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A B S T R A C T 
The absorptive and restorative abilities of a community are two key elements of the community 

resilience following disasters. The recovery of communities relies on an efficient restoration 

planning of damaged critical infrastructure systems, household units, and impaired supporting 

social and economic functions. These interdependent systems form a dynamic system of systems 

(SoSs) that changes continuously during restoration. Therefore, an effective and practical 

recovery planning process for a community can be modeled as a sequential dynamic 

optimization problem under uncertainty. This paper seeks to enhance our understanding of 

dynamic optimization concepts and their role in formulating post-disaster, community-level 

recovery strategies.  Various methods of classic dynamic programming and reinforcement 

learning are examined and applied. Simulation-based, approximate dynamic programming 

techniques are introduced to overcome the curse of dimensionality that is characteristic of a large 

scale and multi-state system of systems.  The paper aims not only to study the unexplored topic 

of dynamic optimization in community resilience, but also to be a practical reference for 

policymakers, practitioners, engineers, and operations analysts to harness the power of dynamic 

optimization toward assessing and achieving community resilience. 
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1. Introduction 
Extreme natural hazards pose economic, physical, societal, and psychological threats to 

the wellbeing of modern urban communities. Consequently, community resilience research 

aimed at mitigating impacts of extreme natural hazard events and returning communities quickly 

to normalcy has expanded significantly in recent years.  Much of this research has focused on 

understanding the factors that make a community resilient during and immediately following an 

extreme natural hazard.  However, evaluating the post-event restoration/recovery phase is a non-

trivial task and has received far less attention, in large measure because a community requires the 

functioning of numerous interdependent networks. Any analysis of post-disaster restoration must 

include a study of these networks, and their interactions, over the course of recovery. One of the 

cornerstones of community resilience, broadly defined, is an efficient restoration policy, whereby 

the effective delivery of the desired amount of goods or supplies is assured in the aftermath of a 

hazard [1].  

Loosely speaking, various studies in the community resilience literature can be 

categorized into one (or more) of the following divisions: 

(a) Studies that introduce a more comprehensive definition of resiliency. These type of studies 

focus on the concepts of resilience at the community level and the implications for the future of 

resilience engineering (e.g., [2-5]). 

(b) Studies that strive to understand and model different networks at the community level scale, 

focusing on modeling of interdependencies within and between networks to capture the 

cascading effects. These studies also define new metrics based on the problem on hand and 

compute the restoration of a community over time. Some of these studies also try to find a 

mathematical model to describe the stochastic behavior of post-disaster recovery (e.g., [6-10]). 

(c) Studies that attempt to identify optimal (or near-optimal) ex-ante mitigations or ex-post 

strategies. Such studies usually employ and/or develop different optimization methods. These 
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studies may also develop new metrics and objective functions that embed policymakers’ 

preferences (e.g., [11-14]).  

Optimization methodologies at the community level that satisfy community stakeholders 

as well as consider practical constraints require more attention. However, developing such  

methodologies at the community level raises challenging computational issues because a 

community with several interdependent networks is a dynamic time-dependent system of 

systems (SoSs) over the restoration period. 

This paper reviews and introduces dynamic, approximate dynamic, and reinforcement 

learning algorithms to optimize community resilience planning.  Such algorithms have been 

advancing rapidly in the field of optimal control for the decision-making problems under 

uncertainties. Unfortunately, the leverage of these strong techniques in community resilience and 

recovery optimization is still a largely unexplored topic.  With this in mind, this study makes the 

following main contributions: 

• It introduces the concepts of dynamic optimization, sequential closed-loop optimization, 

and the value of community resilience formulation based on these concepts. 

• It formulates post-disaster community recovery within a Markov decision process 

framework and leverages its theory in the optimization formulation. 

• A step-by-step description of several classical dynamic programming and reinforcement 

learning algorithms is presented. The advantages and challenges of each algorithm when 

used in community resilience assessment are probed in. These classical algorithms are 

applied to a hypothetical case study. 

• The study discusses the twin curses of dimensionality and modeling for moderate sized 

and very large communities, and  introduces approximate dynamic programming (ADP) 

techniques to overcome the challenges they pose for resilience assessment. Simulation-

based methodologies are introduced and applied to a real case study of a community of 

moderate size to reveal the applicability of these algorithms in a real-world context. 

One of the classical studies of community resilience [4] identifies resiliency with four 

attributes:  robustness, redundancy, resourcefulness, and rapidity. The methodologies in this 

paper focus significantly on the optimization of stochastic post-disaster recovery, i.e., the 

resourcefulness and rapidity dimensions identified by Bruneau, et al [4]. Nevertheless, they can 
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also be reformulated and applied for ex-ante mitigation plans to cover up all aspects of 

community resilience planning.  Moreover, we focus only on the systems (or SoSs) which can be 

modeled by Markov or semi-Markov processes in the realm of control optimization. 

The remainder of this study is structured as follows. In Section 2, the motivations and the 

background of dynamic optimization and Markov decision process formulation for the 

community recovery are presented. In Section 3, several classic dynamic programming and 

reinforcement learning methodologies are introduced. In Section 4, a class of ADP algorithms is 

probed in details. In Section 5, we present some complementary points. 

2. Motivation 
Interdependent critical infrastructure systems (ICISs), such as transportation, energy, 

water, supply chains, household units, and healthcare systems, are cornerstones for the 

functioning of society. Therefore, the functionality of ICISs is essential to the well-being of the 

community. The  operability of ICISs can vary significantly over the recovery phase.  Once a 

policymaker (or a decision maker) decides to repair a malfunctioned component, the outcome of 

this decision can potentially affect the functionality of a network or several networks. Therefore, 

the outcome of the decision may have a broad impact  on the community as a whole, produced 

by interdependencies within and among networks. Furthermore, the outcome of a repair action is 

not fully predictable. Therefore, a decision maker deals with a stochastic dynamic SoSs that 

changes sequentially, beginning immediately following the occurrence of the hazard until the 

end of recovery. With this in mind, the efficient restoration of ICISs requires a comprehensive 

decision-making framework to consider different sources of uncertainty to support policymakers. 

The identification of optimal strategies for this dynamic SoSs needs strong optimization 

methodologies to satisfy community stakeholders’ objectives and constraints. 

