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Abstract

Incorporating experimental data is essential for increasing the credibility of
simulation-aided decision making and design. This paper presents a method
which uses a computational model to guide the optimal acquisition of exper-
imental data to produce data-informed predictions of quantities of interest
(QolI). Many strategies for optimal experimental design (OED) select data
that maximize some utility that measures the reduction in uncertainty of
uncertain model parameters, for example the expected information gain be-
tween prior and posterior distributions of these parameters. In this paper,
we seek to maximize the expected information gained from the push-forward
of an initial (prior) density to the push-forward of the updated (posterior)
density through the parameter-to-prediction map. The formulation pre-
sented is based upon the solution of a specific class of stochastic inverse
problems which find a probability density that is consistent with the model
and the data in the sense that the push-forward of this density through
the parameter-to-observable map matches a given density on the observ-
able data. While this stochastic inverse problem forms the mathematical
basis for our approach, we develop a one-step algorithm, focused on push-
forward probability measures, that leverages inference-for-prediction to by-
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pass constructing the solution to the stochastic inverse problem. A number
of numerical results are presented to demonstrate the utility of this optimal
experimental design for prediction and facilitate comparison of our approach
with traditional OED.

Keywords: Uncertainty quantification, optimal experimental design,
push-forward measures, stochastic inference

1. Introduction

Developing techniques for assimilating experimental data is essential for
increasing the credibility of simulation-aided decision making and design
since this data can be used to reduce uncertainty and inform model struc-
ture. However, when the collection of experimental data is expensive, only
a limited amount of experimental data can be obtained. Moreover, different
experiments provide different amounts of information about the processes
they are helping inform. Consequently, it is crucial to design experiments for
which the associated data maximizes the value, or the information content,
of each experiment.

The simplest methods for optimal experimental design (OED) employ
heuristics, based on concepts such as space-filling and blocking, to select field
experiments [13, 15, 27, 29, 31]. These methods can typically be improved
upon by utilizing numerical simulation of physical processes as a model
for the data likely to be observed and then designing experiments which
minimize model uncertainty [6, 7, 8, 18]. When model observables are linear
with respect to the model parameters, many popular OED approaches seek
designs that reduce uncertainty in the statistical estimates of the model
parameters by maximizing some scalar function of the Fisher information
matrix, denoted here by M. For example, A-optimal designs maximize
the trace of the inverse of M, thereby minimizing the average estimation
variance. In contrast, D-optimality maximizes the determinant of M with
the goal of minimizing the volume of the confidence ellipsoid around the
model parameters. These, and other so-called alphabetic criteria, have been
developed in both Bayesian and Frequentist settings [2, 1, 17, 4, 11, 23].

For non-linear models, Bayesian formulations provide a general frame-
work for OED [24, 26, 30, 2, 22, 16, 18]. These approaches assign a prior
distribution to the uncertain model parameters and then determine a de-
sign by maximizing a utility function over a set of possible designs. Various
forms of the utility function are used, but a popular approach is to max-
imize the expected information gain between the prior and the posterior



distribution. Such approaches are often formulated as an inverse problem
wrapped within an optimization procedure. Subsequently, Bayesian formu-
lations tend to be computationally expensive, often requiring thousands or
millions of model evaluations. Computationally efficient and scalable ap-
proaches for OED have been the focus of many recent efforts [2, 22, 23]
and often leverage Laplace approximations and connections with scalable
methods for deterministic optimization.

In this paper, we are primarily concerned with designing experiments
that maximize the expected information content when making simulation-
based predictions. For example, consider a model of the flow of fluid around
a set of obstacles used to predict the drop in pressure behind each object.
Suppose the locations of the obstacles are unknown so that the pressure
drops cannot be measured directly. In this case, we can choose to observe
the magnitude of flow velocity at certain predetermined locations. Then,
we can use parameter estimation and a simulation model of the observable
quantities to infer the location of each object. The resulting parameter un-
certainties can then be propagated through a (possibly different) simulation
model to obtain the prediction Qol, i.e. the drop in pressure at each obsta-
cle. This process is often referred to as inference-for-prediction. In general,
the observational model and prediction model need not be the same, how-
ever they must both contain the same set of uncertain variables as input
parameters. For such situations where prediction is the ultimate objective,
experimental designs that target reduction in parameter uncertainty may
be inefficient, or worse yet, entirely ineffective. This is due to the fact that
data collected may only inform certain directions/regions of the parame-
ter space while the prediction Qol may only exhibit sensitivities to other
directions/regions.

The focus of this work is on an optimal experimental design for pre-
diction (OED4P) procedure that seeks to improve the predictive capability
of a simulation. This goal-oriented approach can significantly reduce the
amount of data that needs to be collected to inform a prediction. We can
subsequently exploit the low-dimensionality of the data space to reduce the
computational complexity of determining the OED4P solution. Several ex-
isting OED approaches also focus on uncertainty reductions for prediction.
For example, I-optimality minimizes the average prediction variance and G-
optimality minimizes the worst-case prediction variance. However typically
these criteria focus on reducing uncertainty in predictions of observations
that were considered in the design process. In contrast, the approach in this
work generates designs that consider uncertainty in Qol possibly unrelated
to the observations. The concepts presented here are synergistic with the



ideas developed in [20, 21], which sought to bypass the parameter space
in the process of inference—for—prediction, given fixed data. Recently scal-
able approaches for goal-oriented Bayesian inference have been developed
for models parameterized by random variables with Gaussian prior distri-
butions [5] and additive Gaussian noise.

The approach proposed in this paper is fundamentally different from
previous OED4P approaches in that it uses a data-consistent framework for
formulating the stochastic inversion problem [9] which facilitates the devel-
opment of a new algorithmic procedure for defining a data—consistent predic-
tion (i.e., an updated prediction measure) that entirely bypasses the solution
to the stochastic inverse problem. This data-consistent framework is based
on a different class of inverse problems than the one typically addressed by
traditional Bayesian methods. Specifically, instead of seeking posterior dis-
tribution that is conditioned by the data, this framework seeks a probability
measure on the model inputs parameters that is consistent with the data in
the sense that the corresponding push-forward distribution matches a given
target distribution. Such problems arise in many engineering, manufactur-
ing, design and biomedical applications where the variability in observations
can be attributed to variability in the model parameters across a population
or collection of manufactured components. Despite this significant difference
in the problem formulation, there are also some similarities. In particular,
both approaches utilize prior (or initial) information about the model input
parameters to regularize the respective inverse problems to provide unique
and stable solutions. In [9], we discuss these similarities and differences in
more detail and provide a simple set of examples to compare the solutions
and predictions for each approach. The algorithms described in this work
only require a mechanism for generating samples from the initial (prior) dis-
tribution and ability to define the push—forward of these samples onto the
joint observable/prediction space. An additional feature of the algorithms is
that all numerical integrals and approximations occur exclusively in either
the observation space or the prediction space; never in the full joint space
or in the parameter space.

