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Abstract—Big data provides us the source to extract new
insights in various disciplines. In healthcare, big data may help
discover the pathology of a disease and new effective treatments.
However, the era of big data taxes the ability of many
researchers to analyze and interact with data in biomedical
research. Traditional statistical methods have limitations to
infer relevant features for possibly complex data. Topological
Data Analysis (TDA) provides a set of new topological and
geometric tools to discover the hidden relations or key features
from complex data. It may help identify the key risk factors
related to a given disease and reduce the noise impact from other
factors. In this paper, we use TDA to analyze the
multidimensional data from MRI of knee osteoarthritis patients.
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1. INTRODUCTION

Big data has become the ubiquitous word of medical
innovation. The rapid development of machine-learning
techniques and artificial intelligence, in particular, has
promised to revolutionize medical practice from the allocation
of resources to the diagnosis of complex diseases [1].
However, there are challenges coming with understanding and
analyzing medical big data. Due to the complexity of
healthcare results from the diversity of health-related ailments
and their comorbidities, the heterogeneity of treatments and
outcomes, and the inherent difficulties in understanding large,
high-dimensional, often, noisy data [2]. Traditional data
analysis methods, despite their effectiveness, still have some
drawbacks that might introduce unwanted biases or the need
for ad hoc adjustments.

Topological Data Analysis (TDA) provides a general
framework for analyzing data, with the advantages of being
able to extract information from large volumes of high-
dimensional data, while not depending on the choice of
metrics, and providing stability against noise. TDA combines
tools from algebraic topology and statistical learning to give a
quantitative basis for the study of the "shape" of data [3].
Compared to machine learning methods such as artificial
neural networks, which often requires a large number of
training samples, TDA can work for a small data set.

As the most common form of arthritis, knee osteoarthritis
(OA) is a major cause of motion limitation and physical
disability in aged people. In 2000, over 13% of the US
population (about 35 million people) endure OA disease in
one or both joints with radiological evidence [4]. However,
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it’s still unclear the pathology of OA disease, and there is no
effective treatment that can alter OA progression [5].

Magnetic resonance imaging (MRI) is a non-invasive
technology that generates three-dimensional (3D) images of
intra-articular soft-tissue structures, which represent potential
surrogate endpoints in OA. By using the 3D model to show
small tissues and structures, MRI is used to identify risk
factors of structural disease progression and to facilitate the
testing efficacy of disease-modifying interventions [6, 7]. In
addition, MRI has no radiation and is generally safe. However,
3D MRI generates a huge amount of data. In our study, each
knee MRI contains 160 two-dimensional (2D) images and the
resolution of each 2D image is 384 x 384 pixels. A lot of image
biomarkers can be extracted from knee MRI including knee
cartilage, bone marrow lesion, effusions, etc. Each biomarker
has its own measuring unit and scale. Beyond that, those
biomarkers are also impacted by other factors, such as age,
body weight, gender, etc. It is challenging to use traditional
statistical methods to study how the multidimensional
biomarkers from MRI are related to OA disease. TDA
provides a novel way to infer, analyze, and exploit the
complex multidimensional data by grouping patients with
similar conditions into a connected subnetwork. Such
networks help us identify the key factors closely related to OA
disease and reduce the impact of other factors (e.g., age, BMI).

II. DATA AND METHODS

A. Data Selection

We selected a sample of 200 participants from the
Osteoarthritis Initiative (OAI) dataset. The 200 cases include
all OA severity levels and have complete MRI, radiographic,
and clinical data. We used semi-automated programs to
quantify MRI biomarkers including: CDI, BML, and effusion.
We assessed BML and CDI at the medial and lateral
compartments for patella, tibia, and femur. 17 features were
extracted in total.

1) Cartilage Damage Index (8 Features): Cartilage
damage index (CDI) is a recently proposed cartilage
quantification method that is much more efficient than the
traditional manual segmentation of cartilage [8-10]. It
quantifies  osteoarthritis cartilage thickness through
informative locations on knee MR images. These informative
locations are selected from regions on the articular surface
where cartilage denudation frequently happen. The knee joint
is the most complex joint in the human body. It includes
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femur, tibia, and patella cartilages and each cartilage is
divided into medial and lateral compartments. In total, there
are 6 compartments in a knee joint. The 8 CDI features are
extracted from the 6 compartments and listed in Table I
(CDI total FTP, femur CDI medial, femur CDI lateral,
tibia CDI meidial, tibia CDI lateral, patella CDI medial,
patella CDI lateral, femur tibia lateral).

2) Bone Marrow Lesion (7 features): Bone Marrow
Lesion (BML) is characterized by excessive water signals in
the marrow space on MRI. BMLs constitute a central
component of a wide variety of inflammatory and non-
inflammatory rheumatologic conditions affecting the
musculoskeletal system. BML volume is measured on each
of the 6 compartments. Together with the total of all the BML
volumes, we have 7 features to represent BML (total BML,
femur BML medial, femur BML lateral, patella BML,
patella. BML medial, patella BML lateral,
tibia BML medial, tibia BML _lateral).

