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Abstract—Big data provides us the source to extract new 
insights in various disciplines. In healthcare, big data may help 
discover the pathology of a disease and new effective treatments. 
However, the era of big data taxes the ability of many 
researchers to analyze and interact with data in biomedical 
research. Traditional statistical methods have limitations to 
infer relevant features for possibly complex data. Topological 
Data Analysis (TDA) provides a set of new topological and 
geometric tools to discover the hidden relations or key features 
from complex data. It may help identify the key risk factors 
related to a given disease and reduce the noise impact from other 
factors. In this paper, we use TDA to analyze the 
multidimensional data from MRI of knee osteoarthritis patients. 
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I. INTRODUCTION 
Big data has become the ubiquitous word of medical 

innovation. The rapid development of machine-learning 
techniques and artificial intelligence, in particular, has 
promised to revolutionize medical practice from the allocation 
of resources to the diagnosis of complex diseases [1]. 
However, there are challenges coming with understanding and 
analyzing medical big data. Due to the complexity of 
healthcare results from the diversity of health-related ailments 
and their comorbidities, the heterogeneity of treatments and 
outcomes, and the inherent difficulties in understanding large, 
high-dimensional, often, noisy data [2]. Traditional data 
analysis methods, despite their effectiveness, still have some 
drawbacks that might introduce unwanted biases or the need 
for ad hoc adjustments.  

Topological Data Analysis (TDA) provides a general 
framework for analyzing data, with the advantages of being 
able to extract information from large volumes of high-
dimensional data, while not depending on the choice of 
metrics, and providing stability against noise. TDA combines 
tools from algebraic topology and statistical learning to give a 
quantitative basis for the study of the "shape" of data [3]. 
Compared to machine learning methods such as artificial 
neural networks, which often requires a large number of 
training samples, TDA can work for a small data set. 

As the most common form of arthritis, knee osteoarthritis 
(OA) is a major cause of motion limitation and physical 
disability in aged people. In 2000, over 13% of the US 
population (about 35 million people) endure OA disease in 
one or both joints with radiological evidence [4]. However, 

it’s still unclear the pathology of OA disease, and there is no 
effective treatment that can alter OA progression [5]. 

Magnetic resonance imaging (MRI) is a non-invasive 
technology that generates three-dimensional (3D) images of 
intra-articular soft-tissue structures, which represent potential 
surrogate endpoints in OA. By using the 3D model to show 
small tissues and structures, MRI is used to identify risk 
factors of structural disease progression and to facilitate the 
testing efficacy of disease-modifying interventions [6, 7]. In 
addition, MRI has no radiation and is generally safe. However, 
3D MRI generates a huge amount of data. In our study, each 
knee MRI contains 160 two-dimensional (2D) images and the 
resolution of each 2D image is 384 x 384 pixels. A lot of image 
biomarkers can be extracted from knee MRI including knee 
cartilage, bone marrow lesion, effusions, etc. Each biomarker 
has its own measuring unit and scale. Beyond that, those 
biomarkers are also impacted by other factors, such as age, 
body weight, gender, etc. It is challenging to use traditional 
statistical methods to study how the multidimensional 
biomarkers from MRI are related to OA disease. TDA 
provides a novel way to infer, analyze, and exploit the 
complex multidimensional data by grouping patients with 
similar conditions into a connected subnetwork. Such 
networks help us identify the key factors closely related to OA 
disease and reduce the impact of other factors (e.g., age, BMI). 

II. DATA AND METHODS 

A. Data Selection 
We selected a sample of 200 participants from the 

Osteoarthritis Initiative (OAI) dataset. The 200 cases include 
all OA severity levels  and have complete MRI, radiographic, 
and clinical data. We used semi-automated programs to 
quantify MRI biomarkers including: CDI, BML, and effusion. 
We assessed BML and CDI at the medial and lateral 
compartments for patella, tibia, and femur. 17 features were 
extracted in total. 

