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Abstract—Three-dimensional (3D) images are widely used in
the medical field (e.g., CT, MRI). In osteoarthritis research, 3D
magnetic resonance imaging (MRI) provides a noninvasive way to
study soft-tissue structures including hyaline cartilage, meniscus,
muscle, bone marrow lesion, etc. The measurement of those
structures can be greatly improved by accurately locating the bone
structure. U-net is a convolutional neural network developed for
biological image segmentation using limited training data. The
original U-net takes a single 2D image as input and generates a
binary 2D image as output. In this paper, we modified the U-net
model to identify the bone structure on 3D knee MRI, which is a
sequence of multiple 2D slices. Instead of taking a single image as
input, the modified U-net takes multiple adjacent slices as input.
The output is still a single binary image which is the segmentation
result of the center slice in the input sequence. By using 99 knee
MRI cases, where each knee case includes 160 2D slices, the
proposed model was trained, validated, and tested. The dice
coefficient, similarity, and area error metrics rate were tallied to
assess the performance and the quality of the testing sets. Without
any post-processing of the images, the model achieved promising
segmentation performance with the Dice coefficient (DICE)
97.22% on the testing dataset. To achieve the best performance,
diverse models were trained using different strategies including
different numbers of input channels and different input image
sizes. The experiment results indicate that the incorporation of
neighboring slices generated better segmentation performance
than using the single slice. We also found that a larger image size
(uncompressed) corresponds to better performance. In summary,
our best segmentation performance was achieved using five
adjacent neighbor slices (two left neighbors + two right neighbors
+ the center slice) with the original image size of 352 x 352 pixels.
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to cater to patients of arthritis [2]. The knee osteoarthritis has
been responsible for higher economic expense burden on society
in terms of high costs associated with joint replacement, people
leaving the workforce early, and higher incidences of employees
being absent from work [3].

OA has no known cause or remedy that may slow the
advancement of the ailment [4]. Magnetic resonance imaging
(MRI) can provide a noninvasive way to study soft-tissue
structures including hyaline cartilage, meniscus, muscle, bone
marrow lesion, etc. However, it is very time-consuming to
measure those structures using MR images because each MRI
scan contains dozens of 2D images. For example, manual
segmentation of cartilage for only one knee in three-dimensional
(3D) knee MRI may take up to 6 hours. In addition, medical
image readers require vast and comprehensive training to
precisely measure cartilage [5]. The bone structure takes an
important position in knee MRI and interacts with all other
structures (cartilage, bone marrow lesion, meniscus, muscle).
Bone segmentation from a knee MRI is essential to
automatically measure other knee structures.

In the past decade, scientists have carried out investigations
to get competent and stable methods to speed measuring knee
structures such as bone, cartilage, and bone marrow lesion from
the MR images. Some key strategies include restricting
assessment to partial regions of those structures or segmenting
alternate MR slices [6, 7, 8]. To automate the operations of
segmentation for MR images, computer-aided algorithms based
on B-splines and active contour-models have been exploited [6,
7,9, 10, 11]. Nonetheless, these approaches were not reliable
enough to be applied in clinical investigation, especially in

U-net;  convolutional neural networks; automatic —bone expc_)sing sr_nall structure changes [8]. Such a situation inspired
segmentation. the idea of identifying high accuracy structures first (i.e., bone)
and then identifying other structures (cartilage, bone marrow

I. INTRODUCTION

Knee osteoarthritis (OA) is the most recurrent type of
arthritis affecting the elderly. This form of arthritis is majorly
responsible for handicaps and restrictions to carry out activities
by elderly people. Research carried out in 2000 indicated that
13% of the population in the U.S. was 65 years old and above,
and 50% of this population were affected by OA in at least one
of their joints [1]. By 2030, it is approximated that 20% of the
U.S. population, about 70 million individuals, will be aged 65
and will be predisposed to OA [1]. According to data analyzed
in 2004, it was determined that the U.S. used approximately
$336 billion, equal to 3% of its gross domestic product (GDP),
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lesion, etc.). Since the structure of cartilage is complicated,
direct segmentation without bone identification is more
challenging. Our bone identification study can serve as the first
step for segmenting cartilage.

