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Receptor Organization Determines the Limits of Single-Cell Source Location Detection
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Many types of cells require the ability to pinpoint the location of an external stimulus from the arrival
of diffusing signaling molecules at cell-surface receptors. How does the organization (number and spatial
configuration) of these receptors shape the limit of a cell’s ability to infer the source location? In the
idealized scenario of a spherical cell, we apply asymptotic analysis to compute splitting probabilities
between individual receptors and formulate an information-theoretic framework to quantify the role of
receptor organization. Clustered configurations of receptors provide an advantage in detecting sources
aligned with the clusters, suggesting a possible multiscale mechanism for single-cell source inference.
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The ability to pinpoint the location of an external
stimulus is critical for a variety of cell types. Canonical
examples include eukaryotic gradient-directed cell migra-
tion (chemotaxis) [1], directional growth (chemotropism)
in growing neurons [2] and yeast [3]. A unifying feature of
these systems is that they must infer the spatial location of
the external source through the noisy arrivals of diffusing
particles to membrane receptors.

The spatial organization of receptors varies between these
examples. GABA receptors in nerve cone growth begin
relatively uniform on the membrane and dynamically reor-
ganize by clustering receptors toward the source [4]. In
budding yeast (S. cerevisiae), receptors are known to dynami-
cally cluster towards the direction of a received signal in mate
identification [3,5]. In contrast, the receptors in Dictyostelium
remain uniform throughout the process of identifying a source
location. These differences raise the question: what role does
receptor clustering play in locating external stimuli?

There has been considerable progress in answering this
question. Clustered receptors can provide robustness against
noise through rebinding cooperativity [6-10], or by reducing
correlation from downstream signals [ 11]. These observations
fit into the broader pursuit of understanding how complex
downstream machinery, activated by noisy receptor input,
robustly filters shallow gradients [12—-20]. Here we study the
limits of the most upstream stage: the diffusive arrival of
signaling molecules to a fixed configuration of membrane
receptors. We find that receptor configuration alone contrib-
utes significantly to the quality of signal acquired by the cell.

In this Letter, we establish how receptor organization
(number and spatial distribution) shapes the limits of a cell’s
ability to detect the source location of diffusing particles.
Our approach draws from the conceptual model of Berg and
Purcell [21] (and later [22]) consisting of a spherical cell
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with circular absorbing surface sites representing membrane
receptors. We employ a matched asymptotic approach to
compute the probability a signaling molecule hits a par-
ticular receptor [23,24]. Within an information-theoretic
framework [25,26], we establish the informational limit of
the fully absorbing cell and assess efficiency relative to
this limit as a function of the surface fraction and number
of receptors. We identify fundamental differences in the
information content of clustered receptor configurations,
suggesting higher information content in front of clustered
receptors. This observation is verified by performing a
maximum likelihood inference, showing that a source can
be located with smaller average error in front of a cluster of
receptors. This suggests a multiscale mechanism for source
localization: if a cell can align toward an initial spatial cue
(e.g.,asobserved in budding yeast [3]) with accuracy limited
by the spacing between clusters, then it can exploit receptor
nonuniformity to pinpoint the location with an accuracy
limited by receptor spacing within a cluster.

dX(t)=V2DdW (t)

FIG. 1. Model. Diffusing particles are released from a source
location x and either escape to spatial infinity or hit a perfectly
absorbing cell-surface receptor.
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Model.—Let Q be the unit sphere with N circular surface
receptors of common radius &. For a diffusing particle
originating at x, the splitting probability p,(x) gives the
likelihood of its arrival at the nth receptor, without reaching
other receptors or escaping to spatial infinity. The splitting
probabilities encode the cell’s interaction with the extrac-
ellular environment. The probabilities {p,(x)}Y_, satisfy
the mixed boundary value problem

Ap, =0, x € R3\Q,
pn, =1, on nth receptor,
p, =0, on all other receptors,
a,p, =0, elsewhere on cell surface, (1)

where 0, =1 -V is the normal derivative. The receptor
locations are fixed on the surface (cf. Fig. 1) with a general
nonoverlapping configuration and centers Y ={yy,....yy }
Dynamic rearrangement of receptors [3,4] is not explicitly
captured in this modeling paradigm, however, how such
reorganizations may affect source detection can be inferred
by comparing different static configurations. We have
derived and validated numerically [27] that as € — O,

pa(x;)) ~4eG(x,y,) + g { B - 111(25)} G(x,y,)

