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Abstract
We describe a method for computing an atlas for the stable or unstable manifold attached
to an equilibrium point and implement the method for the saddle-focus libration points of
the planar equilateral restricted four-body problem. We employ the method at the maximally
symmetric case of equal masses, where we compute atlases for both the stable and unstable
manifolds. The resulting atlases are comprised of thousands of individual chart maps, with
each chart represented by a two-variable Taylor polynomial. Post-processing the atlas data
yields approximate intersections of the invariant manifolds, which we refine via a shooting
method for an appropriate two-point boundary value problem. Finally, we apply numeri-
cal continuation to some of the BVP problems. This breaks the symmetries and leads to
connecting orbits for some nonequal values of the primary masses.

Keywords Gravitational 4-body problem · Invariant manifolds · High-order Taylor
methods · Automatic differentiation · Numerical continuation

Mathematics Subject Classification 70K44 · 34C45 · 70F15

1 Introduction

Illuminating studies by Darwin, Strömgren, andMoulton in the first decades of the Twentieth
Century established the importance of numerical calculations in the qualitative theory of
Hamiltonian systems (Darwin 1897; Strömgren 1934; Moulton et al. 1920). In particular,
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their work gave new insights into the orbit structure of the circular restricted three-body
problem (CRTBP), a problem already immortalized by Poincaré. Interest in the CRTBP was
reinvigorated in the 1960s with the inauguration of the space race and a number of authors
including Szebehely andNacozy (1967), Szebehely and Flandern (1967) harnessed the newly
available power of digital computing to settle some questions raised by Strömgren. The
interested reader will find a delightful retelling of this story with many additional references
in the book of Szebehely (1967).

Motivated by the works just mentioned, in 1973 Henrard proved a theorem settling a con-
jecture of Strömgren about the role of asymptotic orbits.More precisely, Henrard showed that
the existence of a transverse homoclinic for a saddle-focus equilibrium in a two-degree-of-
freedom Hamiltonian system implies the existence of a tube of periodic orbits parameterized
by energy and accumulating to the homoclinic (Henrard 1973). In the same paper he showed
that the period of the orbits in the family goes to infinity and their stability changes infinitely
often as they accumulate to the homoclinic. This phenomenon was called the blue sky catas-
trophe by Abraham (1985) and has been studied by a number of authors including Shilnikov
et al. (2014), Devaney (1977).

In 1976 it was further shown by Devaney that such a transverse homoclinic—again for
a saddle-focus in a two-degree-of-freedom Hamiltonian system—implies the existence of
chaotic dynamics in the energy level of the equilibrium (Devaney 1976). See also the works
of Lerman (1991, 2000). Such theorems should be thought of as Hamiltonian versions of
the homoclinic bifurcations studied by Shilńikov (1967, 1970a, b). Taken together the results
cited so far paint a vivid picture of the rich dynamics near a transverse homoclinic connection
in a two-degree-of-freedom Hamiltonian system.

The present study concerns asymptotic orbits in the planar equilateral restricted four-body
problem, henceforth referred to as the circular restricted four-body problem (CRFBP). The
problem has a rich literature dating at least back to the work of Pedersen (1944, 1952).
Detailed numerical studies of the equilibrium set, as well as the planar and spatial Hill’s
regions, are found in Simó (1978), in Baltagiannis and Papadakis (2011a), and in Álvarez-
Ramírez andVidal (2009).Mathematically rigorous theorems about the equilibriumset and its
bifurcations are proven by Leandro (2006), Barros and Leandro (2011, 2014) (with computer
assistance). They show that for any value of the masses there are either 8, 9, or 10 equilibrium
solutions with 6 outside the equilateral triangle formed by the primary bodies (see Fig. 1).

Fundamental families of periodic orbits are considered by in Papadakis (2016a, b), and
by Burgos-García and Delgado (2013a), Burgos-García and Bengochea (2017). A study by
Burgos-García, Lessard, and Mireles James proves the existence of some spatial periodic
orbits for the CRFBP (Burgos-García et al. 2019) (again with computer assistance). An
associated Hill’s problem is derived, and its periodic orbits are studied by Burgos-García
(2016), Burgos-García and Gidea (2015).

Regularization of collisions is studied by Alvarez-Ramírez et al. (2014). Chaotic motions
were studied numerically by Gidea and Burgos (2003) and by Alvarez-Ramírez and Barrabés
(2015). Perturbative proofs of the existence of chaotic motions are found in the work of
Cheng and She (2017), She and Cheng (2014), She et al. (2013) and also in the work of
Alvarez-Ramírez et al. (2018). Blue sky catastrophes in the CRFBP were previously studied
by Burgos-García and Delgado (2013b) and by Kepley and Mireles James (2018). This last
reference develops (computer-assisted) methods of proof for verifying the hypotheses of the
theorems of Hernard and Devaney.

The main goal of the present work is to study orbits which are homoclinic to a saddle-
focus equilibrium solution in the equilateral restricted four-body problem. We apply the
parameterization method of Cabré, Fontich, and de la Llave to compute a chart for the
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Fig. 1 Configuration space for the CRFBP: the three primary bodies withmassesm1,m2, andm3 are arranged
in an equilateral triangle configuration of Lagrange, which is a relative equilibrium solution of the three-body
problem. After transforming to a co-rotating frame, we consider the motion of a fourth massless body. The
equations of motion have 8, 9, or 10 equilibrium solutions (libration points) denoted by L j for 0 ≤ j ≤ 9.
The number of libration points, and their stability, varies depending onm1,m2, andm3. In this work we study
the points, L0,4,5,6, which are the only libration points which can have saddle-focus stability

stable or unstable manifold in a neighborhood of the equilibrium (Cabré et al. 2003a, b,
2005). Then, we implement the analytic continuation scheme for local invariant manifolds
developed by Kalies et al. (2018), where it was applied to some two-dimensional manifolds
in the Lorenz system. We adapt this scheme for the CRFBP and compute atlases for the local
stable/unstable manifolds attached to a saddle-focus equilibrium. By an atlas, we mean a
collection of analytic maps or charts of the form, P : [−1, 1]2 → R

4, where the image of P
lies in the stable or unstable manifold. The union of these charts is a piecewise approximation
for a large portion of the manifold away from the equilibrium. For a more formal definition,
see any standard text on differential geometry. The charts are computed using high-order
polynomial approximations with algorithms that exploit automatic manipulations of formal
series.

After computing the stable/unstablemanifold atlases, we post-process to find approximate
intersections. Once a potential intersection is located, we refine the approximation using a
Newton scheme for a two-point boundary value problem as in the classical work of Doedel
andFriedman (1989),Doedel et al. (1997). In the case of theCRFBP, our algorithm identifies a
large collection of connecting orbitswhich are naturally ordered by connection time.We focus
on themaximally symmetric case of equalmasses, whichwe refer to as the triple Copenhagen
problem. We prove that a rotational symmetry in this case reduces the complexity of the atlas
computations by a factor of 3.

The algorithm for producing the atlases utilizes an adaptive subdivision routine to carefully
control errors. This results in a large number of charts, on the order of tens of thousands,
in only a few minutes of computation time. These computations are expensive in terms of
memory usage, and it is impractical to recompute the atlases for a large number of parameter
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values, at least given the resources of the present study, namely laptop/desktop computers
running single threads. Instead, after computing an ensemble of connecting orbits for the
triple Copenhagen problem, we apply numerical continuation to the boundary value problem
describing the homoclinics. That is, we use the connections found for the equal mass case as a
jumping off point for exploring nearby—but nonsymmetric—mass parameters. Continuation
of the connecting orbits is much more efficient than continuing the entire invariant manifold
atlas.

As is well known, the bifurcation structure of the homoclinic continuation problem in
the Hamiltonian setting is rich. We do not attempt automatic tracking of new branches, nor
do we follow folds. A more systematic study of the branching would make an excellent
topic for future study, perhaps by combining our invariant manifold atlas data with powerful
continuation software such as AUTO (Champneys et al. 1996).

We emphasize that our restriction to the equal masses case is due to convenience and is
not a technical restriction on the method itself. Our atlas algorithm applies to any choice
of parameters or even to other Hamiltonian systems. Thus, even though we abandon the
branch whenever the homoclinic continuation algorithm fails, we always have the ability to
dig deeper into the cause of failure by running the full atlas computation from scratch.

We remark that our method is deployed in the full phase space and does not require
choosing a fixed surface of section in which to study intersections of the invariant manifolds.
This is advantageous as many problems do not admit a single section for which the return
map is topologically conjugate to the true dynamics. Considering the intersections of the
stable/unstable manifolds in a particular section may not reveal all the connecting orbits.
Moreover, the first intersections to appear in phase space may not be the first to appear in
a given section. Indeed, projecting to a section can introduce discontinuities which make
it impossible to precisely formulate notions like “first intersection.” The great virtue of a
surface of section (restricted to an energy level) is that it leads—at least in the case of a
two-degree-of-freedom Hamiltonian—to a two-dimensional representation of the dynamics.
We remark that the methods of the present work generalize to systems with three or more
degrees of freedom, where considering surfaces of section is less fruitful.

2 Saddle-focus equilibrium solutions of the equilateral CRFBP

In this section, we review well known results about the set of equilibrium solutions in the
CRFBP, focusing on material which informs the calculations carried out in the remainder of
the work. We are especially interested in the number and location of saddle-foci and in how
these depend on the mass ratios. First, we recall the mathematical formulation of the problem
and some of its elementary properties.

2.1 The planar equilateral circular restricted four-body problem

Consider three particles with masses 0 < m3 ≤ m2 ≤ m1 < 1, normalized so that

m1 + m2 + m3 = 1.

These massive particles are referred to as the “primaries.” Suppose that the primaries are
located at the vertices of a planar equilateral triangle, rotating with constant angular veloc-
ity. That is, we assume that the three massive bodies are in the triangular configuration of
Lagrange. We choose a co-rotating coordinate frame which puts the triangle in the xy-plane

123



Homoclinic dynamics in a restricted four-body problem Page 5 of 55 13

and fixes the center of mass at the origin. We orient the triangle so that the first primary is on
the negative x-axis, the second body is in the lower right quadrant, and the smallest body is in
the upper right quadrant. Once in co-rotating coordinates, we are interested in the dynamics
of a fourth, massless particle with coordinates (x, y), moving in the gravitational field of the
primaries. The situation is illustrated in Fig. 1.

We write (x1, y1), (x2, y2) and (x3, y3) to denote the locations of the primary masses. Let

K = m2(m3 − m2) + m1(m2 + 2m3).

Taking into account the normalizations discussed above, the precise positions of the primary
bodies are given by the formulas

x1 =
−|K |

√
m2

2 + m2m3 + m2
3

K
, y1 = 0,

x2 = |K | [(m2 − m3)m3 + m1(2m2 + m3)]

2K
√
m2

2 + m2m3 + m2
3

y2 = −√
3m3

2m3/2
2

√
m3

2

m2
2 + m2m3 + m2

3

x3 = |K |
2
√
m2

2 + m2m3 + m2
3

, y3 =
√
3

2
√
m2

√
m3

2

m2
2 + m2m3 + m2

3

.

Define the potential function

Ω(x, y) := 1

2
(x2 + y2) + m1

r1(x, y)
+ m2

r2(x, y)
+ m3

r3(x, y)
, (1)

where
r j (x, y) :=

√
(x − x j )2 + (y − y j )2, j = 1, 2, 3, (2)

and let x = (x, ẋ, y, ẏ) ∈ R
4 denote the state of the system. The equations of motion in the

rotating frame are

x′ = f (x),

where

f (x, ẋ, y, ẏ) :=

⎛
⎜⎜⎝

ẋ
2 ẏ + Ωx (x, y)

ẏ
−2ẋ + Ωy(x, y)

⎞
⎟⎟⎠ . (3)

The system conserves the quantity

E(x, ẋ, y, ẏ) = − (
ẋ2 + ẏ2

) + 2Ω(x, y), (4)

which is called the Jacobi integral. Note that E is smooth—in fact real analytic—away from
the primaries. The zero velocity curves are defined by fixing a value of the energy and setting
ẋ, ẏ to zero. These curves are useful for understanding the structure of the phase space and
are illustrated in Fig. 2.

As mentioned in the introduction, the CRFBP has exactly 8, 9 or 10 equilibrium solutions,
depending on the values of the mass parameters m1,m2, and m3. The equilibria are referred
to as libration points in the dynamical astronomy literature, and we denote them by L j

for 0 ≤ j ≤ 9. A typical configuration of these libration points is illustrated in Fig. 1,
which also illustrates out naming convention. In the present work we are interested in the
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Fig. 2 Zero velocity curves for the triple Copenhagen problem: fixing a value of the Jacobi constant and
setting velocity equal in Eq. (4) implicitly defines the zero velocity curves in the phase space of the CRFBP.
An orbit which reaches one of these curves arrives with zero velocity and hence turns around immediately.
These define natural boundaries which orbits at a given energy level may not cross. Left: the zero velocity
curves associated with the energy levels of L1,2,3 (top left) L0 (top right), L4,5,6 (bottom left), and L7,8,9.
Right: a typical orbit in the L0 energy level confined by the zero velocity curves

Fig. 3 Two-dimensional local invariant manifolds in the triple Copenhagen problem (CRFBP with equal
masses): Left: all two-dimensional attached invariant manifolds for libration points in the equal mass case
(one-dimensional manifolds not shown). In the case of equal masses, the libration pointsL0,4,5,6 have saddle-
focus stability. Orbits are shown accumulating to the libration points in forward/backward time (green/red,
respectively). The libration points L4,5,6,7,8,9 on the other hand have saddle × center stability. In this case
each libration point has an attached center manifold foliated by periodic orbits—the so-called planar Lyapunov
orbits. We make no systematic study the Lyapunov orbits in the present work and only remark that they appear
to organize some of the homoclinic orbits in the discussion to follow. Right: closeup on the inner libration
points and their invariant manifolds. All references to color refer to the online version

linear stability of the libration points. We are especially interested in determining the mass
ratios where L j with j = 0, 4, 5, 6 are saddle-focus—as opposed to real saddle or center ×
center—equilibria. This question is considered from a numerical point of view in Sect. 2.2.

We note that for all values of the masses, L j with j = 1, 2, 3, 7, 8, 9 have either saddle
× center, or center × center stability depending on the values of the masses. The local two-
dimensional invariant manifolds attached to all ten libration points are illustrated in Fig. 3,
for the case of equal masses.
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2.2 Saddle-foci in parameter space

The CRFBP admits as many as four and as few as zero saddle-focus equilibrium points,
depending on the mass ratios. We now consider briefly what happens in between these
extremes as the masses are varied. The problem is normalized so that m1 + m2 + m3 = 1,
with m3 ≤ m2 ≤ m1, so we have that m1 ∈ [1/3, 1], m2 ∈ [0, 1/2] and m3 ∈ [0, 1/3]. Con-
sidering the 2-simplex in R

3 satisfying these constraints, we see that when m1 ∈ [1/3, 1/2]
we have

m3 ∈
[
−2m1 + 1,

−1

2
m1 + 1

2

]
,

while for m1 ∈ [1/2, 1] we have

m3 ∈
[
0,

−1

2
m1 + 1

2

]
.

In either case, once we choose m1 and m3, the value of m2 is determined by

m2 = 1 − m1 − m3.

The question is, how does the stability of the libration points depend on the mass ratios?
We address the question for each of the points, L0,4,5,6, as follows. Beginning with the case
of equal masses, m1 = m2 = m3 = 1/3, we numerically continue each equilibrium to
the opposite boundary of the parameter simplex at m3 = 0. Throughout the computation,
we track the stability of each libration point and label a parameter point with a black dot
whenever the stability is of saddle-focus type. The results are summarized in Fig. 4. We refer
to the curve in the parameter simplex where the stability changes as the Routh–Gascheau
curve.

Roughly speaking, we see that when 1/3 ≤ m1 ≤ 0.42 the libration point L0 is a saddle-
focus for all allowable values ofm2,m3. Whenm1 > 0.43, the libration pointL0 is no longer
a saddle, no matter the values ofm2,m3. The pointsL4,6 on the other hand have saddle-focus
stability for most parameter values, and only bifurcate afterm1 > 0.95 (with L6 a little more
robust thanL4 except whenm2 = m3). The libration pointL5 is the most robust. It maintains
saddle-focus stability until m1 ≈ 0.99. For m1 > 0.995 there are no more saddle-foci at all.
By reading parameter values off of the frames in Fig. 4, we can arrange that the CRFBP has
1, 2, 3 or 4 saddle-focus equilibria. In the sequel we are interested in homoclinic connections
for such parameters.