Deep learning (DL) methods, which are reputed for their
potential to obtain high-level features, have proficiently taken
care of critical problems in audio and vision fields [12, 13, 14].
DL methods have the ability to directly learn from the raw input,
extract complex higher-level attributes layer by layer, and result
in the exceptional achievement of classification and
segmentation. Recently, enthusiasm over the application of DL
approaches for medical image processing has increased [15]. U-

978-1-7281-4550-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICMLA.2019.00280

1725

Authorized licensed use limited to: Pace University. Downloaded on July 08,2020 at 23:53:42 UTC from IEEE Xplore. Restrictions apply.



net [16] is a DL method that has a distinctively U-shaped
convolutional network architecture. Due to its precise and fast
segmentation outcome, U-net, which was initially developed for
neuron structure segmentation in microscopy images, won the
ISBI challenge. U-net, being efficient at manipulating situations
with minimal training datasets, is an exceptional match for our
medical MR image segmentation.

In this work, we developed a fully automatic segmentation
model for knee bone using a modified U-net structure. The
modified U-net takes 3D information to improve its
segmentation results. After a thorough investigation, we
concluded that there is no prerequisite to tune any parameter for
the dataset, as the method can be self-adjusted when used on a
varying dataset.

The rest of the paper is organized as follows: the method is
discussed in section I, including the modified structure of U-
net. The experimental setup process including our dataset, the
generation of the training and testing sets as well as the
implementation are reviewed in section III. Section IV reports
the experiment results while the conclusion is drawn in section
V.

II. METHOD

A. Deep Convolutional Networks

Convolutional neural network (CNN) [17], is a deep learning
architecture that directly derives features from image pixels as
well as demands basic preprocessing. Recent exploration in
computer vision as well as pattern recognition, has established
that the CNN’s have the proficiency to fix critical tasks including
segmentation, object detection, and classification, with state-of-
the-art performances [18, 19]. CNNs are comprised of
subsampling and convolutional layers. They possess the
potential to pinpoint patterns that cannot be identified by hand-
crafted features. In the majority of instances, when CNNs are

supplied with adequate labeled data, they efficiently generate an
outstanding hierarchical representation of the raw input images
and produce an exemplary performance on computer vision
tasks. Nonetheless, when CNNs are utilized to fix issues related
to medical images, the meager quantity of images is a stumbling
block for equipping a good model.

B. U-net

U-net [16] is a unique convolutional neural network
architecture intended for exact and quick segmentation tasks.
The U-net’s architecture ordinarily is comprised of left and right
paths which are the expansive and the contracting as shown in
[16]. As illustrated in Fig. 1, the left contracting path follows the
commonplace convolution network architecture. It consists of
two convolution layers with a filter size of 3x3. Each layer is
fortified by a 2x2 max pooling operation that has stride 2 which
is utilized for down-sampling. A rectified linear unit (ReLU)
follows every layer. On the other hand, the extensive path on the
right contains three major components which are: up-sampling
layer, feature map concatenation, and two 3x3 convolutional
layers. Finally, a 1x1 convolution layer is used to map the 64-
dimensional feature vectors into the pre-determined quantity of
classes as a final layer in order to generate the segmented output.

Fig. 2 illustrates our inputs to the first layer; we modified U-
net architecture to accept multiple channels as input (3D
information) instead of one channel in the original U-net design.
Since Knee MRI is a continuous scan (only 0.7mm between two
slices), we expect that using the neighboring slices along with
the processed slice can improve the segmentation result as more
supporting information is provided. In our experiments, we
performed the slice replication for slices near the two ends. To
process the slice #2, we used the slices #1, #1, #2, #3, and #4 to
form the five channels input, by duplicating the slice at the left
side of the processed slice. Besides changing the number of the
input channels, several other modifications have been done
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Fig. 1 Illustration of the modified U-net architecture.
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Fig. 2 Illustration of the inputs to the first layer.