The main contributions of this paper are:

e a definition of the inference-for-prediction problem based on push-
forward measures;

e the formulation of OED for prediction based entirely on these push-
forward measures;

e an intuition-building discussion of the special case of linear maps and



Gaussian distributions;

e a discussion of the assumptions made in this paper to achieve a scalable
formulation for computing and optimizing the expected information
gained for prediction;

e several numerical examples highlighting the utility of OED for pre-
diction and the differences between the designs it selects versus those
selected using traditional OED.

For the sake of computational efficiency, we assume that we can define a
finite set of candidate experimental designs before performing any model
predictions. This is not a formal requirement, but it does allow us to avoid
introducing an iterative optimization procedure to enable a computationally
efficient implementation.

The remainder of this paper is organized as follows. In Section 2, we
provide a high-level overview of the OED4P formulation based on push-
forward measures. This section is intended to help the reader build intuition
before we introduce the problem formally. In Section 3, we introduce our
notation and formally define the forward and inverse problems considered
in this work. In Section 4, we consider the special case of linear maps and
Gaussian distributions. In Section 5, we define and discuss the OED4P
problem, and Section 6 provides several numerical examples. Concluding
remarks are in Section 7.

2. Motivation

We use a simple conceptual example to motivate the utility of optimal
experimental design for prediction (OED4P) and demonstrate how two dif-
ferent experiments with similar reductions in initial estimates of uncertainty
for parameters can have drastically different reductions in uncertainty for
predictions. This simple example clearly illustrates how OED4P can be
used to select the experiments that lead to the largest expected reduction
in uncertainty for predictions.

OEDA4P requires both an observational model and prediction model. The
observational model produces estimates of experimental data and the pre-
diction model produces estimates of the Qol. These models can be used to
obtain a set of outputs from the joint experiment-Qol data space by eval-
uating each model on a set of samples from an initial probability measure
describing uncertainties in model input parameters. This output sample set



is referred to as the push-forward of the initial input sample set. An ex-
ample of such a push-forward sample set is depicted in Figure 1 (top-left).
In this example the observational and prediction model both produce scalar

quantities.
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Figure 1: On the top row, the push-forward of the initial density (top-left) and the updated
density (top-right) into the joint space defined by the observable and prediction data. On
the bottom row, the push-forward of the initial density (bottom-left) and the updated
density (bottom-right) into the joint space defined by a less-informative observable and

prediction data.

Using data to reduce estimates of prediction (or parameter uncertainty)
requires conditioning the aforementioned joint push-forward density on the
available data. In the following, we assume that observational data are
used to construct a probability measure that quantifies uncertainties on the



observable model output. Using this so-called observed probability measure
it is possible to select a subset of samples from the push-forward sample set
(e.g., using rejection sampling) such that that the observable components of
this output subset are independent identically distributed (i.i.d.) samples
from the observed probability measure. This sample set is said to be data—
consistent.

The left plots of Figure 1 depict two observed joint observed-Qol densi-
ties, and their marginals, obtained using two different observational model
outputs. The right plots of this figure depict the two updated joint densities,
and marginals, after an observed measure for each model output is used to
produce a data-consistent set of samples from the updated joint observed-
QoI joint density. When the observed probability measure (red marginal on
vertical axis) has less uncertainty than the push-forward of the initial mea-
sure (blue marginal on vertical axis) on the model input parameters (e.g., as
measured by a reduction in variance), the predicted components of the data-
consistent sample set may also exhibit reduced uncertainty. The amount of
uncertainty reduced depends significantly on the relationship between the
observable output and the prediction Qol. In the top row of Figure 1, we
see a significant reduction in prediction uncertainty by either comparing the
data-consistent (top-right) and push-forward (top-left) sample sets or their
corresponding marginal densities shown on the top (for the prediction Qol)
and right (for the observable output) of the axes. In contrast, there is al-
most no reduction in prediction uncertainty reduction using the observable
output depicted in the bottom row of Figure 1. While the data—consistent
sample set produces similar reductions in uncertainty in the observable com-
ponent, there is almost no reduction in uncertainty for the prediction due to
the weak correlation between this observable output and prediction. Thus,
while such observational data may lead to significant reductions in input
parameter uncertainty, we have failed to reduce the prediction uncertainty.
Qualitatively speaking, the experiment used for the top row of Figure 1
provides a greater reduction in prediction uncertainty than the experiment
used for the bottom row.

OED4P requires quantitative metrics to select the set of experiments
which maximize the information gained from a set of experiments. While
many metrics are reasonable, we use the Kullback-Leibler (KL) divergence [32]
between initial and updated prediction densities. The KL divergence has
several interpretations depending on the context in which it is utilized. For
example, in an information theory context, the KL divergence is connected
to quantities such as Shannon entropy [12]. In Bayesian contexts, the KL
divergence quantifies the information gained in moving from a prior to pos-



terior distribution [19]. In the context of this work, the relationships to
machine learning and coding theory are perhaps the most appropriate for
interpreting how we utilize the KL divergence. Specifically, we use the KL di-
vergence to quantify the information gained if one measure is used in place
of another, e.g., if the observed measure replaces the predicted measure.
This is also related to the efficiency in using samples from one measure to
generate samples from a different measure, e.g., in using predicted samples
and rejection sampling to generate samples from the observed measure.
We return to Figure 1 to provide additional context for the interpretation
of the KL divergence. Specifically, using the KL divergence to measure
the changes between the initial uninformed prediction-marginal, in the left
plots of Figures 1, and the data-informed prediction-marginal of the same
plots supports our qualitative conclusions. Here, the KL-divergence between
the densities in the top row of Figure 1 is approximately 0.6532 which is
significantly higher than the value of 0.0084 obtained for the densities in the
bottom row, indicating that the first experiment is more informative.?
Since solutions to the OED or OED4P problems are sought prior to new
or additional experimentation, the observational model is required to sim-
ulate the types of data that are likely to be observed. We therefore define
an appropriate space of candidate distributions (e.g., Normal distributions
centered around each potential datum) for each observable model output
(the marginal distributions on the vertical axes of Figures 1 and then com-
pute some meaningful statistic from this space of distributions. The most
common approach is to simply take the average over this space, giving the
expected information gained. In [33], the OED problem is solved by obser-
vations that maximize the expected information gained, measured by the
KL divergence, between the initial (prior) and updated (posterior) densities
on model input parameters. Due to the formulation of the stochastic inverse
problem employed in [33], this is equivalent to maximizing the expected KL
divergence between the push-forward of the initial density and the observed
density, i.e., optimizing the expected difference between the distributions on
the vertical axis in Figure 1. In this paper, we seek to maximize the expected
information gained between the marginals associated with the push-forward
of the initial density and the push-forward of the updated density in the
space of predictions. In other words, we seek to optimize the expected dif-
ference between the distributions on the horizontal axis in Figure 1.

2The KL divergence is always non-negative and is minimized at zero when comparing
identical distributions.



3. Data—informed prediction

In this section, we give the precise terminology and notation required
to formally define the OED and OED4P problems, which are presented in
Section 5. After introducing these preliminaries, we discuss the forward
and inverse problems considered in this paper as well as a fundamental
relationship between them that is exploited for the inference-for-prediction
problem.