2.3 Twoways to formulate a connecting orbit: phase space geometry and boundary
value problems

There are two standard ways to think about connecting orbits and—while they are completely
equivalent from amathematical point of view—in practice they have different advantages and
disadvantages. In the following let f : R

n → R
n denote a smooth vector field and let x0 ∈ R

n

be an equilibrium solution for f . We write Ws(x0) and Wu(x0) to denote, respectively, the
stable and unstable manifolds attached to x0.

– Analytic definition If x : R → R
n satisfies

d

dt
x(t) = f (x(t)),
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L0 L4,6

L5

0.99 0.995

0.9750.960.430.423

Fig. 4 Mass values and saddle-focus stability: results of a numerical search of the parameter space. Values of
m1 are on the horizontal axis and values of m3 are on the vertical axis. These determine the remaining mass
parameter through the relation m2 = 1−m1 −m3. In each frame a parameter pair is marked with a black or
red dot if the libration point L0,4,5,6 has saddle-focus stability. The top left figure reports the results for L0,
the top right for L4,6, and the bottom frame for L5. In each case the inlay zooms in on the Routh–Gascheau
bifurcation curve. Note that these bifurcation curves are nonlinear, and that in the top right results for L4 are
black and results for L6 are red. We remark that the changes in the dot pattern in the bottom right inlay are
due to the use of an adaptive step size in our continuation algorithm

for all t ∈ R, and satisfies the asymptotic boundary conditions

lim
t→±∞ x(t) = x0,

then we say that x is a homoclinic connecting orbit for x0.
– Geometric definition If

x̂ ∈ Ws(x0) ∩ Wu(x0),

and x = orbit(x̂) denotes the orbit which passes through x̂ , then x is a homoclinic
connecting orbit for x0. If the intersection of the manifolds is transverse, then we say that
x is a transverse homoclinic connection.
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The analytic definition is recast as a finite time boundary value problem by projecting the
boundary conditions onto local stable/unstable manifolds. If P, Q are parameterizations of
the local unstable and stablemanifolds, respectively, thenwe look for T > 0 and x : [0, T ] →
R
n , so that x solves the differential equation subject to the boundary conditions

x(0) ∈ image(P), and x(T ) ∈ image(Q).

In applications one frequently replaces P and Q by their linear approximations. In Sect. 3 we
review an approach called the parameterizationmethod for computing high-order polynomial
approximations of the local charts P, Q.

Remark 1 (Relative strengths and weaknesses) One great advantage of the analytic formula-
tion is that, since it is equivalent to a two-point boundary value problem, we can utilize the
Newton method to find very accurate solutions—often on the order of machine precision.
The formulation as a boundary value problem also lends itself to numerical continuation
schemes, which are very useful for exploring the parameter space. The disadvantages are
twofold. First, in this formulation it is necessary to begin the Newton iteration with a fairly
good approximate solution and this raises the question:Where do the approximate solutions
come from? Second, it is difficult to rule out solutions using the BVP approach.

In the geometric approach, there is no need to make a guess. Instead, one moves along the
stable and unstable manifolds and identifies connections by locating intersections in phase
space. At the same time, the geometric approach allows one to rule out connecting orbits
by showing that a particular region of phase space does not contain any intersections. The
difficulty with the geometric perspective is that it provides information only as good as our
knowledge of the embeddings of the stable/unstable manifolds. Computing embeddings of
invariant manifolds is challenging, and methods tend to decrease in accuracy the farther from
the equilibrium they are applied.

The important point, from the perspective of the present work, is that these two approaches
complement one another. The geometric formulation is good for locating and ruling out
connections, while the analytic formulation is good for refining approximations and for
continuation with respect to parameters. This suggests the approach of the present work:
namely that we use the two formulations in concert, playing the strengths of one against the
weaknesses of the other as appropriate.

We remark that in many applications it is convenient to examine the intersections of
the invariant manifolds in an intermediate surface of section. This is especially true for
two-degree-of-freedom systems as the section intersected with the energy level leads to a
two-dimensional image which is easy to visualize. Often an appropriate section is suggested
by the geometry of the problem, or by the goals of a particular space mission. We refer the
interested reader to the works (Koon et al. 2000; Canalias and Masdemont 2006; Barrabés
et al. 2009) for examples and fuller discussion.

3 Numerical computation of the stable/unstable manifolds

The results of Sect. 2.2 show that for most parameter values, the CRFBP has either three
or four saddle-focus equilibria—though for some parameters it may have only two, or one,
or none. For a given saddle-focus equilibrium with fixed values of the mass parameters,
we compute the invariant manifolds in two steps. First, we find a high-order expansion of
an initial local chart containing the equilibrium solution. Then we use a high-order Taylor
integration scheme to advect the boundary of the initial chart one subarc at a time. The second
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step is repeated until a certain integration time has been reached, or until some error tolerance
has been exceeded. Along the way, it is sometimes necessary to subdivide boundary arcs in
order to manage the truncation errors.

Our computation of the initial chart employs the parameterization method, which is
reviewed in Sect. 3.1. Advection of the boundary uses a Taylor integration scheme similar to
the one developed in Kalies et al. (2018), but adapted to the problem at hand. Both procedures
exploit differential-algebraic manipulations of formal power series, and these manipulations
are delicate due to the presence of the minus two-thirds of power in the nonlinearity of the
CRFBP vector field.

One technique for manipulating power series of several complex variables involves auto-
matic differentiation combined with the radial gradient. This procedure is developed in Haro
et al. (2016) and is reviewed in “Appendix B.” Another technique involves appending addi-
tional variables and equations to the problem, so that the enlarged field is polynomial and
equivalent to the original CRFBP on a certain submanifold. This option is discussed at length
for the CRFBP in Kepley and Mireles James (2018) which also includes a more precise
definition of what “equivalent” means here. See also Lessard et al. (2016) and Rabe (1961).

3.1 Parameterizationmethod for the local invariant manifold

We now review the parameterization method adapted to the needs of the present work,
namely for a stable/unstable manifold attached to a saddle-focus equilibrium in R

4. Much
more general treatment of the parameterization method is found in Cabré et al. (2003a, b,
2005). See also the book on this topic (Haro et al. 2016).

Let x0 ∈ R
4 denote a saddle-focus equilibrium point. Specifically, we suppose f (x0) = 0,

λ1,2 = −α ± iβ,

with α, β > 0 denotes the stable eigenvalues for Df (x0), and ξ1,2 ∈ C
4 denotes a choice of

associated complex conjugate eigenvectors.
Since the eigenvalues are complex, it is convenient to look for a complex parameterization

of a local stable manifold. Let

D2 = {
(z1, z2) ∈ C

2 : |z j | < 1, j = 1, 2
}

denote the unit complex polydisc. We look for a parameterization P : D2 → C
4 satisfying

the infinitesimal conjugacy given by

DP(z)Λz = f (P(z)), (5)

where z = (z1, z2)T, and

Λ =
(

λ1 0
0 λ2

)
.

Equation (5) is subject to the first-order constraints

P(0, 0) = x0, and
∂

∂z1,2
P(0, 0) = ξ1,2. (6)

Note that

DP(z)Λz = λ1z1
∂

∂z1
P(z1, z2) + λ2z2

∂

∂z2
P(z1, z2),
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Fig. 5 Geometric interpretation
of the parameterization method
for differential equations: Eq. (5)
requires that the push forward of
the vector field Λ by P matches
the vector field f on the image of
P . A function satisfying this
equation is a parameterization of
a local stable manifold

is the push forward of the linear vector field by P . The geometric meaning of Eq. (5) is
illustrated in Fig. 5.

Let Φ denote the flow generated by f . Any P satisfying Eq. (5) on D2 also satisfies the
flow conjugacy

Φ(P(z1, z2), t) = P(eλ1t z1, e
λ2t z2), (z1, z2) ∈ D2. (7)

In particular, if P satisfies bothEq. (5) and the constraints ofEq. (6), then for any (z1, z2) ∈ D2

it follows that

lim
t→∞ Φ(P(z1, z2), t) = lim

t→∞ P(eλ1t z1, e
λ2t z2)

= P(0, 0)

= x0,

so that P(D2) ⊂ Ws(x0). Combining this with the fact that the image of P contains x0 and
is tangent to the stable eigenspace at x0 we see that P parameterizes a local stable manifold
for x0. Moreover, we recover the dynamics on the manifold through the conjugacy.

When the vector field f is analytic near x0, then Ws(x0) is an analytic manifold, and it
makes sense to look for an analytic chart of the form

P(z1, z2) =
∞∑

m=0

∞∑
n=0

pm,nz
m
1 z

n
2,

with pm,n ∈ C
4 for all m, n ∈ N. Since we are interested in the real image of the chart, we

look for a solution of Eq. (5) with

P(z, z̄) ∈ R
4,

for all |z| < 1. This is achieved whenever the power series coefficients of the solution satisfy

pn,m = pm,n, (8)

for all (m, n) ∈ N
2. The real parameterization P̃ : B → R

4 is recovered using complex
conjugate variables

P̃(σ1, σ2) = P(σ1 + iσ2, σ1 − iσ2).
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Elementary proofs of the facts discussed in this section are found, for example, in Kepley
and Mireles James (2018).

3.2 Power series solution of Eq. (5)

We describe threemethods for computing the power series coefficients of an analytic solution
of the invariance equation given in Sect. 3.1. Combining these methods leads to very efficient
numerical methods.

3.2.1 Solution by power matching

Plugging the unknown power series expansion for P into Eq. (5) leads to

∞∑
m=0

∞∑
n=0

(mλ1 + nλ2)pm,nz
m
1 z

n
2 =

∞∑
m=0

∞∑
n=0

[ f ◦ P]m,nz
m
1 z

n
2 .

It is shown in Cabré et al. (2003a) (see also the discussion in Haro et al. 2016) that when we
match like powers and isolate pm,n we are led to an expression of the form

(mλ1 + nλ2)pm,n = [ f ◦ P]m,n

= Df (p0,0)pm,n + R(P)m,n,

where R(P)m,n depends in a nonlinear way on coefficients p j,k with 0 ≤ j + k < m + n.
Isolating the variable pm,n on the left leads to the homological equations

[Df (x0) − (mλ1 + nλ2)Id] pm,n = −R(P)m,n . (9)

Remark 2 (The formal solution is well defined) Observe that Eq. (9) is linear in pm,n and
has a unique solution as long as mλ1 + nλ2 is not an eigenvalue of Df (x0). But λ2 = λ1,
and since any remaining eigenvalues are assumed to be unstable, we have that mλ1 + nλ2 is
never an eigenvalue of Df (x0). Hence the matrix on the left-hand side of the homological
equation (9) is invertible for all m + n ≥ 2.

Given any first-order data as in the constraint Eq. (6), the homological equations are
uniquely solvable to all orders and the corresponding formal series solution of Eq. (5) is well
defined. Since each Taylor coefficient is uniquely determined by the homological equations
(9), it follows that the formal series solution is unique up to the choice of the scalings of the
eigenvectors in Eq. (6). Solving the homological equations recursively to order N ≥ 2 pro-
vides a polynomial chart PN which approximately parameterizes the local stable manifold.

Remark 3 (Reality of the parameterization) Taking complex conjugates in the homological
equations (9) shows that the coefficients pm,n have the symmetry of Eq. (8).

3.2.2 A Newton scheme

A quadratic convergence scheme for Eq. (5) is obtained as follows. Define the nonlinear
operator

Ψ [P](σ ) = DP(σ )Λσ − f (P(σ )),
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where f is the CRFBP vector field, and note that a zero ofΨ is a solution of Eq. (5).Moreover,
we note that, at least formally, the Fréchet derivative is given by

DΨ [P]H(σ ) = DH(σ )Λσ − Df (P(σ ))H(σ ).

In fact this is the correct Fréchet derivative of Ψ when, for example, we consider Ψ defined
on a Banach space of analytic functions, see Cabré et al. (2003a, 2005), de la Llave and
Mireles James (2012).

Choose P0 an approximate zero of Ψ , and define the sequence

Pn+1 = Pn + �n,

where �n is the formal series solution of the linear equation

DΨ [P]� = −Ψ [P]. (10)

If P0 is a good enough approximate solution of Eq. (5) we expect Pn to converge quadratically
to a zero of Ψ . The linear operator DΨ [P] nonconstant coefficient, and Eq. (10) may be
solved recursively via the following power matching scheme. Define

�(σ1, σ2) =
∞∑

m=0

∞∑
n=0

�m,nσ
m
1 σ n

2 ,

Df (P(σ )) =
∞∑

m=0

∞∑
n=0

Am,nσ
m
1 σ n

2 ,

and

−Ψ (P(σ )) =
∞∑

m=0

∞∑
n=0

qm,nσ
m
1 σ n

2 .

Here �m,n, qm,n ∈ C
4, and Amn are 4 × 4 complex valued matrices for all (m, n) ∈ N

2.
Plugging these series expansions into Eq. (10) leads to

∑
m+n≥2

⎛
⎝(mλ1 + nλ2)�m,n −

m∑
j=0

n∑
k=0

Am− j,n−k� j,k

⎞
⎠ σm

1 σ n
2 =

∑
m+n≥2

qm,nσ
m
1 σ n

2 ,

or, upon matching like powers,

(mλ1 + nλ2)�m,n −
m∑
j=0

n∑
k=0

Am− j,n−k� j,k = qm,n,

for all m + n ≥ 2. We note that the sum contains one term of order �mn , appearing when
j = m and k = n. That is

m∑
j=0

n∑
k=0

Am− j,n−k� j,k = A00�mn + “lower-order terms of �”.

Let

δ̃
m,n
j,k =

{
1 j < m or k < n

0 j = m and k = n
.
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Then we use δ̃
m,n
j,k to extract terms of order (m, n) from the sum and write the equation for

�mn as

(mλ1 + nλ2)�m,n − A0,0�m,n −
m∑
j=0

n∑
k=0

δ̃
m,n
j,k Am− j,n−k� j,k = qm,n .

Recall that A0,0 = Dg(0) = Df (x0), so that rearranging terms leads to the linear equations

(Df (x0) − (mλ1 + nλ2)Id)�m,n = −qm,n −
m∑
j=0

n∑
k=0

δ̃
m,n
j,k Am− j,n−k� j,k, (11)

for m + n ≥ 2. Since the right-hand side of Eq. (11) is exactly the right-hand side appearing
in the homological equations (9) of Sect. 3.2.1, arguing as in Remarks 2 and 3 shows that
the equations of (11) are uniquely solvable for all m + n ≥ 2 just as before, and that the
resulting power series coefficients have the desired symmetry. Then this Newton scheme is
well defined on the space of formal power series.

3.2.3 A pseudo-Newton scheme

While the Newton scheme of the previous section converges rapidly (in the sense of the
number of necessary iterations), solving the required nonconstant coefficient linear equations
is expensive. In this case the overall computation may be slow just because of the cost of
computing the individual corrections. The iterations can be speeded up as follows.

First, we note that

DΨ [P]�(σ) = D�(σ)Λσ − Df (x0)�(σ) + “higher-order terms”,

and we define a new iterative scheme

Pk+1(σ ) = Pk(σ ) + �̃k(σ ),

where �̃k is a solution of the constant coefficient linear equation

D�̃k(σ )Λσ − Df (x0)�̃k(σ ) = −Ψ (Hk).

On the level of power series, this equation becomes

∞∑
m=0

∞∑
n=0

[(mλ1 + nλ2)Id − Df (x0)] �̃m,nσ
m
1 σ n

2 =
∞∑

m=0

∞∑
n=0

qm,nσ
m
1 σ n

2 ,

and matching like powers yields the linear equations

[Df (x0) − (mλ1 + nλ2)Id] �̃m,n = −qm,n .

These homological equations uniquely determine the coefficients �̃m,n and have the virtue
of being “diagonal” in Taylor coefficient space. In practice we find that the pseudo-Newton
scheme requires more iterates than the Newton method to converge. However, a single itera-
tion step is much faster and for reasonable values of N the pseudo-Newton method is faster
overall. We discuss this further below.

