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Abstract—Three-dimensional (3D) images are widely used in 
the medical field (e.g., CT, MRI). In osteoarthritis research, 3D 
magnetic resonance imaging (MRI) provides a noninvasive way to 
study soft-tissue structures including hyaline cartilage, meniscus, 
muscle, bone marrow lesion, etc. The measurement of those 
structures can be greatly improved by accurately locating the bone 
structure. U-net is a convolutional neural network developed for 
biological image segmentation using limited training data. The 
original U-net takes a single 2D image as input and generates a 
binary 2D image as output. In this paper, we modified the U-net 
model to identify the bone structure on 3D knee MRI, which is a 
sequence of multiple 2D slices. Instead of taking a single image as 
input, the modified U-net takes multiple adjacent slices as input.
The output is still a single binary image which is the segmentation 
result of the center slice in the input sequence. By using 99 knee
MRI cases, where each knee case includes 160 2D slices, the 
proposed model was trained, validated, and tested. The dice 
coefficient, similarity, and area error metrics rate were tallied to 
assess the performance and the quality of the testing sets. Without
any post-processing of the images, the model achieved promising 
segmentation performance with the Dice coefficient (DICE) 
97.22% on the testing dataset. To achieve the best performance, 
diverse models were trained using different strategies including 
different numbers of input channels and different input image 
sizes. The experiment results indicate that the incorporation of 
neighboring slices generated better segmentation performance 
than using the single slice. We also found that a larger image size
(uncompressed) corresponds to better performance. In summary, 
our best segmentation performance was achieved using five
adjacent neighbor slices (two left neighbors + two right neighbors 
+ the center slice) with the original image size of 352 × 352 pixels.

Keywords— knee osteoarthritis; 3D MRI images; deep learning; 
U-net; convolutional neural networks; automatic bone 
segmentation.

I. INTRODUCTION 

Knee osteoarthritis (OA) is the most recurrent type of 
arthritis affecting the elderly. This form of arthritis is majorly 
responsible for handicaps and restrictions to carry out activities 
by elderly people. Research carried out in 2000 indicated that
13% of the population in the U.S. was 65 years old and above, 
and 50% of this population were affected by OA in at least one 
of their joints [1]. By 2030, it is approximated that 20% of the 
U.S. population, about 70 million individuals, will be aged 65 
and will be predisposed to OA [1]. According to data analyzed 
in 2004, it was determined that the U.S. used approximately 
$336 billion, equal to 3% of its gross domestic product (GDP), 

to cater to patients of arthritis [2]. The knee osteoarthritis has 
been responsible for higher economic expense burden on society 
in terms of high costs associated with joint replacement, people 
leaving the workforce early, and higher incidences of employees 
being absent from work [3].

OA has no known cause or remedy that may slow the
advancement of the ailment [4]. Magnetic resonance imaging 
(MRI) can provide a noninvasive way to study soft-tissue 
structures including hyaline cartilage, meniscus, muscle, bone 
marrow lesion, etc. However, it is very time-consuming to 
measure those structures using MR images because each MRI 
scan contains dozens of 2D images. For example, manual 
segmentation of cartilage for only one knee in three-dimensional
(3D) knee MRI may take up to 6 hours. In addition, medical 
image readers require vast and comprehensive training to 
precisely measure cartilage [5]. The bone structure takes an 
important position in knee MRI and interacts with all other 
structures (cartilage, bone marrow lesion, meniscus, muscle). 
Bone segmentation from a knee MRI is essential to
automatically measure other knee structures.

In the past decade, scientists have carried out investigations 
to get competent and stable methods to speed measuring knee 
structures such as bone, cartilage, and bone marrow lesion from 
the MR images. Some key strategies include restricting 
assessment to partial regions of those structures or segmenting 
alternate MR slices [6, 7, 8]. To automate the operations of 
segmentation for MR images, computer-aided algorithms based 
on B-splines and active contour-models have been exploited [6,
7, 9, 10, 11]. Nonetheless, these approaches were not reliable
enough to be applied in clinical investigation, especially in 
exposing small structure changes [8]. Such a situation inspired 
the idea of identifying high accuracy structures first (i.e., bone)
and then identifying other structures (cartilage, bone marrow 
lesion, etc.). Since the structure of cartilage is complicated,
direct segmentation without bone identification is more 
challenging. Our bone identification study can serve as the first
step for segmenting cartilage.