3.1. The spaces, maps, and some assumptions

Suppose the observational and prediction models have a common set of
model input parameters denoted by A € A C RP. The set A represents
the largest physically meaningful domain of parameter values. We assume
that the set of prediction Qol are defined as functionals on the solution
space of the prediction model. Furthermore, we assume these Qol, denoted
by {Qi(A\)}L,, are both fixed and known a priori. Then, we define the
parameter-to-predictions map by Q(A) = (Q1(A), -+ ,Qq(\))". Let Q :=
Q(A) C R? denote the set of all possible predicted Qol data.

The goal is to choose a parameter-to-observables map for which we col-
lect data to improve predictions on Q. Assuming we can collect data on
d observable outputs of the model, we let £ represent the space of all po-
tential d-dimensional parameter-to-observable maps for which we may col-
lect data during experiments. The space £ is referred to as the design
space since it defines the space of all possible experimental designs. Let,
D € &£ be a specific design defined by the parameter-to-observable map
D()\) := (D1()\),---,Dg(\) " for a particular set of observable output quan-
tities, {D;(X) ?:1. By D := D(A) we denote the range of the design D,
which defines the set of all potentially observable data for this particular
map. Note that the set of points defining D depends upon the map D, but
as we will see, this dependence has no significant consequence in the analysis
or algorithms, so we avoid further mention of it in this work. For problems
where the elements in £ are enumerated, we denote the kth design as D*).

We assume (A, Ba, pa), (Q,Bo, o), and (for each D € &) (D, Bp, up)
are measure spaces with By, Bg, and Bp denoting the Borel o-algebras
inherited from the metric topologies on A € RP, @ C RY, and D C R¢,
respectively. The measures pa, po, and up are the dominating measures for
which probability densities (i.e., Radon-Nikodym derivatives of probability
measures) are defined on each space. We also assume that the parameter-to-
observables map, D, and the parameter-to-predictions map, ), are at least
piecewise smooth implying that D and () are measurable maps.



3.2. Forward Problems

The forward uncertainty propagation problem considered in this work
is elegantly described in terms of constructing a push-forward probability
measure. First, let P denote an initial probability measure on (A, By).
The knowledgeable reader may think of this initial probability measure as a
prior on the model input parameters, but we follow the nomenclature used
in [10] to emphasize the fact that we ultimately solve a different inverse
problem from the classical Bayesian formulation with the aid of this measure.

. . o D(init
Since D is measurable, it induces a push-forward measure on IP’D(HH ) on D.

Definition 1 (The Initial Push-Forward Measure for Observables).
Given an initial probability measure, ]P’f(”t, on (A, Bp) that is absolutely con-
tinuous with respect to up and admits a density 772"“, the forward problem for
observables seeks to determine the push-forward probability measure Pg(mn)
on (D, Bp) such that for all B € Bp,

D(int ini — ing
PR (B) = PY#(D 1(3)):/1)_1(3) w dpuy. (1)

This push-forward probability measure on observables is a key compo-
nent of the formulation for solving the stochastic inverse problem described
in the next section. In a similar manner, the fact that ) is measurable im-
plies that the initial probability measure and the map, (), induces a push-
forward measure Pg(init) on Q.

Definition 2 (The Initial Push-Forward Measure for Predictions).
Given an initial probability measure, ]P’f\mt, on (A, Bp) that is absolutely con-
tinuous with respect to un and admits a density 7", the forward problem for
predictions seeks to determine the push-forward probability measure Pg(mn)

on (Q,Bg) such that for all A € Bg,
PU) = BR@ W) = [ @)
Q™A

We additionally assume that Pg(init) and Pg(mit) are absolutely contin-

uous with respect to pup and pgo and admit densities wg(init) and wg(init)

respectively. In the context of the discussion in Section 2, Wg(init) is il-
lustrated by the marginal densities shown on the right of the vertical axes
and Wg(mlt) is illustrated by the marginal densities shown on the top of the

horizontal axes in Figure 1.
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3.53. A Stochastic Inverse Problem

The formulation of a stochastic inverse problem which utilizes initial
(prior) estimates of uncertainty on data is essential for understanding both
the data-informed prediction and OED4P problems we define. In this sec-
tion, we summarize this inverse problem.

At a conceptual level, assume we are given a distribution on observa-
tional data (e.g., obtained from experimentation) and an initial distribution
on the input parameters. Then, the inverse problem we consider seeks an up-
dated measure on parameters which is data-consistent in the sense that its
subsequent push-forward back through the parameter-to-observables map
matches the observed measure. In other words, the updated measure on
parameters is a pullback of the observed measure. This is defined more
precisely below.

Definition 3 (Stochastic Inverse Problem). Given a probability mea-
sure P%bs on (D, Bp) that is absolutely continuous with respect up and ad-
mits a density W%bs, the inverse problem secks to determine a probability
measure Py on (A, Bp) that is absolutely continuous with respect to py and
admits a probability density wp, such that the subsequent push-forward mea-

sure induced by the map, D, is data-consistent in the sense that

PA(D"(A)) = / 7 dun = PR(A) = P&*(A) = / P dup, (3)
D-1(A) A

for any A € Bp.

There may be multiple probability measures that are data-consistent?
in the sense of Definition 3. This is analogous to an under-determined
deterministic inverse problem where multiple parameters may produce the
same observed datum. A unique solution may be obtained by imposing
additional constraints or structure on the stochastic inverse problem. In
this work, we follow [9] and impose such structure by specifying an initial
probability measure of the model parameters. Specifically, we introduce an

init

initial probability measure P{"* on (A, By ) that is absolutely continuous with

3The notion of data-consistency described in Definition 3 is fundamentally different
from the traditional notion of consistency is Bayesian analysis. See Remark 1 for futher
details.
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respect to pup and admits a probability density ﬂ}{ﬁt.‘l Then, to guarantee
the existence and uniqueness of a solution to the inverse problem, given in
Definition 3, we make the following assumption.

Assumption 1. There exists a constant C > 0 such that T2%(y) < ng(mit)(y)
for a.e. y € D.

Since the observed density and the model are assumed to be fixed, this
is only an assumption on the initial measure. We sometimes refer to this
assumption as the Predictability Assumption since it implies that any output
event with non-zero observed probability has a non-zero predicted probability
defined by the push-forward of the initial measure. This is actually the same
constant that one would estimate if using rejection sampling to produce
samples from 79P* using samples generated from Wg(mlt) (see [9] for details).

Under the predictability assumption, the unique solution to the stochas-
tic inverse problem is obtained using a disintegration of measures [14] along
with Bayes’ rule. This solution is referred to as the updated probability
measure, denoted P}", and is given by

up _ rinit W%bs (D))
= [ ([, e (D(A))dm,yw) dup(y), YA € By.
(@

In terms of probability density functions, the updated density is defined as

u ity T2 (@)
TP (N) i= it () =2 ,
A ( ) A ( )Wg(lmt)(Q()\))

The solution to the stochastic inverse problem defined in Definition 3 given
in (5) is asymptoptically consistent. In [9], we prove that the error in the
updated density, measured in the L' or total variation norm, is bounded
by the error in the observed density. Consequently the updated density
converges to a “true” updated density in the limit of increasing data as the
characterization of TI'%bS converges. For a more detailed derivation, including
discussions on stability in the total variation metric, we refer the interested

reader to [9)].

