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Dynamics of Bose-Einstein recondensation in higher bands
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Motivated by recent experiments, we explore the kinetics of Bose-Einstein condensation in the upper band of
a double-well optical lattice. These experiments engineer a nonequilibrium situation in which the highest energy
state in the band is macroscopically occupied. The system subsequently relaxes and the condensate moves to the
lowest energy state. We model this process, finding that the kinetics occurs in three phases: The condensate first
evaporates, forming a highly nonequilibrium gas with no phase coherence; energy is then redistributed among
the noncondensed atoms; finally, the atoms recondense. We calculate the timescales for each of these phases and
explain how this scenario can be verified through future experiments.
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I. INTRODUCTION

The kinetics of ordering is one of the iconic problems
in physics, with relevance to areas as diverse as cosmol-
ogy and metallurgy [1–6]. New tools have evolved in cold
atom systems which enable the controlled study of ordering,
and which are yielding unconventional ordering scenarios
[7–10]. Recent experiments at MIT [11,12] and Hamburg
[13–15] have observed nonequilibrium Bose-Einstein con-
densation in the first excited band of a bipartite optical
lattice. Similar physics is seen in Floquet lattices [16–19].
Motivated by these experiments, we study the dynamics of
bosons which are condensed in the highest energy state of
the first excited band of a double-well optical lattice. The
system subsequently evolves to a Bose-Einstein condensate
(BEC) in the lowest energy state of that band. We model
this process, finding that the condensate first evaporates, then
recondenses. This paradigm is very different from those tradi-
tionally used to model order parameter dynamics, and should
have broad impact on understanding other nonequilibrium
systems.

Beyond their intrinsic intellectual merit, these nonequi-
librium experiments are motivated by attempts to produce
exotic states of matter. The final state in the MIT experiment
displays a supersolid stripe phase [11,12]. Other higher band
geometries produce even more exotic physics, ranging from
multiflavor and multiorbital Hubbard models [13–15,20–25]
to the formation of interaction-induced chiral order related
to p-wave superconductivity [26,27] or chiral Bose liquids
[28]. A recent experiment has demonstrated the presence of
a dynamical sliding phase, when P-band bosons are loaded in
an one-dimensional optical lattice [29]. One needs at least a
qualitative understanding of the higher-band kinetics before
one can reliably design protocols for producing these states.

*vs492@cornell.edu
†sc2385@cornell.edu
‡em256@cornell.edu

The model we use for analyzing the higher band kinetics
can also be applied in other settings, including the simpler
case of a Bose-Einstein condensate in the lowest band of
an optical lattice. In that case, the analogous stating point
would be when all of the atoms are condensed in the high-
est energy state of the band. This could be arranged by
using Raman lasers, or an external force. Alternatively, as
shown in Ref. [30], one can “shake” the lattice to induce
an inverted floquet band structure. To keep our narrative as
simple as possible, we will focus on the upper-band case,
which motivated our study. Limited discussion of timescales
in these other experiments is given in Sec. VIII. Some related
theoretical work has also been done by Garcia et al. [31] for
a different model where they study the coherent dynamics
and fragmentation of a BEC in a single double well potential
with three modes that is quenched to a superposition state of
ground and first excited mode.

Our paper is organized as follows. In Sec. II, we introduce
a model for analyzing the dynamics of a BEC loaded in a
double well optical lattice. In Sec. III, we use thermal equi-
librium arguments to determine the properties of the system
for τN � t � τab, where τN is the microscopic scattering time
in the higher band and τab is the time for decay from the
upper to lower band. In Secs. IV and V, we describe the
kinetics of condensation in the excited band, calculating τN

and exploring the other timescales in the dynamics. In Sec. VI,
we calculate τab and verify that τab � τN , guaranteeing that
one can produce a metastable condensate in the excited band.
In Sec. VII, we discuss how time-of-flight images can be used
to observe the dynamics of higher band bosons and finally
in Sec. VIII, we discuss how our model may be applied to
experimental settings beyond higher bands, such as inverted
bands.

II. MODEL

A. Single-particle Hamiltonian

Motivated by the MIT experiment [11,12], and related
experiments at Hamburg [13–15], we model the dynamics of
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FIG. 1. (a) Envisioned setup for the experiment. (b) Visualizing
how the condensate gets transferred from the lower band to the
highest energy state in the upper band after quench

a BEC loaded into a double-well optical lattice. A schematic
of the setup is shown in Fig. 1(a). The single-particle Hamil-
tonian, H0 describing this system is given by

H0 =
∫

d2r⊥
∑

i

�(t ) b†
i bi − (J1a†

i bi + J2a†
i bi−1 + H.c.)

+ h̄2

2m
(∇⊥b†

i ∇⊥bi + ∇⊥a†
i ∇⊥ai ), (1)

where the lattice is in the z direction. The transverse spatial
components are suppressed: ai = ai(r⊥) is the annihilation
operator for a boson at site i of the A sublattice where r⊥ =
(x, y) and ∇⊥ = x̂∂x + ŷ∂y. The operators b j have analogous
meaning for the B sublattice. For this paper, we consider the
case J1 = J2 = J ′.

Before the start of the experiments, the energy offset
between the A and B sites, �(t < 0) = � and the BEC is in
the state k = 0 of the lowest band. The experimental protocol
then involves changing the lattice depths very fast such that
after the quench, �(t > 0) = −�.