A broad spectrum of real optimization problems can be explained in various ways of 

naming and classifying optimization methods (see Fig. 1).  Broadly speaking in the field of 

operations research, the stochastic complex problems belong to two main branches; static 

optimization (also referred to as parametric optimization) and dynamic optimization (also 

referred to as control optimization) [15]. 
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period of time, to accomplish the desired goal (e.g., the policymakers' preferences). DPs 

technique breaks a complicated problem and tries to solve sub-problems in a recursive 

manner, based on Bellman’s  principle of optimality [16]. This principle suggests that an 

optimal policy can be formed in a piecemeal manner and the optimization of the future is 

independent of the past [16]. 

A comprehensive decision-making framework must consider the consequences of each 

decision in the long run and balance the desire for low present costs with the undesirability of 

high future costs (also called as challenge of delayed rewards) [16, 17]. This lookahead 

property complicates the solution exceedingly when a policymaker must be “far-sighted” 

until the end of the recovery process. The DP-based methods capture this trade-off so that it 

orders the decisions based on the sum of the present cost (or reward) and expected 

discounted future costs. The cost function is additive over the recovery process. 

3.1.1. Closed-loop vs. open-loop optimization 

The core of DP and RL-based methods is the closed-loop optimization in which the 

decisions are made in stages so that the outcome of earlier decisions is controlled and taken 

into account when making new decisions. This formulation gathers the information between 

time slots and profoundly enhances the quality of decisions. Conversely, in the open-loop 

formulation, a series of decisions is selected once without waiting to observe the succeeding 

demand levels [16]. 

In disaster resilience planning, the coupled resilience is occurred when extreme events 

are narrow in time; then, one or more than one drops of functionality can happen over the 

recovery process due to several events (e.g., strong aftershocks, post-earthquake tsunamis or 

fires, etc.) [18]. This interaction of the recovery process between narrowly spaced events is 

unpredictable and imposes disturbances on the problem. The coupled resilience signifies the 

importance of closed-loop formulation for community resilience assessment when the 

outcomes of the open-loop formulation can possibly become inaccurate owing to narrowly 

spaced events. The difference between closed and open-loop formulations is called Value of 

Information (VoI).  The VoI indicates how much the information between time slots can be 

worth to a policymaker. In the deterministic optimization case without any random 

disturbances, there is no difference between closed and open-loop formulations [16].  
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3.1.2. Model-based vs. model-free 

DP-based methods can be implemented when a model of the system is available. An 

important advantage of DP-based methods is that few assumptions are imposed on the 

system or SoSs, which can generally be stochastic and nonlinear. In contrast, linear 

programming or classical automatic control methods restrict the system with the assumptions 

like linearity or determinism. These restrictive assumptions may become serious 

impediments in community resilience planning. While DP methods require a system model, 

that model need not be an analytical model. The methods can also interact with a simulation 

(generative) model. Deriving generative models is usually easier than constructing an 

analytical model, especially for large-scale and complex problems like community resilience 

assessment. Indeed, for very large communities exposed to extreme hazards, a model of the 

SoSs may not be achievable; For such communities,  constructing generative or analytical 

models may be extremely computationally expensive, or there may be inadequate 

information to understand the performance of large SoSs.  In such situations,  model-free RL 

methods that utilize only data obtained from the community  and require no prior knowledge 

of the community (see Fig. 2), may be alternatives [19]. 

 

Fig. 2. Schematic representation of a) model-based methods and b) model-free approaches. 

 

3.2.Markov decision processes 

DP and RL-based problems can be formalized with the aid of MDPs [19]. MDPs are 

mainly utilized to model dynamic decision-making problems with multiple-periods under 

stochastic circumstances. In the most basic form, an MDP can be defined by (X, U, f, ρ, γ), where 
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X is the state space, U is the actions space of the decision maker (also called as controller or 

agent), and f (f: X×U×X→[0,1]) is the transition function that defines how the state changes as a 

result of decisions. At the discrete time step k, the decision maker applies the action uk to the 

community in the state xk, and the state changes to xk+1 based on xk+1 = f(xk,uk).  That state xk+1 

must summarize past information of the community that related to future optimization. For 

countable state space, the probability of the next state, x’ per pair of (xk,uk) is: 

( ) ( ) ( )1
'

’ , , , ’                  . .                , , ’ 1 (1)|k k k k k k k
x

P x x x u f x u x s t f x u x+ = = =                    

Simultaneously, the decision maker receives the reward of rk+1 based on ρ: X×U×X→ℝ so that 

||ρ||∞=supx,u,x’(x,u,x’) is finite. The rewards are also stochastic because they depend upon the next 

random state. Thus, we are interested into the expected rewards. Note that ρ is a deterministic 

function of (xk,uk, xk+1), which means that once the next state is determined,  rk+1 is completely 

defined. Based on the Markov property, the pair (xk,uk) must define the probability density of the 

next state.  

The decision maker makes a decision based on the policy π: X→U, uk = π(xk). The 

identification of the optimal policy is the final object of DP and RL techniques. An optimal 

policy must maximize the return from any arbitrary initial state x0. The return is a cumulative 

summation of rewards along a trajectory starting at x0. It depicts the reward obtained by the 

policymaker in the long run. The finite-horizon discounted return is: 

max max

0 1
0 0

( ) ( , ( )) (2)
K K

k k
k k k

k k
R x r x x    +

= =

= = 

 

where Kmax= maxx K(x) and γ ∈ [0,1) is the discount factor. The discount factor determines how 

“far-sighted” the policymaker is in acknowledging the future rewards, and also reflects the 

uncertainty increment in future rewards. These control optimization methodologies can handle 

the challenge of delayed future rewards by constructing an underlying MDP and deriving benefit 

from  lookahead property of the methods. The decision maker can determine the value of the 

future rewards by adjusting the discount factor based on the policy makers’ preferences. The 

bigger γ (e.g., higher than 0.95) is recommended [19]. The decision maker can decrease γ to 

increase the convergence rate with the cost of lowering the quality of decisions. 
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3.3. Numerical example 

In this section, a general formulation of a MDP and the application of classic DP and RL 

methods for community resilience modeling are presented.  A hypothetical system with six 

components is considered.   While this system is trivial in a  real-world context,  it enables the 

features of the analysis to be clearly visualized and is comparable in scope to the problems 

studied in [20, 21].  Furthermore, the size of this community enables us to apply the classic 

methods that are contingent upon the size of the problem and fall into the curse of 

dimensionality. These six components can be assumed as household units, elements of an 

infrastructure system like an electrical power network, or any other critical facility within a 

community. The decision maker should know the functionality of each component in the 

aftermath of a hazard.  The functionality of a component depends on the level of  damage it 

sustains and the functionality of the components on which it depends. These interdependent 

effects can be captured in different ways [14, 22, 23]. The decision maker knows the 

functionality and the level damage of each component either with inspection following the 

hazard or with the aid of simulation prior to  the hazard. The latter case involves two steps; first, 

the  hazard intensity measure (IM)  must be computed at the location of each component; second, 

the level of damage can be evaluated by the fragility curves, which describe the probability that 

the component experiences a particular level of damage as a function of IM. If n fragility curves 

are available for each component, the component can be in (n+1) different states per IM.  Let 

xi(t) represent all information regarding component i at time t following the hazard, including the 

instant damage state and the post-disaster lifetime of the component. For this example, we 

consider three fragility curves of minor, major, and collapse (n=3).  The vector X(t) describes 

jointly the states of the components at time t. This vector represents the state of the system, SoSs, 

or the whole community. Note that we do not formulate the MDP at the component level, but the 

states of all components form one possible state of the MDP at the community level. 