A €A (5)

4In [9], the initial and updated measures were referred to as the prior and probability
measures. In this paper we follow the exposition in [10] and refer to the prior and posterior
as the initial and updated measures/densities, respectively, to reinforce the conceptual
differences of the inverse problem used in this paper and classical Bayesian inference.

12



Remark 1. The aforementioned notion of consistency for the stochastic in-
verse problem in Definition 3 is fundamentally different from the traditional
notion of consistency is Bayesian analysis. Specifically, the consistency of
the former is defined in terms of a pullback probability measure rather than
an asymptotic convergence towards the “true” parameter value in the limit
of increasing data.

3.4. The Data-Informed Prediction Problem

Given a distribution on the observations, a data-informed prediction
conceptually follows a two step procedure: (i) solve the stochastic inverse
problem of Definition 3 by computation of the updated density given in (5);
and (ii) use the parameter-to-predictions map to compute the push-forward
of the updated measure for the Qol. We define this push-forward formally
as the data-informed prediction.

Definition 4 (Data-Informed Prediction). Given an updated probabil-
ity measure PyP on (A,Bp) that is absolutely continuous with respect to
pa and admits a density my", the data-informed prediction seeks the push-

forward probability measure Pg(uz}) on (Q,Bg) such that for all A € Bog,
PE(4) = BY(Q 7 (4)). (6)

(up)

As before, we assume Pg is absolutely continuous with respect to pg and

admits a density Fg(up).

Given an i.i.d. sample set of parameters from the initial density, we
can algorithmically follow the two step procedure as follows. First, use the
parameter-to-observations map to approximate the push-forward of the ini-
tial density on the observation space. Then, use the ratio of the observed
density to this push-forward to perform rejection sampling in the observa-
tion space. Keeping track of indices of samples that are accepted in the
observation space, a subset of the initial sample set of parameters can be
identified as a set of i.i.d. samples from the updated density on parameter
space. This solves the first step of obtaining a solution to the stochastic
inverse problem, which is described as its own algorithm that is analyzed in
[9]. The second step is then solved by propagating these i.i.d. samples from
the updated density through the parameter-to-predictions map to obtain a
set of i.i.d. samples from WS(UP).

Algorithm 1 gives an alternative approach to obtaining i.i.d. samples
from Wg(up) that bypasses the process of obtaining a solution to the stochas-
tic inverse problem. A necessary input to this algorithm is a set of joint sam-
ples in the observation and prediction spaces coming from an initial sample

13



set of parameters. In other words, the parameter-to-predictions map must
have already been applied to the initial sample set. Assuming this is the
case, then all the computations occur only in the observed data space, so
it is not technically necessary to know the actual sample set of parameters
from the input distribution. This implies that the Data-Informed Prediction
problem is solvable even when the initial parameter distribution is unknown.

Algorithm 1: Generating Samples from the Data-Informed Pre-
diction
Input:
L A{(DOAD), Q)Y where {AD}Y ~ 7ipit,
2. TI'%bS.

Pre-processing computations::

1. Estimate 75 ") and define () := 7%5(D(\)) /72 ™ (D())).
2. Estimate M := max, 7(\) &~ maxj<;<n r(A?).
fori=1,...,N do
Generate a random number, u, from a uniform distribution on
[0,1];
Compute the ratio: n = r7(D(A\?))/M;
if 7 > u then
‘ Accept Q()\(i));
else
‘ Reject Q(AD);
end

end
Output: Accepted Qol samples.

While this algorithm is computationally convenient, it obfuscates how
the updated measure forms the underlying connection between the data-
informed measure on predictions and the observed measure. From Defini-
tion 4, the connection between the data-informed measure on predictions
and the observed measure is clear and allows us draw two useful general
inferences on data-informed probabilities. First, for any A € Bg, we know
that Q7(A) € B and that Q~(A) € D~YD(Q1(A))), which implies

]Pag(up) (4) = PXP(Qfl(A)) < ]Pxp(Dfl(D(Qil(A)))) = P%)S(D(Qil(A)))'

This inequality describes how the observations bound probabilities of predic-
tion events from above. By reversing the roles of () and D, we also conclude

14



that for any A € Bp,
PR (A) < PEM(Q(D7(A)).

This inequality describes how certain prediction events are bounded below
in probability.

4. A Special Case: Linear Gaussian Models

The purpose of this section is to provide some additional intuition about
how the structures of the observation and prediction measures are related
in the special case where all maps are linear and the initial and observed
densities are Gaussian. Thus, in this section we assume that Q : A — Q
and D : A — D are linear maps, i.e., @ € R?? and D € R¥P and that
it N(0,%4) and 7% ~ N (0, p).

Assuming further that p > max{q,d} (i.e., there are at least as many
parameters as either observables of Qol) and that the matrices defining @
and D both have full rank, the updated density as well as the push-forwards
of the initial and updated densities through either map are also given by
normal distributions with the following covariance matrices:

cov (ﬂD(init)) _ ED(init) _ DZADT

cov (Wg(lmt)) EQ init) — Q%) QT

cov (1P) = $IP = (2 +D7 [2 (DZADT)I} D> B
cov <7Tg(up)) _ Zg(UP) — DD’
cov (ﬂ'g( )) ZQ(UP) QEVYQ’.
From these expression we can make two additional observations to provide

further insight into the structure of the updated solution:

o If DX\DT = ¥p, then ¥\" = £,. In other words, if the push-forward
of the initial density already matches the observed density, then the
updated density is identical to the initial density.

e If D is invertible, the stochastic inverse problem has a unique solution
with a covariance given by X" = (DTE 1D) " since DT (DXAD")™'D =
by Al In other words, the updated covariance does not depend on the
initial density.

15



It is convenient to use the Woodbury identity to rewrite the updated
covariance as

7\
<2A1 +D7 {zpl ~ (pzaD7) ] D) =¥\~ SAD M DS,

where 1
M =Sp+DEAD" = 3p (I- DEADTE5Y)

So we can write

YW =35~ XAD " MTIDS, (7)
£2M) = QxAQT - QEADTMTIDELQT. (8)

This form exposes two important quantities: (i) the operator ADT :D—
Q that denotes the initial-weighted observable-to-parameter map and deter-
mines the perturbation of 7\” from 7% and (ii) QEADT : D — Q that
denotes the initial-weighted observable-to-prediction map and determines
the perturbation of Fg(up) from wg(imt).

It is well-known that the covariance of the posterior computed using the
classical Bayesian approach is given by (EKI + DTE{)ID) ~! Which leads to a
very similar expression for the push-forwards of the posterior, but with M =
Yp + DEADT. In both cases, the initial-weighted observable-to-prediction
map strongly influences the information gained from the push-forward of the

initial density, Wg(init), to the push-forward of the updated density, Wg(up).