The single-particle Hamiltonian is diagonal in momentum
space as shown in Appendix A, and the dispersion for the
higher band is

εk = J[1 + cos(kzd )] + h̄2k2
⊥

2m
, (2)

where J = 2(J ′)2/�, and d is the length of the unit cell.
Here k⊥ can be arbitrary, but −π/d < kz < π/d . The band
eigenstates are also derived in Appendix A.

The k = 0 state in the lowest band before the quench has
nearly unit overlap with the post-quench k = 0 state in the
upper band, and the quench projects the condensate into the
higher band. A similar approach has been used to create an
excited band BEC in a two-dimensional checkerboard lattice
[13–15].

As we argue below, the timescale for atoms to equilibrate
in the upper band is much smaller than band-relaxation.

Thus, we predominantly study single-band kinetics, using the
dispersion in Eq. (2).

B. Interactions

The kinetics are driven by point interactions,

Hint = g

2

∫
d3r ψ†(r)ψ†(r)ψ (r)ψ (r), (3)

where g = 4π h̄2as/m, with scattering length as. The field
operators, projected into our single band, are expressed as

ψ (r) =
∑

j

ā j (r⊥)w(z − z j ), (4)

where w(z) is the Wannier state and z j = jd is the location of
the jth site. Neglecting the overlap between Wannier states on
distinct sites, one arrives at an effective δ-function interaction
in each plane, which can be written as either an integral or a
sum in momentum space:

Hint = U

2

V 2d

(2π )9

∫
d3k1d3k2d3k3 ā†

k1
ā†

k2
āk3 āk1+k2−k3

∼ U

2

d

V

∑
k1k2k3

ā†
k1+k2−k3

ā†
k3

āk2 āk1 (5)

In the second form, the sum is over k = 2πn/L and V = L3,
where L is a multiple of d . The operator ak is defined in
Eq. (A1). In either case,

U = 4π h̄2as

m

∫
dz|w(z)|4 = 4π h̄2as

mda
.

The last equality defines the characteristic width of the Wan-
nier state da. Note, that in contrast to the standard Hubbard U ,
which is an energy, here U has units of energy times length
squared. This structure occurs because the atoms are free to
move perpendicular to the lattice.

III. STEADY STATE

The long-time behavior in the upper band is solely deter-
mined by conservation laws. After the quench, the kinetic
energy is E = 2NJ . In the absence of band relaxation, the
system will evolve so that there are Nπ atoms in the conden-
sate at kc = (kx = ky = 0, kz = π/d ) and Nnc noncondensed
atoms. According to the higher band dispersion, only the non-
condensed atoms contribute to the kinetic energy. Neglecting
interactions, their number and kinetic energy are

Nnc

V
=

∫
d3k

(2π )3
fk = ρ0J

4π2
F (βJ ) =

∫
dε ρ(ε) f (ε),

Enc

V
=

∫
d3k

(2π )3
εk fk = ρ0J2

4π2
G(βJ ) =

∫
dε ερ(ε) f (ε), (6)

where the density of states is

ρ̃(ε) = ρ(ε)

ρ0
=

{
1 ε � 2J,
1
π

cos−1
(
1 − ε

J

)
ε < 2J,

(7)

with ρ0 = m/h̄2d . The characteristic length of the system is
(ρ0J )−1/3.
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Equations (6) define the dimensionless functions F and G.
The Bose occupation factors are fk = f (εk ) = [exp(βεk ) −
1]−1, in which we have taken the chemical potential to vanish,
corresponding to the conditions for having a condensate at kc.
The density of states is three-dimensional at small ε, ρ(ε →
0) ∼ √

ε, and two-dimensional at large ε, ρ(ε → ∞) ∼ ε0.
The functions F and G are readily evaluated numerically.
The final inverse temperature β is found by solving E =

2J (Nnc + Nπ ), or Nπ = Jρ0V
4π2 [G(βJ )/2 − F (βJ )]. We find

Nπ > 0 if and only if βJ < 0.35. This corresponds to N >

N∗, where

N∗ = 0.85
JmV

h̄2d
= 0.85ρ0JV. (8)

We conclude that if the initial number of bosons is greater than
N∗, then the final state has a condensate, while if the initial
number of bosons is smaller than N∗, then the final state does
not have a condensate.

As one would expect, the threshold N∗ is extensive.
The condition N = N∗ can be understood by noting that
the average transverse kinetic energy after relaxation is of
order J , corresponding to a DeBroglie wavelength of order
λ = h̄/

√
2mJ . The threshold for condensation corresponds to

when the average separation between particles in each 2D
pancake is comparable to λ.

Interactions will somewhat move the threshold, but should
not change the general behavior.

In the limit N � N∗, the fraction of noncondensed atoms
becomes small. In that limit one can expand Eqs. (6) in powers
of x (or βJ): F (x) → −(2π/x) ln(x) and G(x) → 2π/x2.
Thus, in this limit, the final temperature becomes very large
compared to J: βJ → √

ρ0V J/(4πN ). The noncondensed
fraction scales as Nnc/N → N−1/2 log N as N → ∞.

Finite temperature

Our argument can be readily modified to account for
thermal effects in the initial state.

Given an initial temperature β0, the initial distribution of
particles will be given by

fεL
k
(β0) = 1

eβ0{h̄2k2
⊥/2m−J[1+cos(kzd )]} − 1

. (9)

Since the occupations are based on the lower-band energies,
this is very different than the equilibrium occupation of the
higher band.