on the original U-net. First, the original paper [16] did not do
padding in any convolution layer so the pixels near the borders
are lost after every convolution. Our model applied the padding
to control the shrinkage of the image size after applying every
convolution. Therefore, our output is the same size as the
original input. Second, the original paper used the stochastic
gradient descent optimizer, while we used the Adam optimizer
which is a better optimization method adopted in many recent
models [20]. Finally, the original paper used softmax with cross-
entropy as the loss function. However, we used a soft DICE
(minus DICE) as the loss function, which is a more direct loss
measurement help to find the model with the best segmentation
performance. The modified network requires 31,030,593
parameters to be equipped and consists of a total of 23
convolutional layers.

III. EXPERIMENTAL SETUP

A. Dataset

Our database is composed of 99 cases of 3D knee MRI
sequences (15,840 DICOM images in total) that were obtained
from the public OAI database and include all OA severity levels
[21]. A single case consists of 160 2D slices with an original size
of 384x384 pixels. We manually marked all the femur bones as
ground truth. Since this study focuses on the segmentation of
femur bone, all the slices that have a femur bone were selected.
The selection has been done by finding the starting slice in
which the femur bone started to show as well as the ending slice
in which the bone disappeared, and all the images in between
were used. Altogether, 11,701 DICOM images were selected
from the 99 knee cases.

B. Generation of Training and Testing Sets

To prepare training and testing data for the U-net model, the
99 cases were divided randomly into three groups, train, test and
validate sets, with each of the groups containing 70% (69 cases),
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15% (15 cases), 15% (15 cases) of total knee cases respectively.
The testing set has been held back until the end of the study. Be
noted that the separation of the sets was done at the case level
which means that all slice images from the same knee MRI scan
should be placed in the same set. The training set for all the
models contains 8200 slices (2D images) from 69 knees. The
validation set contains 1708 slices from 15 knee cases while the
testing set contains 1794 slices from another 15 knees.

Fig. 3(a) shows an example of the DICOM slices in our
database. The femur bone was manually segmented for all slices,
as appeared in Fig. 3(b). For every labeled DICOM slice, we
generated a binary mask image by using a MATLAB script, as
shown in Fig. 3(c). All original DICOM images were paired
with its corresponding mask images. Furthermore, we cropped
all our images 16 pixels from each side (right, left, top, and
bottom) as shown in Fig. 3(d) to ensure that the bone starts from
the very top edge of an image. As noticed in Fig. 3(b) that the
software used for manual segmentation can’t reach the very
beginning of the images, we added this cropping operation to
ensure the training data is accurate. After cropping, both the
original image size and mask image size are changed from 384
x 384 pixels to 352 x 352 pixels.

C. Implementation

To implement our models, Keras [22] jointly with
TensorFlow backend [23] in Python 3.7 was used. All
experiments were conducted with a computer equipped with an
NVIDIA GeForce GTX1080 Ti graphics processing unit (3584
GPU cores). All of our networks were trained using the Adam
optimizer method that used the Dice coefficient (DICE) as a
gauge for the accuracy of the segmentation process. On the other
hand, the backpropagation through the CNN has been done
using the soft DICE as a loss function. The size of the batches
was set to 8. All the experiment models were set up for 300
epochs and wusing Keras’s callback function called
EarlyStopping, which terminates the training process of the
model if the DICE has no improvement after a specified number
of epochs, i.e. 20~30. This process saved a significant amount
of time and it also avoided the model overfitting. Additionally,
the rate of learning was initially set to 107.

(c) (d)

Fig. 3 (a) Raw image. (b) Manual segmentation. (c) Mask image generated from
manual segmentation. (d) Mask image after cropping.
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IV. EXPERIMENT RESULTS

A. Evaluation Metrics

The Dice coefficient (DICE) [24], also known as the overlap
index is the most common metric used in authenticating medical
image segmentation tasks. DICE is deduced by directly
comparing the automatic segmentation and the manual
segmentation results. It quantifies the spatial overlap rate
between the two binary images. Its values vary between 0 and 1,
with 1 representing a perfect match while 0 represents no
overlap. Equation (1) depicts the DICE formula.