X(t)=(x1(t), x2(t), …, xM(t))                                      s.t.          | X(t)|=M                                         (3) 

where M is the number of components within the community (e.g., M=6 for our problem). 

Therefore, the state space depends on the number of components. As alluded to earlier, three 
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fragility curves per each component including undamaged state produce four total states for each 

component (n+1). Thus, the size of the state space at the SoSs level is (n+1)M, equal to 4,096 for 

our problem. 

A decision maker can apply ji(t) different actions to component i at time t, e.g.,  do 

nothing, minor repair, major repair, and complete repair. Let A(t) represent the all possible 

actions that a decision maker can apply at the community level at time t. 

( ) ( ) ( ) ( )( ) ( )1 2
1

, , ,                      . .         ( ) (4)
M

M i
i

A t a t a t a t s t A t j t
=

=  =  

in which ai(t) is the action on component i at time t.  The stack of the actions for all components 

produces the action at the community level. However, a decision maker generally cannot apply 

repair actions to an arbitrary number of components due to the restriction in the number of units 

of resources. The resource units (RU) denotes the group of tools, vehicles, crews, etc, required to 

repair or replace a damaged component. For example, in the typical case when a fixed number,  

R, of RUs are available to repair M components, and  M>>R, the decision maker has no choice 

except "do nothing" for (M-R) number of components. Practically, the number of RUs varies 

over the recovery process, R(t). For example, Ouyang and Dueñas-Osorio [24] noted that the 

number of RUs increased in a roughly linear fashion in the aftermath of Hurricane Ike in 2008. 

At each decision-making time, RUs can be assigned to the components in two different 

ways. First, if each component requires only one RU,  the impact that several RUs may have in 

reducing the repair time of a damaged component is not considered. In this case, the dimension 

of action space at time t is: 

)| ( ) |
( )

(5
M

A t
R t
 

=  
 

 

Second, the decision maker  may assign more than one RUs to a component that has 

suffered significant damage to restore it in the shortest possible amount of time. In this case, a 

precise mapping function between the reduction in repair time and the number of RUs must be 

available. Few studies have identified appropriate mapping functions; some  [20] have  suggested 

that this mapping function must be computed from empirical data. Note that in the first case, the 
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mapping is  one-to-one. The second case can also be interpreted in the way that R is the 

maximum number of RUs and the assignment of "do nothing" may be more profitable in some 

cases. In this case, the decision maker may choose to employ less than R Rus or assign more than 

one RU to a damaged component.   While the first case is usually more common in the literature 

review [7, 14, 25],  it can be interpreted as a special case of the second case, in which the 

decision maker has more flexibility.  In the second case, then, 

( )

0
)| (( ) |

(
6

)

R t

i

M
A t

R t i=

 
=  

− 
  

Therefore, in addition to the number of damaged components, the number of available 

RUs, R(t), plays a significant role in the action space dimension, as shown in Figure 3.  From the 

computational budget perspective, very low and very high number of RUs are desirable for the 

first case (Fig. 3a). However, depending on the number of components, the number of RUs can 

lead to an enormous action space in the second case, as depicted by  Fig. 3b,  which can be 

intractable for real-world problems. For our example problem we assume that R equals to 2 and 

the action space is defined as in the second case; therefore, |A(t)|=22. 

 

Fig. 3. The action space dimensionality a) one-to-one mapping b) general case 

 

Unlike uncontrolled Markov chains, in MDPs each control mechanism has its own 

transition rules like the transition probability matrices (TPM). To utilize the model-based DP 

a) b)
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methods, we assume and synthesize the analytical models from the past studies [26, 27]. Two 

different actions of do nothing (DN) and fully repair (FR) are considered for our hypothetical 

case (ji(t)=2). Note that the concatenation of all components’ damage state history following the 

hazard forms the MDP state at the community level. The TPMs associated with each action, the 

transition rules for do nothing (TPMDN) and fully repair (TPMFR) are presented in Table 1. 

Note also the community can possible degrade owing to TPMDN. The degradation under a 

“do nothing” action can potentially consider the coupled recovery process due to the 

interdependent hazards.  It means the intact state of xin=(1,1,1,1,1,1) in which all components are 

intact is not an absorbing state. Therefore, there is always a chance that the system would 

degrade. Strictly speaking, the agent deals with an infinite-horizon decision-making problem. 

There is an associated reward for each transition in a MDP. This reward is referred to as 

the immediate reward or transition reward and the decision maker can represent immediate 

rewards in a transition reward matrix (TRM). In the MDP formulation, TPM and TRM include 

all information the agent requires to evaluate the restoration policy. TRM and TPM must be 

computed based on the type of the components and possibly the hazard. For example, Lin and 

Wang [7] introduced a methodology to compute TPM for residential buildings.  A negative value 

for the reward is equivalent to a cost, represented in Table 1 and adding a constant to each cost 

would not change the subsequent policy [17]. 

Table 1 
 Cost and transition probability matrices at the component level 

 

3.4. The Bellman equations and value function 

The value function describes the long-term value of states if a community experiences 

them. The state value functions (V-functions, also called as cost-to-go function) indicate the total 

amount of return a policymaker can expect over the course of recovery. While the immediate 

rewards are given by the TRMs, the values must be computed from the series of decisions a 

policymaker makes during the restoration process. The state-action value functions (Q-functions) 
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describe the value of a specific decision in a specific state under a particular policy of the 

policymaker. The Q-function Qπ: X×U→ℝ of a policy π is: 

 
'~ ( , ,.)

( , ) ( , , '), ( ' (7))
x f x u

Q x u x u x R x  =   

The best Q-function, also known as the optimal Q-function, for any policy is: 

* ( (8( , ) , ) )Q x u Q x u=

 

Since the ultimate goal of policymaker is the optimal policy (π*), the policymaker should select 

an action based on π* with the largest optimal Q-value at each state of the community: 

* *( ) argmax )9( , ) (
u

x Q x u =

 

Bellman showed that a recursive relationship between the value of a state and the values of its 

successor states exists [28]. The Bellman equations for Qπ and Q∗ are: 

 
'~ ( , ,.)

