levels in this augmented
training set are solvable. Our multistep DCGAN-based PCG
approach enables the Enhanced Solvability DCGAN’s
generator to produce more solvable levels than the Training
Augmentation DCGAN’s generator that is more likely to
generate levels that are unsolvable. The multistep DCGAN-
based PCG framework was implemented with the PyTorch deep
learning toolkit [34], building upon the DCGAN-based PCG
library written by Volz and colleagues [27].

D. Evaluation Metrics

The performance of the two DCGANSs’ trained generators are
evaluated with respect to their ability to generate levels that are
both solvable and novel. We adopt these two metrics, since
generating valid, solvable levels is one of the primary goals for
PCG and also generating novel levels will help promote user
engagement. First, we developed a Solver module, which
determines if a given level is solvable. The solver checks the
following five constraints: 1) the starting point, pairing point,
moving platform, and exit point should be unique within the
level, 2) there should be a path from the starting point to the
pairing point, 3) there should be a path from the pairing device
to the moving platform, 4) there should be a path for the moving
platform to follow to reach the other side of the level, 5) there
should be a path from the moving platform to the exit point of
the level. The solver is implemented with Dijkstra’s algorithm
[35] to find the shortest path between two tiles, checking
whether the generated levels satisfy the five described
constraints.

To measure the novelty of the generated levels, we used the
novelty measure from novelty search [36]. The novelty p for
level x is given by:

pC0) = (T distCom) (1)

where y; is the ith nearest neighbor drawn from the real dataset
of level x with respect to the domain-specific distance metric
dist. The dist measure evaluates how novel a generated level is,
compared to one of the original levels. We set the number of
nearest neighbors to consider (k) to 20 and adopt the heuristic
function introduced in Liapis et al. [37], in which the distance
between two tile-based levels is defined as the number of
mismatched tiles at the same coordinates between the generated
level and the original level over the total number of tiles in the
original level.

T C
i=1 %=1 (xij.Yif)
T*C

dist(x,y) = )

The function f is defined as follows: f(x;;, ¥;;) =
0 (if xi; =yi;),1(if xij # ¥;j), where i and j are the row
and column indices in the level, respectively. Finally, 7 and ¢
denote the total number of rows and the total number of
columns in the level, respectively.
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Fig. 5. Change in Novelty and Solvability by the number of epochs

V. EVALUATION

We evaluate the multistep DCGAN PCG framework on the
novelty and solvability of the levels it generates. The top graph
in Fig. 5 shows changes in the novelty score of the Training
Augmentation DCGAN’s generator, as the number of epochs
increases. Generated samples that are more distinct from real
data have higher novelty scores. As shown in Fig. 5, Top, the
novelty scores trend downwards and starts decreasing slowly
after 450 epochs, indicating that the Training Augmentation
DCGAN’s generator starts generating samples very similar to
the original dataset. The bottom graph in Fig. 5 shows changes
in the percentage of solvable levels out of 1,000 generated
levels produced by the trained Training Augmentation
DCGAN’s generator as the number of epochs increases. The
solvability rises steeply until 250 epochs and converges.

We test three Training Augmentation models that are saved
at 250, 350, and 450 epochs for the Training Augmentation
DCGAN to augment the training dataset, with which the
Enhanced Solvability DCGAN model is trained. The rationale
behind this decision is the Training Augmentation DCGAN
models are stable enough to generate solvable levels after 250
epochs, while the novelty score converges after 450 epochs (i.e.,
models at 450 epochs and any models using a higher number of
epochs are not differ significantly with respect to the novelty).

The number of epochs for the Enhanced Solvability DCGAN
model matches with the number of epochs used to train each
Training Augmentation DCGAN model. After training the
corresponding Enhanced Solvability DCGAN, we compare the
enhancement in a pairwise manner (e.g., comparing novelty and
solvability of the Training Augmentation DCGAN trained
using 250 epochs and the Enhanced Solvability DCGAN
trained using 250 epochs). Table II shows the comparison of the
performance between the Training Augmentation DCGAN’s



TABLE II. COMPARISION OF NOVELTY AND SOLVABILITY.