Remark 4 In practice the linear approximation of P by the eigenvectors provides a good
initial guess for the Newton and pseudo-Newton schemes, especially when computations
are started “from scratch.” However, within the context of calculations based on parameter
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Table 1 Runtime data for the parameterization method: here the manifolds are first computed to order N0 in
order to measure the exponential decay rate associated with the Taylor coefficients

N N0 τ maxm+n=N ‖pm,n‖ Recursion (s) Newton (s) Pseudo-Newton (s)

10 5 0.024 8.4 × 10−15 3.1 0.49 0.45

20 5 0.13 2.9 × 10−12 3.3 0.94 0.73

20 10 0.09 9.9 × 10−16 3 0.7 0.62

30 10 0.15 2.9 × 10−15 3.5 2.1 1.2

30 15 0.15 1.2 × 10−15 3.8 1.6 1.1

30 20 0.15 1.2 × 10−15 4.4 1.7 0.93

40 20 0.21 4.5 × 10−15 4.6 4.0 2.01

70 30 0.27 4.1 × 10−15 9.9 28.1 14.9

70 50 0.27 1.2 × 10−15 10.9 30.8 12.2

These data are used to determine the optimal eigenvector scaling, and then the coefficients are computed
to order N in a “production run.” The initial computation is always computed to order N0 by recursion.
Then the production run is computed either by recursion, by Newton, or by the pseudo-Newton method.
The computations were performed on a MacBook Air with a 1.8GHz Intel Core i5 processor and 8GB of
1600MHz RAM running the version 10.12.6 of the Sierra operating system with MATLAB version 2017b.
The same computations run about twenty percent faster on a Mac Pro desktop with a 3.7GHz quad-core Intel
Xenon E5 processor and the same version of MATLAB

continuation, we will take P0 as the high-order parameterization from the previous mass
values.

Indeed, it seems that the best results are obtained by a “hybrid” approach. That is, we
compute an initial guess P0 by recursively solving Eq. (9) to some fixed order, N0. Then, we
refine this approximation via the Newton or pseudo-Newton scheme to obtain a polynomial
approximation to order, N > N0. The runtime performance for this hybrid approach is
recorded in Table 1.

Remark 5 (Quantifying the errors) Suppose that the polynomial

PN (z1, z2) =
∑

0≤m+n≤N

pm,nz
m
1 z

n
2,

is an approximation solution of Eq. (5). One way to measure the quality of the approximation
is to measure the defect associated with PN defined by the quantity

defect(PN ) = sup
z∈D2

∣∣∣
∣∣∣DPN (z)Λz − f (P(z))

∣∣∣
∣∣∣
C4

.

This quantity could be approximated by evaluating on a mesh of points in D. On the other
hand, we can use the fact that for power series on the unit disk we have the bound

sup
z∈D2

‖g(z)‖C4 ≤
∞∑

m+n=0

‖am,n‖C4 ,

where the infinite sum can be approximated by a finite sum. Then another useful a-posteriori
indicator is obtained by choosing an N ′ > N and computing the quantity

εa-posteriori =
∑

0≤m+n≤N ′

∥∥∥(mλ1 + nλ2)p
N
m,n − [ f ◦ PN ]m,n

∥∥∥
C4

,
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Table 2 Taylor order, scaling, and error bounds for the parameterization method: table reports the numerical
defect and numerical conjugacy error associated with the local stable/unstable manifold parameterization for
a number of example computations, as functions of the polynomial order and eigenvector scalings

N ‖ξ‖ maxN ‖pm,n‖ Defect Conj error # Machine eps

1 10−8 10−8 2.3 × 10−15 3.9 × 10−15 18

1 10−6 10−6 1.4 × 10−11 1.3 × 10−11 5,855

1 10−4 10−4 1.39 × 10−7 1.3 × 10−7 5.9 × 108

1 1 1 13.9 4.1 2.3 × 1016

2 10−6 1.4 × 10−12 9.2 × 10−16 1.5 × 10−14 68

3 10−4 2.9 × 10−12 6.5 × 10−15 1.6 × 10−14 73

4 10−3 3.9 × 10−12 7.9 × 10−14 2.8 × 10−14 356

5 10−3 2.5 × 10−15 1.3 × 10−15 1.6 × 10−14 73

7 10−2 3.6 × 10−13 2.9 × 10−13 8.6 × 10−14 1036

10 10−2 1.2 × 10−18 9.3 × 10−16 1.6 × 10−14 73

15 10−1 6.2 × 10−12 3.9 × 10−10 5.3 × 10−11 1.7 × 106

20 10−1 4.1 × 10−15 3.9 × 10−13 4.9 × 10−14 1, 756

25 10−1 2.9 × 10−18 1.6 × 10−15 5.6 × 10−14 253

35 1.5 × 10−1 2.2 × 10−18 2.4 × 10−15 1.1 × 10−13 495

45 2 × 10−1 3.1 × 10−17 3.3 × 10−14 1.0 × 10−13 450

65 2.5 × 10−1 2.6 × 10−17 7.7 × 10−14 1.1 × 10−13 495

Thefirst column records the polynomial order N of the approximation PN . The second column is themagnitude
‖ξ‖ of the eigenvector (the scaling of the parameterization). These are the inputs which must be specified by
the user in any computation using the parameterization method. The third column reports the corresponding
bound onmagnitude of the highest order Taylor coefficients. The fourth and fifth columns record the numerical
defect and conjugacy error, respectively. The sixth column reports the worst of these two quantities measured
in multiples of machine epsilon

where pNm,n are the power series coefficients of P
N , and [ f ◦ PN ]m,n are the coefficients of

f (PN (z)). Of course this bounds also the real image of PN .
If f is a polynomial of order K , then we take N ′ = K N . If f is not a polynomial, then

the power series for f ◦ PN has infinitely many terms even though PN is polynomial. Then
we choose N ′ > N somewhat arbitrarily. Note that pNm,n are zero when m + n > N , so that
eventually the sum involves only the coefficients of the composition.

Yet another useful error indicator is obtained by considering the dynamical conjugacy of
Eq. (7). Since the true solution satisfies the dynamical conjugacy exactly, we consider also
the quantity defined by

conjugacyDefect(PN ) = sup
z∈D2

sup
t>0

∣∣∣∣Φ(P(z1, z2), t) − P(eλ1t z1, e
λ2t z2)

∣∣∣∣
C4 .

To approximate this quantity, we fix τ > 0 and let Φnum denote a numerical integrator and
zk , 1 ≤ k ≤ K be a mesh of the complex circle so |zk | = 1. Define the indicator

εconjugacy = max
1≤k≤K

∥∥∥Φnum(PN (zk, zk), τ ) − PN (eλ1τ zk, e
λ2τ zk)

∥∥∥
C4

.

Error bounds for a number of example computations are recorded in Table 2.
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Remark 6 (Eigenvector scaling and coefficient decay) Solutions of Eq. (5) are only unique up
to the choice of the scalings of the eigenvectors and this freedom is exploited in our numerical
algorithms. Indeed, this is the reason we can always take our domain to be the unit disk. The
results in Table 2 describe the dependence of the numerical errors on the approximation order
and the eigenvector scalings. These numerical experiments lead to the following heuristic. If
we scale the eigenvectors so that the final coefficients—that is the N -th-order coefficients of
PN—are on the order of machine epsilon, then we obtain a-posteriori errors on the order of
machine epsilon.

3.3 Integration of analytic arcs

In Sect. 4 we present a scheme for computing an atlas for the stable/unstable manifolds which
relies on integrating analytic arcs of initial conditions by the flowgenerated by f .We describe
this integrator in terms of power series expansions. Let us assume that γ : (−1, 1) → R

4 is
an analytic arc with power series expansion

γ (s) =
∞∑
n=0

γns
n γn ∈ R

4.

Denote the formal series expansion

Γ (s, t) = Φ(γ (s), t) =
∞∑

m=0

∞∑
n=0

am,ns
ntm am,n ∈ R

4.

Here, we use the variables (s, t) in place of (z1, z2) to emphasize the intuition that s cor-
responds to the “spatial” parameterization along the initial data, and t corresponds to the
“time” parameterization along the flow. In other words, we consider Γ as the solution of the
parameterized family of initial value problems

d

dt
Γ (s, t) = f (Γ (s, t)), Γ (s, 0) = γ (s), s ∈ (−1, 1).

Substituting the formal series into this IVP and matching like powers leads to the recursion
relations

am+1,n = 1

m + 1
[ f ◦ Γ ]m,n, a0,n = γn,

which allow us to compute the coefficients of Γ to arbitrary order using the same methods
described in Sect. 3.2. We also note that the precision of these formal series computations
depend on convergence and domain decomposition of these series expansions which has not
been addressed and will also be taken up in the following section.

4 Building an atlas for the local stable/unstable manifold

In this section, let W ∗(x0) denote an invariant stable/unstable manifold for a saddle-focus
equilibrium, x0. Our goal is to describe an algorithm for producing an atlas of chart maps
which parameterizes a large portion of the invariant manifold. The union of the images of
these maps is a piecewise parameterization of a two-dimensional subset of W ∗(x0). Our
procedure is iterative and at each step outputs a (strictly) larger piecewise parameterization.
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It is important to emphasize that our computations are carried out only to finite order.
In particular, the charts described in this section are analytic functions of two complex
variables. However, in practice we fix (M, N ) ∈ N

2, and for each chart we compute a finite
polynomial approximation of order (M, N ). Nevertheless, throughout this section we denote
these analytic charts and their polynomial approximations using the same notation. We end
this section by outlining methods for reliably, efficiently, and automatically computing these
atlases. This includes algorithms for estimating and controlling truncation errors, identifying
Taylor series blowup, domain decomposition, and stiffness.

4.1 Iterative method for computing charts

Before elaborating on the technical details of our method, we briefly describe the overall
strategy. Starting from the parameterized local invariant manifolds obtained via methods
described in Sect. 3.1, we want to build an even larger representation of the manifold. There
are many ways to grow such a representation. We could, for example, simply integrate a
collection of initial conditions meshing the boundary of the parameterization. However, as
is well known, the exponential separation of initial conditions will force these orbits apart
and eventually degrade the description of the manifold. Instead, we mesh the boundary into a
collection of one-dimensional arcs and advect each of these under the flow. Propagating these
arcs maintains the fidelity of the representation, and leads to new “patches” of the manifold.

Since the initial chart is parameterized by a high-order polynomial, wewould like the same
representation for new charts. To this end we develop a high-order Taylor integration scheme
which applies to analytic arcs of initial conditions. This results in a power series representation
of the flow of a boundary arc, and we take this as our next chart. After advecting each one of
the boundary arcs, we have a new and strictly larger representation of local stable/unstable
manifold. The idea is illustrated in Fig. 4.

After one step of this procedure, we have moved the boundary of the local invariant
manifold. In some cases, the image of the advected arc undergoes excessive stretching due
to the exponential separation of initial conditions. This stretching in phase space is matched
by a corresponding blow up in coefficients of the Taylor expansion, and the computations
become numerically unstable.

This problem is overcome by occasionally remeshing the boundary of the atlas. This comes
at a cost of increasing the number of charts in the next step of the algorithm. Hence, efficiently
computing large atlases while controlling numerical error requires automatic algorithms for
managing the growth of the power series coefficients, deciding how long to integrate each
individual arc, and deciding when and how to subdivide the new boundaries. These topics
account for much of the technical details which follow (Fig. 6).

4.1.1 The initial local manifold

The first step in our algorithm is to compute a polynomial approximation of the local param-
eterization, either by directly solving the homological equations or by iterating the Newton
or pseudo-Newton schemes described in Sect. 3.1. Let Γ0 be a solution of Eq. (5), and D2

denote the unit polydisc inC
2. Recall that Γ0 : D2 → W ∗

loc(x0) is analytic, and that Γ0(∂D2)

is flow transverse. In particular, Γ0 serves as our initial local parameterization, and we refer
to it as a zeroth-generation interior chart and we write Γ0(D2) = W ∗

0 (x0).
In practice, we compute Γ0 to order (N , N ) with N ∈ N chosen by applying the heuristic

methods discussed in Sect. 3.2. This chart is represented in the computer as a polynomial
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Fig. 6 Building an atlas: here P is a chart for a neighborhood of the equilibrium x0 computed using the
parameterization method. To grow the atlas, we mesh the boundary of the P using a collection of analytic arcs
γ j (s). Each of these arcs is advected under the flow Φ to produce a new chart Γ j (s, t) = Φ(γ j (s), t). The
union of P with all the Γ j is an atlas for a larger local stable/unstable manifold

in two complex variables of total degree deg(Γ0) = (N − 1)2. The truncation error of this
approximation is controlled directly by choosing the eigenvector scaling as described in
Remark 6, and in practice, is on the order of machine epsilon.

4.1.2 The initial manifold boundary

With Γ0 in hand, we fix K0 ∈ N and subdivide ∂D into K0-many analytic segments, each
of which has the form, c j : [− 1, 1] → ∂D, for 1 ≤ j ≤ K0. We parameterize ∂W ∗

0 (x0)
by defining γ j (s) = Γ0 ◦ c j (s) and we refer to γ j as a lifted boundary. Note that for each
1 ≤ j ≤ K0, γ j : [− 1, 1] → ∂W ∗

loc(x0) and γ j ([− 1, 1]) is a flow transverse arc since Γ0 is
a dynamical conjugacy and the image of c j is transverse to the linear flow. Now, we define
the zeroth-generation boundary to be

∂W ∗
0 (x0) =

K0⋃
j=1

γ j ([− 1, 1]),

and refer to each γ j as a zeroth-generation boundary chart.

4.1.3 The next generation

Now, we apply the high-order Taylor advection described in Sect. 3.3 to grow a larger local
manifold denoted by W ∗

1 (x0). Specifically, for 1 ≤ j ≤ K0, we choose |τ j | > 0, and our
advection algorithm takes γ j , τ j as input and produces a chart, Γ1, j : D → W ∗(x0) which
satisfies

Γ1, j (s, t) = Φ

(
γ j (s),

t

τ j

)
for (s, t) ∈ [− 1, 1]2.
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In other words, Γ1, j parameterizes the advected image of γ j under the flow over the time
interval [0, τ j ]. These new charts are referred to as first-generation interior charts which we
add to our atlas to obtain the first-generation local parameterization

W ∗
1 (x0) = W ∗

0 (x0) ∪
K0⋃
j=1

Γ1, j (D).

Note that τ j �= 0 and since γ j is flow transverse, we haveW ∗
0 (x0) � W ∗

1 (x1) is a strict subset.
In fact, transversality of γ j implies the stronger condition that ∂W ∗

0 (x0) ⊂ Int(W ∗
1 (x0)), i.e.,

the manifold has grown through every point on the previous boundary.

Remark 7 (Time rescaling) In this description, τ j serves as a time rescaling of the flow. This
allows direct control over the truncation error (in the time direction) and is analogous to
the eigenvector scaling for the initial parameterization described in Remark 6. However,
choosing this time rescaling is typically more difficult than choosing the eigenvector scaling
and we postpone the discussion of this problem to Sect. 4.2.1.

Once the first-generation interior charts are computed by advection, the first-generation
boundary arcs are now obtained by evaluation of the time variable. In particular, for 1 ≤
j ≤ K0, the evaluation, Γ1, j ([− 1, 1], 1) ⊂ ∂W ∗

1 (x0) is a flow transverse arc segment.
We perform spatial rescaling as needed (see Remark 8 below) to obtain the next-generation
boundary arcs, γ1, j : [− 1, 1] → ∂W ∗

1 (x0) where 1 ≤ j ≤ K1 for some K1 ≥ K0 and

γ1, j ([− 1, 1]) ⊂ Γ1, j ′([− 1, 1], 1) for some 1 ≤ j ′ ≤ K0

is flow transverse. The advection and evaluation algorithms are then iterated to increase the
number of charts in the atlas. The L th step in the iteration chain has the form

···�−→ ∂W ∗
L−1(x0)

advection�−−−−−→ W ∗
L(x0)

evaluation�−−−−−→ ∂W ∗
L(x0)

···�−→
whereW ∗

L(x0) is parameterized by KL−1-many interior charts (polynomials in both the space
and time variables), ∂W ∗

L(x0) is parameterized by KL -many boundary charts (polynomials
in the space variable only), and KL−1 ≤ KL .