Deep learning (DL) methods, which are reputed for their 
potential to obtain high-level features, have proficiently taken 
care of critical problems in audio and vision fields [12, 13, 14]. 
DL methods have the ability to directly learn from the raw input, 
extract complex higher-level attributes layer by layer, and result 
in the exceptional achievement of classification and 
segmentation. Recently, enthusiasm over the application of DL 
approaches for medical image processing has increased [15]. U-
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net [16] is a DL method that has a distinctively U-shaped 
convolutional network architecture. Due to its precise and fast 
segmentation outcome, U-net, which was initially developed for 
neuron structure segmentation in microscopy images, won the 
ISBI challenge. U-net, being efficient at manipulating situations 
with minimal training datasets, is an exceptional match for our
medical MR image segmentation. 

In this work, we developed a fully automatic segmentation 
model for knee bone using a modified U-net structure. The 
modified U-net takes 3D information to improve its 
segmentation results. After a thorough investigation, we 
concluded that there is no prerequisite to tune any parameter for 
the dataset, as the method can be self-adjusted when used on a 
varying dataset.

The rest of the paper is organized as follows: the method is 
discussed in section II, including the modified structure of U-
net. The experimental setup process including our dataset, the 
generation of the training and testing sets as well as the 
implementation are reviewed in section III. Section IV reports 
the experiment results while the conclusion is drawn in section 
V.

II. METHOD

A. Deep Convolutional Networks
Convolutional neural network (CNN) [17], is a deep learning 

architecture that directly derives features from image pixels as 
well as demands basic preprocessing. Recent exploration in 
computer vision as well as pattern recognition, has established 
that the CNNs have the proficiency to fix critical tasks including 
segmentation, object detection, and classification, with state-of-
the-art performances [18, 19]. CNNs are comprised of 
subsampling and convolutional layers. They possess the 
potential to pinpoint patterns that cannot be identified by hand-
crafted features. In the majority of instances, when CNNs are 

supplied with adequate labeled data, they efficiently generate an 
outstanding hierarchical representation of the raw input images 
and produce an exemplary performance on computer vision 
tasks. Nonetheless, when CNNs are utilized to fix issues related 
to medical images, the meager quantity of images is a stumbling 
block for equipping a good model.

B. U-net
U-net [16] is a unique convolutional neural network 

architecture intended for exact and quick segmentation tasks. 
The U-net’s architecture ordinarily is comprised of left and right 
paths which are the expansive and the contracting as shown in 
[16]. As illustrated in Fig. 1, the left contracting path follows the 
commonplace convolution network architecture. It consists of 
two convolution layers with a filter size of 3x3. Each layer is 
fortified by a 2x2 max pooling operation that has stride 2 which 
is utilized for down-sampling. A rectified linear unit (ReLU) 
follows every layer. On the other hand, the extensive path on the 
right contains three major components which are: up-sampling 
layer, feature map concatenation, and two 3x3 convolutional 
layers. Finally, a 1x1 convolution layer is used to map the 64-
dimensional feature vectors into the pre-determined quantity of 
classes as a final layer in order to generate the segmented output. 

Fig. 2 illustrates our inputs to the first layer; we modified U-
net architecture to accept multiple channels as input (3D 
information) instead of one channel in the original U-net design.
Since Knee MRI is a continuous scan (only 0.7mm between two 
slices), we expect that using the neighboring slices along with 
the processed slice can improve the segmentation result as more 
supporting information is provided. In our experiments, we 
performed the slice replication for slices near the two ends. To
process the slice #2, we used the slices #1, #1, #2, #3, and #4 to 
form the five channels input, by duplicating the slice at the left 
side of the processed slice. Besides changing the number of the
input channels, several other modifications have been done