5. Optimal Experimental Design

In this section, we define the OED and OED4P problems based upon
the stochastic inverse problem and data-based prediction problems defined
in Definitions 3 and 4, respectively. We first summarize the concept of in-
formation gain, using the KL divergence between two probability densities,
which is necessary for ranking the quality of different designs. Then, we
define both the OED and OED4P problems in terms of optimizing the ex-
pected information gain over a specific space of possible observed densities.

5.1. Information gain: Kullback-Leibler divergence

To quantify the information gain of a design, we use the Kullback-Leibler
(KL) divergence [32]. As mentioned in Section 2, the interpretation of the
KL divergence depends greatly upon the context in which it is applied.
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In the context of this work, it quantifies the information gain achieved if
one probability measure (e.g., the updated probability measure) replaces
another (e.g., the initial probability measure). Moreover, it has a practical
interpretation in terms of the efficiency in using samples from one probability
measure (e.g., the initial probability measure) to generate samples from
another probability measure (e.g., the updated probability measure).

For the sake of a general discussion, let m; and 7o be two probability
densities on a measure space (X, B, u). The KL divergence from 7 to my is

formally defined as
T2
KL(mg|lm) = / 7 log <> dpu. 9)
X 1

In general, it may be computationally infeasible to accurately approxi-
mate the integral in Eq. (9) especially if X is high-dimensional. However,
if the measure associated with 7o, denoted by Py, is absolutely continuous
with respect to the measure associated with 7, denoted by P;, then by
standard results for Radon—Nikodym derivatives, we have that u—a.e.,

dPy  dPydP;  dPy

D) =

T g dPydp AP

Let the Radon—Nikodym derivative of Py with respect to P; be denoted by

dPy
ri=—_—
dPy’
which defines a non-negative measurable function in L(X), then, we can
rewrite (9) as

KL(mal|71) ::/Xrlog(r)dIPﬁ. (10)

Estimating this integral then becomes tractable with Monte Carlo sampling
assuming it is straightforward to generate i.i.d. samples following the Py
distribution.

In this paper, we are primarily interested in two applications of the KL
divergence between densities. The first is the KL divergence between the

init

initial density, 7", and the updated density, 7", given by

. TP (N .
KL 1) = [ 7P O)og (WiA?ﬁf( Aﬂ)m = [ r s ) am,
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where r()) is given by

% (D(N)

r(A) = 5y
mp ™M (D(N))

In our approach for solving the stochastic inverse problem, samples are gen-
erated from the initial density and the corresponding model evaluations are
used to estimate Wg (init) and, in turn, r(D(A)). Thus, we already have the

init

ability to approximate KL(7 |7 ") by integrating

r(A) log(r(A))

with respect to the initial probability measure.

The second application is the KL divergence between the push-forward
of the initial density for predictions, wg(mlt)

updated density for prediction, wg(UP), which is given by

, and the push-forward of the

Q(up)

u ini u T (Q)
o T (9)

- /Q ro(q)log (ro(q)) dp3™),

where rg(q) is defined as

Again, since we have already generated samples from the initial density

and computed the corresponding model evaluations, we have samples from
Q(init)

T and can approximate the integral of
rao(q)log (ro(q))

with respect to Pg(init).

5.2. Fxpected information gain

Ideally, the solution to the OED problem determines a design before ex-
perimental data are collected. Yet, computation of either KL (" ||7}¥") or

KL(Wg(up ) HTrg(init)) requires specification of an observed density. Letting C
denote the space of all potential observed densities, the goal is to define the
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expected information gain as some kind of average over C in a meaningful
way. However, this is far too general of a space to use to define the expected
information gain. This space includes densities that are unlikely to be ob-
served in reality. Therefore, we restrict C to be a space more representative
of densities that may be observed in reality in such a way that we can also
prescribe a relative likelihood on these densities. In other words, we define
C such that a probability measure/density can be prescribed on C which will
allow us to compute an expectation.

With no experimental data available to specify an observed density, we
assume for simplicity that the observed density will belong to a parametric
family of distributions parameterized by a finite-dimensional vector. We
denote such a parametric family by P(h) where the parameters used to
define the distributions are denoted by h € H C R". We refer to these
h—dimensional parameter vectors h as hyperparameters to distinguish them
from the model input parameters denoted by A, and H denotes the space of
all plausible values considered for these hyperparameters. A simple example
of such a parametric family is the family of Gaussian distributions on D with
hyperparameters given by the d—dimensional mean and a diagonal d x d
covariance matrix so that the dimension of the hyperparameters, h, is at
most 2d. With this general notation, we define

C:= {w%bs(d;h) € P(h) :deD,heH}, (11)

where we write 7%%(d; h) to make the dependence of the observed density

on the specification of the hyperparameter vector h explicit.

Note that with this definition, the elements of C, defined as functions of
d, are in 1-to—1 correspondence with H. Let 8 : C — H denote the bijection
defined by 3(7%*(d; h)) = h. This is a measurable function which induces a
o—algebra B¢ on C that is in 1-to—1 correspondence with the Borel o—algebra
By naturally defined by the restriction of the h—-dimensional Borel o—algebra
to H. We can therefore use any probability measure or density defined on
(H, By) to describe probabilities or relative likelihoods on (C, B¢). In other
words, the computations of expected information gain can take place on
the h—dimensional measurable space (H, By ) in place of (C,B¢). We let Py
denote a given probability measure on (H, By ) from which we can generate
samples and compute an expected value. We then define the expected infor-

init

mation gain (EIG) for the parameters, denoted E¢ (KL(m"||w{'")), as just
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described,

o "P(\;h
Ec (KL(TrApHﬂ'“mt / / P(\;h)log <7Tm$t()\))> dppdPy
TA
/ / h)log (r(\; b)) AP dPy, (12)

where we make explicit that pr and r are functions of the observed den-
sity and, by our restriction of the space of observed densities in Eq. (11),
functions of h € H.

Similarly, we define the expected information gain for predictions (E1IG4P),

denoted Eg (KL(T&'S(UP) H7Tg(init))>, as

. (up)( )
Ee <KL(7Tg(up)H7Tg(lmt) / / TS up log< (lmt)( h))dquPH

- [ﬂ /Q ro(g: h) log (ro(q; b)) AP By, (13)

where we make explicit that Wg(up) are rg are functions of the observed

density and therefore functions of h € H. In the numerical examples of
Section 6, we describe the specific forms of P(h) that are assumed along
with the probability measure Py used in each computation.

Computing either of these EIGs appears to be a computationally ex-
pensive procedure since it requires solving a large number of stochastic in-
verse problems and approximating 7 D(nit) .an be expensive if we use a non-
parametric kernel density estimation technique. However, our approach for
solving stochastic inverse problems only requires approximating the push-
forward of the fized initial density. In other words, the push—forward is itself
fixed across all choices of observed densities from C. This implies that this
single push-forward can be used to approximate updated densities for differ-
ent observed densities without requiring additional model evaluations. We
comment further on the scalability of this OED formulation in Section 5.4
where we outline the algorithmic procedures for solving the problems dis-
cussed in this work.