Given these occupations, the condensate number and the
total energy after the quench are

N0 = N −
∫

d3k

(2π )3
fεL

k
(β0), (10)

E = 2JN0 +
∫

d3k

(2π )3
εk fεL

k
(β0). (11)

As before, both number and energy are conserved in the
dynamics, and the βJ describing the equilibrium distribution
is found from Eq. (6), setting N = Nnc + Nπ and E = Enc.
In particular, N∗ the threshold number of particles to find a
condensate, is produced by setting Nπ = 0.

Figure 2 shows how N∗ varies with the initial temperature
β0J . The result is nonmonotonic. When kBT0 < J, increasing
the initial state temperature before quenching into the higher
band actually reduces the total energy: Upper band atoms

FIG. 2. Threshold N∗ as a function of initial state temperature
β0J . The dashed line shows N∗ for β0J → ∞.

with kz > 0 have smaller energy than those with kz = 0. This
results in a smaller N∗.

Once kBT0 > J , further increasing the initial temperature
in the lower band results in a higher upper-band energy: The
relevant excitations are transverse to the lattice. This results in
a larger N∗

Clearly, if kBT0 < J , then finite temperature effects are
small, and it is reasonable to neglect them.

IV. HIGHER BAND KINETICS

Neglecting coherences between different momenta, one
can use Fermi’s golden rule to derive a quantum Boltzmann
equation [32]. It is a standard practice to make an ergodic
approximation [33–35], where all states of the same energy
are taken to be equally occupied. This approximation postu-
lates that equilibration between modes of same energy is fast
compared to energy redistribution. We define f (ε) (or fε) to be
the occupation of modes with energy ε = Jε. We separate out
the mode with k = 0, defining M = N0/N to be the fraction of
particles in that condensate. In Appendix C, we show

∂ f (ε1)

∂ t̃
= 1

ρ̃(ε1)

∫
dε2dε3dε4

(2π )3

12

34 2πδ(ε1 + ε2 − ε3 − ε4)

× [ f3 f4(1 + f1)(1 + f2) − f1 f2(1 + f3)(1 + f4)]

+ 0.85
N

N∗ M2(1 + 2 f1)
�̄

(ε1 − 2)2 + (�̄/2)2
. (12)

The second line corresponds to processes where two particles
scatter out of the k = 0 condensate, while the first line in-
cludes processes where particles with energy ε1 and ε2 scatter
into ε3 and ε4, or vice versa. Throughout, f j = f (ε j ), and the
dimensionless density of state ρ̃ is defined in Eq. (7).∫

dερ̃(ε) f (ε) = Nnc/(ρ0JV ) = 0.85Nnc/N∗. (13)

The rate of scattering out of the k = 0 condensate is
parameterized by

�̄ = −0.85
N/N∗

α

1

M

dM

dt̃

= 0.85
N/N∗

α
M

∫
dερ̃(ε)(1 + 2 f (ε))

�̄

(ε − 2)2 + (�̄/2)2
.

(14)
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The Lorentzians in Eqs. (12) and (14) accounts for broadening
due to the short condensate lifetime.

The dimensionless coefficient 
12
34 = 
(ε1, ε2, ε3, ε4) is

derived in Appendix D. Aside from a multiplicative factor of
N∗/N , it only depends on the scaled energies, and no other
parameters. When all scaled energies are smaller than 2, it
reduces to a standard 3D result [36],


εmax<2 ∝ √
εmin, (15)

where εmin and εmax are the smallest and largest of the ε j .
For large energies it becomes an elliptic function. We use an
approximate form (explicitly given in the Appendix) which
interpolates between these two expressions.

Times have been scaled, t̃ = t/τN , where

τN = 2h̄V

Nρ0(Ud )2
= 2

(4π )2

da

nd

1

a2
s

mda

h̄
. (16)

This scale can be interpreted as a microscopic collision time,
τN ∼ 1/(neffσv), where neff = nd/da is the effective density.
The enhancement factor da/d reflects the fact that the Wannier
states are compressed in one direction. The cross-section
σ = 4πa2

s is proportional to the square of the scattering
length. In this interpretation the characteristic velocity is
proportional to h̄/mda. There are other possible velocities
in the problem, and a priori it is not obvious which one to
use. Nonetheless, Eq. (16) is a scaling which simplifies the
equations.

In addition to N/N∗, there is only one other dimensionless
parameter in these equations,

α = NτN

h̄V ρ0
= 0.85

JτN

h̄

N

N∗ = 2

(4π )2

(
da

as

)2

. (17)

The last expression is most transparent: recall, as is the scatter-
ing length, and da is the width of the Wannier states. Typically,
α ∼ 10, though it can readily be increased or decreased by an
order of magnitude by changing the lattice depth or employing
a Feshbach resonance. In a given experiment, N

N∗ is varied
by changing the number of atoms, or the lattice depth—see
Eq. (8).

Our derivation breaks down if the condensate lifetime
becomes significantly smaller than h̄/J . In Sec. V A, we
analyze the decay process, and find τdecay ∼ τn/

√
α. Con-

sequently, we require that α is not too small compared to
(N/N∗)2. Accurately modeling the small α limit would re-
quire keeping track of the coherences between the modes
occupied during the evaporation process. Nonetheless, we
expect our results to capture much of the physics, even in that
limit.