If we stop iteration, say at the Lth step, then the final atlas,

A =
⎧
⎨
⎩Γ0,

K0⋃
j=1

Γ1, j ,

K1⋃
j=1

Γ2, j , . . . ,

KL⋃
j=1

ΓL, j

⎫
⎬
⎭ ,

is a collection of |A| = 1 +
L∑

l=1
Kl -many analytic charts is a piecewise parameterization a

portion of the invariant manifold.

Remark 8 (Spatial rescaling) The parameters, K0, . . . , KL , control the number of boundary
subdivisions, and therefore, allow direct control over scaling in the spatial direction. As in
the time rescaling problem, choosing these parameters effectively is a nontrivial problem
which we take up in Sect. 4.2.2.

4.2 Convergence, manifold subdivision, and numerical integration

Thus far, we have ignored the issue of convergence for our formal power series computations.
The best method for studying this issue is to combine rigorous numerical computations with
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a-posteriori analysis and obtain a proof of the existence of an analytic solution and explicit
error bounds on the polynomial approximation. Rigorously validated numerical methods for
invariant manifold atlases are described in detail in Kalies et al. (2018), Kepley and Mireles
James (2018). In the present work we explore the utility of invariant manifold atlases as a
purely numerical tool and trade the computer-assisted proof of rigorous error bounds for
improved runtime performance.

In the absence of a rigorous validation scheme, we develop more heuristic checks to
insure the reliability of the computations. More precisely, we must automatically identify
and fix numerical accuracy issues related to numerical Taylor integration. This amounts to
rescaling our Taylor coefficients whenever the decay in either space or time becomes too
slow. However, this is less straightforward than the eigenvector rescaling for the initial local
parameterization described in Remark 6. In particular, it is helpful to consider the rescaling
in space and time “directions” separately.

4.2.1 Time-stepping

Recall that at the saddle-focus equilibrium, the stable/unstable eigenvalues occur in complex
conjugate pairs. In particular, both eigenvalues in each pair have equal real parts. It follows
that identically rescaling each pair of eigenvectors is the ideal strategy. In fact, this strategy
is also necessary and sufficient to ensure that the initial parameterization is real-valued, see
Van den Berg et al. (2016). Moreover, in the general case of a hyperbolic equilibrium, the
real part of each eigenvalue is a measure of the expansion or contraction rate in the direction
of its associated eigenvector. Thus, in cases for which they are not equal, the real parts are
still explicitly known and the eigenvectors are scaled proportional to these rates.

On the other hand, all but the initial chart in our atlas is obtained via our advection scheme.
In this case, neither the expansion/contraction rates, nor their directions are explicitly known.
Obtaining these estimates would require solving for the (spatial) derivative of the flow on
each chart. For a general vector field defined on R

n , this amounts to increasing the phase
space dimension of our ODE solver from n, to n + n2, which would significantly reduce the
size of each manifold which is computationally feasible to produce.

Instead, we take an approach similar to Kalies et al. (2018), which describes heuristics for
rescaling time and space independent of one another. Specifically, we adopt a time rescaling
which ensures that the norm of the M th “coefficient” (with respect to t) for each chart, is less
than machine epsilon. Note that for a classical IVP this coefficient is of course just a scalar.
However, in our case the coefficient is actually an analytic function of the spatial variable,
represented as a power series and the norm of this coefficient is measured using the �1 norm.
This is made more precise in the following section.

This choice is highly conservative, which gives us tight control over the truncation error
in the time direction. On the other hand, the spatial rescaling in the present work deviates
from the scheme presented in Kalies et al. (2018) and is detailed in Sect. 4.2.2.

4.2.2 Manifold subdivision

Next, we describe the spatial rescaling scheme which we refer to as manifold subdivision.
We assume that the time rescaling described in the previous section has been carried out
on each chart, and our interest is in rescaling each boundary arc to control truncation errors
accumulating in the “space direction.” This is equivalent to subdividing a manifold since it
is reasonable to assume the rescaling will always shrink the domain. Thus, a single boundary
arc will give rise to multiple subarcs defined on reduced domains.
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To be more precise, we let Cω denote the collection of real-valued, analytic functions
defined on (−1, 1), and let S denote the collection of real-valued sequences. We define the
Taylor transform, T : Cω → S, to be the mapping which sends an analytic function to its
sequence of Taylor coefficients centered at z = 0. Specifically, if g ∈ Cω has the Taylor
expansion,

g(z) =
∞∑
n=0

anz
n an ∈ R, z ∈ (−1, 1),

then T (g) = {an} = a ∈ S. Now, we equip S with the �1-norm defined by

||a||1 =
∞∑
n=0

|an | ,

and we note that elements of S with finite norm form a closed subalgebra denoted as

�1 = {x ∈ S : ||x ||1 < ∞},
and we write ||a||�1 when we want to emphasize that a ∈ �1 (i.e., we write ||a||�1 for the
norm ||a||1 when ||a||1 is finite).

We remark that our error analysis is carried out using the �1-norm due to the efficiency
of computing this norm for polynomials. However, if g ≈ g is a numerical approximation,
then the errors we are interested in are of the form

||g − g||∞ = sup
z∈[− 1,1]

{|g(z) − g(z)|} .

We are justified in using the �1 norm due to the well known result that ||g − g||∞ ≤
||g − g||�1 .

Now, suppose γ ∈ Cω and assume that T (γ ) = a ∈ �1. Since Φ is a nonlinear flow, a
typical arc segment undergoes rapid deformation and stretching when advected. This implies
that for a single step in our algorithm with the general form,

···�−→ γ
advection�−−−−−→ Γ

evaluation�−−−−−→ γ ′ ···�−→,

we expect both the arc length and curvature of γ ′ to be larger than for γ . On the level of
Taylor coefficients, this statement about deformation/stretching says that if b = T

(
γ ′), then

in general we expect ||a||�1 ≤ ||b||�1 . The relationship between this norm and the truncation
error implies that advecting an arc adversely impacts the propagation error.

To see this, we recall that in practice our computation stores a truncated polynomial
approximation for γ ′ in the form b = (b0, . . . , bN−1). In order that b ≈ b is a “good”
approximation (in the �1 topology), |bn | must be “small” for each n ≥ N . These higher-
order terms correspond to the truncation error for γ ′ and primarily arise from two sources.
One source which we can not control (once N is fixed) is the truncation error associated
with γ . However, by inspection of the Cauchy product formula in Eq. (19), it is clear that
the polynomial coefficients stored for γ also contribute to this truncation error for γ ′ after
applying the nonlinearity. We refer to these contributions as spillover terms.

This observation implies that for b̄ ≈ b to be a good approximation, we must also require
that |an | is “small” for each n > N ′ where N ′ < N depends on the degree of the nonlinearity.
This motivates the following heuristic method for controlling truncation error for propagated
arcs.We begin by assuming that a has approximately geometric decay. Specifically, we expect
that there exists some r < 1 such that the tail of the series defined by γ decays faster than
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the geometric series with ratio r . In this case, the truncation error is of order O(r N ). Now,
fix 0 < N ′ < N , and we define the tail ratio for a by

TN ′(a) :=
∑N−1

n=N ′ |an |∑N−1
n=0 |an |

=

∣∣∣
∣∣∣a − aN

′ ∣∣∣
∣∣∣
�1

||a||�1
. (12)

Evidently, TN ′(a) is small whenever “most” of the �1 weight of a is carried in the first N ′-
many coefficients. It follows that if TN ′(a) is sufficiently small, then under the action of a
nonlinear function, f : �1 → �1, the spillover terms for f (a) remain small. Of course, small
is dependent on context and in particular, choices for N ′ as well as thresholding values for
TN ′ are problem specific. In the present work, we prove it is always possible to control TN ′ .

Remark 9 Strictly speaking, for the CRFBPwe have γ = (
γ (1), . . . , γ (4)

)
where each γ ( j) ∈

Cω is a coordinate for the boundary chart. Similarly, T (γ ) = (
a(1), . . . , a(4)

) ∈ �41, and thus
the discussion in Sect. 4.2.2 thus far is technically not applicable. However, our restriction
to scalar-valued functions is justified by the fact that if a ∈ �41, then defining

||a||�41 = max

{∣∣∣
∣∣∣a(1)

∣∣∣
∣∣∣
�1

, . . . ,

∣∣∣
∣∣∣a(4)

∣∣∣
∣∣∣
�1

}

makes �41 into a normed vector space. This choice of norm gives us the freedom to restrict
the discussion of remeshing and tail ratios to scalar-valued functions.

Next, we describe our scheme for controlling the tail ratio. This algorithm takes a poly-
nomial representation for γ , defined on [− 1, 1] as input, and returns a list of polynomials,
{γ1, . . . , γK }, as outputs. The key point is that these polynomials are also defined on [− 1, 1],
and they can be chosen such that TN ′(γ j ) is arbitrarily small for 1 ≤ j ≤ K . In this work,
we assume the output polynomials are specified as coefficient vectors of length N (i.e., the
same degree as the input); however, this is not required.

This gives rise to an additional remeshing step in our algorithm which is performed as
needed after an evaluation step and prior to an advection step leading to an updated schematic

···�−→ γ
remeshing�−−−−−→ {

γ j
}
1≤ j≤K

advection�−−−−−→ {
Γ j
}
1≤ j≤K

evaluation�−−−−−→ {
γ ′}

1≤ j≤K
···�−→

In the remeshing step, the tail ratio for each boundary arc from the previous step is computed
and checked against a threshold. Boundary arcs which exceed this threshold are flagged as
poorly conditioned, and subdivided into smaller subarcs which satisfy the threshold. The
collection of resulting subarcs and well-conditioned arcs from the previous step is passed to
the advection step where each results in a separate chart.

Before proving this threshold can always be satisfied, we describe the subdivision algo-
rithm. As noted in Remark 9, it suffices to consider a single coordinate for a parameterized
boundary arc. Thus, we assume γ (s) : [− 1, 1] → R is analytic with Taylor series

γ (s) =
∞∑
n=0

ans
n,

and fix a subinterval, [s1, s2] ⊂ [− 1, 1]. Define the constants

ŝ := s1 + s2
2

δ := s2 − s1
2

(13)
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and define γ̂ : [− 1, 1] → R by

γ̂ (s) =
∞∑
n=0

cns
n where cn = δn

∞∑
k=n

ak

(
k

n

)
ŝk−n . (14)

Then γ̂ is a parameterization for the arc segment parameterized by γ restricted to [s1, s2]. In
fact, γ̂ is the Taylor series for γ after recentering at ŝ and rescaling by δ which satisfies the
functional equation

γ̂ (s) = γ (ŝ + δs) s ∈ [− 1, 1]. (15)

Moreover, the mapping a �→ c is a linear transformation on S, and in particular, if an = 0
for all n ≥ N , then cn = 0 for all n ≥ N also. Now, we prove that we have explicit control
over the tail ratio for γ̂ .

Proposition 1 (Controlling tail ratios) Suppose γ : [− 1, 1] → R is analytic, fix ŝ ∈ (−1, 1),
1 ≤ N ′ ≤ N, and let ε > 0. Then there exists δ > 0 such that TN ′(c) < ε where c is the
truncation to order N for γ̂ : [− 1, 1] → R defined by ŝ, δ as in Eq. (14).

Proof Define γ N : [− 1, 1] → R to be the Taylor polynomial obtained by truncating the
Taylor series for γ to order N . For k ∈ N, define the usual Ck-norm on [− 1, 1] to be

||g||Ck = max
0≤ j≤k

{∣∣∣
∣∣∣g( j)

∣∣∣
∣∣∣∞

}
.

Since γ N is a polynomial, we have the bound
∣∣∣
∣∣∣γ N

∣∣∣
∣∣∣
Ck

≤ M :=
∣∣∣
∣∣∣γ N

∣∣∣
∣∣∣
CN−1

for all k ∈ N.

In particular, for any ŝ ∈ (−1, 1), we have
∣∣γ (n)(ŝ)

∣∣ ≤ M , for 0 ≤ n ≤ (N − 1), and we
define

δ := min
N ′≤n≤N

⎧
⎨
⎩

(
ε
∣∣γ (ŝ)

∣∣
M(N − N ′)

) 1
n

⎫
⎬
⎭ .

It follows that

δn
∣∣∣γ (n)(ŝ)

∣∣∣ ≤ εγ (ŝ)

N − N ′ for all N ′ ≤ n ≤ N .

Now, let γ̂ be defined as in Eq. (14). Recall that γ̂ is also analytic on [− 1, 1], and by
differentiating Eq. (15) we have the derivative formula, γ̂ (n)(s) = δnγ (n)

(
ŝ + δs

)
, for all

n ∈ N. By Taylor’s theorem, we obtain another explicit formula for cn given by

cn = γ̂ (n)(0)

n! = δnγ (n)(ŝ)

n! ,

and we note that c0 = γ̂ (0) = γ (ŝ) does not depend on δ. We have the estimate for the tail
ratio of γ̂ :

TN ′(c) = 1

||c||�1
N−1∑
n=N ′

|cn |

= 1

||c||�1
N−1∑
n=N ′

δn
∣∣γ (n)(ŝ)

∣∣
n!
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≤ 1

|c0|
N−1∑
n=N ′

ε
∣∣γ (ŝ)

∣∣
N − N ′

= ε

which completes the proof. ��
Proposition 1 establishes the fact that wemay reparameterize γ on subintervals of [− 1, 1]

with width, 2δ, and that as δ → 0 the tail ratio also approaches zero. We note that δ does
not depend on the subinterval, and therefore, for a fixed ε the number of required subarcs is
finite. In particular, nomore than K = � 2

δ
� subarcs are required. To summarize the usefulness

of this result, we present the following algorithm for controlling the spatial truncation error
which was implemented for the atlases in this work.

1. Fix a threshold 0 < ε � 1, a cutoff 1 ≤ N ′ < N , and K ∈ N. The threshold and cutoff
are both chosen based on the alignment of γ with the flow, the degree of the nonlinearity
in f , and the truncation size. In practice, these are problem specific choices which require
some ad hoc experimentation in order to balance computational efficiency and truncation
error.

2. Following each evaluation step in our algorithm, a boundary arc has the form γ :
[− 1, 1] → R which is stored in the computer as a polynomial approximation, a =
(a0, . . . , aN−1). If TN ′(a) < ε, continue to the advection step.

3. If TN ′(a) ≥ ε, specify a partition of [− 1, 1] into K -many subintervals by choosing their
endpoints, {s0, s1, . . . , sK }. Apply the formula in Eq. (14) to obtain {γ1, . . . , γK } where
for 1 ≤ j ≤ K , γ j (s) = γ (ŝ j + δ j s) where ŝ j = s j+s j−1

2 and δ j = s j−s j−1
2 .

4. Each resulting subarc which satisfies the tail ratio threshold passes to the advection
step. Subarcs which violate the threshold are subdivided again by repeating step 3. By
Proposition 1, this condition is eventuallymet for every subarc and the algorithmproceeds
to the advection step.

4.2.3 Stiffness

The final numerical consideration which we address is the stiffness problem. We recall that
the CRFBP vector field is analytic away from the primary masses which correspond to
singularities of Eq. (3). Since this system is Hamiltonian, any trajectory which collides with
one of these primaries must blow up in finite time. However, smooth trajectories may pass
arbitrarily close to these primaries and as they do, the velocity coordinates, ẋ, ẏ, become
arbitrarily large.

Recall that a single boundary arc, γ : [− 1, 1] → R
4, is a parameterized manifold of

initial data. Then its advected image, Γ : [− 1, 1] × [0, 1] → R
4, is a parameterized bundle

of trajectory segments. For any s0 ∈ [− 1, 1], Γ (s0, t) parameterizes the trajectory passing
through γ (s) over the (nonscaled) time interval, [0, τ ].

Now, suppose that for s0 ∈ [− 1, 1], the trajectory through γ (s0) passes “close” to a
primary at time t = t0. Then, we have

|| f (Γ (s0, t0))||C4 � 1.

Recalling our time rescaling algorithmdescribed in Sect. 4.2.1, it is clear that controlling trun-
cation in the time direction will require taking increasingly shorter time-steps. Of course, this
is not surprising; however, the difficulty arises from the fact that other choices of s ∈ [− 1, 1]
often correspond to trajectory segments which remain far away from the primary and our time
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rescaling is applies uniformly on [− 1, 1]. Hence, the advection of the entire boundary chart
is slowed dramatically whenever any portion of its image approaches a primary. We refer to
these charts as stiff. Obviously, this is a major problem for our “breadth-first” approach for
computing the manifold atlas. Namely, the integrator gets stuck on the stiff charts causing
the computation to stall.