2% | By N By |

DICE =
|Bm| + |Bul

O

In addition to DICE, we computed other area error metrics
in order to evaluate our segmentation method from different
perspectives. The similarity (SI), true positive (TP) ratio, false
negative (FN) ratio, and false positive (FP) ratio, can be
determined as below:

1BmN By o
|Bm U By|
By, NB
TP ratio = M 3)
[Bm|
FN ratio =1 - TP ratio 4)
By UBy,—B
£ ratio — 2 Y Bu=Bm | 5)
|Brm|

The By, refers to the pixel set of the manual segmentation of
the bone outlined by an expert, while B, refers to the bone region
automatically generated by our trained model. Fig. 4 is an
illustration of the area that corresponds to TP, FN, and FP. Sl is
a general proportion of the similarity between the contours of
the automatic segmentation and the ground truth annotation.
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Fig. 4. Tlustration of TP, FP and FN regions.
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B. Experiments

To test the performance of the modified U-net structure on
knee MRI, different models were trained with different
strategies.

1) Different number of input channels

Since each 3D knee MRI contains a sequence of slices that
represent the entire femur bone, we expect that using the
neighboring slices along with the processed slice can improve
the segmentation results. Different models were trained with
different numbers of neighbors along with the processed slice.
For the efficiency of the network training, all images and their
corresponding masks were resized to 256 x 256 pixels. Table I
summarized the performance of five models on the testing set.
Model 1 is the original U-net which used one channel as input.
Model 2 used three channels as input which were the processed
slice along with its right and left slice neighbors. The output is
the segmentation result of the processed (center) slice. The best
performance was achieved by model 3 which had five channels
as input, i.e., the processed slices along with its two right and
two left slice neighbors. It reached 97.00% as an average DICE
and 94.58% in term of an average similarity. Model 4 used seven
channels as input and model 5 used nine channels. Overall,
including more slice neighbors along with the processed slice
outperformed the original U-net. Fig. 5 depicts two
segmentation cases of the proposed model, which shows three
examples for each case at different positions.

2) Different image size

The training of a deep learning model generally requires
substantial computing power due to its extensive computation
load to update millions of parameters in every single epoch.
Therefore, the input image size greatly affects the training time.
By compressing image size, one can greatly shorten the training
time. In the previous experiment section, we shrunk the image
size to save model training time. However, segmentation
performance may be affected by image compression. In this
section, we tested how image size affects U-net’s segmentation
performance.

Table II summarized the performance of our modified U-net
on testing set with different input image sizes. The best model
from last section with five channels was adopted here. We can
clearly notice that in terms of an average DICE and the average
similarity the results keep increasing while the image size
increased to reach the original size of the images as 352 x 352
pixels. The best performance was achieved by the original image

TABLE 1. THE PERFORMANCE OF TESTING SET OF FIVE U-NET MODELS
WITH DIFFERENT INPUT CHANNELS NUMBER

Models* | TP (%) | FP(%) | FN(%) | SI(%) |DICE (%)
Model 1 95.58 02.81 04.42 93.73 96.35
Model 2 96.09 03.19 03.91 94.21 96.70
Model 3 | 96.14 01.89 03.86 94.58 97.00
Model 4 | 95.97 02.01 04.03 94.39 96.88
Model 5 95.72 01.81 04.28 94.38 96.89

* Model 1 used exact one slice; Model 2 used the slice and its 2 neighbors; Model 3 used the slice and
its 4 neighbors; Model 4 used the slice and its 6 neighbors; Model 5 used the slice and its 8 neighbors.
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(d)

Fig. 5. (a) Processed slice. (b) Ground truth masks. (c) Output from propused u-net. (d) Overlap between the automatic segmentation and the ground truth Note:
Left three slices refer to the same case (knee) in different positions while the right three slices belong to another case.