V. RESULTS

We numerically integrate Eq. (12). The algorithmic details
for this are in Appendix B. Figures 3(a) and 3(b) show typical
time series for the k = 0 condensate fraction, the k = π/d
condensate fraction, and the width of the energy distribution
�ε = N∗

N

√∫
dερ(ε) f (ε)(ε − 2)2 . Four separate timescales

are apparent: τdecay is the timescale for decay of the k = 0
condensate; τonset is the characteristic time for the k = π/d
condensate to start growing, τgrowth is the timescale for the

k = π/d condensate to grow to its equilibrium value, and
τE = J/[d (�ε)/dt] is the inverse slope of the energy-width
curve.

Numerically we find that τdecay ∼ τN/
√

α, and τonset ∼
τgrowth ∼ τN N∗/N , and τE ∼ τN (see Fig. 3(b,c,d,e). Thus
when α � 1 and N > N∗ there is a clear separation of scales.
In Secs. V A,V B, and V C, we give analytic arguments for the
scaling of the decay and growth processes.

A. Decay

The first stage of the dynamics, as illustrated in Fig. 3(a)
is the decay of the k = 0 condensate. There, pairs of particles
scatter to states whose energies are near 2J .

To understand the scaling of this process as shown in
Fig. 3(c), we neglect the first line of Eq. (12): As is verified
by the numerics, the redistribution of energy amongst the
noncondensed particles is slow compared to the evaporation.
Throughout this initial stage, the function f (ε) will be peaked
about ε = 2, with height f2 and width of order �̄. Num-
ber conservation, Eq. (C22), implies that f2 ∼ N

N∗ (1 − M )/�̄,
where M = N0/N is the k = 0 condensate fraction. Recall
that our arguments apply when α is large, and hence the
rate 1/τevap = J�̄/(h̄) will be small. Thus, f2 will be large
compared to 1, and in Eq. (12) we can replace 1 + 2 f ≈ 2 f .
The integrand in Eq. (14) will have height f2/�̄, and width
�̄, and hence the integral is of order f2. Thus one expects
�̄ ∼ N/N∗√

α

√
M(1 − M ), as long as M is not too close to 1.

The characteristic timescale for decay of the k = 0 condensate
is found by taking M(1 − M ) to be of order 1, which yields
τevap = h̄/(J�̄) ∼ τN/

√
α.

B. Energy redistribution

The second stage of the dynamics, as seen in Fig. 3(b), is
the redistribution of energy among the noncondensed parti-
cles. At short and intermediate times, the energy-width of the
distribution function grows roughly linearly in time. The slope
of this curve is of order J/τN , consistent with the fact that the
typical energy is 2J and the characteristic scattering time is
τN . The energy-width saturates at long time. The timescale for
saturation is roughly the onset time for growth of the k = π/d
condensate.

C. Growth

The scaling of the onset and growth times as seen in
Figs. 3(d) and 3(e) both are consequences of Bose stimulation.
Once the k = 0 condensate evaporates, the noncondensed
particles redistibute their energies. A microscopic seed forms
at k = π/d in a time of order τN . The number of particles in
that seed will scale linearly with the density, and will therefore
be proportional to N . This seed then grows exponentially, and
the time that it takes to become macroscopic will be inversely
proportional to the initial number. Hence, τonset ∼ τN N∗/N .
The timescale for growth will also scale in this manner.

VI. DECAY TO THE LOWER BAND

Our analysis is predicated on the dynamics within the
band being fast compared to the interband decay. Here we
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FIG. 3. (a) Fraction of particles in kz = 0 condensate (green, dashed) and kz = π condensate (red, solid) plotted against dimensionless time,
t/τN for N/N∗ = 100 and α = 200. Three different timescales can be seen: τdecay, the decay of kz = 0 condensate; τonset, onset of formation of
kz = π/d condensate; and τgrowth, the growth of kz = π/d condensate. (b) Mean energy width, �ε/J of the distribution functions, f (ε) versus
t/τN for different N/N∗ values with α = 200. N/N∗ increases from top to bottom. (c) τdecay/τN , (d) τonset/τN , (e) τgrowth/τN .

estimate that decay rate, finding that the ratio of the interband
and intraband rates is proportional to (J ′/�)2. Since in the
experiments (J ′/�) � 1 [12], there is a large separation of
scales.

This suppression comes from the poor spatial overlap
between the upper-band wave functions (which are predomi-
nantly on the A sublattice) and the lower band wave functions
(predominantly on B).

The loss of atoms from the condensate in the upper band
at k = π to the lower band is driven by the interaction term
[37], and the rate can be calculated using Fermi’s golden rule.
The leading process involves two upper band k = π atoms
scattering to produce a lower band atom with momentum
k, and an upper band atom with momentum k′. Using the
dispersion calculated in Appendix (A), the energy of this final
state only depends on the transverse momentum, ε f = −� +
2h̄2k2

⊥/2m. The matrix element is calculated by substituting
the operators for the Bloch states from Appendix A into the
interaction Hamiltonian. Taking Nπ ≈ N � 1 and assuming
that none of the lower band states are macroscopically occu-
pied, we can repeat the argument in Appendix C 1 b that we

used to calculate intraband decays, and find

�ab = −1

Nπ

dNπ

dt
= 2π

h̄

∑
f

|〈ψ f |Hint|ψi〉|2δ(ε f − εi ).

= N

V h̄

∫
d3k

(2π )2

(
2J ′Ua cos (kzd/2)

�

)2

δ

(
h̄2k2

⊥
m

− �

)
.