A naive method for dealing with this is to define the speed for a boundary chart which is
a parameterized curve of the form, γ (s) = (x(s), ẋ(s), y(s), ẏ(s)), by

S(γ ) = sup
s∈[− 1,1]

{√
ẋ(s)2 + ẏ(s)2

}
, (16)

set a threshold, κ , and cease advection of γ whenever S(γ ) > κ . While this fixes the problem
of computational efficiency, we also lose large portions of the manifold which remain far
from the primaries. Instead, we leverage the manifold subdivision procedure which is already
introduced in Sect. 4.2.2 to modify the naive algorithm in order to retain these portions of
the manifold as follows.

1. Fix a maximum speed threshold, κ > 0. For each boundary chart, γ , present after the
evaluation step, check that S(γ ) ≤ κ and if so, continue to the remeshing step.

2. If S(γ ) > κ , write γ (s) = (x(s), ẋ(s), y(s), ẏ(s)) and compute
{
s ∈ [− 1, 1] : ẋ(s)2 + ẏ(s)2 − κ2 = 0

}
.

Since ẋ, ẏ are polynomial approximations, this set is a finite collection of roots of a
polynomial which we denote by, {s0, . . . , sK }.

3. For 1 ≤ j ≤ K , check that ẋ(s)2+ ẏ(s)2−κ2 < 0 holds on [s j , s j+1] and if so, compute
γ̂ j as in Eq. (14) and continue to the remeshing step. Subintervals which fail this check
are discarded.

To summarize, our algorithm identifies regions of the manifold boundary which pass
close to a primary by checking the maximum speed. Regions which exceed a threshold are
cut away, while regions of the nearby boundary continue to be advected. The cut regions
cause the apparent holes punched out around each primary in the manifold plots, as in Figs. 7
and 8.

4.3 Computational results: manifold atlases for the triple Copenhagen problem

Performance results for atlas computations at the libration points L0 and L5 are given in
Tables 3 and 4, respectively. The computations are performed for the case of equal masses,
that is for the triple Copenhagen problem. The tables report the advection time—that is the
number of time units the boundary of the local parameterizations are integrated—as well
as the time required to complete the computations and the number of polynomial charts
comprising the atlas. All computations were performed on a MacBook Air laptop running
Sierra version 10.12.6, on a 1.8 GHz Intel Core i5, with 8 GB of 1600 MHz DDR3 memory.

The resulting atlases for L0 and L5 are illustrated in Figs. 7 and 8 for various integration
times. The boundaries for the charts are also shown, making it clear that the computational
effort goes up dramatically near the primaries. Note that the chart boundary lines running
out of the local parameterizations are actual orbits of the system and hence give a sense
of the dynamics on the manifold. The pictures provide some insight into the dynamics of
the problem; however, their complexity illustrates the need for more sophisticated search
techniques in order to extract further useful qualitative information from the atlases.
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Fig. 7 Atlases at L0 in the Triple Copenhagen problem: the center of each frame shows the initial local stable
chart (green), and unstable chart (red), computed to order 45 using the parameterizationmethod. The three blue
dots in each frame represent the location of the primaries. One-third of the boundary of each local manifold
is meshed into ten analytic arcs and propagated in time with the boundary of each chart illustrated in blue. By
Lemma 1, the rest of the atlas is obtained via ± 120◦ rotations. The five frames illustrate the complete atlases
obtained after advecting the boundary arcs for ± 0.25,± 1.0,± 1.5 time units (top row) and ± 2.5 and ± 4.0
time units (bottom row). After a fairly short integration time, the resulting atlases become complicated enough
that visual analysis is difficult or impossible. This complexity motivates development of the post-processing
schemes described in Sect. 5.2. Each chart is approximated using Taylor order 20 in space and 40 in time.
Runtime and number of charts are given in Table 3

5 Homoclinic dynamics in the CRFBP

In this section, we discuss connecting orbits found for the symmetricm1 = m2 = m3 = 1/3
case by searching the manifold atlases computed in the previous section.

5.1 Mining the atlases

Assume we have computed atlases, As,u , for the stable/unstable manifolds of x0. We are
interested in “mining” the chart data to find transverse connections. Since each atlas is stored
as a collection of polynomial charts, it suffices to identify pairwise intersections between
stable and unstable charts. Thus, throughout we assume Γ s,u : [− 1, 1]2 → Ws,u(x0) is a
pair of charts which parameterize a portion of the stable/unstable manifold. We write Γ

s,u
1,2,3,4

denote the scalar coordinates of each chart. The following theoremwhose proof can be found
in Kepley andMireles James (2018) provides a computable condition for verifying transverse
intersection of a pair of charts.
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Fig. 8 Atlases at L5 in the Triple Copenhagen Problem: center of each frame shows the local stable/unstable
charts computed using the parameterizationmethod (red andgreen, respectively). The locations of the primaries
are denoted by the blue dots in each frame. Parameterizations approximated to polynomial order 45. The
boundary of the local stable/unstable manifold is meshed into thirty analytic arcs. The five frames illustrate
the atlases obtained by advecting the boundary arcs by± 0.75,± 1.15,± 1.5 time units (top row) and by± 3.0
and ± 4.0 time units (bottom row). Again it is difficult to analyze the results by eye, and some post-processing
is necessary. Each chart is approximated using Taylor order 20 in space and 40 in time. Runtime and number
of charts are given in Table 4

Table 3 Atlas computations at L0 in the triple Copenhagen problem: each chart is computed to polynomial
order 20 in space and order 40 in time

Integration time Runtime (both manifolds) # Stable charts # Unstable charts

± 0.25 17.07s 39 39

± 0.5 37.9s 146 146

± 0.75 147s 497 497

± 1.0 4.75min 700 700

± 1.5 8.3min 1579 1579

± 2.5 21.8min 3530 3493

± 4.0 60.8min 9372 9295

Unlike the later computations where we have used a speed threshold of 2, here we set the threshold at 3 to
better illustrate how the atlas size and computation time growwhen propagating the stable/unstable manifolds.
Additionally, byLemma1wemust only consider one-third of the boundary of each localmanifold, so our initial
subdivision into 10 sub arcs actually corresponds to mesh which is 3 times finer. Moreover, the computation
time is 3 times faster and the final atlas size is 3 times smaller than for the CRFBP with nonequal masses

Theorem 1 Define G : [− 1, 1]3 → R
3 by

G(s, t, σ ) :=
⎛
⎝

Γ u
1 (s, t) − Γ s

1 (σ, 0)
Γ u
2 (s, t) − Γ s

2 (σ, 0)
Γ u
3 (s, t) − Γ s

3 (σ, 0)

⎞
⎠ ,

123



Homoclinic dynamics in a restricted four-body problem Page 29 of 55 13

Table 4 Atlas computations at L5 in the triple Copenhagen problem: each chart is computed to polynomial
order 20 in space and order 40 in time

Integration time Runtime (both manifolds) # Stable charts # Unstable charts

± 0.5 40.5s 124 124

± 0.75 57.7s 216 216

± 1.0 2.3min 487 487

± 1.5 7.2min 634 634

± 2.0 15.3min 1466 1466

± 3.0 32.9min 2899 2899

± 4.0 53min 4983 4751

Velocities greater than 2.5 are discarded.Weconsider the entire boundary of the local stable/unstablemanifolds,
and we initially divide into 30 sub arcs. Because of this, the computations are roughly 3 times longer than at
L0. But we obtain the manifolds at L4,6 by rotational symmetry

and suppose (ŝ, t̂, σ̂ ) ∈ [−1, 1]3 satisfies G(ŝ, t̂, σ̂ ) = 0. If Γ u
4 (ŝ, t̂) and Γ s

4 (σ̂ , 0) have the
same sign, then x̂ := Γ u(ŝ, t̂) is homoclinic to x0. Moreover, if DG(ŝ, t̂, σ̂ ) is nonsingular
and if ∇E(x̂) �= 0 (where E is the CRFBP energy), then the energy level set is a smooth 3-
manifold near x̂ and the stable/unstable manifolds of x0 intersect transversally in the energy
manifold.

We emphasize that Theorem 1 provides a computable condition for verifying a transverse
intersection using rigorous numerics. However, we will use the same theorem to detect
transverse intersections in the purely numerical setting of this paper. This is made explicit in
the following algorithm utilized in the mining scheme for all results in the present work.

Assume Γ s,u,G are as defined in Theorem 1. Apply Newton’s method to find an approx-
imate root of G. Let v̂ = (

ŝ, t̂, σ̂
)
denote an approximate solution with G(v̂) ≈ 0, and check

the following conditions:

1. Γ u
4 (ŝ, t̂), and Γ s

4 (σ̂ , 0) are both “far” from 0.
2. Γ u

4 (ŝ, t̂), and Γ s
4 (σ̂ , 0) have the same sign.

If condition 1 holds without condition 2, then these charts are nonintersecting. In this case,
these charts lie on separated portions of the stable/unstable manifolds which are symmetric
with respect to the fourth coordinate.We refer to these as “pseudo-intersections.”On the other
hand, if both conditions hold, then we conclude from Theorem 1 that we have numerically
found a transverse homoclinic for x0 passing through Γ u(ŝ, t̂) = x̂.

Note that condition 1 serves two purposes in this setting. First, it serves as an easily
computable condition for checking that ∇E(x̂) �= 0 as required in the theorem. This follows
by noting that

π4 ◦ ∇E(x̂) = x̂4 = Γ u
4 (ŝ, t̂),

so it follows that ∇E(x̂) �= 0 is satisfied automatically whenever condition 1 is satisfied.
In addition, condition 1 gives us some confidence that the sign difference from condition

2 holds due to transversality of the homoclinic, as opposed to numerical error. Indeed, if
condition 1 is not satisfied, then Γ u

4 (ŝ, t̂), and Γ s
4 (σ̂ , 0) take values near zero in which

case sign errors for either coordinate are likely due to integration errors. In this case, even if
condition 2 is satisfied we are unable to trust the result, and hence unable to conclude whether
the zero of G corresponds to a transverse intersection or a pseudo-intersection. Fortunately,
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this situation can be remedied as discussed in Remark 11. As a result, we are free to choose
our threshold for what is meant by “far” in the statement of condition 1 very conservatively
which leads to a great deal of confidence that our mining algorithm returns only transverse
homoclinic orbits.

We further increase our confidence in the approximate connection by using it as the input
for a BVP solver based on Newton’s method, which allows us to refine our approximation to
nearly machine precision, and it is the BVP formulation to which we then apply continuation
methods. Every connection reported in this section has been so certified, and none of the
connections identified from the mining algorithm had a BVP which failed to converge. In
other words, the mining algorithm did not return any false homoclinics.

5.2 Efficient atlas mining

It is not desirable to check every pair of charts from each atlas using the above procedure,
and we introduce two methods which significantly reduce the number of chart pairs which
must be checked via the Newton intersection scheme based on Theorem 1.

5.2.1 The �1 box approximation

The first method for improving the mining efficiency is to apply a coarse preprocessing step
to each pair of charts which must be compared. The main idea is based on the fact that for
most pairs of charts which do not intersect, these charts will “obviously” not intersect in the
sense that their images in phase space will be very far apart. We exploit this using a fast
algorithm for identifying many such pairs and in this case skip the slower Newton-based
intersection attempt.

To be more precise, consider an arbitrary polynomial P : [− 1, 1]2 → R defined by

P(s, t) =
M∑

m=0

N∑
n=0

am,ns
ntm am,n ∈ R.

We define the �1 box for P to be

BP = [a0,0 − r , a0,0 + r ] where r =
∑

(m,n)�=(0,0)

∣∣am,n
∣∣ .

The significance of BP is that we have the bound
∣∣P(s, t) − a0,0

∣∣ ≤ r for all (s, t) ∈ [− 1, 1]2

or equivalently, P(s, t) ∈ BP for all (s, t) ∈ [− 1, 1]2. Analogously, we extend this to higher
dimensions component-wise and apply this to geometrically rule out pairs of charts which
can not intersect because their images are “well separated.” Specifically, consider a pair of
stable/unstable charts

Γ s(s, t) =
M∑

m=0

N∑
n=0

am,ns
ntm Γ u(s, t) =

M∑
m=0

N∑
n=0

bm,ns
ntm .

which have �1 boxes described by rectangles in R
4 and satisfying Γ s(s, t) ∈ BΓ s , and

Γ u(s, t) ∈ BΓ u . Then, if the set distance, d(BΓ s , BΓ u ) is large enough, we can conclude
that Γ s, Γ u do not intersect.
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Using �1 boxes has two advantages. The first is that computing and checking �1 boxes for
pairwise intersections is much faster than our Newton-like intersection method. This is due
to the fact that for each coordinate the box radius, r , is equivalently computed as

r = a0,0 + ||P||�1 − ∣∣a0,0
∣∣

which is extremely fast to compute using modern implementations. Determining whether
two boxes intersect or not is also fast due to efficient interval arithmetic libraries such as the
INTLAB library for MATLAB (Rump 1999) which was utilized in our implementation.

The second advantage is that an �1 box is typically a very coarse enclosure for the true
values of P . This “problem” is often referred to as the data-dependence problem or the
wrapping effect. In our situation, however, we consider the coarseness to be a feature since it
makes our numerical estimates more conservative. Thus, we are able to rule out many pairs
of charts which clearly do not intersect without eliminating false negatives.

In practice, a single pairwise �1 box intersection check is approximately 1,000 times more
efficient than the Newton-based scheme and this method rules out around 90 percent of
nonintersecting chart pairs. Moreover, the �1 box for each chart can be computed only once
during the atlas construction and stored. This leaves the cost of a single box intersection
check as the only significant computational operation.

Finally, we remark that once �1 boxes have been computed and stored for each chart in
both atlases, one can make careful use of the triangle inequality to reduce the computation
even further. This provides roughly an additional order of magnitude improvement in the
efficiency of our algorithm which could be crucial to the feasibility of mining extremely
large atlases. However, we took limited advantage of this fact in the present work.

5.2.2 Fundamental domains

The other main source of efficiency gain in our algorithm relies on using the dynamics
explicitly. Recalling our notation in Sect. 4, assumeAs is the stable manifold atlas which we
have computed to include the L th

s generation and let Ws
k (x0) denote the kth generation local

stable manifold. Then,Ws
k (x0) is a fundamental domain forWs(x0). In other words, if x(t) is

any orbit which satisfies lim
t→∞ x(t) = x0 and if x(0) �= x0, then there exists tk ∈ R such that

x(tk) ∈ Ws
k (x0). Of course, the same claim holds for the unstable manifold. Taken together,

if we assume we have computed the unstable manifold, Au , up to the L th
u generation, then

we have the following observation.

Proposition 2 Let x(t) be a transverse homoclinic to x0. Then x(t) ∈ Ws(x0) ∩ Wu(x0) for
all t ∈ R. Let Ws,u

0 (x0),W
s,u
1 (x0), . . . ,W

s,u
Ls,u

(x0) denote the generation sequence of local
stable/unstable manifolds. Then exactly one of the following is true.

– There exists ks, ku and t0 ∈ R, such that x(t0) ∈ Ws
ks

(x0)
⋂

Wu
ku

(x0) and ks + ku is
constant for all pairs (ks, ku) which satisfy this property.

– There exists t0 ∈ R such that for all 0 ≤ ks ≤ Ls, and 0 ≤ ku ≤ Lu, we have

x((−∞, t0))
⋂

Ws
ks (x0) = ∅ and x((t0,∞))

⋂
Wu

ku (x0) = ∅.

Proposition 2 says that any transverse homoclinic for x0 satisfying the second condition is a
connection which does not intersect in the atlases which we have computed. Restricting to
those that do, this proposition says that there is a “first” generation for both the stable and
unstable atlases for which the connection will appear.
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The significance of this situation is that we need only do pairwise comparisons between
stable/unstable charts one generation at a time. Thus, the computational complexity for
mining intersections between the two atlases has computational complexity of order
O(KsKu(Ls + Lu)) where Ks, Ku are the sizes of the largest stable/unstable generations,
respectively. This is a dramatic improvement over the naive solution of checking every pair
in both atlases which has complexity on order O(Ls LuKsKu).