1) Cartilage Damage Index (8 Features): Cartilage 
damage index (CDI) is a recently proposed cartilage 
quantification method that is much more efficient than the 
traditional manual segmentation of cartilage [8-10]. It 
quantifies osteoarthritis cartilage thickness through 
informative locations on knee MR images. These informative 
locations are selected from regions on the articular surface 
where cartilage denudation frequently happen. The knee joint 
is the most complex joint in the human body. It includes 
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femur, tibia, and patella cartilages and each cartilage is 
divided into medial and lateral compartments. In total, there 
are 6 compartments in a knee joint. The 8 CDI features are 
extracted from the 6 compartments and listed in Table I 
(CDI_total_FTP, femur_CDI_medial, femur_CDI_lateral, 
tibia_CDI_meidial, tibia_CDI_lateral, patella_CDI_medial, 
patella_CDI_lateral, femur_tibia_lateral).  

2) Bone Marrow Lesion (7 features): Bone Marrow 
Lesion (BML) is characterized by excessive water signals in 
the marrow space on MRI. BMLs constitute a central 
component of a wide variety of inflammatory and non-
inflammatory rheumatologic conditions affecting the 
musculoskeletal system. BML volume is measured on each 
of the 6 compartments. Together with the total of all the BML 
volumes, we have 7 features to represent BML (total_BML, 
femur_BML_medial, femur_BML_lateral, patella_BML, 
patella_BML_medial, patella_BML_lateral, 
tibia_BML_medial, tibia_BML_lateral). 

3) Effusion (1 feature): Effusion occurs when excess 
synovial fluid accumulates in or around the knee joint. The 
volume of the effusion is used as a feature. 

4) Clinical data (2 features): Besides image biomarkers, 
other factors may also impact the progression of OA disease. 
We have included age and BMI in our multidimensional data. 

B. Methods 
There are five steps to create TDA.  

1) Create a Pearson correlation matrix using MRI 
biomarker and clinical data. Each of the MRI biomarkers and 
clinical data has its own measurement unit and scale. In the 
clinical study, cross-correlation is used to help identify the 
relations between risk factors and disease. Here we used 
cross-correlation to emphasize the clinical relations and also 
solve the unit difference, scale difference, and integrate MRI 
biomarkers with clinical data (Fig. 1). The cross-correlation 
matrix provides a metric for the topological network 
construction. The similarity of the metric is measured by 
norm correlation, which is used to define the distance of two 
data points in a topological space. The norm correlation of 
two points (X, Y) is calculated by: ܰݎݎ݋ܥ݉ݎ݋(ܺ, ܻ) = 1 − ,ᇱܺ)ݎ ܻᇱ) 

where X and Y represent the data points and X^',Y' are the 
column-wise, mean-centered, and variance normalized 
version of X and Y, and the formula of r(X, Y) is : ݎ(ܺ, ܻ) =  ܰ ∑ ௜ܺ ௜ܻ − ∑ ௜ܺ ∑ ௜ܻே௜ୀଵே௜ୀଵே௜ୀଵඥܰ ∑ ௜ܺଶ −௜ (∑ ௜ܺ௜ )ଶඥܰ ∑ ௜ܻଶ −௜ (∑ ௜ܻ௜ )ଶ 

2) Project data into a three-dimensional cloud space by 
using the cross-correlation matrix across all selected 
variables and viewing them though a mathematical “lens” of 
principal component analysis (see Fig. 2a) [12].  

3) Draw topology network by splitting the cloud space 
into a number of bins which overlapped with each other. We 

select single-linkage agglomerative as the clustering method, 
which pairs the clusters that minimally increase a given 
linkage distance and merge them recursively. The data points 
were clustered by the clustering method based on the 
similarity, which is defined by the norm correlation. We 
connect two clusters if they contain one or more same data 
points (see Fig. 2b) [13].  