TABLE II. THE PERFORMANCE OF TESTING SET OF PROPOSED U-NET
MODEL WITH DIFFERENT IMAGE SIZES

Ig'g%e Time* | TP (%) | FP (%) | FN (%) | SI(%) |DICE (%)
128 1.40 | 93.41 | 01.33 | 06.59 | 92.51 95.83
192 254 | 9493 | 01.42 | 05.07 | 93.82 96.56
256 426 | 96.14 | 01.89 | 03.86 | 94.58 | 97.00
320 6.23 | 96.38 | 01.92 | 03.62 | 94.73 97.03
352 7.67 | 97.13 | 02.43 | 02.87 | 94.98 97.22

*Time cost for training per epoch in minutes.

size and has 97.22% as an average DICE and 94.98% in terms
of average similarity. This result coincides people’s common
sense that using original image size without compression can
achieve the best accuracy, while we feel it is also meaningful to
show the cost if one has to maintain smaller image size. In some
situations of constrained computing resources or limited time on
training, one could compress the image size to achieve a balance
between accuracy and efficiency.

To further validate, we compared the performance of our
proposed model along with original U-net longitudinally among
different image sizes. As Table III showed, the proposed model
outperformed the original U-net when using different image
sizes in terms of femur-bone segmentation and achieved an
average DICE = 97.22% and an average similarity = 94.98%,
which is the best performance when using the original image
size. Furthermore, in order to determine if there is a significant
difference between the results of the original U-net and the
proposed model, the student’s t-test has been conducted in terms
of DICE and similarity. The t-test results indicate that there is a
significant difference at the p = 0.05 significance level for all
models in terms of DICE and similarity. Table III illustrated the
p-value for all the experiments. In addition, Fig. 6(a) provides a
visual compression between the original U-net and the proposed
model using different image sizes in terms of similarity score
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while Fig. 6(b) provides the same visual comparison in term of
DICE score. The training time cost of each model is listed in
Table III as well.

V. CONCLUSION

This study proposed a fully automatic segmentation pipeline
based on U-net for bone segmentation on 3D knee magnetic
resonance images. Without any image post-processing, the
proposed model generated very remarkable segmentation
results, i.e., DICE 97.22% and similarity 94.98% on the testing
dataset. A comparison with the original U-net model was done
and our proposed segmentation model outperformed it on the
same dataset, with a statistically significant improvement. The
results of the study established that providing neighboring slices
in the 3D knee MRI sequence to U-net can improve the
segmentation results of the femur bone in the knee joint.

One of our future work is to expand the experiment to the
other bone structures in the knee joint, to include tibia and
patella. This bone identification study can also serve as the
critical step for segmenting other knee structures such as
cartilage, bone marrow lesion, meniscus, and effusion. Since
these structures are small and complicated, direct segmentation
without bone identification is much more challenging.

TABLE III. THE COMPARISON OF THE MODIFIED U-NET MODEL WITH
THE ORIGINAL U-NET MODEL USING DIFFERENT IMAGE SIZES

Image Original U-net The modified U-net p-value| p-value
Size Time"| SI(%) [DICE(%)| Time" |SI(%)[DICE(%){(PICE)|  (SD
128 |1.20]91.29| 95.09 | 1.40 [92.51| 95.83 (0.00180.00004
192 |2.20(92.77| 95.98 | 2.54 {93.82 96.56 |0.0052/0.00013
256 |3.43193.73| 96.35 | 4.26 [94.58 97.00 |0.0061/0.00338
320 [5.40(93.81| 96.38 | 6.23 [94.73| 97.03 |0.0112/0.00241
352 |6.60(94.40| 96.73 | 7.67 94.98 97.22 |0.0433/0.03689
*Time cost for training per epoch in minutes.
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Fig. 6 The comparison of the performance of the proposed model with the original U-net among different image sizes in term of similarity (a) and DICE (b) results.
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