( , ) ( , ), ') ( ', ( ') (10
x f x u

Q x u x u x Q x x   =  +

 

 * *

'~ ( , ,.) '
( , ) ( , , )') max ( ', ( 1' (1)

x f x u u
Q x u x u x Q x x  =  +

 

3.5. Value iteration 

The optimal V-functions and Q-functions can be computed by value iteration. These 

techniques utilize the Bellman equations iteratively to obtain  the optimal policy. Our 

hypothetical example provides knowledge of the transition and reward functions. Therefore, we 

initiate the computation of optimal recovery strategies with model-based DP algorithm of Q-

iteration. It is followed by the classical reinforcement learning techniques that do not require an 

explicit analytical model. 
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3.5.1. Model-based value iteration 

Let Ϭ denote the space of bounded real-valued Q-functions and T: Ϭ→ Ϭ computes the 

right-hand side of the Bellman optimality, Eq. (11). Therefore, for an arbitrary Q-function: 

 '~ ( , ,.) '
[ )( )]( , ) ( , , ') max ( ', ' 12) (

x f x u u
T Q x u x u x Q x u =  +

 

The Q-iteration method begins with an arbitrary Q-function, Q0 , and at each iteration ℓ,  the Q-

function is updated: 

1 ( ) . . || ( ) ( ') || || ' || (13)Q T Q s t T Q T Q Q Q+  = − = −

 

The optimal Q-function, Q*, is a fixed point of T (i.e., Q* = T(Q*)). Therefore, Q-iteration 

asymptotically converges to Q*
 as ℓ→∞ [19].  However, a decision maker can choose 

conservatively a finite number L of iterations that provides a suboptimality bound εQI> 0 [19]: 

2(1 )
2 || |

)(14
|

QIL
 

 

 −
=  
  

 

Conceptually, DP assumes Qℓ+1(x,u) determines Qℓ(x,u) for all states. This is often referred to as 

backward DP. 

An appealing feature of dynamic programming methods is that the optimal policy 

typically is the same regardless of initial condition [16]. Lest the reader be confused by this 

claim, we want to make it clear that we are not saying that the initial condition does not matter. 

Indeed, the optimal action at the initial state is a function of the initial condition. Moreover, the 

overall objective function value will depend on what action is performed at the initial state.  

Instead, what we are saying is that this appealing feature of dynamic programming methods is 

that when we do Q-iteration, we need not concern ourselves with what initial condition to apply 

to the training procedure. If the procedure converges, the resulting policy will be the same 

regardless of what initial condition was assumed. The user can, therefore, set whatever initial 

condition they wish. In our simulations shown later, we set the initial condition for the training 

process to be x0=(4,4,4,4,4,4). 
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When the algorithm determines the optimal action at each community's state, it assigns 

the RUs to the selected components.  Each damaged component requires a period of repair to be 

restored. This repair period is a random variable and  the outcome of the decision is not fully 

predictable. We assume that the distributions of repair times [22, 29] can be described as 

exponential distributions, represented in Table 2. Section 4 discusses the repair time distribution 

in details. 

Table 2. 
 The expected restoration times based on the level of damage 

  Undamaged Minor Damaged Major Damaged Collapsed 
Component 0 30 120 230 
 

Table 3 summarizes a few selected states and their corresponding optimal actions, 

computed by the Q-iteration algorithm based on maximum two RUs. The optimal action 

represents the number of components that the agent should assign the RUs. 

Table 3. 
Sample states and their corresponding optimal actions 
State number State description Optimal action 

1 (1,1,1,1,1,1) (0,0) 
700 (1,3,3,4,3,4) (4,6) 
769 (1,4,1,1,1,1) (0,2) 
4096 (4,4,4,4,4,4) (1,3) 

 

To show the convergence of the algorithm to the fully restored state, we consider the 

component damage state of 4, 3, 2, and 1 as 0, 33, 66, and 100% functionality, respectively. For 

example, the state of (1,2,3,4,1,2) represents 60.83% functionality at the community level. Fig. 4 

shows the restoration time of the hypothetical community of Section 3.3. The mean with one and 

two standard deviation bands are computed based on 1000 different random numbers generation. 

The Q-iteration algorithm asymptotically converges to the intact state xin after seven iterations. It 

is worth emphasizing that the community can possibly leave this state owing to the degradation 

in the system. The degradation can be seen in some recovery trajectories, which indicates a 

recovery process trajectory is not necessarily monotonic. However, the mean curve is 

monotonically increasing. 
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Fig. 4. The Q-iteration restoration policies with mean and ± (2) σ 

 

Fig. 5 presents the reward (or cost) of the restoration decisions during the recovery 

period. In the beginning, the slope of the expected required cost increases drastically with a 

significant dispersion immediately following the occurrence of the hazard. However, as the level 

of damage over the community decreases because of the repair policies, the expected required 

cost decreases over time. The expected cost cannot reach zero because there is always cost to 

maintain components even after the recovery process, although it is much less than the 

restoration costs. 
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Fig. 5. The expected Q-iteration reward and ± (2) σ 

 

3.5.2. Model-free value iteration (Q-learning) 

One of the classical model-free reinforcement learning approaches is Q-learning [17], and 

indeed    Q-learning is perhaps the most widely used approach in this class.  The required data 

tuples of Q-learning, (xk,uk,xk+1,rk+1), indicates that Q-learning does not require a model. It 

initiates with an arbitrary initial Q-function Q0 and updates it based only on observed state 

transitions and rewards. Thus, the decision-maker can update the quality of each decision and Q 

values using such a data tuple after each transition, as follows: 

1 1 1'
( , ) ( , ) [ m )ax ( , ) (( 1) 5' , ]k k k k k k k k k k k k ku

Q x u Q x u r Q x u Q x u + + + + + −  

where (0,1]k  is the learning rate and the  term 1 1'
[ max ( , ') ( , )]k k k k k ku
r Q x u Q x u+ ++ −  is the 

temporal difference (TD).  The TD indicates the difference between the updated assessment 