=
(

2J ′

�

)2 NmdU 2
a

2V h̄3 =
(

2J ′

�

)2 1

τN
. (18)

As already explained, the factor (2J ′/�)2 is typically much
much smaller than 1, implying that the decay from the higher
band (τab ∼ 1/�ab) is slow compared to the kinetics within
the higher band.

VII. EXPERIMENTAL SIGNATURE

A direct way to verify these kinetics is to experimentally
measure the time-dependent momentum distribution through
time-of-flight (TOF) expansion. After free expansion for time
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FIG. 4. Simulated time-of-flight images showing momentum space density of atoms along kz for N/N∗ = 100 and α = 200. (Area under
the curves has been normalized to 1 in the figure) The t = 0 image represents time just after the quench and then the time-of-flight expansion
is shown for elapsed times, t = τdecay, t = τdecay + τonset and t = τdecay + τonset + τgrowth, corresponding to the dotted vertical lines in Fig. 3(a),

τ one measures the column-density of atoms,

nc
TOF(z) =

∫
dxdy nTOF(r). (19)

Defining kz = mz/(h̄τ ), the column density is related to the
in situ momentum density of the trapped atoms at the time of
release [38], t ,

nTOF ∝ |w(kz )|2
∫

dkxdky ntrap(k, t ) (20)

= |w(kz )|2
∫ ∞

J (1+cos kzd )
dε f (ε, t )

+ |w(0)|2N0(t )δ(kz ). (21)

Here w(k) is the Fourier transform of the Wannier function
in the lattice, and when it is an argument of the distribution
function, kz is projected into the Brillioun zone.

We numerically integrate the distribution functions calcu-
lated from Eq. (12). Figure 4 shows the expected time-of-
flight images at different times. During the evaporation phase,
the image is dominated by a δ-function peak at kz = 0. In an
experiment this peak has a nonzero width, set by the finite
system size and the finite expansion time. In Fig. 4, we use
a Gaussian of width 0.01kzd . As the condensate evaporates,
a halo representing the noncondensed particles appears. As
the particles redistribute themselves, structures form, and well
before a kz = π/d condensate appears, one sees peaks near
kz = π/d . These peaks sharpen over time as phase coherence
develops on longer length scales. A true condensate at kz =
π/d would be characterized by δ-function peaks. Again, finite
system size and expansion time would spread out these δ

functions. In our numerics the sharpness is limited by the
resolution of our discretization of the energy.

For the plots in Fig. 4, we use a Gaussian Wannier state
corresponding to a lattice depth of 5ER where ER is the recoil
energy. We choose N/N∗ = 100 and α = 200

VIII. BEYOND UPPER BANDS

As already discussed, our model can be used in settings
other than the upper band of an optical lattice. One example
is the experiments of Lignier et al. from Pisa [30] where an
optical lattice loaded with a condensate is sinusoidally shaken
to dynamically change the tunneling amplitude J between
nearest-neighboring sites. They can flip the sign of the effec-
tive tunneling amplitude and invert the band. This situation is
similar to our model where the condensate is promoted to the
higher band.

In that experiment, the optical lattice has a spacing of
426 nm and is loaded with Rb-87 atoms. The lattice depth
is about 9ER where ER is the recoil energy of the lattice. The
number density is of the order 1014 cm−3, which is typical of
cold gas condensates and the s-wave scattering length between
the atoms is about 5 nm. The timescale τN that we get from
these parameters would be about 10 ms. While the published
data does not include a detailed study of timescales, our
estimate is consistent with the observation of a double peak
structure in time of flight after a few ms. Other single band
realizations are likely to have similar parameters.

IX. SUMMARY

We modeled the dynamics of a nonequilibrium condensate
formed in the highest energy state of an excited band in an
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optical lattice. We find that there is a critical particle number,
below which the final state has no condensate. We derive ki-
netic equations and use them to calculate the time-dynamics of
this system. We find three distinct timescales: a fast timescale
over which the initial condensate evaporates, an intermediate
timescale over which collisions occur, and slower timescale
over which a condensate grows. This scenario is very dif-
ferent from more conventional paradigms of order parameter
dynamics, for example involving an order parameter “rolling
down” a potential hill [1] or evolving through a modulational
instability [39,40]. This kinetic path is likely important in
other experiments such as those involving shaken lattices
[16–19] or soliton formation [41].

We show how these processes can be seen in time-of-flight
expansion images, allowing a direct experimental verification
of our predictions.
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APPENDIX A: DERIVATION OF OPERATORS FOR BLOCH
EIGENSTATES AND BAND DISPERSIONS

Here we explicitly give the momentum-space representa-
tion of the single-particle Hamiltonian in Eq. (1).

The real-space Hamiltonian is given in Eq. (1). We define
momentum space field operators by

a j (r⊥) =
√

V d
∫

d3k

(2π )3
akei(k⊥·r⊥+ jkzd ). (A1)

Analogous expressions relate b j (r⊥) and bk . Here, and in
similar equations from the main text, the integral is over
all k⊥, but −π/d < kz < π/d , and V is the volume of the
system. The length of the unit cell in the z direction is d .
Substituting these relations into the Hamiltonian yields (for
t > 0)

H = V
∫

d3k

(2π )3
(a†

k b†
k )Hk

(
ak
bk

)
, (A2)

Hk =
(

h̄2k2
⊥

2m −2J ′ cos(kzd/2)

−2J ′ cos(kzd/2) h̄2k2
⊥

2m − �

)
. (A3)