Remark 10 We note that often the atlases we compute in practice do not technically satisfy
the fundamental domain property. This is due to the fact that sections of manifold boundary
which pass near a primary are “cut out” as described in Sect. 4.2.3. Nevertheless, this has no
impact on our mining algorithm. Specifically, each generation is still a fundamental domain
for the subset of the global manifold which satisfies the speed constraint. Thus, mining
for connections via “leapfrogging” through pairwise generations is still assured to find all
connections which are present in the computed atlases, and therefore, all connections which
satisfy the speed constraint.

Remark 11 The result in Proposition 2 gives rise to a natural mining algorithm. Namely,
at each generation, all chart pairs are compared and transverse intersections are identified.
It follows that once a transverse intersection is identified, then the next/previous generation
must also contain an orbit segment corresponding to the same homoclinic. Hence, in addition
to gaining a computational speedup, exploiting the fundamental domain property also ensures
that all homoclinics identified are distinct. This follows from the existence of the minimum
value for ks + ku in Proposition 2.

Furthermore, this observation yields a method of resolving the ambiguous case in which
the Newton intersection method finds a zero for G but condition 1 from Sect. 5.1 is not
satisfied. Specifically, if G(ŝ, t̂, σ̂ ) ≈ 0 and Γ u(ŝ, t̂) ≈ Γ s(σ̂ , 0) ≈ 0, then we may follow
the suspected intersection through earlier-/later-generation charts until the sign condition can
be verified or refuted in appropriate predecessor/successor charts. Lastly, we mention that by
storing “parent/child” information about the charts in the atlas, we can perform the search
just described in post-processing.

5.3 The symmetric case: locating, refining, and classifying, connections

We now describe the homoclinic mining procedure in the case of the triple Copenhagen prob-
lem. Assume that we have computed stable/unstable atlases denoted byAs,Au , respectively.
Each atlas is of the form described in Sect. 4, i.e., each atlas is a union of chart maps having
the form, Γ s,u : D → R

4 with Γ s,u(D) ⊂ Ws,u(x0).
We begin with a lemma to motivate the choice to grow each atlas in the symmetric case

and then do continuation as opposed to growing the atlas for nonsymmetric cases.

Lemma 1 Assume f is the symmetric CRFBP vector field, i.e., m1 = m2 = m3 = 1
3 and

define two linear maps, ϕ± : R
4 → R

4 by ϕ±(x, ẋ, y, ẏ) = ϕ±(x) = R±x where R± is the
matrix given by

R± =

⎛
⎜⎜⎝
cos(± θ) 0 − sin(± θ) 0

0 cos(± θ) 0 − sin(± θ)

sin(± θ) 0 cos(± θ) 0
0 sin(± θ) 0 cos(± θ)

⎞
⎟⎟⎠ θ = 2π

3
,

then ϕ± is a rotational conjugacy for f and ϕ± ◦ f (x) = f ◦ ϕ±(x) for all x ∈ R
4. In

particular, if γ parameterizes a homoclinic orbit forL0, thenϕ±◦γ are parameterizations for
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Fig. 9 Asymptotic orbits in configuration space—top-down view of the connections: red and green disks
represent the parameterized local stable/unstable manifolds at the libration points. The blue/magenta curves
represent the portion of the connecting orbit off the local invariant manifolds—that is, the part found by solving
the projected boundary value problem as discussed in Sect. 2.3. Left: 42 shortest homoclinic connecting orbits
at L0 (up to rotational symmetry). Another 84 connections are obtained by ± 120◦ rotations. The ± 120
rotations are not plotted as they only thicken the blue-shaded region. Right: 23 shortest homoclinic connecting
orbits at L5. Another 46 connections at L4 and L6 are obtained by ± 120◦ rotations. The initial guess for
the boundary value solver comes from atlases obtained by integrating the local unstable/stable manifolds for
± T = 5 time units. The mining procedure is discussed in Sect. 5.2. All reference to color refers to the online
version

two additional, distinct “symmetric” homoclinic orbits for L0. Moreover, if γ parameterizes
a homoclinic orbit for L5, then ϕ+ ◦ γ and ϕ− ◦ γ parameterize symmetric homoclinics for
L4 and L6.

The proof of Lemma 1 is included in “Appendix A.” The significance of this symmetry is the
fact that global stable/unstable atlases for the triple Copenhagen problem can be separated
into three distinct equivalence classes where for x, y ∈ W ∗(x0), the equivalence relation
x ∼ y is satisfied if and only if x ∈ {y, ϕ+(y), ϕ−(y)}. Thus, each atlas is obtained by
advection of only a single representative for each class. In other words, in the equal masses
case, we only need to advect 1

3 of each initial parameterization boundary to obtain the entire
atlas. Specifically, we define

D′ = {z ∈ D : 0 ≤ Arg(z1) < θ, z2 = conj(z1)}
and we globalize only ∂D′ to obtain a partial atlas, A′. We can then access the full global
atlas by applying ϕ+, ϕ− to each chart in A′ and we set

A = A′ ∪ ϕ+ (
A′) ∪ ϕ− (

A′) .

The advantage is a ninefold increase in computational efficiency for the atlas computation and
a threefold improvement in efficiency for the atlas mining scheme. Applying the procedure
for the triple Copenhagen problems results in the connecting orbits illustrated in Fig. 9. These
results are further described and classified in the next section.

123



13 Page 34 of 55 S. Kepley, J. D. Mireles James

5.3.1 Quantitative/qualitative classifications of the homoclinic orbit set atL0,5

Suppose x0 ∈ R
4 is an equilibrium solution and Ws,u

loc (x0) a local stable/unstable manifold.
Let γ be an orbit homoclinic to x0, and suppose that T ∈ R is the elapsed time from when
γ passes through the boundary of the local unstable manifold to when γ passes through the
boundary of the local stable manifold. Observe that if Ws

loc(x0) ∩ Wu
loc(x0) = {x0} and if the

vector field is inflowing/outflowing on the boundaries of Ws,u
loc (x0), respectively, then T > 0

is well defined.
When the local parameterizations intersect only at x0, it makes sense to talk about the

“shortest” connection time,” the “second shortest” connection time, and so on. This natural
ordering on connection times provides a useful observable for classifying homoclinic con-
nections relative to fixed local stable/unstable manifolds. Generically, we expect a one-to-one
correspondence between connecting orbits and connection times, though this expectationwill
fail in the presence of symmetries as seen below.

In the CRFBP, when we “mine” the stable/unstable atlases for connecting orbits and order
them by connection time we see something interesting. In each of the cases we studied, the
shortest homoclinic orbits appear to organize the longer connections. Informally speaking,
we find that a small number of short homoclinic orbits serve as a sort of alphabet of “letters,”
and the longer connections can be roughly identified as “words” in this alphabet.

For example, the first 42 homoclinic connecting orbits (up to symmetry) atL0 in the triple
Copenhagen problem are classified in Table 5. These results are obtained by integrating initial
local stable/unstablemanifolds for± 5 time units subject to the speed constraint, ẋ2+ ẏ2 ≤ 4.
Our method finds all of the connections satisfying these constraints. The classification is in
terms of the connection time, the order of appearance, and a geometric description in terms
of words and letters.

We give the names L0A and L0B to the shortest two connections at L0. These orbits are
illustrated in Fig. 10 and have connection times approximately 1.717 and 2.331, respec-
tively. Rotating either of these by ± 120◦ gives another connecting orbit with exactly the
same shape and connection time. We refer to these rotations as L0A± and L0B± . These six
shortest connections—L0A, L0B and their symmetric counterparts—organize the rest of the
homoclinic behavior seen at L0 as we now describe.

We associate the third shortest connection with the word L0A+ · L0A because the orbit
moves off the unstable manifold appearing to follow L0A+ , passes near the equilibrium at
L0, and makes another excursion following L0A before returning to the stable manifold.
Similarly, we associate with the 5th longest connecting orbit the word L2

0B , as this orbit
moves off the unstable manifold and appears to follow L0B , making two loops around the
second primary before returning to the stable manifold. Heuristically speaking, L0A, L0B

and their symmetric counterparts comprise a system of “homoclinic channels” or simple
allowable motions and other homoclinic orbits seem to follow in their wake.

Table 6 records analogous information for the first 23 connections found atL5 in the triple
Copenhagen problem. In this case there are six basic letters L5A, L5B , L5D, L5D, L5E , L5F .
Words are formed for these letters just as discussed above. Applying ± 120◦ rotations pro-
duces connections with the same shapes and connection times at L4 and L6, respectively.
We stress that this description of the connecting orbits in terms of words and letters, while
intuitively appealing, is based on qualitative observations and is subordinate to the rigid
quantitative classification of the orbits by connection time.

Remark 12 Several comments about the results reported in Tables 5 and 6 are in order.
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Table 5 Classification of the
connecting orbits for L0:
advecting one-third of the
boundary of the local
stable/unstable manifolds for
T = ± 5 time units and imposing
a speed threshold of 2 reveals the
42 homoclinic connections
illustrated in the left frame of
Fig. 9

Connection Connection time Letter or word

1st 1.717 L0A
2nd 2.331 L0B
3rd 4.198 L0A+ · L0A
4th 4.520 L0A+ · L0B
5th 4.715 L20B
6th 5.643 L20A
7th 6.132 L0A · L0B
8th 6.132 L0B− · L0A
9th 6.583 L0A− · L0A
10th 6.627 L0A+ · L0B · L0A
11th 6.628 L0B− · L0B
12th 6.684 L0A− · L0A+ · L0A
13th 6.760 L0A+ · L20B
14th 6.846 L30B
15th 7.009 L0B+ · L0A+ · L0A
16th 7.336 L0B+ · L0A+ · L0B
17th 7.038 L0B+ · L0A
18th 7.038 L0A− · L0B
19th 7.490 L0B+ · L0B
20th 8.119 L0B · L0A
21st 8.125 L2

0A+ · L0A
22nd 8.125 L0A+ · L20A
23rd 8.296 L0A · L0B · L0A
24th 8.448 L0B · L20A
25th 8.453 L0A · L20B
26th 8.453 L2

0B− · L0A
27th 8.499 L30B · L0A
28th 8.499 L0A+ · L30B
29th 8.583 L20B
30th 8.614 L0A+ · L0A · L0B
31st 8.732 L0A+ · L30B
32nd 8.794 L0A · L0B− · L0B
33rd 8.937 L0B · L0A · L0B
34th 8.953 L0B− · L20B
35th 8.953 L2

0B− · L0B
36th 9.065 L0A · L0A− · L0A
37th 9.340 L0A− · L20B
38th 9.88 L0B− · L0A− · L0A
39th 9.444 A− · B+ · A+ · B
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Table 5 continued Connection Connection time Letter or word

40th 9.495 A · A− · A+ · B
41st 9.579 B+ · A+ · B2

42nd 9.579 (B+)2 · A+ · B
The rows of the table give data for the homoclinics, ordered by connec-
tion time. For each orbit described in the table, there are two additional
orbits with exactly the same connection time, obtained by ± 120◦ rota-
tions. Taken with their symmetric counterparts, the orbits given here are
all of the connecting orbits satisfying the connection time and speed
constraints. The three columns in the table report a connection’s order
of appearance, its connection time, and our qualitative description of
the connection as a word built from the two shortest homoclinics—the
letters shown in Fig. 10. The connections associated with longer words
are separated and illustrated in Figs. 11, 12, 14, 15 and 16

Fig. 10 Shortest connections at L0: we distinguish the six shortest connecting orbits at L0 in the triple
Copenhagen problem. Two are shown above. The four others are rotations of these by ± 120. See also the left
frames in Fig. 20. The blue portion of the orbit is the segment found by solving the boundary value problem.
The dotted red/green lines are the asymptotic portions on the parameterized local unstable/stable manifolds,
respectively. The asymptotic portions are recovered using the conjugacy provided by the parameterization
method. We refer to the orbit on the left as L0A and the orbit on the right as L0B . The rotations by ± 120◦ we
refer to as L0A± and L0B± . Observe that L0A has winding number 1 with respect to the libration point L1,
while L0A± wind once around L2 and L3, respectively. L0B on the other hand winds once around m2 while
L0B± wind once around m3 and m1, respectively. As the next five figures illustrate, the six basic connecting
orbits organize all the connections we found at L0. All references to color refer to the online version

– Additional symmetries Some of the orbits, for example the 27th and 28th shortest orbits
atL0 and the 21st and 22nd shortest orbits atL5, have reported the same connection times
to three decimal places. In fact the connection times agree towithin numerical errors. This
is because the equal mass problem has reversible symmetries that we are not exploiting
in our computations. Rather these serve as a check on the numerics.

– Connection time versus ordering While the connection times reported in these tables
depend on the choice of local stable/unstable manifold, it should be remarked that, as
long as the parameterization method is used to represent the local manifolds as discussed
in Sect. 3, the ordering of the connections does not change. It is easy to check that the
boundary of the parameterizedmanifolds are inflowing/outflowing and that themanifolds
intersect only at the equilibrium solution. Moreover, since the eigenvalues are complex
conjugate, the local parameterizations are unique up to the choice of a single eigenvector

123



Homoclinic dynamics in a restricted four-body problem Page 37 of 55 13

Table 6 Classification of the
connecting orbits for L5: the 23
homoclinic connections which
appear on the right side of Fig. 9
satisfying the same connection
time and speed constraints as in
the L0 case

Connection Connection time Letter or word

1st and 2nd 4.802 L5A and L5B
3rd and 4th 4.943 L5C and L5D
5th and 6th 5.261 L5E and L5F
7th 6.028 L5D · L5C
8th 8.204 L5A · L5B
9th 8.331 L5A · L5D
10th 8.456 L5C · L5D
11th 8.917 L5E · L5F
12th 8.934 L5A · L5D
13th 9.156 L5C · L5D
14th 9.324 L5E · L4E · L5C
15th 9.363 L5A · L5D · L5C
16th 9.387 L5A · L6A · L5B
17th 9.429 L25C
18th 9.429 L25D
19th 9.487 L5D · L5C · L5D
20th 9.487 L5C · L5D · L5C
21st 9.554 L5A · L6A · L5D
22nd 9.554 L5C · L6A · L5B
23rd 9.629 L5C · L6A · L5D
In this case, the 120◦ symmetry does not produce additional connec-
tions for L5 but rather, rotation of each connection produces symmetric
homoclinics for both L4 and L6. The columns are similar to those in
Table 5 and the longer words associated withL5 homoclinics illustrated
in Figs. 19 and 20

scale factor. By choosing the unit disk as the domain of the parameterization, the scaling
the only free parameter in the problem. Decreasing the scaling by a factor of τ > 0 is
equivalent to flowing the boundary by the same time τ . So: rescaling the eigenvectors
changes all the times of flight by exactly the same amount, hence does not reorder them.

– Qualitative classification The decomposition of the connecting orbits into words is
performed “by eye” in the present work. That is, we simply inspect the connections and
describe what we see. We now sketch a method which could be used to formalize our
qualitative description and note that the idea is computationally feasible. Recall that if
γ is a simple closed rectifiable curve in the plane (with counter clockwise orientation),
and z0 = x0 + iy0 is a point not on γ , then the number of times that γ winds around z0
is counted by the integral

Indγ (z0) = 1

2π i

∫

γ

1

z − z0
dz.

So, observe for example that the curve L0A winds once around the libration point L1,
while L0A+ and L0A− each wind once, respectively, around L2 and L3. Similarly, the
curve L0B winds once around the second primary, while L0B+ and L0B− wind once each
around the third and first primaries. Then for a homoclinic orbit γ atL0 define the integer
vector (α1, α2, α3, β1, β2, β3) ∈ Z

6, where α j = Indγ (L j ) for and β j = Indγ (Pj ) both
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Fig. 11 Homoclinic orbits atL0 associated with L0A: the figure illustrates seven homoclinic connecting orbits
all built from L0A and its rotations L0A± in the following sense: each of these orbits has nontrivial winding
number with respect to one or more of the inner libration points, but none of these orbits wind around any of
the primaries. That is, these orbits are “built from pieces of L0A and its rotations, but have no contribution from
L0B and its rotations. (Blue, green and red solid/dotted lines have the samemeaning described in Fig. 10.) The
orbits give the following symbol sequences: L20A—6th connection (top left), L0A+ · L0A—3rd (top right),

L0A− ·L0A—9th (center left), L0A− ·L0A+ ·L0A–12th connection (center right), L20A+ ·L0A—21st (bottom

left), L0A · L0A− · L0A—36th (bottom center), L0A+ · L20A—22nd (bottom right). In each case rotation of
each by ± 120◦ gives a distinct connection (not shown). All references to color refer to the online version

for j = 1, 2, 3. (Here Pj are the coordinates of the j th primary). Then α1 counts the
contribution of L0A to γ , while β1 counts the contribution of L0B and so on. This
description amounts to an Abelianization of the previous notion of words/letters, as the
winding vector looses track of the order of the letters in the word. (It is often the case that
mechanical calculation of topological data is facilitated by passing to an Abelianization).
This notion is extended to the homoclinic orbits at L5 in a similar way, see Fig. 18.