Fig. 1  Illustration of the modified U-net architecture.
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on the original U-net. First, the original paper [16] did not do 
padding in any convolution layer so the pixels near the borders 
are lost after every convolution. Our model applied the padding 
to control the shrinkage of the image size after applying every 
convolution. Therefore, our output is the same size as the 
original input. Second, the original paper used the stochastic 
gradient descent optimizer, while we used the Adam optimizer
which is a better optimization method adopted in many recent 
models [20]. Finally, the original paper used softmax with cross-
entropy as the loss function. However, we used a soft DICE 
(minus DICE) as the loss function, which is a more direct loss 
measurement help to find the model with the best segmentation 
performance. The modified network requires 31,030,593 
parameters to be equipped and consists of a total of 23 
convolutional layers.

III. EXPERIMENTAL SETUP

A. Dataset 
Our database is composed of 99 cases of 3D knee MRI 

sequences (15,840 DICOM images in total) that were obtained 
from the public OAI database and include all OA severity levels
[21]. A single case consists of 160 2D slices with an original size 
of 384×384 pixels. We manually marked all the femur bones as 
ground truth. Since this study focuses on the segmentation of 
femur bone, all the slices that have a femur bone were selected. 
The selection has been done by finding the starting slice in 
which the femur bone started to show as well as the ending slice 
in which the bone disappeared, and all the images in between 
were used. Altogether, 11,701 DICOM images were selected 
from the 99 knee cases.

B. Generation of Training and Testing Sets
To prepare training and testing data for the U-net model, the 

99 cases were divided randomly into three groups, train, test and 
validate sets, with each of the groups containing 70% (69 cases),

15% (15 cases), 15% (15 cases) of total knee cases respectively.
The testing set has been held back until the end of the study. Be 
noted that the separation of the sets was done at the case level
which means that all slice images from the same knee MRI scan 
should be placed in the same set. The training set for all the 
models contains 8200 slices (2D images) from 69 knees. The 
validation set contains 1708 slices from 15 knee cases while the 
testing set contains 1794 slices from another 15 knees.

Fig. 3(a) shows an example of the DICOM slices in our 
database. The femur bone was manually segmented for all slices,
as appeared in Fig. 3(b). For every labeled DICOM slice, we 
generated a binary mask image by using a MATLAB script, as 
shown in Fig. 3(c). All original DICOM images were paired 
with its corresponding mask images. Furthermore, we cropped 
all our images 16 pixels from each side (right, left, top, and 
bottom) as shown in Fig. 3(d) to ensure that the bone starts from 
the very top edge of an image. As noticed in Fig. 3(b) that the 
software used for manual segmentation can’t reach the very 
beginning of the images, we added this cropping operation to 
ensure the training data is accurate. After cropping, both the 
original image size and mask image size are changed from 384 
× 384 pixels to 352 × 352 pixels.

C. Implementation 
To implement our models, Keras [22] jointly with 

TensorFlow backend [23] in Python 3.7 was used. All 
experiments were conducted with a computer equipped with an
NVIDIA GeForce GTX1080 Ti graphics processing unit (3584 
GPU cores). All of our networks were trained using the Adam 
optimizer method that used the Dice coefficient (DICE) as a 
gauge for the accuracy of the segmentation process. On the other 
hand, the backpropagation through the CNN has been done 
using the soft DICE as a loss function. The size of the batches 
was set to 8. All the experiment models were set up for 300 
epochs and using Keras’s callback function called 
EarlyStopping, which terminates the training process of the 
model if the DICE has no improvement after a specified number
of epochs, i.e. 20~30. This process saved a significant amount 
of time and it also avoided the model overfitting. Additionally, 
the rate of learning was initially set to 10-5.

Fig. 3 (a) Raw image. (b) Manual segmentation. (c) Mask image generated from 
manual segmentation. (d) Mask image after cropping.