1'
max ( , ')k ku

Q x u + of the optimal Q-value of (xk,uk), and the current evaluation ( , )k k kQ x u . Q-

learning can be considered as a sample-based, stochastic approximation procedure since the 

process of updating the Q-values produces a single sample of the random quantity, the  

expectation of which is computed by the Q-iteration mapping (Eq. (12)). It  can be shown that 

the solution from the Q-learning algorithm asymptotically converges to Q∗ as k goes to infinity, 
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provided that the state and action spaces are finite and discrete, and that two conditions are 

satisfied [19]; first, the sum 
0

k
k




=

 provides an infinite value, while the sum 2

0
k

k




=

 provides a 

finite value (e.g., 1
k k

 = ); and, second, all the state-action pairs frequently. The second 

condition can be satisfied if the decision maker enables to explore an arbitrary action in every 

visited state and exploits his/her current knowledge to achieve high-quality performance (e.g., 

choosing greedy decisions in the Q-function).  In the RL field, this is called the exploration-

exploitation trade-off [19]. Classically, Q-learning is implemented with a ε-greedy exploration or 

modifications such as adaptive ε-greedy exploration or Boltzmann selection, in which the 

decision maker explores the new Q values to increase the quality of recovery decisions. The 

classical method of ε-greedy exploration balances exploration with exploitation in Q-learning, 

exploration probability of (0,1)k   at step k as follows; 

)
(16)

arg max ( , 1
k k ku

k
k

u Q x u with probablity
u

auniformly random action in U with probablity





 −
= 


 

Alternatively, Boltzmann exploration can be used to select an action u at step k with 

probability: 

( , )

( , ) (17)( | )

k k

k

k k

k

Q x u

k Q x u

u

eP u x
e





=



 

in which the temperature 0k   adjusts the randomness of the exploration. The reduction of 

temperature makes the decision maker greedy in the decision-making process. The exploration 

and the learning rate have significant effects on the performance of Q-learning [19]. 

Fig. 6 shows the performance of Q-learning with classic ε-greedy exploration for one 

recovery trajectory. Without random exploration, Q-learning is not guaranteed to converge and 

might iterate on a sub-optimal policy [30]. We have applied the Q-learning method to the 
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problem, defined in Section 3.3. Fig. 6 depicts the performance of Q-learning with ε-greedy 

exploration method. As Fig. 6 shows, the functionality at the community level drops irregularly 

due to the random exploration of the applied Q-learning method over the training steps. In this 

case, the decision-maker selects some actions randomly to explore the Q values for different 

states and actions. As mentioned before, the second condition to guarantee the convergence of Q-

learning is that all state-action pairs should be visited frequently. In actuality, owing to the lack 

of data and time, the analyst is unable to satisfy this condition completely and should decide a 

repair action based on a partial-trained Q-learning algorithm. In this case, the agent might make 

an unjustifiable restoration decision. Hence, we do not recommend a random exploration for the 

post-disaster community recovery process in which the policymakers deal with public health and 

safety as well as expensive critical infrastructure systems. One potential alternative method in the 

literature is “optimism in the face of uncertainty” in which the decision maker commences with a 

value function that is larger than true returns [19]. Thus, greedy decision selection explores novel 

actions since the return assessments have been corrected downwards for any decisions already 

made. Moreover, safer exploration methods like deep Q-learning and safe Q-learning for the 

system under the risk of extreme events are recommended [30]. 

 
Fig. 6. Q-learning restoration 
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3.6.Policy iteration 

In this section, another class of DP/RL methods— policy iteration -  is considered. In this 

class of methods, the value functions of policies are computed to assess and improve the 

admissible policies [16]. As with  Q-iteration methods, the policy iteration can be categorized as 

model-based and model-free.  We first present  model-based policy iteration in Section 3.6.1,  

followed by model-free policy iteration in Section 3.6.2. 

3.6.1. Model-based policy iteration (policy evaluation for Q-functions) 

Model-based policy evaluation for Q-functions utilizes reward and transition functions 

iteratively.  Similar to  Q-iteration mapping, define a policy evaluation of Tπ: Ϭ→ Ϭ.  For any 

arbitrary Q-function, this mapping function determines the right-hand side of the Bellman 

equation as follows: 

 
'~ ( , ,.)

[ )( )]( , ) ( , u, x') Q( ', ( ') (18
x f x u

T Q x u E x x x   = +

 

The algorithm updates an arbitrary 0Q iteratively as follows: 

1 ( ) . . ( ) ( ') ' (19)Q T Q s t T Q T Q Q Q     + 
= −  −

 

For a discount factor of γ<1, the mapping function Tπ has a unique fixed point (i.e., 

( )Q T Q  = ). This iteration converges to Qπ. For small problems in which X×U is up to several 

thousand with finite states and action spaces, the linear system of Bellman equations can be 

solved to obtain Qπ [19]. 

Practically, the number of iterations required for the policy iteration method to converge 

is smaller than for  Q-iteration methods.  This does not necessarily mean that the Q-iteration 

methods are computationally more expensive than policy iteration owing to the exhaustive policy 

evaluation that is required  for every individual policy iteration [19].  

A desirable feature of policy iteration in the community resilience planning problems is 

that it can start with a  policy. In reality, public and private entities usually have their specific 
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recovery policies. These policies can be based on entities’ regulations, policymakers’ judgments, 

and/or their analyses. The class of policy iterations can potentially begin with these policies and 

improve them to reach a strict optimal restoration policy asymptotically. A high-quality 

restoration policy with respect to the policy makers’ preferences, provided by entities helps the 

policy iteration to converge quicker. 

3.6.2. Model-free policy iteration (SARSA) 

In the realm of model-free policy iteration methods, we focus on the most common 

method, called SARSA (State, Action, Reward, (next) State, and (next) Action). The required 

data tuples of SARSA is (xk,uk,rk+1,xk+1,uk+1). Thus, like Q-learning, SARSA does not require an 

explicit model of the problem. It updates the Q-functions in the light of its required data tuple as 

follows; 

1 1 1 1( , ) ( , ) [ ( , ) ( , (20))]k k k k k k k k k k k k k kQ x u Q x u r Q x u Q x u + + + += + + −  

in which (0,1]k  . The method is implemented in a manner very similar to Q-learning. 

However, the temporal difference (the term between brackets) in SARSA embeds the Q-value of 

the next possible state, whereas Q-learning considers the maximum. In other words,  SARSA 

fulfills the policy evaluation on the followed (initial) policy. This is the difference between "on-

policy" and "off-policy" methods.  SARSA is called "on-policy" because it evaluates the 

recovery policy utilized to restore the community. Conversely, in "off-policy" methods like Q-

learning,  one policy is applied while another recovery policy is being evaluated [17]. In SARSA, 

as in Q-learning the decision-maker can use ε-greedy or Boltzmann exploration. However, safer 

exploration methods are again recommended. 