—4nZG<yn,yk>G<x,yk>} LoE). (@)

k;n

Here G(x,€) is the surface Green’s function of the
Laplacian, exterior to the unit sphere. For |E| = 1, it is [34]

U1 1 [1-x-E+|x—g
6.8 =5; g2 (v )|

We distinguish between the unconditioned probabilities
p,(x) and the conditioned probabilities

< V) — Pa(x:))
(% V) = SV p(x: )’ G)

The former incorporates the possibility for escape to
infinity while the latter only reflects particles which have
reached a receptor. By working with the conditioned
probabilities, we adopt the biological assumption that the
cell has no knowledge about particles that did not arrive at a
receptor. The conditional probabilities do not vanish as
the receptor radius tends to zero (¢ — 0) and ¢,(x;)) —
G(x.,)/ S0, G(x.¥y).

Consider a fixed, unknown source location x from which
particles are released and denote by ¢, the count at the nth
receptor. When the number of receptors N and arriving

particles M = >N_ ¢, are finite, there is uncertainty in

the acquired signal. To quantify this, we first take these
quantities to be infinitely large and then consider the case
where each is finite.

Case M = 00, N = co.—To establish the information
content in this limit, we consider the arrival distribution
to the sphere for a point source at distance R > 1 from
the cell center. We adopt a coordinate system where the
source is located at the north pole, and let 6 € [0, z) and
¢ € [0,27) denote the arrival location on the sphere. The
density describing (0,¢) is equivalent to the classical
charge distribution on a conducting sphere induced by a
point charge [35-37]

1-R™>2 ,
T#(0.9) = /x(0) 4x(1— 2R cos0+ R 0
In the context of cellular decision making [38], we
assume that the cell has a prior distribution of each receptor
being equally likely to have an arrival of particles; i.e., the
cell is initially uninformed about the source location. For
the fully absorbing sphere, this yields

1
funif(07 ¢) = funif(g) = ESin 0.
The directional information encoded by the arrivals of
particles to the surface is therefore a measure of the
deviation between the measured and prior distributions.
The Kullback-Leibler (KL) divergence, or relative entropy,
of g from p is defined by

d(pllq) ==/p(x)1n<%>dx.

The relative entropy d,.(p|lg) interpreted in a Bayesian
sense computes the amount of information gained revising
the belief distribution from ¢ to p. Consequently, the
relative entropy from the uniform distribution of arrivals
encodes the amount of directional information the cell has.
This quantity is found explicitly as a function of R:

E(R) = due(fellfunt) = / 2” / " m( fr >d9d¢

unif

1
= In(R) + 3R coth™!(R) — Eln (R*—1)-3.

We note that E(R) is positive and monotonically decreasing
with intuitive limiting values. As the source approaches the
absorbing sphere, limg_, ;. E(R) = oo. That is, the noise
encoded from diffusion vanishes close to the cell and the
arrivals encode the exact direction of the source. However,
E(R)~3R™* as R— oo, so that for distant sources,
diffusion induces more noise in the arrival locations and
directional information is reduced.
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fully absorbing limit
1,00 (fully absorbing limit)

FIG. 2. Directional information with finite number of receptors.
Relative entropy from uniform E(R,N) for uniformly spaced
receptors as a function of the number of receptors N normalized
by the entropy in the fully absorbing sphere limit, E(R). In the
red, dashed: receptor radius &= {1,2,3,4,5} x 1072, blue,
solid: surface fraction f = {1,2.5,5,7.5,10}% with R=35
fixed. Inset: E(R, N) as a function of R, with N = 25 receptors
fixed and the same varied surface fractions.

Case M = 00, N < co.—We now consider a finite
number of receptors. From the conditioned probabilities
q,(x;)) in (3), we define the information gained revising
the prior belief from uniform to be the deviation

E(R,N) = nZ:/XR q,(x;)) ln<q"1<)/(];\?))>dx.