In the experimentally relevant regime, � � J ′, the disper-
sion relation for the upper and lower band, respectively, are
given by

εH
k = J[1 + cos(kzd )] + h̄2k2

⊥
2m

, (A4)

εL
k = −� − J[1 + cos(kzd )] + h̄2k2

⊥
2m

, (A5)

where J = 2(J ′)2/�. The eigenstates for higher and lower
band, respectively, are given by

|ψ (k)〉H = a†
k |0〉 ≈

[
a†

k − 2J ′ cos(kzd/2)

�
b†

k

]
|0〉, (A6)

|ψ (k)〉L = b
†
k |0〉 ≈

[
b†

k + 2J ′ cos(kzd/2)

�
a†

k

]
|0〉. (A7)

Before the quench, the system is condensed in a state of the
same form as Eq. (A6), but with � → −�. Since the overlap
between these states are near unity, the quench projects the
condensate into the higher band.

APPENDIX B: DISCRETIZATION

To numerically integrate Eqs. (12) and (14), we discretize
energy and time, using bin sizes δε and δt̃ . Integrals over ε

become sums, and we evaluate functions of ε at the midpoint
of each bin. We used both an Euler method and a fourth order
Runge-Kutta method for our time-stepping. We chose our
time step so that the estimated temporal discretization error
is at the subpercent level. We use εmax = 20 as our largest bin,
and verified that the resulting errors were on the percent level.

The temporal scaling with the number of energy bins Nε

is poor, with each evaluation of the integrals in Eq. (C13)
taking a time that scales as N3

ε . We calculate the kinetics
with δε = 0.1, 0.05, 0.025, and 0.0125 corresponding to Nε =
200, 400, 800, 1600.

We use the number of atoms in our smallest energy bin
as a proxy for the number of atoms condensed at k = π .
In equilibrium, this approach overestimates the number of
condensed particles by a factor which scales with

√
δε. To

correct for this factor, we run our simulation with multiple
values of δε and extrapolate to δε → 0.

APPENDIX C: DERIVATION OF BOLTZMANN EQUATION

Following standard arguments [32], we begin with Fermi’s
Golden Rule, and write the rate of change of the occupation
of the mode with momentum k as

∂Nk

∂t
=

∑
f

|〈 f |Hint|i〉|2
(
N f

k − Ni
k

)2π

h̄
δ(E f − Ei ), (C1)

where the states |i〉 and | f 〉 have definite numbers of particles
in each momentum state. Here Ni

k and N f
k are the initial and

final number of particles in state k. The energy of each state is
Ei and E f .

The interaction Hamiltonian involves taking particles with
momentum k1 and k2 scatter into k3 and k4 = k1 + k2 − k3. In
particular, we use the interactions from Eq. (5),

Hint = U

2

d

V

∑
k1k2k3

a†
k1+k2−k3

a†
k3

ak2 ak1 . (C2)

1. Explicit kinetic equations

a. Noncondensed contributions

We will first consider the terms not involving
condensates—for which k1, k2, k3, and k4 can be taken
as distinct. There are four terms in Eq. (C2) which connect
i to f , corresponding to permuting the various indices. The
sum of these four equal contributions yields

〈 f |Hint|i〉 = 2Ud

V

√
N1

√
N2

√
1 + N3

√
1 + N4, (C3)
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where we have used the shorthand Nj = Nkj . Thus, the contri-
bution to ∂Nk/∂t from these terms are

∂N (1)
k

∂t
= 2U 2d2

h̄

∫
d3q d3k′

(2π )6
ϒ 2πδ(εk + εk′ − εk−q − εk′+q),

ϒ = [Nk−qNk′+q(1 + Nk )(1 + Nk′ )

− NkNk′ (1 + Nk−q )(1 + Nk′+q)]. (C4)

The superscript (1) indicates that we have not yet included the
condensate contributions.

b. Condensate contributions

In the presence of a condensate, we also have to separately
consider terms where two atoms scatter out of the condensate,
or the reverse. There is no way to conserve energy and scatter
two particles into or out of k = π , so we only need to worry
about such terms for the condensate at k = 0. Thus we take | f 〉
to differ from |i〉 by having two fewer particles with momenta
k = 0, and two more particle with momenta, respectively, q
and −q. The matrix element is

〈 f |Hint|i〉 = Ud

V

√
N0 − 1

√
N0

√
1 + Nq

√
1 + N−q, (C5)

Note the factor of 2 different from Eq. (C3), as there are only
two terms in Hint which contribute, instead of 4. The net result
is

∂N0

∂t
= (Ud )2 N2

0

h̄V

∫
d3q

(2π )3
ϒ̄ 2πδ̃(2εq − 2ε0),

ϒ̄ = [NqN−q − (1 + Nq )(1 + N−q )],

∂N (2)
q

∂t
= U 2d2N2

0

h̄V 2
(1 + Nq + N−q ) 2πδ̃(2εq − 2ε0), (C6)

where we have assumed N0 � 1. The superscript (2) indicates
that we are only considering the condensate contributions. In
the standard derivation of the quantum Boltzmann equation, δ̃

is simply a Dirac δ function. For the decay of the condensate,
the finite condensate lifetime is important, so we take

2πδ̃(2ε) = 2h̄�

(2ε)2 + (h̄�)2
. (C7)

The decay rate � should be calculated self-consistently:

� = − 1

N0

∂N0

∂t
. (C8)

c. Further considerations—Necessity of self-consistently
including the lifetime of the condensate mode

It is crucial that the δ function in Eq. (C6) is replaced by a
Lorentzian—for otherwise, one gets incorrect results.