Of greatest interest in community recovery management is the applicability of SARSA in 

large-scale problems. SARSA does not stall because the Q-function has not entirely converged.  

For example, in community recovery problems, this convergence might be extremely time-

consuming not only because of the large dimensionality of the problem but also because of the 

lack of a high-quality policy to initiate the analysis.  However, SARSA tries to improve the 

policy at hand before the full convergence. Another desirable property of SARSA is that it tries 

to improve the current policy after every sample owing to the greedy part of the method. 
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3.7.Computational cost 

The computational cost of each algorithm represents the applicability of the method for 

large-scale problems. Hence, this section evaluates the complexities of the mentioned mode-

based methods to assess their applicability for real communities that embed several real-size 

networks. 

Let |.| define the cardinality of the argument set ".". In this study, |X| and |U| represent the 

number of states and actions that both are finite.  In the Q-iteration method, presented in Section 

3.5.1, in each iteration for a pair of (x,u) the cost of updating Q-value is |X|2 |U| (2+|U|). 

Therefore, the total cost of L iterations is [19]: 

L|X|2 |U| (2+|U|)                                                                                                                           (21) 

To reduce the total cost, L can be selected with applying a suboptimality bound of εQI> 0 in Eq. 

(14). In the policy evaluation, represented in Section 3.6., four functions of  f, h, Qπ, and ρ are 

evaluated at each iteration. The cost of each policy evaluation for the L number of iterations is: 

L|X|2 |U|                                                                                                                                        (22) 

As mentioned in Section 3.6.1, the policy can be evaluated by solving the linear system of the 

Bellman equations. This procedure also requires computations of order O(|X|3 |U|3) [19]. 

For practical community resilience problems, |X| and |U| are enormous.    Therefore, 

owing to the cost complexities of the Q-iteration and policy iteration, classic model-based 

methods of DP are quite impractical in a real-world context. Approximate Dynamic 

Programming (ADP) techniques usually are required, described in the next section. 

4. Approximate dynamic programming techniques 

4.1. ADP fundamentals 

As alluded to previously, the DP methods of Q-iteration and policy iteration are 

guaranteed to generate optimal solutions for Markov Decision Problems (MDPs) and semi- 

Markov Decision Problems (SMDPs) [17]. However, they are often computationally intractable 

and for real-sized communities a complete solution is impossible.  When the number of state or 
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action variables increases, the exponential increase in computational demand often is referred to 

as the  curse of dimensionality [16]. Furthermore, computations of the transition probabilities and 

rewards in an analytical form for realistic community resilience assessment is often intractable. 

In actuality, all information to describe a large-scale community is unavailable in advance, or 

maybe unavailable until shortly before a decision is required. Owing to the constraint of the 

amount of time and complexities, the theoretical model of a community is often unachievable. 

Therefore, when used for modeling and managing community recovery, DP is said to be plagued 

by the twin curses of dimensionality and modeling . Additionally, policymakers are required to 

make a rational decision immediately following the occurrence of a hazard event. These stringent 

time constraints make a solution even more difficult. The on-line simulation-based methods are 

one way to circumvent these twin curses. 

In on-line methods, optimal decisions are identified only for the visited states in the real-

world, thereby eliminating unnecessary computational cost on the unreached states. On the other 

hand, in off-line computations, the policy is calculated for all the states and stored. Thereafter, 

the policymaker chooses an optimal action from the stored policy based on the observed 

evolution of the community. Q-learning and SARSA are on-line methods since they only deal 

with the reached state at the instant, while the Q-iteration and policy iteration are off-line 

methods. 

Practically speaking, policymakers should expect a suboptimal recovery strategy that 

balances a desire for low computation with sufficient performance. These stochastic modeling 

and algorithmic strategies for solving large and complex problems fall under the broad umbrella 

of approximate dynamic programming (ADP). Although ADP techniques overcome the curse of 

dimensionality, the more valuable objective of ADP is learning what to learn, and how to learn 

it, to make better decisions over time [31].  ADP has been used in a wide range of decision-

making problems in control theory [32], operations research [33], and reinforcement 

learning/artificial intelligence [17].  .  

The fundamental idea of ADP is to approximate the true value functions (V or Q-

functions) reasonably with different statistical methods. ADP methods often step forward in time 

instead of the classic backward-stepping DP (cf. Section 3.5) or the combination of stepping 

forward and sweeping backward to calculate the value state. To this end, numerous approaches 

have been developed to assess the value function approximation. In this section, we summarize 
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problem.  Furthermore, this method assigns the same action to the elements in the same 

condition level; this assignment is unreasonable in community resilience assessment because 

infrastructure elements may be in  different states of damage following a hazard and only a 

limited number of RUs may be available during recovery.  ,.  

One of the most prevalent methods in ADP is radial basis functions. These functions 

capture prominent quantities of the state variable and construct a surrogate model around these 

quantities. In the realm of civil engineering, Medury and Madanat [36] utilized this technique to 

provide optimal maintenance, rehabilitation and replacement (MR&R) policies for a system of 

facilities over a planning horizon.  While basis functions are easy to implement,  their selection  

may affect the quality of decisions significantly [19, 31]. Alternatively, non-parametric 

techniques like kernel-based approximators can be applied. Unlike in the parametric case, the 

numbers of parameters and the form of the approximator are derived completely from the 

available data. Therefore, their performance tends to be weak when there is a  lack of sufficient 

data. 

Note that the learning-based ADP like Q-learning can also benefit from a suitable 

approximator. For example, Q-learning (Eq. (15)) estimates the Q-value of each state-action pair 

separately. The performance of this method can be poor if there are insufficient data for some 

states, and  a suitable approximator can support Q-learning by making reasonable decisions in 

neighboring states of available Q-values. This method of generalization can potentially enhance 

the performance of learning-based ADP techniques [19]. The selection of an accurate model and 

sufficient data are always of concern when using parametric or non-parametric approximators. 

The class of simulation-based ADP called rollout does not require an explicit approximator, and 

thus is of special interest in assessing community resilience under extreme natural hazards. 

4.2. Rollout 

In community resilience problems, planners and policymakers usually have models of 

infrastructure systems at some level.  In the presence of such community models, simulation-

based methods are recommended (cf Figure 7) [34]. Hence, this type of ADP can potentially 

outperform other methods by leveraging the power of the model. Rollout belongs to a class of 

simulation-based methods in which the state and action space reduction is possible and state-

action costs are approximated with the help of simulation [34]. Rollout computes the near-
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optimal recovery process in an on-line manner (cf. Section 4.1). It can be categorized as an on-

line implementation of the policy improvement step of policy iteration via simulation [16, 37]. 