E(R, N) averages over the angular position of the source. In
the calculation for the fully absorbing sphere, the location
of the source was chosen arbitrarily due to rotational
symmetry. To compare directly to that quantity with
explicit receptors, we average over angular positions of
the source. Later, we explore the role of angular position
relative to receptors in an unaveraged quantity. The
probabilities ¢,(x;)) are computed with a numerical
solution to (1) for varying source locations and uniformly
spaced receptor configurations )/ centered at Fibonacci
spiral points [39]. The results of computing E(R,N) for
varying number of receptors can be seen in Fig. 2. We first
vary the receptor radius ¢ and see that the resulting behavior
is intuitive: as the characteristic distance between receptors
decreases, the resolution increases and the fully absorbing
sphere serves as a limiting object for finite number of
receptors: E(R,N) — E(R) as N — oo. Estimates of recep-
tor numbers range from N ~ 10*~10° for lymphocytes [40],
N =~ 10? for GABA receptors in neural cone growth [41],
and N ~10* in budding yeast [3]. For N = 1000 and
e =0.05, the largest values in the figure, the surface
fraction coverage f = ¢>N/4 is approximately f = 70%

and the information content is effectively at the limit of the
fully absorbing sphere.

Is this effect due to having more receptors or just a
byproduct of increasing the absorbing surface area? We
instead vary f (setting e = /4f/N) and observe that the
information content still increases as a function of N. In the
case of 1% surface fraction coverage by N = 1000 recep-
tors, the directional information content is over 50% of
the fully absorbing limit [42]. This surprising result is
analogous to the Berg and Purcell flux dependence on the
absorbing surface perimeter. The probabilities ¢, are
influenced by arrivals to other receptors, the rate at which
is controlled by the flux, meaning again the perimeter is the
factor that influences the rate at which information is
gained. In the inset of Fig. 2, we see E(R,N)~ R™? as
R — oo alongside the perfectly absorbing limit.

Clustered receptor configurations.—We have so far
examined how a finite number of uniformly distributed
receptors approaches the fully absorbing sphere limit.
Receptor clustering reduces the total flux to the receptors
[44], but it remains to determine the effect on directional
sensing. The relative entropy in this case is the nonaveraged
quantity

N .
Ex:Y) =Y g,(x:Y)n (W) (4)
n=1

For a given source location x and receptor configuration ),
this measure should be interpreted as a prior distribution of
uniform probabilities across receptors, which is not nec-
essarily equivalent to any particular distribution of x, the
quantity being estimated. See [45] for a discussion of priors
in direction sensing.

Let Y.ue and Yy, denote clustered and uniform
receptor configurations (Fig. 3). Clustered configurations
are formed by placing receptors in a spherical cap and
copying across the sphere at Fibonacci spiral points. For
these configurations, the relative entropy (with respect to
uniform probabilities) is computed using the asymptotic
result (2) and shown in Fig. 3. The asymptotic result allows
for rapid evaluation of these probabilities at a large number
of source locations.

In Fig. 3, the directional relative entropy appears to be
heterogeneous in space for ), but directionally uniform
for V- The difference E(X; Vous) — E(X; Vanie) (Fig. 3,
right column) indicates that directional entropy in front of a
cluster is higher than that of the uniform configuration, and
this difference diminishes as source distance increases. This
implies that informational content is richer for the clustered
configuration when particles are arriving from sources in
front of the cluster.

To explore further, we compute in Fig. 4 the difference in
entropy both in front of a cluster and averaged over possible
source locations [i.e., E(Re,;)) and f\x|:R E(x;))dx].
The results are shown for 45 total receptors and source
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FIG. 3. Relative entropy for two receptor configurations. Left

and center columns: the directional entropy (4) as a function of the
source location for each configuration and R = {1.25,1.75,2.5}.
Right column: the difference between the two entropies. At smaller
R values, clustered configurations can receive more directional
information. This difference diminishes at large R values sug-
gesting receptor organization plays a negligible role when locating
distant sources.