Remark 2. The choice of the space of possible observed densities C can
influence the designs generated by our OED framework. OED attempts to
select informative data before the data is collected. Consequently, OED re-
quires a statistical model for generating likely data. In this paper we do this
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via the specification of C. The need for a generative data model is also made
in Bayesian OFED. These methods a priori specify the relationship between
the model and data, e.g. the error is Gaussian with a certain mean and
standard deviation.

5.8. Defining the OED and the OED4P

Recall that each experimental design is defined as a d-dimensional parameter-
to-observables map computed from the model, and we seek the optimal map
corresponding to a set of d measurement devices to deploy in the field. Given
a physics-based model, initial information on the model parameters, a space
of potential experimental designs, and a generic description of the uncer-
tainties for each observable, we define the OED for information gained on
parameters as

Doy i= argiga (Bp (KL= |58 0) ). (1)
S

where we have explicitly denoted that the KL-divergence, and thus the EIG,
depends on the design, D, chosen from the design space £.
Similarly, we define the OED4P for information gained on predictions as

DogEp4p = arg IB?;/‘( <ED (KL(ﬂ—g(up) ”ﬂg(init); D)) ), (15)

where, as above, we have explicitly denoted that the KL-divergence, and
thus the EIG4P, depends on the design, D, chosen from the design space £.

Following [33], we assume the design space consists of a finite number of
candidate designs, and we evaluate the EIG and EIG4P for all of these to
determine the OED and the OED4P, respectively. This assumption avoids
issues associated with continuous design spaces, but it does have certain
implications. In Section 5.4, we discuss how this provides some notion of
scalability if this design space is determined a priori, but it also limits the
number of experiments we can consider.

5.4. Scalability of the OED and OED4P

In general, OED is extremely computationally demanding as it requires
solving numerous inverse problems to compute the EIG, and this is wrapped
within an optimization routine to maximize the EIG. Scalable approaches for
other OED formulations have been developed for linear inverse problems [2,
3] and for the classical Bayesian OED for prediction formulations [5].
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Under certain conditions, the approach developed in [33] for OED and
the approach developed in this paper for OED4P are also scalable. The
dominant cost in solving the stochastic inverse problem employed here is
the estimation of the push-forward of the initial density, 7r£ (init), However,
given an approximation of this push-forward, we can explore updated densi-
ties associated with different observed densities for minimal computational
cost. Thus, for a given design, computing the EIG and the EIG4P cost ap-
proximately the same as solving a single stochastic inverse problem, which
costs as much as solving a forward UQ problem. In addition, if the set of
candidate designs and the predictions are known a priori, then the compu-
tational model only needs to be evaluated once for each sample from the
initial density. In this scenario, determining the OED and the OED4P cost
about the same as solving a forward UQ problem.

On the other hand, if a candidate design may contain multiple mea-
surements, then the cardinality of the space of candidate designs can grow
factorially. Thus, the approaches in [33] and in this paper for OED and
OED4P are not scalable with the number of measurements. In addition,
if the space of candidate observed densities contains distributions that are
more difficult to invert than others, then the accuracy of the proposed ap-
proaches for OED and OED4P may not scale well as the costs in computing
the EIG and EIG4P are then dictated by the most difficult inverse problems
to solve to sufficient accuracy. In these cases, it may be possible to exploit
the connections with deterministic optimization (as in [25]) to develop scal-
able approaches based on a continuous design space, but this is beyond the
scope of this paper.

6. Numerical Results

In this section, we present some numerical results to illustrate the differ-
ence between OED and OED4P. The first example focuses on the difference
between EIG and EIG4P for the case of linear parameter-to-observable and
parameter-to-prediction maps with Gaussian initial and observed densities.
The next three examples consider discretized (partial or ordinary) differ-
ential equations. For each of these three examples, both the parameter-
to-observable map and the parameter-to-prediction map are nonlinear and
we define the space of candidate observed densities to be an appropriately
parameterized family of Gaussian distributions.
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6.1. Inference-for-prediction for a Linear Gaussian Problem

In this section, we consider a linear map with Gaussian initial and ob-
served densities and exploit the analytical results of Section 4 to numerically
demonstrate that while two different designs may be approximately equiva-
lent in terms of informing model input parameters, they may perform very
differently in terms of informing model predictions. While this may seem
fairly obvious to some readers, we find it useful to provide a concrete demon-
stration of this phenomena for this special case before proceeding to the more
complicated examples in subsequent sections.

Here, we take A = R* with 710 ~ N(0,$4) where Xy = 2[;. We
consider two designs, DM : A — R? and D@ : A — R2, where

o _[-2 00 1 @ _ [1 01 -1
D‘[1 1o -1 PP oo 1)

In either case, we assume the observed distribution on the data is given
by TI'%bS ~ N(0,Xp) where ¥p = 0.8I. For simplicity of notation, we let
E}l\p’i denote the covariance of the updated density obtained by solving the
stochastic inverse problem using the map D,

Given these assumptions, we generate 1E6 samples from the initial den-
sity to estimate the information gains for the input parameters for both
maps as

KL (P || i DMWY & 1.1140, and KL (7P || i D®) ~ 1.0000.

Thus, we might consider these two maps to be approximately equally infor-
mative with respect to this criteria. Given the analytical expressions for the
covariance of the updated densities from Section 4, we can easily compute
other OED criteria, such as the determinant of the Hessian (D-optimality),

det <(zgp’1)_1> — 23437, det <(2‘A‘P’2)_1> — 2.3437,

the trace of the Hessian (A-optimality),

-1 -1
trace <<Exp’1) > = 5.0667, trace ((ZXP’Q) ) = 4.6667,

and the minimum eigenvalue of the Hessian (E-optimality),

min <eig ((21@1)1)) = 0.5000, min <eig ((EXM)l)) = 0.5000.
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In any case, we find that D) and D® are approximately equally informa-
tive for the model input parameters. However, our conclusions become very
different if we consider a linear prediction map, @ : A — R?, given by

00 10
Q:[1112]

We use rejection sampling to generate samples from each updated density

and estimate the KL-divergence between the initial prediction, Wg(init) and

the updated prediction, FS(UP)Z

KL(r 2™ 730", D) ~ 9.8271E-4,  KL(x 2™ |78 D®)) ~ 0.2406.

In fact, for this problem we can analytically determine that QX DW is a
matrix of zeros. Thus, D is much more informative than D) with respect
to the model predictions despite the fact that both maps are approximately
equally informative with respect to the model input parameters (for the
metrics considered).