Owing to its on-line character, rollout can be easily implemented regardless of the size of the 

state space; hence, it is suitable for large state space problems such as community resilience 

assessment. Rollout is initiated by a base policy,  which can be random, based on experts’ 

judgments, based on importance analyses, or above all the recovery strategies of the regional 

entities [14]. Thereafter,  rollout successively improves the existing model, exploiting its 

advantages and improving current policies for the community and human considerations. 

Rollout evaluates the Q-value, ( ˆ ( , )bQ x u ), by simulating a number NMC of trajectories. 

The trajectories are generated by the base policy of πb with the length of K. 

0 0 0 0 0 0 0
0

,1 ,k , , 1 , 1 ,k ,
1 1

1ˆ ( , ) ( , , ) ( , ( ), ) . . ~ ( , ( ),.) (23)
MC

b

N K
k

i i b i k i k i k i b i k
i kMC

Q x u x u x x x x s t x f x x
N

     + +

= =

 
= + 

 
 

The rollout policy can be shown to outperform the base policy, given that improvement is 

feasible [37]. Furthermore, while the rollout policy is not necessarily an optimal, it provides a 

framework to support the policymakers with better informed decisions than their current 

strategies (i.e., πb).  

Nozhati et al. [14, 39] applied the rollout algorithm to compute near-optimal recovery 

strategies for the electrical power (EPN) and potable water (WN) networks of the Gilroy, CA 

community, given the occurrence of a Mw 6.9 earthquake on the San Andreas  

Fault at an epicentral distance of approximately 12 km from the center of the city.. This 

stochastic decision-making problem was modeled in the context of MDP. Fig. 8 depicts the EPN 

and WN of Gilroy. Details of the analysis, including the modeling of the hazard and the 

interdependent networks  can be found in [14, 38, 39].    As mentioned in Section 3, this model is 

not necessarily an analytical model (e.g., TPM) and can be a generative model. In fact, an 

analytical model is not achievable for the real-case problems (curse of modeling). This is a main 

motivation for the simulation-based representation of MDP. 
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Fig. 8. The modeled electrical power and water network of Gilroy 

 

4.3. Simulation-based representation of MDP 

The simulation-based representation of an MDP serves well for large state and action 

spaces, which is a characteristic feature of community resilience problem [17]. A simulation-

based representation of an MDP is (X, U, P, ρ, γ) where cardinalities  |X| and |U| are large. The 

tuple P is the generative model (or simulator) of the problem that mimics the behavior of the 

community and the networks. Given the pair of (x,u), the simulator P provides the new random 

state of xt+1. Hence, there is no need for the analytical model. Several approaches to model the 

networks and their interdependencies, ranging from the flow analysis to graph theory and 

fragility-based modeling of a community over the recovery process, are available [6, 8, 14, 40]. 

These methods in the literature can potentially serve as a simulator for the simulation-based 

MDP. A key factor common to all mentioned methods is the repair time, a random variable 
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which depends on the level of damage at each damaged location and plays a significant role in 

modeling post-disaster recovery. 

In preemptive assignment, the policymaker can reassign RUs to different locations, 

provided that reassignment receives more rewards. Therefore, the non-preemption is a special 

case of preemptive scheduling. The decision-maker can implement the reassignment if at least 

one of the RUs is available. Once a damaged component is repaired, there may be cascading 

effects throughout the community.  From the MDP perspective, the underlying Markov chain 

would transition to a new state. The time spent at a particular state before transitioning to another 

state is called the sojourn time (a.k.a. dwelling or holding time) [41, 42]. The statistical property 

of this sojourn time and the distribution of residual repair time in the succeeding states depends 

on the initial repair time distributions. Nozhati et al.  [14, 39] assumed the repair times are 

described by exponential distributions. With this assumption, the sojourn times are also 

exponentially distributed: 

1 1 1
1

ˆ( ) ( ),...., ( ) ( ) ( ) min( ( ),..., ( )) ( ) (24)
n

n n sj n i
i

t t Exp t t Exp t t t t t t Exp  
=

→ =   

where ti(t) is the random repair time of the ith component and ˆ ( )sjt t is the sojourn time of the 

community at time t. As mentioned in Section 3.3, the components’ damage state history 

following the hazard forms the MDP state at the community level. However, owing to the 

memoryless property of the exponential distribution, the damage state and the sojourn time at 

each time suffice to simulate the future evolution of the problem.  Strictly speaking, the 

exponential distribution assumption and consequently the memoryless property of the sojourn 

time satisfy the Markovian property of the underlying process [41, 42]. 

The methods presented above remain applicable with other distributions, with some cautions.   

For example, HAZUS-MH [43] proposes normal distributions for the repair time with the means 

and standard deviations proportional to the level of damage. The conditional residual repair time 

is a conditional normal distribution with a smaller  standard deviation, leading to the conclusion 

the fact that lower damage states leads to lower dispersion in residual repair time. However, the 

normal distribution is supported by the entire real line, and thus is inappropriate either for the 

system’s lifetime or restoration time [44]. Although the negative part often can be ignored, given 

that the coefficient of variation (COV) is much smaller than one [44], this is not the case for the 
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community recovery process because of high dispersions in the repair time,.  As a result, 

different distributions like lognormal or Weibull distributions [7, 10] often have been used.  Note 

that in these cases, the sojourn time is no longer exponential distribution and the underlying 

decision process is semi-Markov rather than Markov. 

4.4. Rollout results 

The reward function in the study of Nozhati et al. [39] is based on providing electricity 

and water to the maximum number of people in Gilroy, CA in the shortest possible time. This 

objective function mimics a common resilience index in the literature, based on  the area under 

the curve describing recovery of functionality [14]: 

0

( ) (25)
LCT

LC

Q t dt
T

= Resilience

 

where Q(t) is the functionality of a system at time, t,  and TLC is the control time of the system 

during the recovery. 