distances R =2, 4. In front of a cluster, nonuniform
configurations have higher entropy levels, but on average,
perform worse. The benefits of clustering become dimin-
ished as the source location becomes farther away or the
configuration becomes less clustered. The resolution is
therefore determined by the spacing between receptors.
Thus, smaller receptor spacing within a cluster can resolve
finer detail. Expectedly, as the source location moves away,

0.3+
—s—R=4
0.2 —— R=2
E( _EH
ER)
014 in front
(E><E) of cluster
E(R)
0.0
averaged
-0.1

T
Number of clustersigﬂ 5
Number of receptors

59 95 153 451

in s
cluster

FIG. 4. Comparison of entropies for clustered and uniform
receptor configurations. Difference in entropy is computed in
front of the cluster (green) and averaged over source locations
(purple). Clustered configurations have higher relative entropy in
front of clusters but lower on average, with this effect most
magnified close to the cell.

the noise from diffusion makes both distributions converge
to uniform probabilities and the difference vanishes.

Case M < oo, N < oo.—For infinitely many incident
particles (M = o), the g, are discerned exactly. How does
source inference operate given a noisy sample formed by
finite arrivals? The probabilities of arrival at each receptor
are multinomial (dependent on x) with likelihood

N C
L(x:Y) = > inlg, (x. V)]

n=1

The maximum likelihood estimate (MLE) of the source is

Xvig = argmax L (x;)). (5)
X

We use this inference scheme only as a statistical abstrac-
tion to quantify the limits of uncertainty in the system.
Cellular mechanisms for MLE-based [46] or Bayesian [47]
inference have been proposed but are fundamentally down-
stream of diffusive arrivals and beyond the scope of this
Letter. Relative entropy and Fisher information (the stan-
dard error of MLE) are related [48] so we expect the
previous results about relative entropy to inform the error in

(a)
source
distance
M= 10* M= 10°
50 100 150 200
sample size
(b) uniform clustered
1
-1 -1
2 -2
0 1 2 3 4 [ 1 2 3 4
FIG. 5. Frequency of maximum likelihood estimated locations.

(a) For varying source locations x at a distance R (from the center
of the cell) and sample sizes M, frequencies of MLE estimated
locations (5) for uniform receptor covering. (b) estimated loca-
tions for the configurations of receptors shown in Fig. 3. Colors
correspond to relative frequency of estimated location.
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the MLE estimate. In Fig. 5(a), we vary the source location
x=(R,0,0) for R = 2, 10, 100 and M = 10%, 103, 10%, 10°.
The receptor configuration remains the uniform configu-
ration in Fig. 3. For each trial, we compute the MLE
estimate numerically from (5) with z = 0 fixed and plot
the frequency of results. The error (||Xypg — X||) scales
~M~1/2, as predicted by the central limit theorem but also
as ~R™? [27], in accordance with the relative entropy
results in the M = oo case. To verify the claim in Fig. 3 that
certain source locations may be better detected by a
clustered configuration, we fixed the source at x =
(2.5,0,0) and took M = 50 particles. The frequency of
predicted locations, shown in Fig. 5(b), yields a lower mean
error for the clustered configuration than that of the
uniform.

Discussion.—We have examined the role of receptor
organization on detection of external stimuli. We demon-
strate that a cell can operate near theoretical limits with a
finite number of receptors and noisy arrival data. When
receptors are not uniformly spaced, the information content
is larger in front of clusters suggesting that resolution is
limited by receptor spacing. A cell with clustered receptors
can potentially benefit by forming a crude estimate and
aligning itself in that direction.

Altogether, our results reinforce the notion that cells
must balance trade-offs between directional signal cover-
age and robustness as seen in other work [8—11]. However,
we emphasize that the only mechanism by which receptors
are interacting in our model is through binding competition,
as no downstream signaling or rebinding are included.
Understanding the interplay between receptor organization
and downstream signaling mechanisms is a natural direc-
tion for future investigations. Finally, it would be interest-
ing to study the relative entropy of physiological or
dynamical cluster configurations (e.g., [8]) compared to
the synthetic ones utilized here. Our Letter suggests the
spatial organization of membrane bound receptors plays
a crucial role in cellular scale directional sensing and
decision making.
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