4) Use variables of clinical interests (e.g., smoking, 
disease severity score, and gender) to color topological 
network and visualize the hidden information of the data. Fig. 
3 shows two topological networks colored by age and the 
change of KL grade separately. The color bars provide a 
reference of data representation.   

5) Split the generated network into subnetworks at the 
weakest connection point. The sub-networks of interest were 
mathematically evaluated by the Kolmogorov-Smirnov (KS) 

Fig. 1. Cross correlation metric 

 
Fig. 2. Multi-dimensional data space 

 
Fig. 3. Colored Topological Network 
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test [11] to generate hypothesizes about high risk factors. In 
this paper, we used KS test to rank the features by p-values.  

III. EXPERIMENT AND RESULTS 
A data topology network was constructed from the 

multidimensional data in Fig. 4. We colored the topology 
network by using OA progression score, i.e., two-year 
Kellgren-Lawrence (KL) grade change, between baseline year 
and two-year follow-up. Red nodes represent sample points 
with OA progression, green nodes represent sample points 
with no progression, and other colors stand for a mixture of 
both progression and non-progression. Two subnetworks were 
separated by the weakest connection points. With similar 
initial conditions, the two subnetworks show different 
progression status. We applied Student T-test on the two 
subnetworks and obtained p-value 0.0082 (< 0.05), which 
proved that the two subnetworks are statistically significantly 
different in OA progression. More progressed OA subjects 
(red nodes) appear in the right subnetwork circled by a blue 
dashed line, and more non-progressed (green nodes) appear in 
the left subnetwork circled by a red dashed line. Table I lists 
the results of the ranking of all the 17 features by their p-
values, through running KS test on the two subnetworks. The 
top 3 key factors for two-year KL change are CDI_total_FTP 
(p = 4.57×10-21), patella_CDI_medial (p = 4.75×10-15), and 
femur_tibia_lateral (p = 8.02×10-14). The most important 
factor identified in this work, CDI_total_FTP, is consistent 
with domain knowledge about factors that affect OA 
progression, and it is also consistent with the findings of our 
previous work [14].  

IV. CONCLUSIONS 
TDA provides a better understanding of the clinical 

relations existent in multidimensional data, due to its unique 
advantage of data integration and visualization that traditional 
data analysis methods do not have. Through the analysis we 
found several related features with OA progression, and 
among them, the total CDI ranked as the top key factor. This 
result is consistent with the domain knowledge that cartilage 
is an important indicator for OA disease, which proves TDA 
as a reliable data analysis tool to fuse multidimensional data. 
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Fig. 4. Subnetworks extracted from the network colored by KL 

TABLE I.         TOPOLOGICAL DATA ANALYSIS ON 
MULTIDIMENSIONAL DATA AND KL GRADE 

Feature KS score p-value 
CDI_total_FTP 0.9620 4.57E-21 

patella_CDI_medial 0.8098 4.75E-15 
femur_tibia_lateral 0.7750 8.02E-14 
femur_tibia_medial 0.7653 1.74E-13 
patella_CDI_lateral 0.7497 5.82E-13 
femur_CDI_medial 0.7338 1.96E-12 
femur_CDI_lateral 0.7244 3.96E-12 
tibia_CDI_lateral 0.7244 3.96E-12 
tibia_CDI_medial 0.6705 1.88E-10 

patella_BML 0.2966 0.0219 
tibia_BML_medial 0.2904 0.0263 

age 0.2383 0.1082 
patella_BML_lateral 0.2369 0.1121 
patella_BML_medial 0.2271 0.1414 

effusion volume 0.2257 0.1462 
total_BML 0.1696 0.4510 

tibia_bml_lateral 0.1476 0.6310 
BMI 0.1233 0.8297 

femur_BML_medial 0.1219 0.8402 
femur_BML_lateral 0.0911 0.9833 

Note: FTP = femur, tibia, patella 
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