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Abstract—The min-max problem, also known as the saddle point
problem, is a class of optimization problems which minimizes
and maximizes two subsets of variables simultaneously. This class
of problems can be used to formulate a wide range of signal
processing and communication (SPCOM) problems. Despite its
popularity, most existing theory for this class has been mainly
developed for problems with certain special convex-concave struc-
ture. Therefore, it cannot be used to guide the algorithm design
for many interesting problems in SPCOM, where various kinds
of non-convexity arise. In this work, we consider a block-wise
one-sided non-convex min-max problem, in which the minimization
problem consists of multiple blocks and is non-convex, while the
maximization problem is (strongly) concave. We propose a class of
simple algorithms named Hybrid Block Successive Approximation
(HiBSA), which alternatingly performs gradient descent-type steps
for the minimization blocks and gradient ascent-type steps for the
maximization problem. A key element in the proposed algorithm
is the use of certain regularization and penalty sequences, which
stabilize the algorithm and ensure convergence. We show that
HiBSA converges to some properly defined first-order stationary
solutions with quantifiable global rates. To validate the efficiency of
the proposed algorithms, we conduct numerical tests on a number
of problems, including the robust learning problem, the non-convex
min-utility maximization problems, and certain wireless jamming
problem arising in interfering channels.

Index Terms—Min-max optimization, saddle point problems,
block successive approximation, gradient descent and ascent.
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1. INTRODUCTION

ONSIDER the min-max (a.k.a. saddle point) problem
below:

K
minmax  f(z1,2,.. ., T, y) + th(irz) —9)

Y i=1 (D
st. v, €X,ye), i=1,... K
where f : RVE+M _; R is a continuously differentiable func-

tion; h; : RV — Rand g : RM — R are some convex possibly
non-smooth functions;  := [z1;...; 7] € RV K andy € RM
are the block optimization variables; X;’s and ) are some convex
and compact feasible sets. We call the problem one-sided non-
convex problem because we assume that f(z,y) is non-convex
with respect to (w.r.t.) , and (strongly) concave w.r.t. y. For
notational simplicity, we will use £(z1, 2, . . ., Zk, y) to denote
the overall objective function for problem (1).

Problem (1) is quite generic, and it arises in a wide range of
signal processing and communication (SPCOM) applications.
We list of few of these applications below.

A. Motivating Examples in SPCOM

Distributed non-convex optimization: Consider a network of
K agents defined by a connected graph G = {V, £} with |V| =
K, where each agent © can communicate with its neighbors. A
generic problem formulation that captures many distributed ma-
chine learning and signal processing problems can be formulated
as follows [2]-[5]:

K
r{fal:il}l filzi) + hi(zi), [|z; — x5]] < ¢ 5, (4, j) are neighbors

i=1

where each f; : RN — R is a non-convex, smooth function, h; :
RY — R is a convex non-smooth regularizer, and z; € RY is
agent 4’s local variable. Each agent ¢ has access only to f; and
h;. The non-negative constants c; ;’s are predefined, and they
can be selected to represent different levels of agreement among
the agents [6]. Despite the fact that there have been a number of
recent works on distributed non-convex optimization [7]-[12],
the above problem formulation cannot be covered by any of
these due to two main reasons: i) the nonsmooth regularizers h;’s
can be different across the nodes, invalidating the assumptions
made in, e.g., [7] (which requires uniform regularizer across the
nodes), and ii) the partial consensus constraints are considered
rather than the exact consensus where ¢; ; = 0, Vi, j.
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The above problem can be equivalently expressed as:

K

min f(x) + h(x) := filzy) + hi(xz;
b [0+ )= (e + )

st. (A9Iy)z—i=0,%cZCREN

where z := [z1;...;2x] € REN; A € RIEXK s the incidence
matrix, i.e., assuming that the edge e is incident on vertices ¢ and
j, with 4 > j we have that A.; =1, A.; = —1 and A.. = 0 for
all other vertices; ® denotes the Kronecker product; © € RIEIN ig
the auxiliary variable representing the difference between two
neighboring local variables; the feasible set Z represents the
bounds on the size of the differences. Using duality theory we
can introduce the Lagrangian multiplier vector y and rewrite the
above problem as:

min max_f(
zeREN zeZ yeRIEIN

)+ h(z)+ (y, (A Iy)x—2). (3)

See Section III-A for detailed discussion on this reformulation
and its relationship with (2). Clearly (3) is in the form of (1).
Robust learning over multiple domains: In [13] the authors
introduce a robust learning framework, in which the training sets
from M different domains are used to train a machine learning
model. Let S, = {(s7",t")}, 1 <m < M be the individual
training sets with si" € RN, t7* € R;  be the parameter of the
model we intent to learn, £(-) a non-negative loss function, and