– Blue skies The main theorem of Henrard (1973), already mentioned in the introduction,
gives that there is a family of periodic orbits accumulating to each of the homoclinic
orbits found by our procedure. In some cases we can venture a guess as which families of
periodic orbits accumulate to which homoclinic. For example, Fig. 17 illustrates the orbit
L0A and L0A± along with the planar Lyapunov families attached to the inner libration
points L1,2,3. The results suggest that the planar families may accumulate at to these
homoclinics. Similarly, comparing the orbits L5E and L5F in the bottom left and right
frames of Fig. 18 with the planar Lyapunov families at L7,9 illustrated in the left frame
of Fig. 3 suggests that these may be the families of periodic orbits attached to these
homoclinics. The orbits L0B , and L0B± , as well as the orbits L5A and L5B must be
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Fig. 12 Homoclinic orbits at L0 associated with L0B : the figure illustrates seven connections built from
L0B and its rotations. So, each of these orbits has nonzero winding about one or more primary—that is L0B
behavior—and none of them have anywinding about the inner libration points—that is no L0A behavior. (Blue,
green and red solid/dotted lines have the same meaning described in Fig. 10.) The orbits give the following
symbol sequences: L0B− · L0B—11th connection (top left), L0B+ · L0B—19th (top center), L20B—29th (top

right), L2
0B− · L0B—35th (center left), L0B− · L20B—34th connection (center right), L20B—5th connection

(bottom left), L30B—14th (bottom right). In each case rotation of each by ± 120◦ gives a distinct connection
(not shown). Observe that the symbol sequences need not be unique. For example, the top right and bottom
left orbits have the same winding, but different times of flight. (See also Fig. 13 and Table 5). All references
to color refer to the online version

the limits of families of periodic orbits winding around the primary bodies. Making a
systematic study of the periodic families associated with the homoclinic orbits discussed
here would make a nice topic for a future study.

Remark 13 (Some related work on asymptotic orbits) There are interesting similarities
between some of the orbits discussed above, and some asymptotic orbits already discovered
in Baltagiannis and Papadakis (2011b). The interested reader might, for example, compare
the homoclinic orbit on the bottom right frame of Fig. 20 with the heteroclinic termination
orbit illustrated in Figure 5 of Baltagiannis and Papadakis (2011b). (To make such a compar-
ison one has to “flip” Figure 5 of Baltagiannis and Papadakis (2011b) 180◦ about the y-axis
as the two papers use different normalizations of the four-body problem. Also, their L3 is
our L5). In that study the heteroclinic is discovered by numerical continuation of the author’s
f10 family of periodic orbits: a family of orbits with winding number one about all three of
the primary masses. We note that our homoclinic of Fig. 20 is similar, but that the ± 120◦
rotational symmetry broken. We conjecture that there are three families of periodic orbits
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Fig. 13 A close return to L0: while the top right frame in Fig. 12—illustrating the L20B orbit—looks like a

repeat of L0B , further examination reveals that the orbits are distinct. The L0B and L20B orbits are here shown

side-by-side. The longer L20B orbit on the right follows L0B , makes are “flyby” of the libration point, then a
second excursion, finally returning to the stable manifold. A closeup of a neighborhood of L0—shown in the
inlay—illustrates the flyby. These orbits illustrate the fact that two very similar looking orbits can have very
different connection times. Indeed, very simple looking orbits can have long connection times if they spend a
long time in the neighborhood of a libration point where dynamics move slow

bifurcating from the f10 family after a symmetry breaking, and that these families terminate
on the homoclinic of Fig. 20 (bottom right) and its rotation by ± 120◦ counterparts.

Similarly, the heteroclinic orbit illustrated in Figure 4 of Baltagiannis and Papadakis
(2011b)—which is the termination of the author’s f5 family—is related the pair of homoclinic
orbits LE,F illustrated in Fig. 18. To see this, imagine an orbit obtained by combining our L5F
with the orbit L4E , that is our L5E rotated by − 120◦ so that it is based at L4. The resulting
union of curves has the same shape as the heteroclinic illustrated in Figure 4 of Baltagiannis
and Papadakis (2011b). This suggests that the families of periodic orbits which terminate at
our LE,F could emerge from the planar Lyapunov families after symmetry breaking.

In general we note that the homoclinic orbits tend to have less symmetry than the hete-
roclinic, so that studying the periodic orbits terminating at the homoclinics is a good way to
obtain asymmetric periodic orbits—even in the symmetric versions of the problem. We also
note that changing the mass parameters will tend to destroy heteroclinic connections, as the
libration points will move into distinct energy levels. Homoclinic orbits on the other hand
persist under generic Hamiltonian perturbations of the vector field. In particular, they persist
after a small change in themass ratios, facilitating numerical continuation as discussed below.

5.4 Numerical continuation of ensembles of connections

The fact that the homoclinic connecting orbits are formulated as solutions of boundary value
problems makes parameter continuation natural. We give only an outline of our continua-
tion algorithm, as numerical continuation of homoclinic orbits for Hamiltonian systems is
described in great detail in the literature. References are discussed in the introduction.

Begin with an ensemble of connecting orbits for a libration pointL at the mass parameters
m1,m2,m3 (initially we have m1 = m2 = m3 = 1/3).
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Fig. 14 Homoclinic orbits atL0 with AB words: six connections built from exactly one occurrence of L0A (or
a symmetric counterpart) and one occurrence of L0B (or one of its symmetric counter parts). So, each of these
orbits has winding number one about exactly one of the primaries—giving one instance of L0B behavior—and
winding number one about exactly one of the inner libration points—giving one instance of L0A behavior. We
refer to these as two-letter words. (Blue, green and red solid/dotted lines have the same meaning described in
Fig. 10.) We see the following symbol sequences: L0B · L0A—20th connection (top left), L0A− · L0B—18th
(top right), L0B+ · L0A—17th (center left), L0B− · L0A—8th (center right), L0A · L0B—7th (bottom left),
L0A+ · L0B—4th (bottom right). In each case rotation of each by ± 120◦ gives a distinct connection (not
shown). All references to color refer to the online version

– We choose a new parameter set m̄1 = m1 + δ1, m̄3 = m3 + δ3. Then we compute
m̄2 = 1 − m̄1 − m̄3 and apply a first-order predictor corrector to find the libration point
at the new parameter values. We numerically compute the eigenvalues and eigenvectors
of the new libration point, and if it remains a saddle-focus (i.e., if there has been no
bifurcation) we proceed.
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Fig. 15 Fifteen connections at L0 whose words have three or more symbols: orbits with multiple winding
about one or more primaries as well as one or more inner libration point, and hence multiple L0A and L0B
behaviors. We refer to these as three or four-letter words. (Blue, green and red solid/dotted lines have the
same meaning described in Fig. 10.) We see the following symbol sequences: L0B+ · L0A+ · L0B—16th
connection (first row, first column), L0A− · L20B—37th (first row, second column), L0B · L0A · L0B—33rd

(first row, third column), L2
0B− · L0A—26th (first row, fourth column), L0A · L0B− · L0B—32nd (second row,

first column), L0A · L20B—25th (second row, second column), L0A+ · L0A · L0B—30th (second row, third
column), L0A · L0A− · L0A+ · L0B—40th (second row, fourth column), L0B+ · L0A+ · L0A—15th (third
row, first column), L0B− · L0A− · L0A—38th (third row, second column), L0A+ · L20B—13th (third row,

third column), L0A · L0B · L0A·—23rd (third row, fourth column), L0A− · L+
0B · L+

0A · L0B—39th (fourth

row, first column), L0B · L20A—24th (fourth row, second column), L+
0A · L0B · L0A—10th (fourth row, third

column), In each case rotation of each by ± 120◦ gives a distinct connection (not shown)

– We recompute the local invariant manifolds at the new parameter set. A good strategy is
to compute the coefficients to order N0 by recursively solving the homological equations.
Initially we take the eigenvector scaling from the previous step and rescale if needed. For
the higher-order coefficients we use the coefficients from the previous step. This gives as
an initial guess for the Newton or pseudo-Newton method which usually converges very
fast.

– The new local parameterizations provide the boundary conditions for the multiple shoot-
ing scheme for the homoclinic orbits.We take the connecting orbits from the previous step
as the initial guesses for the Newton method at the current mass parameters. If necessary
we can apply a first-order predictor corrector, but this is often unnecessary, due to the
fact that the boundary value problem formulated with the high-order parameterizations
of the local manifold is very well conditioned. Note that in a given continuation step, the
same local parameterizations serve as the boundary conditions for the entire ensemble
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Fig. 16 Longest words the L0 atlas data: the four most complicated words in our L0 search—orbits whose
words contain four letters. Each has triplewinding about the primaries—eitherwinding three about one primary
mass or winding two about one followed by winding one about another. Each also has winding one about an
inner libration point. It is interesting to note that these are not necessarily the longest orbits, in the sense of
connection time. While the bottom left and right are the two longest orbits, the top left and right are only 27th
and 28th, respectively. (Blue, green and red solid/dotted lines have the same meaning described in Fig. 10.)
We see the following symbol sequences: L+

0A · L30B—28th connection (top left), L30B · L0A—27th (top right),

L+
0B · L0A+ · L20B—41st (bottom left), (L+

0B )2 · L0A · L0B 42nd (bottom right). In each case rotation of each
by ± 120◦ gives a distinct connection (not shown)

of connecting orbits. This justifies the cost of computing high-order representations of
the manifolds.

– Once we have applied Newton to all the connections in the ensemble, we are ready to
take a new step. If Newton fails to converge for any of the connecting orbits, we have to
decide if we throw the orbit away, or if we recompute with smaller δ1, δ2, δ3.

We also remark that the atlas is not recomputed at the new mass parameter set. That is, we
continue only the connecting orbits—the intersections of the stable unstable manifolds—not
the manifolds themselves. Continuation of ensembles of connections is much cheaper than
recomputing the atlas each time we change parameters.

Results of several numerical continuations are illustrated in Figs. 21 and 22. As we change
the masses we break the rotational symmetry of the Triple Copenhagen problem and the sym-
metric counterparts resolve into distinct connection, no longer obtainable by rotations of a
single representative. During the numerical continuation we sometimes encounter bifurca-
tions of the connecting orbits themselves, which involve no bifurcation of the underlying
equilibrium. Figure 23 illustrates a common scenario where a family of homoclinic orbits
undergoes a doubling bifurcation. These bifurcations seem very common and we have not
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Fig. 17 Blue sky catastrophes at L0: the thick blue lines correspond to the portion of the homoclinic orbit
computed using the BVP approach. The green and red lines correspond to the asymptotic portion of the orbit
on the parameterized local unstable and stable manifolds, respectively. Left: the three shortest homoclinic
orbits at L0. Note that the orbits are rotations by 120◦ of one another. The figure also includes the planar
Lyapunov families of orbits about the inner libration pointsL1,2,3. These periodic orbits were computed using
a center manifold reduction, and we have not applied numerical continuation to the boundary. Nevertheless
the images suggest that the planar Lyapunov families may accumulate that the L0A homoclinic orbits. Right:
closeup on a neighborhood of L0 and L2. The homoclinic orbit L0A+ clearly has winding number one about
L2. All reference to color refers to the online version

made a systematic effort to track them. This would make an interesting topic for a future
study.

6 Conclusions

In this work we implemented a numerical method for computing an atlas for the sta-
ble/unstable manifold attached to a libration point in the CRFBP. We consider saddle-focus
equilibria, as in this case topological theorems give rich dynamical structure near a transverse
homoclinic. We then developed algorithms for searching or “mining” the atlas for approxi-
mate connections. After an approximate connection is found we sharpen it using a Newton
scheme for an appropriate boundary value problem. The procedure is completely automated
and locates all the homoclinic orbits up to a specified integration time. (To make the calcula-
tions less stiff we ignore orbits passing too close to the primaries). The resulting collection
of homoclinic orbits is ordered by connection time. A different choice of local parameteriza-
tion may yield different connection times, but the ordering of these connections is universal.
This last comment requires that the local stable/unstable manifolds are computed using the
parameterization method.

Our method locates dozens of distinct homoclinic connections and we consider their
qualitative properties in addition to their connection times. The geometry of the homoclinic
orbit set is organized by the several shortest connections, in the sense that they form a
system of channels that other connections appear to follow. We decompose the motions of
the longer connections into words built from these simple letters and discuss briefly how this
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Fig. 18 Fundamental connections at L5: the six shortest connecting orbits at L5 for the triple Copenhagen
problem. Shortest connections at L4,6 are obtained by rotation by ± 120. These six orbits and their rotations
organize all the connectionswefind atL5, as illustrated in the next twofigures. (Blue, green and red solid/dotted
lines have the same meaning described in Fig. 10.) We refer to these orbits as L5A , L5B (top left and right),
L5C , L5D (middle left and right), and L5E , L5F (bottom left and right). Moreover, by rotating the pictures by
± 120◦ we obtain orbits which we refer to as L4ABCDEF and L6ABCDEF . Observe that L5A and L5B have
winding number 1 with respect to the second and third primaries. Moreover, they are the only orbits of the six
basic words which wind around any primary. Similarly, L5C and L5D wind once around the inner libration
points L3 and L1 once, respectively. They are the only basic words at L5 with this property. Finally, L5E and
L5F are distinguished by the fact that they have winding number one with respect to the outer libration points
L7 and L9, respectively. All references to color refer to the online version
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Fig. 19 Homoclinic orbits with two- or three-letter words at L5: each of the orbits shadows two or three of
the six basic shapes shown in Fig. 18 (or one of their rotations). Rotation of each by ± 120◦ give a connection
at L4,6. The symbol sequences for these orbits are L5D · L5C—7th connection (first row, first column),
L5A ·L5B—8th (first row, second column), L5E ·L5F—11th (first row, third column), L5F ·L4E ·L5C—14th
(first row, fourth column), L25C—17th (second row, first column), L25D—18th (second row, second column),
L5C ·L5D—10th (second row, third column), L5C ·L5D—13th (second row, fourth column), L5A ·L5D—9th
(third row, first column), L5C · L5D · L5C—20th (third row, second column), L5A · L5D—12th (third row,
third column), L5A · L5D · L5C—15th (third row, fourth column), L5D · L5C · L5D—19th (third row, fifth
column). (Blue, green and red solid/dotted lines have the same meaning described in Fig. 10.) Again we see
that a symbol sequence can appear more than once. For example, the frames in the second row third and fourth
column both have L5C · L5D . However, the orbits are distinguished by their connection time (see Table 6).
All references to color refer to the online version

decomposition could be calculated in an automated way using the formulation of the winding
number as a complex line integral.

Finally, we continue some of the orbits found in the equal mass case to other nonsym-
metric mass values using a predictor corrector scheme for the boundary value problem.
Rather than recomputing the entire atlas the continuation scheme only recomputes the initial
parameterization at the new masses, and this can be done via a Newton scheme.

We remark that it would be easy to intersect that atlas data computed here with any
desired surface of section. We have not used sections in the present work because (a) we
wanted to find all the connections up to a certain integration time and a given section may
find some orbits and not others and (b) projecting to a section may not preserve the ordering
of the homoclinics by connection time. Moreover, while the present project focuses on the
CRFBP—a two-degree-of-freedom Hamiltonian system—the scheme described here could
be extended to higher-dimensional systems were sections are four or more dimensional and
hence less useful for visualization purposes. In such a situation, for example the spatial
CRFBP, it is desirable to have an automated procedure.