Therefore, as Fig. 9 shows, rollout is aimed at providing a strategy with a larger area 

under the curve than the given base policy. If the base policy is not strictly optimal, the rollout 

policy always outperforms the base policy. The resilience index (Eq 25) for the base policy in 

Fig. 9 is 22,395. It means that if the policymaker follows the base policy 22,395 people benefit 

from electricity and water per day, while 24,224 number of people have electricity and water 

provided that the policymaker follows the rollout strategy to recover the EPN and WN.  Fig. 9 

also highlights the lookahead property of the rollout approach, mentioned in Section 3. Rollout 

identifies conservative repair decisions over the first 15 days following the earthquake,  while it 

improves the base policy when the entire recovery horizon is considered.  The lookahead 

property of rollout in this study is a single-step lookahead property, in which the agent tries all 

possible decision at a single time slot and then the base policy is simulated. With a sufficient 

computational budget, the agent can increase the step of lookahead property to reach a higher-

qualified rollout policy. Ref. [16] describes more details and computational issues in limited 

lookahead policies. 
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Fig. 9. The performance of base and rollout policy to provide electricity and water to 
people 

 

Like any optimization methodology, rollout has some limitations. In the stochastic case, 

rollout can be computationally expensive, and if  the required number of points to estimate the 

value function is increased, rollout can be intractable. In these cases, a suitable approximator to 

estimate the Bellman equation may be computationally less expensive than rollout. Furthermore, 

the performance of rollout depends on the quality of the base policy. Since the primary goal of 

rollout is to enhance the base policy than to be close to the strict optimal, a naive base policy can 

decrease the quality of the rollout policy. This issue can be addressed to some extent by initiating 

the process with a reasonable base policy and using  a multistep lookahead property and. 

5. Complementary discussion 

We now discuss different points and issues that policymakers and practitioners might 

encounter by using the mentioned methodologies or formulating the recovery management in the 

optimal control context. 

5.1. Reward function and encoding risk 

Designing a comprehensive reward function is of central importance in the optimal 

control context. This reward function must reflect policymakers’ preferences. Therefore, reward 
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functions may be multi-objective in nature,  with conflicting objectives.   Furthermore,  the 

methods described herein are based on  the expected value of the reward or cost in the decision-

making process. The expected value may not always be the most appropriate measure to 

represent the preferences and risks in community resilience assessment. In the context of DP and 

RL, the methods of minimax and maximin approaches can be alternatives [39]. These standard 

methods can address different risk behaviors by replacing mean-based optimization with worst-

case optimization. However, the methods cannot reflect  risk aversion behavior in public 

decision-making. More comprehensive methods like dual stochastic programming can be an 

option [45]. Nevertheless, the maximization of expected reward can be potentially appropriate on 

condition that the reward function is comprehensively defined so that it encodes the risk 

preferences of community stakeholders [16].  

One of the strengths of the ADP and RL methods is that they can be enhanced 

significantly by expert judgment and domain knowledge related to civil infrastructure 

management For example, Nozhati et al. [14] took advantage of the series arrangement of the 

EPN and WN to reduce the action space at each time slot. Therefore, those RL methods that are 

model-free can benefit from prior knowledge. Sometimes the prior knowledge can be encoded in 

the reward function [19]. 

5.2. State augmentation 

Sometimes the community states and policymakers’ decisions impact future states with 

some time lag. For example, if the system state xk+1 depends not only on the preceding state xk 

and action uk but also on earlier states and decisions. This issue can be addressed by state 

augmentation, in which the state at time k is enlarged to embed all the data that is available to the 

policymaker at time k so that it can subsequently be used to advantage in making the decision 

of uk. State augmentation and definition of new composite states can be found in Ref. [16].  This 

case can occur in community resilience problems when policymakers deal with several physical 

systems. Suppose that two interdependent networks A and B in a community (e.g., EPN and WN) 

are represented by interdependent Markov chains that are different in terms of state variables and 

state-space cardinalities over the recovery period.  The Markovian property of the marginal 

processes of X and Y for the individual networks does not necessarily guarantee that their joint 

process (X, Y) is Markovian [46]. Therefore, in community resilience planning, in addition to the 
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current states of individual networks, the policymakers’ must be aware of including memory 

from the past transitions to completely and accurately model the stochastic dynamics of the 

community [46]. 

5.3.Evaluating an ADP strategy 

There are several methods a policymaker might use to evaluate the rationality of an ADP 

solution [31].  The policymaker might compare the solution with an optimal MDP, assuming that 

one can be obtained  In other cases, the policymaker might  simplify the problem to the point that 

it can be solved by Q-iteration or policy-iteration methods. The policymaker can compare the 

solution with an optimal deterministic problem [14], in which the common problem of state 

explosion does not arise.  Finally, the policymaker can compare the solution with a myopic 

strategy1, since it is known that myopic (greedy) solutions are less costly than those with the 

look-ahead property and often provide a good sense about the accuracy of the solution [16]. 

6. Summary and conclusions 

Approximate dynamic programming and reinforcement learning techniques are powerful 

algorithmic strategies that can be utilized in a wide range of problems involving decision-making 

under uncertainty. These methods are largely unexplored in the crucial problem of planning for 

community resilience under extreme natural events.  This study has reviewed and appraised 

common ADP and RL methods, with regard to their usefulness in community resilience 

assessment and has led to the following observations: 

The Q-iteration method is suitable for small networks (e.g., up to ten components). In this 

case, it provides an efficient solution if a model of the community is available. Although it is 

computationally expensive, it can provide an optimal strategy. The model-based policy iteration 

method is also feasible for small communities.  This method can evaluate and improve the 

current policy and provide optimal scheduling.  RL techniques, including Q-learning and 

SARSA, do not require any prior knowledge of the community and can be suitable methods 

when a model of the community is unavailable. However, the process of exploration embedded 

 
1 Myopic decisions can be made by policymakers in different phases and they are not restricted to the recovery 
process. The word myopia is used by scientists to represent the inclination to overweight short-term effects or 
consequences in comparison to long-term impacts concerning disasters. Myopia can potentially influence 
policymakers to undervalue the low-probability/high-consequence catastrophes [47]. 
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in these methods can be highly risky for community restoration planning. Furthermore, a 

minimum number of steps is required to converge to optimality. Generalization of these methods 

with a suitable approximator is recommended if they are to be applied in community resilience. 

Finally, a class of ADP methods called rollout possesses several desirable features for the 

problem of community recovery management. It can handle large state space problems; it 

leverages current recovery strategies by using them to initiate the rollout analysis, and it enables 

various sources of uncertainties to be considered. On the other hand, it can be computationally 

expensive in the high level of stochasticity. 

One final note: we do not claim that the methods summarized in this paper are a panacea 

for modeling community recovery. To apply or design a methodology in the context of 

community resilience, a policymaker must consider three points; 1) reliability; the method 

should provide the correct solutions with defined errors, 2) productivity; the method should 

implement the intended solutions rationally and orderly in a timely fashion; and 3) simplicity, the 

method should allow policymakers and community stakeholders to understand community 

resilience and strategies for its enhancement.  No decision analysis method should be expected to 

be universally applicable in addressing complex community resilience assessment issues.   
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