6.2. Linear Elasticity Stress Prediction

As a more realistic example, consider the following computational me-
chanics problem where a 2-dimensional beam with multiple inclusions is
subjected to a uniform loading along the top of the beam (see Figure 2 for
an illustration). The computational domain is 2 = (0,6) x (0,1) and we
let ©; and Q9 denote the inclusions given by ellipses centered at (2,0.5)
and (4,0.5) respectively. Also let Qy = Q\(£21 U Q2) denote the portion of

ilill

° 7 ///////////////////////

Figure 2: Computational domain for the linear elasticity stress prediction problem. The
beam is held fixed along the bottom and a uniform loading is applied along the top.
Sensors on each side measure the horizontal displacement.
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the beam outside of the inclusions. We use a plane-stress formulation to
model displacement and stress and approximate the solution to the govern-
ing equations using a standard finite element approximation on a uniform
(240 x 40) quadrilateral mesh. We assume that Young’s modulus, F, and the
Poisson ratio, v, are known in €2y but unknown within €, and Q,. Within
Qo we set Ey = 1.0E3 and vy = 0.3 and within each inclusion we assume
E; ~ U(1E3,4E3) and v; ~ U(0.4,0.45) for i = 1,2, i.e., the inclusions are
stiffer than the bulk of the beam and each may be composed of different
material. The magnitude of the displacement field and the von Mises stress
field for a nominal realization of the parameters are shown in Figure 3.

Magnitude
1.216e-01
Eo,ow 19
-0.060793
10.030397

EO. 000e+00

m_stress
El .000e+02
80

=60
EAO
2.000e+01

Figure 3: Magnitude of the displacement field (top) and the von Mises stress field (bottom)
corresponding to the nominal parameters.

We instrument the model with sensors measuring horizontal displace-
ment at the midpoint of the faces of the elements along the left and right
boundaries of the domain. This gives a total of 80 candidate designs. The
quantity of interest to predict is the von Mises stress at the center of the
right inclusion. This choice is merely for the sake of demonstration and other
choices are certainly possible and would presumably give different optimal
designs.

To solve the OED problem we must estimate the push-forward of the
initial density which we do using 10,000 evaluations of the model with a
standard Gaussian kernel density estimator. We must also define a reason-
able space for the candidate observed distributions to compute the EIGs
of each candidate design. Based on an inspection of the sample-based ap-
proximation of the push-forward of the initial density, we fix the standard
deviation of the observed density at 1E-5 and assume the mean of the ob-
served density is uniformly distributed over an interval within D. For each
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candidate design, D¥), we choose this interval to be centered at the sample-
based approximation of the mean of the push-forward of the initial, which
we denote E(k), and to have a width equal to 0.5 times the sample-based
approximation of the standard deviation of the push-forward of the initial,
which we denote o(®). Using the notation of Section 5, we define

#=1d" —050®.d" 1+ 0.50®), P(h) = (N(h, 1E-10): h € H},

and define Py to be a uniform distribution on H. We also explored dif-
ferent representations of the candidate design space, but the results were
comparable and are not presented here.

In Figure 4 (left), we plot the EIG for parameters for each of the can-
didate designs using 100 random realizations of the parameterization of the
observed density. The symmetry in the model produces nearly identical re-

—&— Left Sensors —8— Left Sensors
L —8— Right Sensors —8—Right Sensors| |

N

5F

EIG for Parameters
EIG for Prediction
o
>

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Sensor Location (y-position) Sensor Location (y-position)

Figure 4: Expected information gains for parameters (left) and for prediction (right).

sults for the sensors on the left and right boundaries. In Figure 4 (right), we
show the EIG4P for each of the candidate designs. We see that the sensors
along the right boundary, which is closer to the inclusion containing the
prediction sensor, are much more informative than the sensors along the left
boundary. Thus, the horizontal displacement measured at the sensors on the
left and right sides primarily inform the material properties within the left
and right inclusions, respectively. This explains the symmetry in the EIG
for parameters and the significant difference in the EIG4P. Interestingly,
the OED corresponds to measuring the horizontal displacement at the top
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of the beam on either side, while the OED4P corresponds to measuring the
horizontal displacement at approximately one-fifth of the way up the beam
on the right side of the beam. Finally, we note that the EIG in Figure 4
(left) has a significantly larger range than the EIG4P (right). This indicates
that the data is informing certain model input parameters more than the
model predictions. We have not investigated if this is always the case, but a
similar observation is made in the subsequent examples. Of course, this does
not affect the OED or OED4P since these are simply different optimization
functions.

6.53. Predator Prey Model
In this section, we consider a Lotka-Volterra predator prey model given

by,

—Cgf = Az — \oxy, (16)
dy

_ 1
g = Ty — Ay, (17)

where x is the number of prey, e.g., mice, and y is the number of predators,
e.g., endangered owls. We use a 4"-order explicit Runge-Kutta time inte-
grator with At = 0.01. We assume that the initial conditions are known,
but the model parameters, \;, are not known precisely. The nominal values
for these parameters are 1.0, 0.01, 0.02 and 1.0, respectively, and we assume
the parameters are uniformly distributed as follows: A; ~ U(0.95,1.05),
A2 ~ U(0.01,0.03), A3 ~ U(0.02,0.04) and A\q ~ U(0.95,1.05). The numeri-
cal approximations of the predator and prey populations using the nominal
values of these parameters are given in Figure 5 (left). On the right plot of
Figure 5, we plot 100 realization of the populations computed from samples
from these distributions.

For this demonstration, the prediction Qol is the predator population
at ¢ = 50, however we assume that direct measurements of the predator
population are infeasible or impractical. Thus, we will measure the prey
population at an earlier time and hope to inform the model to maximize our
information gained in the prediction of the predator population at ¢t = 50.
We assume that we can measure the prey population at t = 1.1,1.2,...,31.0
which gives 300 experimental designs. We estimate the push-forward of the
initial using 1E4 model evaluations and a standard Gaussian kernel density
estimator.

As in Section 6.2, we define the space of candidate observed densities as
a family of normal distributions with a fixed variance and a uniformly dis-
tributed mean. Based on an inspection of the sample-based approximation
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Figure 5: On the left, the numerical approximations of the predator and prey populations
using the nominal values of the parameters. On the right, 100 realization of the populations
computed from samples from these distributions.

of the push-forward of the initial density, we fix the standard deviation of
the observed density at 1.0 and assume the mean of the observed density is
uniformly distributed over an interval within D. For each candidate design,
D®) | we choose this interval to be centered at the sample-based approxima-
tion of the mean of the push-forward of the initial, which we denote E(k),
and to have a width equal to 0.25 times the sample-based approximation of
the standard deviation of the push-forward of the initial, which we denote
o®). The parameters for this normal distribution of the mean are chosen
following the same process described in Section 6.2. To be precise, for each
candidate design, D*)| we define

1 =[d" —0.250®,d% 1 0.250®], P(h) = {N(h,1.0):h e H},

and define Py to be a uniform distribution on H.