To understand this necessity, consider solving Eq. (C6) in
the absence of the redistribution terms in Eq. (C4). Further
imagine treating � as a constant, rather than self-consistently
solving for it. The standard approach of neglecting the broad-
ening would correspond to taking the limit � → 0.

Under these circumstances, condensate decay only occurs
into modes where |εq − ε0| is no greater than �. There are
roughly V ρ0� of these, where ρ0 = m/(h̄2d ) is the density of
states per unit volume. Thus the average occupation of a mode
will be of order Nq ∼ h̄2nd/(m�). If this becomes larger than

1, then Bose-enhancement is important for setting the rate of
decay. In particular, if � → 0, then the decay rate becomes
infinitely fast. This is clearly unphysical.

As already presented, the correct way to control this diver-
gence is to find �(t ) self-consistently.

d. Limits of validity

If the condensate decay rate � becomes large compared
to the bandwidth 2J , then quantum coherent effects need
to be included: The single-particle states become strongly
hybridized, and the quantum state is no longer well character-
ized by just specifying the occupations of different k modes.
Therefore we will require � � 2J . As discussed in the main
text, this requirement means that our approach is only accurate
for sufficiently large α.

2. Ergodic approximation and adimensionalizing

We make the ergodic approximation, where all states with
the same energy are taken to be equally occupied: Nk = f (εk ).
We convert our expressions into equations for f (ε) by using∫

d3k

(2π )3

∂Nk

∂t
2πδ(ε − εk ) = 1

V
ρ(ε)

∂ f (ε)

∂t
. (C9)

After making the ergodic approximation, we adimension-
alize our equations. We measure times in terms of

τN = 2h̄V

Nρ0(Ud )2
, (C10)

denoting t̃ = t/τN . For the kinetic processes in Eq. (C4) we
find it convenient to rescale energies by J , writing ε = ε/J .
We further adimensionalize momenta by rescaling, kz = qz/d ,
and k⊥ = q⊥/

√
h̄2/2mJ .

In terms of these variables, Eq. (C4) becomes

∂ f (1)(ε1)

∂ t̃
= 1

ρ̃(ε1)

∫
dε2dε3dε4

(2π )3
M12

34
12
34�̄, (C11)

where energy conservation comes from

�̄ = 2πδ(ε1 + ε2 − ε3 − ε4). (C12)

The occupation numbers enter in the coefficient

M12
34 = f3 f4(1 + f2)(1 + f1) − f1 f2(1 + f3)(1 + f4),

(C13)

where f j = f (ε j ). The dimensionless matrix element is


12
34 = A

∫
Dk �1�2�3�4K1234, (C14)

where

A = 32
N∗

0.85N
, (C15)

Dk = d3q1

(2π )3

d3q2

(2π )3

d3q3

(2π )3

d3q4

(2π )3
, (C16)

� j = 2πδ[ε j − ε(q j )], (C17)

K1234 = (2π )3δ3(q1 + q2 − q3 − q4) (C18)
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are, respectively, the amplitude, measure, energy conserving
δ functions, and a momentum conserving δ function. In
Appendix D we approximate Eq. (C14) as


12
34

A
≈ 1

64π2√
ε2

+ 2π (ε3ε4 )1/2

K[ε1ε2/(ε3ε4 )]

, (C19)

which is exact for both high energy and low energy collisions,
and is numerically efficient to calculate.

After rescaling, Eq. (C6) becomes

df (ε)

dt̃
= 0.85

N

N∗ M2(1 + 2 f (ε))
�̄

(ε − 2)2 + (�̄/2)2
, (C20)

�̄ = −0.85
N/N∗

α

1

M

dM

dt̃

= 0.85
N/N∗

α
M

∫
dε

ρ̃(ε)(1 + 2 f (ε))�̄

(ε − 2)2 + (�̄/2)2
, (C21)

where M = N0/N . We have assumed the condensate fraction
is large, N0 � 1.

�̄ = h̄�/J is the adimensionalized condensate evaporation
rate. Number conservation is cast as

M + 1

0.85N/N∗

∫
ρ̃(ε) f (ε) dε = 1. (C22)

APPENDIX D: DIMENSIONLESS MATRIX ELEMENT �34
12

Here we calculate the matrix element in Eq. (C11).

1. Low-energy limit

We first evaluate the matrix element integral in the low
energy limit where all of the energies have ε � 1. In that case
one can expand about the minimum, and it becomes a standard
3D gas calculation. In particular, shifting the origin and using
dimensionless energy and momenta,

ε(k) ≈ k2
⊥ + k2

z . (D1)

We first go to the center of mass frame in momentum for
Eq. (C14) to get


12
34 = A

∫
d3K

(2π )3

∫
d3q

(2π )3

∫
d3q′

(2π )3
δ1δ2δ3δ4, (D2)

where

q1 = K/2 + q, (D3)

q2 = K/2 − q, (D4)

q3 = K/2 + q′, (D5)

q4 = K/2 − q′, (D6)

δ1 = 2πδ(ε1 − |K/2 + q|2), (D7)

δ2 = 2πδ(ε2 − |K/2 − q|2), (D8)

δ3 = 2πδ(ε3 − |K/2 + q′|2), (D9)

δ4 = 2πδ(ε4 − |K/2 − q′|2). (D10)