Fig. 2  Illustration of the inputs to the first layer. 
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IV. EXPERIMENT RESULTS

A. Evaluation Metrics
The Dice coefficient (DICE) [24], also known as the overlap 

index is the most common metric used in authenticating medical 
image segmentation tasks. DICE is deduced by directly 
comparing the automatic segmentation and the manual 
segmentation results. It quantifies the spatial overlap rate 
between the two binary images. Its values vary between 0 and 1, 
with 1 representing a perfect match while 0 represents no 
overlap. Equation (1) depicts the DICE formula.

         DICE = 
ଶ∗ | ஻೘ ∩ ஻ೠ ||஻೘| ା |஻ೠ|                                    

In addition to DICE, we computed other area error metrics
in order to evaluate our segmentation method from different
perspectives. The similarity (SI), true positive (TP) ratio, false 
negative (FN) ratio, and false positive (FP) ratio, can be
determined as below:

              SI = | ஻೘ ∩ ஻ೠ ||஻೘ ∪ ஻ೠ|                                                      (2)

TP ratio =
| ஻೘ ∩ ஻ೠ ||஻೘| (3)                

              FN ratio = 1 - TP ratio                                       (4)

FP ratio =
| ஻೘ ∪ ஻ೠି஻೘ ||஻೘|                                  (5)                

The Bm refers to the pixel set of the manual segmentation of 
the bone outlined by an expert, while Bu refers to the bone region 
automatically generated by our trained model. Fig. 4 is an 
illustration of the area that corresponds to TP, FN, and FP. SI is 
a general proportion of the similarity between the contours of 
the automatic segmentation and the ground truth annotation.

Fig. 4.   Illustration of TP, FP and FN regions.

B. Experiments
To test the performance of the modified U-net structure on 

knee MRI, different models were trained with different 
strategies.

1) Different number of input channels 
Since each 3D knee MRI contains a sequence of slices that 

represent the entire femur bone, we expect that using the 
neighboring slices along with the processed slice can improve 
the segmentation results. Different models were trained with 
different numbers of neighbors along with the processed slice.
For the efficiency of the network training, all images and their 
corresponding masks were resized to 256 x 256 pixels. Table I 
summarized the performance of five models on the testing set.
Model 1 is the original U-net which used one channel as input. 
Model 2 used three channels as input which were the processed 
slice along with its right and left slice neighbors. The output is 
the segmentation result of the processed (center) slice. The best 
performance was achieved by model 3 which had five channels 
as input, i.e., the processed slices along with its two right and 
two left slice neighbors. It reached 97.00% as an average DICE 
and 94.58% in term of an average similarity. Model 4 used seven 
channels as input and model 5 used nine channels. Overall, 
including more slice neighbors along with the processed slice 
outperformed the original U-net. Fig. 5 depicts two
segmentation cases of the proposed model, which shows three 
examples for each case at different positions.

2) Different image size
The training of a deep learning model generally requires 

substantial computing power due to its extensive computation
load to update millions of parameters in every single epoch.
Therefore, the input image size greatly affects the training time. 
By compressing image size, one can greatly shorten the training 
time. In the previous experiment section, we shrunk the image 
size to save model training time. However, segmentation 
performance may be affected by image compression. In this 
section, we tested how image size affects U-net’s segmentation 
performance.      

Table II summarized the performance of our modified U-net 
on testing set with different input image sizes. The best model 
from last section with five channels was adopted here. We can 
clearly notice that in terms of an average DICE and the average 
similarity the results keep increasing while the image size 
increased to reach the original size of the images as 352 x 352 
pixels. The best performance was achieved by the original image 
TABLE I. THE PERFORMANCE OF TESTING SET OF  FIVE U-NET MODELS 

WITH DIFFERENT INPUT CHANNELS NUMBER

Models* TP (%) FP (%) FN (%) SI (%) DICE (%)

Model 1 95.58 02.81 04.42 93.73 96.35
Model 2 96.09 03.19 03.91 94.21 96.70
Model 3 96.14 01.89 03.86 94.58 97.00
Model 4 95.97 02.01 04.03 94.39 96.88
Model 5 95.72 01.81 04.28 94.38 96.89