Other interesting topics of future research would be to combine our methods with more
sophisticated continuation and branch following algorithms. It would also be nice to return
to the ideas of Strömgren and examine the “tubes” of periodic orbits attached to each of
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Fig. 20 Orbits atL5 which wind around the first primary: The orbit on the top left has nontrivial winding about
the largest primary and no winding about the smaller primaries. The orbits in the top right and bottom left
frames wind around the largest primary and one or the other smaller primaries. Finally the orbit in the bottom
right frame winds around all three primaries. The symbol sequences for these orbits are L5C · L6A · L5D—
23rd and longest connection (top left), L5A · L6A · L5D—21st (top right), L5C · L6A · L5B—22nd (bottom
right) L5A · L6A · L5B—16th connection (bottom right). (Blue, green and red solid/dotted lines have the
same meaning described in Fig. 10.) Note that while orbit L5A · L6A · L5B is one of the most geometrically
complicated in our search, it has only the 16th longest connection time. All references to color refer to the
online version.

our homoclinic connections. These periodic families would themselves undergo bifurcations
which one could try to follow numerically.

Another improvement to our method would be to remove the speed constraints on our
manifold computations. This could be done by regularizing binary collisions. The idea would
be that whenever a chart gets too close to a primary, then instead of subdividing we would
change to the regularized coordinates where computations are less stiff. This idea of using
such regularizations to improve numerics goes back at least to the work of Thiele. This
would also provide a natural way for computing collision orbits between L0,5 and each
of the primaries. A topic we have avoided via our imposed speed constraints. A modern
implementation combined with our approach to computing atlases would be valuable, and is
the subject of ongoing work.

If such advancements let us compute larger and more complete atlases, a very interesting
question is to see if other “fundamental” connecting orbits appear. For example, at L0 all the
connections we find shadow two basic orbits L0A, L0B and their symmetric counterparts. Is
this true of all the connections? Or is this simply an artifact of the fact that we only consider
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Fig. 21 Continuation at L0: of all six fundamental connecting orbits at L0 and their symmetric counterparts.
Open circles in the top right frame depict the locations of the inner libration points L1,2,3. (Blue, green and
red solid/dotted lines have the same meaning described in Fig. 10.) Top/bottom left: fundamental connections
in the triple Copenhagen problem—equal masses. Top right: final result of numerically continuing L0A and
its symmetric counterparts along the line in parameter space beginning at m1 = m2 = m3 = 1/3 and ending
atm1 = 0.415,m2 = 0.3425,m3 = 0.2425—close to whereL0 loses saddle-focus stability nearm1 ≈ 0.42.
During the continuation L0A+ shrank substantially. This is due to the fact that L0A+ winds around L2,
which collides with L0 when m1 ≈ 4.2. A closeup of the situation is illustrated in the center frame. We
observe that the connections L0A and L0A− are deformed much less dramatically. Bottom right: the result
of numerically continuing L0B and its symmetric counterparts along the line in parameter space beginning
at m1 = m2 = m3 = 1/3 and ending at m1 = 0.4, m2 = 0.35, m3 = 0.25. These orbits are also deformed
less dramatically, though the loops do seem to decrease in size according to the loss of mass in the respective
primary, with the largest loop aroundm1 and the smallest aroundm3. All references to color refer to the online
version

connections whose velocity is never too large? Will performing longer searches yield more
fundamental letters for the alphabets at L0,5?

Of course with more computing power, one could perform the atlas computations at more
values of the mass parameters, say for a mesh of ten or twenty different points in the simplex
m1+m2+m3 = 1. This would provide a more complete picture of the global orbit structure.
Such a project would greatly benefit form a cluster computing implementation exploiting
the data independence of the computations at different parameter sets, and indeed the inde-
pendence of different portions of the atlas at a given parameter set. Numerical continuation
could then be applied to “fill in the gaps” between the mesh points.
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Fig. 22 Continuation atL5: continuation of the six basic homoclinicmotions atL5, along the line in parameter
space beginning at m1 = m2 = m3 = 1/3 and ending at m1 = 0.89,m2 = 0.1,m3 = 0.01. (Blue, green and
red solid/dotted lines have the same meaning described in Fig. 10.) So, starting from the triple Copenhagen
problem, we deform until almost ninety percent of the mass is in the first primary body—near the loss of
saddle-focus stability of L5. Observe that the libration point L5 moves closer to the smallest primary m3,
and that the loops contract around the smallest primary, a similar situation to that discussed in the caption of
Fig. 21. All references to color refer to the online version

Fig. 23 Illustration of a typical bifurcation: on the left is a homoclinic orbit forL0 in them1 = m2 = m3 = 1/3
case. On the right is a connecting orbit for the parameter valuesm1 = 0.3617,m2 = 0.34042 andm3 = 0.298,
just after a homoclinic doubling bifurcation of the orbit on the left. Both orbits persist after the bifurcation, that
is it seems to be a pitchfork. The new homoclinic has a close “flyby” of L0 before making a second excursion
and finally landing on the stable manifold. In both frames the solid blue lines represent the portion of the orbit
represented by the boundary value problem, while the green and red are portions on the unstable and stable
manifolds, respectively. All references to color refer to the online version
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A Rotational symmetry for the equal mass case

Let m1 = m2 = m3 = 1/3 and θ = 2π
3 . Define the linear map, ϕ : R

4 → R
4, by

ϕ(x, ẋ, y, ẏ) =

⎛
⎜⎜⎝
cos(θ) 0 − sin(θ) 0

0 cos(θ) 0 − sin(θ)

sin(θ) 0 cos(θ) 0
0 sin(θ) 0 cos(θ)

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x
ẋ
y
ẏ

⎞
⎟⎟⎠ = (ϕ1, ϕ2, ϕ3, ϕ4)

T.

Note that ϕ acts as a rotation by θ in the (x, y) and (ẋ, ẏ) coordinate planes independently.
Now, suppose that x : R → R

4 is a trajectory for f , then x̃ = ϕ ◦ x is also a trajectory for
f . Moreover, if x ⊂ Ws,u(Li ) for i ∈ {0, 4, 5, 6}, then x̃ ⊂ Ws,u(Lσ(i)), where σ is the
permutation given by σ = (0)(4, 5, 6).

Proof Let x̂ = (x, ẋ, y, ẏ) ∈ R
4 and suppose x is the trajectory through x̂ satisfying x(0) =

x̂ . By definition, x̃(0) = ϕ(x(0)) = ϕ(x̂), and we note that x̃ will parameterize a trajectory
for f if and only if x̃(t) is tangent to f (x̃(t)) for all t ∈ R. Thus, it clearly suffices to prove
that f ◦ ϕ = ϕ ◦ f holds for any x̂ on R

4.
With this in mind, define the planar rotation η : R

2 → R
2 by

η(x, y) =
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
x
y

)
=
(

η1(x, y)
η2(x, y)

)
,

Recall that for the symmetricmass case, we have equalmasses given bym1 = m2 = m3 = 1
3 .

Set m = 1
3 , then the primaries are located at P1, P2, P3 given by

P1 =
(

−
√
3

3
, 0

)
P2 =

(√
3

6
,−1

2

)
P3 =

(√
3

6
,
1

2

)

and note that ||P1|| = ||P2|| = ||P3|| = 1√
3
. Moreover, P1, P2, P3 are vertices of an

equilateral triangle and a direct computation shows that η acts as a cyclic permutation on
the primary bodies in configuration space given by the cycle π = (1, 2, 3). Recalling that
ri (x, y) = √

(x − xi )2 + (y − yi )2 = ||(x, y) − Pi ||, it follows from this symmetry that for
i ∈ {1, 2, 3} we have

ri ◦ η(x, y) = ||η(x, y) − Pi || = ∣∣∣∣(x, y) − Pπ−1(i)

∣∣∣∣ = rπ−1(i). (17)

Now, we recall that in the symmetric case, the CRFBP vector field is given by

f (x, ẋ, y, ẏ) =

⎛
⎜⎜⎝

ẋ
2 ẏ + x − 1

3

∑3
i=1

x−xi
ri

ẏ
−2ẋ + y − 1

3

∑3
i=1

y−yi
ri

⎞
⎟⎟⎠ ,

which we write in scalar coordinates as f = ( f1, f2, f3, f4). Similarly, write ϕ =
(ϕ1, ϕ2, ϕ3, ϕ4) andwenote that (ϕ1(x̂), ϕ3(x̂)) = η(x, y). Now,we check that fi ◦ϕ = ϕi ◦ f
holds for each i ∈ {1, 2, 3, 4}. For i = 1, we have the direction computation

ϕ1 ◦ f
(
x̂
) = ẋ cos(θ) − ẏ sin(θ) = f1 ◦ ϕ

(
x̂
)
.

Now, for i = 2 we first compute each expression

ϕ2 ◦ f
(
x̂
) =

(
2 ẏ + x − 1

3

3∑
i=1

x − xi
ri (x, y)

)
cos(θ) −

(
−2ẋ + y − 1

3

3∑
i=1

y − yi
ri (x, y)

)
sin(θ)
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f2 ◦ ϕ
(
x̂
) = 2(ẋ sin(θ) + ẏ cos(θ)) + x cos(θ) − y sin(θ) − 1

3

3∑
i=1

η1(x, y) − xi
ri ◦ η(x, y)

.

After canceling like terms in each expression, we are left to prove the following equality

3∑
i=1

η1(x, y) − xi
ri ◦ η(x, y)

= cos(θ)

3∑
i=1

x − xi
ri (x, y)

− sin(θ)

3∑
i=1

y − yi
ri (x, y)

. (18)

Applying the result from (17) to the left side, we have

3∑
i=1

η1(x, y) − xi
rπ−1(i)

= η1(x, y) − x1
r3(x, y)

+ η1(x, y) − x2
r1(x, y)

+ η1(x, y) − x3
r2(x, y)

,

so that for each i ∈ {1, 2, 3}, the numerator for ri is given by η1(x, y) − xπ(i). Now, we
compute the numerators for ri (x, y) on the right-hand side as

cos(θ)(x − xi ) − sin(θ)(y − yi ) = η1(x, y) − η1(xi , yi ) = η1(x, y) − xπ(i).

We conclude that the numerators for each ri are equal, and therefore, the equality in (18)
holds which proves that ϕ2◦ f = f2◦ϕ. The proofs for the i = 3, 4 cases are computationally
similar to the corresponding proofs for i = 1, 2 which concludes the proof that f ◦ϕ = ϕ◦ f ,
or equivalently, x̃ is a trajectory for f .

To prove the second claim, fix i ∈ {0, 4, 5, 6} and suppose x(t) → Li as t → ∞ implying
that x ⊂ Ws(Li ). Let x̃ = ϕ(x), and note that Li is an equilibrium solution for f implying
that x2,4(t) → 0. Noting that η is a unitary operator, it follows that x̃2,4(t) → 0 as well.
Moreover, ϕ is a dynamical conjugacy implying that in configuration space we have

lim
t→∞ x̃1,3(t) = lim

t→∞ η (x(t), y(t)) = η(Li ).

Taken together it follows that η(Li ) is again an equilibrium solution for f . Thus, η acts
as a permutation on equilibria. A direct computation shows that η(Li ) = Lσ(i) where σ is
the permutation given by σ = (0)(4, 5, 6). The preceding argument applies equally well to
the unstable manifold of each equilibrium with t → −∞ which completes the proof of the
second claim. ��

B Power series manipulation, automatic differentiation, and the radial
gradient

Our local invariant manifold computations are based on formal power series manipulations.
The main technical challenge is to compute f ◦ P with P an arbitrary power series and f
the vector field for the CRFBP. As usual in gravitational N body problems, the nonlinearity
contains terms raised to the minus three halves power.

Consider two formal power series P, Q : C
2 → C given by

P(z1, z2) =
∞∑

m=0

∞∑
n=0

am,nz
m
1 z

n
2, and Q(z1, z2) =

∞∑
m=0

∞∑
n=0

bm,nz
m
1 z

n
2,
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where am,n, bm,n ∈ C for all (m, n) ∈ N
2. The collection of all formal power series forms a

complex vector space, so that for any α, β ∈ C we have that

(αP + βQ)(z1, z2) =
∞∑

m=0

∞∑
n=0

(
αam,n + βbm,n

)
zm1 z

n
2 .

The collection becomes an algebra when endowed with the Cauchy product

(P · Q)(z1, z2) =
∞∑

m=0

∞∑
n=0

⎛
⎝

m∑
j=0

n∑
k=0

am− j,n−kb jk

⎞
⎠ zm1 z

n
2 . (19)

We evaluate elementary functions of formal power series using a technique called auto-
matic differentiation by many authors. Suppose, for example, we are given a formal series

P(z1, z2) =
∞∑

m=0

∞∑
n=0

pm,nz
m
1 z

n
2,

with p0,0 �= 0. We seek the formal series coefficients qm,n of the function

Q(z1, z2) =
∞∑

m=0

∞∑
n=0

qm,nz
m
1 z

n
2 = P(z1, z2)

α, α ∈ R.

Our approach follows the discussion given by Haro et al. (2016). Consider the first-order
partial differential operator

∇radP(z1, z2) = ∇P(z1, z2)

(
z1
z2

)
= z1

∂

∂z1
P(z1, z2) + z2

∂

∂z2
P(z1, z2),

which is referred to as the radial gradient of P . Evaluating on the level of formal power
series leads to

∇radP(z1, z2) =
∞∑

m=0

∞∑
n=0

(m + n)pm,nz
m
1 z

n
2 .

Observe that

∇radQ(z1, z2) = ∇Q(z1, z2)

(
z1
z2

)

= ∇P(z1, z2)
α

(
z1
z2

)

= αP(z1, z2)
α−1∇P(z1, z2)

(
z1
z2

)
.

Multiplying both sides of the equation by P , we obtain

P(z1, z2)∇Q(z1, z2)

(
z1
z2

)
= αQ(z1, z2)∇P(z1, z2)

(
z1
z2

)
. (20)

Here the fractional power is replaced by operations involving only differentiation and mul-
tiplication. This is the virtue of the radial gradient in automatic differentiation schemes.
Plugging the power series expansions into Eq. (20) leads to
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( ∞∑
m=0

∞∑
n=0

pm,nz
m
1 z

n
2

)( ∞∑
m=0

∞∑
n=0

(m + n)qm,nz
m
1 z

n
2

)

=
( ∞∑
m=0

∞∑
n=0

αqm,nz
m
1 z

n
2

)( ∞∑
m=0

∞∑
n=0

(m + n)pm,nz
m
1 z

n
2

)
,

and taking Cauchy products gives

∞∑
m=0

∞∑
n=0

m∑
j=0

n∑
k=0

( j + k)pm− j,n−kq j,k z
m
1 z

n
2

=
∞∑

m=0

∞∑
n=0

m∑
j=0

n∑
k=0

α( j + k)qm− j,n−k p j,k z
m
1 z

n
2 .

Match like powers to get

m∑
j=0

n∑
k=0

( j + k)pm− j,n−kq j,k =
m∑
j=0

n∑
k=0

α( j + k)qm− j,n−k p j,k,

or

(m + n)p0,0qm,n +
m∑
j=0

n∑
k=0

δ̂
m,n
j,k ( j + k)pm− j,n−kq j,k

= α(m + n)q0,0 pm,n +
m∑
j=0

n∑
k=0

δ̂
m,n
j,k α( j + k)qm− j,n−k p j,k,

for m + n ≥ 1. Here

δ̂
m,n
j,k :=

⎧
⎪⎨
⎪⎩

0 if j = m and k = n

0 if j = 0 and k = 0

1 otherwise

.

The δ̂ appears to remind us that terms of order (m, n) are extracted from the sum. Isolating
qm,n gives

qm,n = α pα−1
0,0 pm,n + 1

(m + n)p0,0

m∑
j=0

n∑
k=0

δ̂
m,n
j,k ( j + k)

(
αqm− j,n−k p j,k − pm− j,n−kq j,k

)
,

(21)
for m + n ≥ 1. Note that q0,0 = pα

0,0 �= 0 by hypothesis, so that the coefficients qm,n are
formally well defined to all orders. Using the recursion given in Eq. (21) we can compute the
formal series coefficients for Q for the cost of a Cauchy product. This allows us to compute
power series representations for the nonlinear terms in f (P) and Df (P) in the CRFBP.
Another approach which converts the CRFB field to a higher-dimensional polynomial field
in discussed in Kepley and Mireles James (2018).
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