Next we transform to spherical coordinates, letting θ be
the angle between K and q, and θ ′ be the angle between K
and q′. We can do the angular integrals followed by the q and
q′ integrals to get


12
34 = A

16

1

(2π )2

∫
dKθ1θ2θ3θ4, (D11)

where

θ1 = θ

([
ε1 + ε2

2
− K2

4

]
K2 −

[
ε1 − ε2

2

]2
)

,

θ2 = θ

([
ε3 + ε4

2
− K2

4

]
K2 −

[
ε3 − ε4

2

]2
)

,

(D12)
θ3 = θ (ε1 + ε2 − K2/2),

θ4 = θ (ε3 + ε4 − K2/2),

where throughout θ (x) is the Heaviside step function (equal to
1 when x > 0 and otherwise zero). The integrand in Eq. (D11)
is always zero or 1. The latter occurs when

|√ε1 − √
ε2| < K <

√
ε1 + √

ε2, (D13)

|√ε3 − √
ε4| < K <

√
ε3 + √

ε4, (D14)

K <
√

2
√

ε1 + ε2, (D15)

K <
√

2
√

ε3 + ε4. (D16)

It is convenient to write

ε1 = ε̄ + δ, (D17)

ε2 = ε̄ − δ, (D18)

ε3 = ε̄ + δ′, (D19)

ε4 = ε̄ − δ′. (D20)

Let us further assume that δ > δ′ > 0. That means that ε2 <

ε4 < ε3 < ε1. Consequently,

|√ε1 − √
ε2|2 = 2ε̄ −

√
ε̄2 − δ2 (D21)

> 2ε̄ −
√

ε̄2 − (δ′)2 (D22)

= |√ε3 − √
ε4|2 (D23)

and

|√ε1 + √
ε2|2 = 2ε̄ +

√
ε̄2 − δ2 (D24)

< 2ε̄ +
√

ε̄2 − (δ′)2 (D25)

= |√ε3 + √
ε4|2. (D26)

Hence, the integral is just


12
34 = A

16

1

(2π )2

√
ε2. (D27)
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Of course, this result was predicated on ε2 being the smallest
energy. More generally, we have


12
34 = A

16

1

(2π )2
Min(

√
ε1,

√
ε2,

√
ε3,

√
ε4). (D28)

This is a well-known classic result in kinetic theory [36].

2. High energy

Next we consider the case where all of the ε’s are large
compared to 1. We can then approximate

ε(k) ≈ k2
⊥, (D29)

and neglect the kz dependence. All momenta here are dimen-
sionless. We do the kz integrals and scale and recenter the
momenta as in Eq. (D2) to arrive at


12
34 = A

∫
d2K

(2π )2

∫
d2q

(2π )2

∫
d2q′

(2π )2
δ1δ2δ3δ4. (D30)

We transform to polar coordinates, letting θ be the angle
between K and q, and θ ′ be the angle between K and q′. Doing
the angular integral first, followed by the integral over q and
q′, we get


12
34 = A

16

∫
d (K2)

4π

1√
f (K )

1√
g(K )

, (D31)

where

f (K ) =
(

ε1 + ε2

2
− K2

4

)
K2 −

(
ε1 − ε2

2

)2

, (D32)

g(K ) =
(

ε3 + ε4

2
− K2

4

)
K2 −

(
ε3 − ε4

2

)2

. (D33)

Here the integral is taken over the domain where the argu-
ments of the square roots are positive. We know from our
previous arguments that if we take ε2 < ε4 < ε3 < ε1 then
Kmin = √

ε1 − √
ε2 and Kmax = √

ε1 + √
ε2, or K2

min = ε1 +
ε2 − 2

√
ε1ε2 and K2

max = √
ε1 + √

ε2 + 2
√

ε1ε2.

Equation (D31) is an elliptic integral. To show that, we
factor the expressions in the square roots, to get


12
34 = A

16π

∫
dK2 1√

p1 p2 p3 p4
, (D34)

where

p1 = (K2 − 2ε̄ − 2
√

ε1ε2), (D35)

p2 = (K2 − 2ε̄ + 2
√

ε1ε2), (D36)

p3 = (K2 − 2ε̄ − 2
√

ε3ε4), (D37)

p4 = (K2 − 2ε̄ − 2
√

ε3ε4), (D38)

where ε̄ = (ε1 + ε2)/2 = (ε3 + ε4)/2. We then shift and
rescale K2, writing

s = K2 − 2ε̄

2
√

ε1ε2
(D39)

to find


12
34 = A

4π

1√
ε1ε2

∫ 1

−1

ds√
(s2 − 1)

(
s2 − ε2ε3

ε1ε2

) . (D40)

This is the Jacobi notation for the complete Elliptic Integral of
the first kind,

K (1/t ) =
√

t

2

∫ 1

−1

ds√
(s2 − 1)(s2 − t )

, (D41)

which gives


12
34 = A

2π

1√
ε3ε4

K

(
ε1ε2

ε3ε4

)
. (D42)

By construction, ε1ε2 < ε3ε4. More generally,


12
34 = A

2π

1√
E2

K

(
E1

E2

)
, (D43)

where E1 = min(ε1ε2, ε3ε4), and E2 = max(ε1ε2, ε3ε4).

3. Interpolation

To connect these two limits we use a simple interpolation,


34
12 = A

64π2√
ε2

+ 2π (ε3ε4 )1/2

K[ε1ε2/(ε3ε4 )]

. (D44)

This is exact in both limits.
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