Novelty (p) Solvability
# of
Epochs Training Enhanced Training Enhanced
Augmentation  Solvability = Augmentation  Solvability
250 0.075 0.069 0.930 0.999
350 0.072 0.063 0.946 0.973
450 0.071 0.620 0.919 0.986

generator and the Enhanced Solvability DCGAN’s generator
based on 5,000 levels created by each model across the different
number of epochs. The results show a significant enhancement
is achieved by the Enhanced Solvability DCGAN models with
respect to the solvability, while sacrificing only a small degree
of novelty. In particular, the Enhanced Solvability DCGAN
model trained using 250 epochs generated only 7 unsolvable
levels out of 5,000 generated levels (a solvability of 99.86%).

VL DISCUSSION AND LIMITATIONS

The results show that the multistep DCGAN-based PCG
framework enables the Enhanced Solvability DCGAN’s
generator to create a high percentage of solvable levels to
significantly outperform the Training Augmentation DCGAN’s
generator with respect to solvability. This is achieved by having
the multistep DCGAN model use the Dijkstra’s algorithm-
based solver to select synthetic solvable levels. The Training
Augmentation DCGAN’s generator generates synthetic levels
that are a mixture of solvable and unsolvable levels, the solver
checks if each generated level is solvable based on the five
constraints, only solvable synthetic levels are integrated into the
original dataset (i.e., dataset augmentation), and the Enhanced
Solvability DCGAN’s generator generates more solvable
synthetic levels without significantly sacrificing novelty.

Examples of solvable (Fig. 6b) and unsolvable (Fig. 6c¢)
levels were generated by the Enhanced Solvability DCGAN
model using 250 epochs. The water area, the middle blue-
colored regions of all levels are complex and creative compared
to the original levels shown in Fig. 6a. However, the generated
levels also contain undesirable elements. The level in Fig. 6b,
Left has many barriers but only require the platform to move
forward across the water area. In Fig. 6¢c, Right, the left-side
ground area (shown in purple) requires challenging moves with
holes while the right-side ground does not require any
challenging moves.

As discussed, we utilize solvability and novelty to evaluate
the generated levels. Each of the measures has limitations. First,
the novelty heuristic function (Eq. 1) performs a tile-level
comparison between a generated level and k-nearest neighbors
in the original dataset. Although this heuristic function
measures the difference between two levels, similar patterns
observed in slightly different areas within the two levels might
not be fully captured by this metric. Second, the solvability
function uses an algorithm to find the shortest path between two
tile positions. However, other levels designed in ENGAGE or
more complex levels in other games will likely require different
approaches for measuring solvability. Lastly, this work
examines one data augmentation step, which achieves enhanced

(a) Original levels

p = 0.096 p = 0.089

(b) Generated solvable levels

p = 0.075

p = 0.081

(c) Generated unsolvable levels

Fig. 6. Examples of original and generated levels. (a) Original levels (b)
Generated solvable levels from the Epoch 250 model with Novelty (p) > 0.08.
(c) Unsolvable generated levels from the Epoch 250 model with Novelty (p) >
0.07 (Left) The moving platform can only move one step forward and cannot
escape from the barrier. (Right) There is no way to go forward after the moving
platform navigates the iterative path.

solvability, while more augmentation steps have potential to
further enhance the performance. While these limitations call
for further research to design more generalizable functions to
measure solvability and novelty of the levels, the multistep
DCGAN PCG framework paves the way toward approaches
that significantly improve solvability relative to a single-step
DCGAN.

VII. CONCLUSION

Because procedural content generation has proven effective
for entertainment games, it holds considerable potential for
dramatically increasing adaptivity and replayability for
educational games, while simultaneously significantly reducing
development effort. The multistep DCGAN model presented
here shows promise for achieving the goal of generating
solvable levels by augmenting human-authored training data
with synthetic training data. Evaluation of the multistep
DCGAN model shows that it significantly enhances the
solvability of the generated levels with minor degradation in the
novelty of the generated levels. In this work, we investigated a
multistep DCGAN model, and the model is extendible to
additional steps. These results suggest promising directions for
future work, including exploring if introducing additional steps
yield further improvements to the generated levels. It will also
be important to investigate the impact of incorporating
additional constraint checkers into the solver to explore how the
generated levels address specific learning objectives. One
approach is to use conditional GANs [38] to adaptively create



levels requiring a specific set of gaming skills and learning
objectives, as conditioned on the input of the generator. Using
this conditional GAN approach, the set of conditions can be
extended to cover other objectives of interest in educational
games, in addition to the gaming skills and learning objectives.
Another direction for future work is to explore the benefits of
incorporating a self-attention GAN model [39] that has the
ability to better track patterns with long-range dependencies.
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