3) Effusion (1 feature): Effusion occurs when excess
synovial fluid accumulates in or around the knee joint. The
volume of the effusion is used as a feature.

4) Clinical data (2 features): Besides image biomarkers,
other factors may also impact the progression of OA disease.
We have included age and BMI in our multidimensional data.

B. Methods
There are five steps to create TDA.

1) Create a Pearson correlation matrix using MRI
biomarker and clinical data. Each of the MRI biomarkers and
clinical data has its own measurement unit and scale. In the
clinical study, cross-correlation is used to help identify the
relations between risk factors and disease. Here we used
cross-correlation to emphasize the clinical relations and also
solve the unit difference, scale difference, and integrate MRI
biomarkers with clinical data (Fig. 1). The cross-correlation
matrix provides a metric for the topological network
construction. The similarity of the metric is measured by
norm correlation, which is used to define the distance of two
data points in a topological space. The norm correlation of
two points (X, Y) is calculated by:

NormCorr(X,Y) =1—-r(X',Y")

where X and Y represent the data points and X, Y"' are the
column-wise, mean-centered, and variance normalized
version of X and Y, and the formula of r(X, Y) is :

N Z?’=1Xiyi - Z?’=1Xi Zliv=1 YL
VNI X2 = (T X)2 N X Y2 — (T V)2

2) Project data into a three-dimensional cloud space by
using the cross-correlation matrix across all selected
variables and viewing them though a mathematical “lens” of
principal component analysis (see Fig. 2a) [12].

3) Draw topology network by splitting the cloud space
into a number of bins which overlapped with each other. We

r(X,Y) =

Cross Correlation
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Fig. 2. Multi-dimensional data space

select single-linkage agglomerative as the clustering method,
which pairs the clusters that minimally increase a given
linkage distance and merge them recursively. The data points
were clustered by the clustering method based on the
similarity, which is defined by the norm correlation. We
connect two clusters if they contain one or more same data
points (see Fig. 2b) [13].

4) Use variables of clinical interests (e.g., smoking,
disease severity score, and gender) to color topological
network and visualize the hidden information of the data. Fig.
3 shows two topological networks colored by age and the
change of KL grade separately. The color bars provide a
reference of data representation.

5) Split the generated network into subnetworks at the
weakest connection point. The sub-networks of interest were
mathematically evaluated by the Kolmogorov-Smirnov (KS)

% Colored by KL_change

Fig. 3. Colored Topological Network
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test [11] to generate hypothesizes about high risk factors. In
this paper, we used KS test to rank the features by p-values.

III. EXPERIMENT AND RESULTS

A data topology network was constructed from the
multidimensional data in Fig. 4. We colored the topology
network by using OA progression score, i.e., two-year
Kellgren-Lawrence (KL) grade change, between baseline year
and two-year follow-up. Red nodes represent sample points
with OA progression, green nodes represent sample points
with no progression, and other colors stand for a mixture of
both progression and non-progression. Two subnetworks were
separated by the weakest connection points. With similar
initial conditions, the two subnetworks show different
progression status. We applied Student T-test on the two
subnetworks and obtained p-value 0.0082 (< 0.05), which
proved that the two subnetworks are statistically significantly
different in OA progression. More progressed OA subjects
(red nodes) appear in the right subnetwork circled by a blue
dashed line, and more non-progressed (green nodes) appear in
the left subnetwork circled by a red dashed line. Table I lists
the results of the ranking of all the 17 features by their p-
values, through running KS test on the two subnetworks. The
top 3 key factors for two-year KL change are CDI_total FTP
(p = 4.57x107?"), patella_CDI_medial (p = 4.75x10"%), and
femur_tibia_lateral (p = 8.02x10-'%). The most important
factor identified in this work, CDI total FTP, is consistent
with domain knowledge about factors that affect OA
progression, and it is also consistent with the findings of our
previous work [14].

IV. CONCLUSIONS

TDA provides a better understanding of the clinical
relations existent in multidimensional data, due to its unique
advantage of data integration and visualization that traditional
data analysis methods do not have. Through the analysis we
found several related features with OA progression, and
among them, the total CDI ranked as the top key factor. This
result is consistent with the domain knowledge that cartilage
is an important indicator for OA disease, which proves TDA
as a reliable data analysis tool to fuse multidimensional data.
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Fig. 4. Subnetworks extracted from the network colored by KL

TABLE 1. TOPOLOGICAL DATA ANALYSIS ON
MULTIDIMENSIONAL DATA AND KL GRADE
Feature KS score p-value
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total BML 0.1696 0.4510
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