In Figure 6 (left) we compare the EIG and the EIG4P for the candidate
designs. In Figure 6 (left) we see that while both EIG and EIG4P have
periodic structures, the peaks are not aligned. The best design, for the goal
of informing model parameters, occurs where EIG is maximized. Similarly
the best design for informing predictions maximizes the EIG4P criterion.
Based on the data we have, the OED for parameters actually occurs when
we measure at t = 1.6 and does not provide any significant information
gained for the prediction. On the other hand, if we measure at t = 21.2
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Figure 6: On the left, a comparison of the expected information gained for parameters
and for prediction. On the right, a comparison of the expected information gained for
predictions and correlation between predator and prey populations.

or t = 28.0 then we approximately maximize both the EIG and EIG4P. To
select the best design we simply enumerated over all candidate designs. In
some situations, it is more computationally efficient to use gradient-based
optimization. However, this assumes that the designs can be parameterized
by continuous variables. Figure 6 clearly indicates that there are multiple
measurement times that provide approximately equivalent local maxima for
the EIG. Consequently, using any gradient-based scheme for global opti-
mization of this problem is challenging. In other problems, it may very well
be intractable.

In Figure 6 (right) we compare the EIG4P with the absolute value of
the Pearson correlation coefficient (PCC) between the prediction Qol (the
predator population at ¢ = 50) and the observable Qol (the prey populations
at earlier times) where the PCC between two random variables, X and Y,
is

OX0y
where ox and oy are the standard deviations of X and Y respectively.
We see that the PCC and the EIG4P peak at different times. Thus, the
optimal time to measure the prey population to reduce the uncertainty in
the predator population at a later time (¢ = 50) is not necessarily when
these quantities are highly correlated.
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6.4. Steady Fluid Flow

In this section, we consider steady-state flow in a channel with multiple
obstacles and multiple predictions. The computational domain, shown in
Figure 7, is Q = (—5,10) x (—3,3). The flow is given by the steady-state
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Figure 7: Illustration of the computational domain and zones for steady fluid flow example.
This image is just for illustrative purposes and the scales are approximated.

Navier-Stokes equations,

—Au + Reu - Vu + Vp =0,
V- u =0.

The flow enters the left boundary with a parabolic profile for the x-velocity.
The maximum of this parabolic profile is chosen to give a Reynolds number,
Re, of approximately 100, which easily admits a steady solution. The right
boundary is an outflow (homogeneous Neumann) boundary and the upper
and lower boundaries are no-slip (u = 0). The computational domain is de-
composed into four regions. In the first region, the flow primarily conforms
to the inflow profile. In the second region are three obstacles. We assume
that we know the size and shape of these obstacles, but not their precise
location. We assume that each obstacle is contained within a rectangular re-
gion as shown in Figure 7. Furthermore, we assume that we cannot measure
their locations directly. Instead, we can only measure the magnitude of the
flow velocity in the wake of the objects (zone 3 in Figure 7). In the fourth
zone are three additional objects. We know the location of these objects and
our goal is to predict the drop in the pressure from the front to the back of
each object.

To summarize, we have 6 independent uncertain parameters that deter-
mine the position of the obstacles in zone 2. The initial density is a product
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of independent uniform distribution over their respective ranges. There are
600 sensors in zone 3 that measure the magnitude of the flow velocity. Fi-
nally, there are three predictions corresponding to the pressure drop for each
obstacle in zone 4.

We approximate the solution to the governing equations using a stabi-
lized finite element method on a triangular mesh with continuous piecewise
linear approximations for the x-velocity, y-velocity and pressure. For each
realization of the location of the obstacles in zone 2 we construct a new mesh.
Each of these meshes has approximately 3200 elements giving approximately
5300 degrees-of-freedom, and requires about 11 seconds to generate using
Distmesh [28]. Two representative realizations of the obstacle locations and
the corresponding meshes are shown in Figure 8. We generate 1000 sam-
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Figure 8: Two random realizations of the obstacle locations and the corresponding finite
element mesh.

ples from the initial density and each numerical approximation requires 5-6
Newton steps and the total solution time (not counting mesh construction)
is approximately 1.7 seconds using a MATLAB implementation.

We define the space of candidate observed densities as a family of nor-
mal distributions with randomly distributed mean and variance. For each
candidate design, D), we choose this interval to be centered at the sample-
based approximation of the mean of the push-forward of the initial, which

. —(k . .
we again denote d( ), and to have a width equal to 0.25 times the sample-
based approximation of the standard deviation of the push-forward of the
initial, which we again denote %), Based on an inspection of the samples
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from the push-forward of the initial, we define
Mo, = [L756-2,1.258-2), Hz:=[d" — 02500 d" +0.2500).
Then we set
H=HsxHo, P(h)={N(hghl): hz€Hghs€Hs},

and define Py, to be a uniform distribution on H.
We plot the EIG in Figure 9. We see that if the goal is to determine
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Figure 9: Expected information gained for parameters for the stead-state fluid flow model.

the OED for parameters, i.e., to maximize the EIG to locate the obstacles,
the optimal location to place the sensor is close to the obstacles and in the
middle (in the y-direction) of the domain. We contrast this with the EIG4P
shown in Figure 10. If the goal is to determine the OEDA4P, i.e., to maximize
the EIG4P to predict the pressure drop for each of the obstacles in zone 4,
then the optimal location for a sensor is directly upstream of one of the
obstacles.

For this model, both the OED and OED4P are consistent with our phys-
ical intuition for steady-state fluid flow. Moreover, as with the previous ex-
ample, the EIG and EIG4P criteria both have several local maxima. This
hinders the ability of any gradient-based optimization procedure to identify
a global optima given the strong dependence of such procedures on their
initialization.

7. Conclusion

This paper presents an approach for optimal experimental design (OED)
that selects experimental data which significantly influence uncertainty in
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Figure 10: Expected information gained for predictions for the stead-state fluid flow model.

model predictions that cannot be observed directly. This is in contrast to
most traditional OED strategies which focus on reducing uncertainty in esti-
mates of model parameters. The method presented, for optimal experimen-
tal design for prediction (OED4P), utilizes a recently developed framework
for stochastic inversion based on push-forward probability measures which,
under certain assumptions on the problem formulation, facilitates a com-
putationally efficient and scalable approach for OED4P. Traditional OED
methods, which are often formulated as an inverse problem wrapped within
an optimization procedure, often requiring thousands or millions of model
evaluations. In contrast, the proposed method for OED4P only requires
solving a single forward UQ problem under certain restrictions on the de-
sign space.

The difference between a traditional form of OED and OEDA4P is demon-
strated on a number of numerical examples. The results highlight that when
prediction is the ultimate modeling objective, experimental designs that
target reduction in parameter uncertainty may be inefficient, or worse yet,
entirely ineffective for prediction.

The primary goal of this paper is to motivate the need for OED4P. We
focused on computing designs which consists of only a limited number of
experiments. Such situations often arise when performing field or labora-
tory experiments is extremely expensive. The computational cost of the
approach presented here grows rapidly with the number of potential exper-
iments. Future work will look to exploit the connections with deterministic
optimization, established in [33], to develop scalable approaches for OED4P
which can generate experimental designs with large numbers of experiments.
We are also pursuing alternative approaches that avoid the use of kernel den-
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sity approximations in the output space to enable the proposed methodology
to be extended to high-dimensional observed and/or prediction spaces.
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