* Model 1 used exact one slice; Model 2 used the slice and its 2 neighbors; Model 3 used the slice and 
its 4 neighbors; Model 4 used the slice and its 6 neighbors; Model 5 used the slice and its 8 neighbors.
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TABLE II. THE PERFORMANCE OF TESTING SET OF  PROPOSED U-NET
MODEL WITH DIFFERENT IMAGE SIZES

Image 
Size Time* TP (%) FP (%) FN (%) SI (%) DICE (%)

128 1.40 93.41 01.33 06.59 92.51 95.83
192 2.54 94.93 01.42 05.07 93.82 96.56
256 4.26 96.14 01.89 03.86 94.58 97.00
320 6.23 96.38 01.92 03.62 94.73 97.03
352 7.67 97.13 02.43 02.87 94.98 97.22

*Time cost for training per epoch in minutes.

size and has 97.22% as an average DICE and 94.98% in terms
of average similarity. This result coincides people’s common 
sense that using original image size without compression can 
achieve the best accuracy, while we feel it is also meaningful to 
show the cost if one has to maintain smaller image size. In some 
situations of constrained computing resources or limited time on 
training, one could compress the image size to achieve a balance 
between accuracy and efficiency.

To further validate, we compared the performance of our 
proposed model along with original U-net longitudinally among 
different image sizes. As Table III showed, the proposed model 
outperformed the original U-net when using different image 
sizes in terms of femur-bone segmentation and achieved an 
average DICE = 97.22% and an average similarity = 94.98%,
which is the best performance when using the original image 
size. Furthermore, in order to determine if there is a significant 
difference between the results of the original U-net and the 
proposed model, the student’s t-test has been conducted in terms
of DICE and similarity. The t-test results indicate that there is a 
significant difference at the p = 0.05 significance level for all 
models in terms of DICE and similarity. Table III illustrated the 
p-value for all the experiments. In addition, Fig. 6(a) provides a 
visual compression between the original U-net and the proposed 
model using different image sizes in terms of similarity score 

while Fig. 6(b) provides the same visual comparison in term of 
DICE score. The training time cost of each model is listed in 
Table III as well. 

V. CONCLUSION
This study proposed a fully automatic segmentation pipeline 

based on U-net for bone segmentation on 3D knee magnetic
resonance images. Without any image post-processing, the 
proposed model generated very remarkable segmentation 
results, i.e., DICE 97.22% and similarity 94.98% on the testing 
dataset. A comparison with the original U-net model was done 
and our proposed segmentation model outperformed it on the 
same dataset, with a statistically significant improvement. The 
results of the study established that providing neighboring slices 
in the 3D knee MRI sequence to U-net can improve the 
segmentation results of the femur bone in the knee joint.

One of our future work is to expand the experiment to the 
other bone structures in the knee joint, to include tibia and
patella. This bone identification study can also serve as the
critical step for segmenting other knee structures such as
cartilage, bone marrow lesion, meniscus, and effusion. Since 
these structures are small and complicated, direct segmentation
without bone identification is much more challenging.

TABLE III. THE COMPARISON OF  THE MODIFIED U-NET MODEL WITH  
THE ORIGINAL U-NET MODEL USING DIFFERENT IMAGE SIZES

Image 
Size

Original U-net The modified U-net
p-value
(DICE)

p-value
(SI)Time* SI(%) DICE(%) Time* SI(%) DICE(%)

128 1.20 91.29 95.09 1.40 92.51 95.83 0.0018 0.00004
192 2.20 92.77 95.98 2.54 93.82 96.56 0.0052 0.00013 
256 3.43 93.73 96.35 4.26 94.58 97.00 0.0061 0.00338
320 5.40 93.81 96.38 6.23 94.73 97.03 0.0112 0.00241
352 6.60 94.40 96.73 7.67 94.98 97.22 0.0433 0.03689

*Time cost for training per epoch in minutes.

Fig. 5.   (a) Processed slice. (b) Ground truth masks. (c) Output from propused u-net. (d) Overlap between the automatic segmentation and the ground truth Note: 
Left three slices refer to the same case (knee) in different positions while the right three slices belong to another case. 
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