1= RS ]
empirical risk in the m-th domain. The following problem
formulates the task of finding the parameter x that minimizes
the empirical risk, while taking into account the worst possible
distribution over the M different domains:

fm(z) = ﬁ Z‘»‘S "i‘ £(s™ " x) is the (possibly) non-convex

A
. T
n:gnr;leax y' F(x) 2D(y\|q) 4)

where F(x) := [f1(2);...; far(x)] € RM*L; y describes the
adversarial distribution over the different domains; A := {y €
RM o<y, <l,i=1,...,M, Zf‘il y; = 1} is the standard
simplex; D(-) is some distance between probability distribu-
tions, ¢ is some prior probability distribution, and A > 0 is some
constant. The last term in the objective function represents some
regularizer that imposes structures on the adversarial distribu-
tion.

Power control and transceiver design problem: Consider a
problem in wireless transceiver design, where K transmitter-
receiver pairs transmit over N channels to maximize their
minimum rates. User k transmits messages with power xj, :=

[z};...;2)], and its rate is given by (assuming Gaussian sig-
naling):
N n n
ap.x
Rk(xl,...,xK):E log<1+ 5 7 — |,
n=1 02+ D =1 0tk GO
which is a non-convex function on z := [21;...;xx]. Here

ap,.’s denote the channel gain between the pair (¢, k) on the
nth channel, and o is the noise power. Let Z denote the power
budget for each user, then the classical max-min fair power
control problem is: max ey ming Ry (x), where X' := {z | 0 <
>onxp < Z,Vk} denotes the feasible power allocations. The
above max-min rate problem can be equivalently formulated as
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(1) (see Section ITI-A for details) :'
K
min max —Ri(x1,...,ZK) X Yk, Q)
zeX yeA P

where the set A C R is again the standard simplex.

A closely related problem is the coordinated beamforming
design in a (multiple input single output) MISO interference
channel. In this case the target is to find the optimal beam-
forming vector for each user in order to maximize some system
utility function under the total power and outage probability
constraints [14]. When the min-rate utility is used, this problem
can be formulated as

. 2 N
wié%%i(,w min Ri({zk}) st ||zl <p,Vi (6)
where x; is the transmit beamformer, N; is the number of
antennas. Also, R;({z}) = logy(1 + & ({@k ki) xH Qiii),
where ¢; incorporates the outage constraints and the cross-link
interference, while ();; denotes the covariance matrix of the
channel between the ith transmitter-receiver pair.

For other setups, similar min-max problems can be formu-
lated, some of which can be solved optimally (e.g., power
control [15]-[17], transmitter density allocation [18], or certain
MISO beamforming [19], [20]). But for general multi-channel
and/or MIMO interference channel, the corresponding problem
is NP-hard [21]. Many heuristic algorithms are available for
these problems [21]-[24], but they are all designed for spe-
cial problems, and often require repeatedly invoking compu-
tationally expensive general purpose solvers. For computational
tractability, a common approach is to perform the following
approximation of the min-rate utility [25]:

N

minr; & —1/vlogy » 2777, @)
However such an approximation procedure can introduce sig-
nificant rate loss, as will be seen in Section IV.

Power control in the presence of a jammer: Consider an exten-
sion of the power control problem, where a jammer participates
in a K-user N-channel interference channel transmission [26].
Differently from a regular user, the jammer’s objective is to re-
duce the sum-rate of other users by properly transmitting noises.
Let y™ denote the jammer’s transmission on the nth channel,
then one can formulate the following sum-rate maximization-
minimization problem:

n n
—log <1+ - ATk >,
(o) 0%+ Y i1k O T AGY"
®)
where z; and y are the power allocations of user k and the

jammer, respectively; the set X := A7 x --- x Xk, where &},
is defined similarly as before.

B. Related Work

Motivated by these applications, it is of interest to develop effi-
cient algorithms for solving these problems with theoretical con-
vergence guarantees. In the optimization community, there has
been a long history of studying min-max optimization problems.
When the problem is convex in 2 and concave in y, algorithms

A minus sign is added to equivalently transform to the min-max problem.
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TABLE I
SUMMARY OF ALGORITHMS FOR min, maxy f(z,y) + h(x) — g(y), WHERE f IS A SMOOTH FUNCTION, WHILE h AND g ARE CONSIDERED CONVEX
NON-SMOOTH FUNCTIONS UNLESS OTHERWISE STATED. NOTE THAT IN THE 3RD COLUMN WE CHARACTERIZE THE TYPE OF THE ALGORITHMS, L.E
DETERMINISTIC (DET.) OR STOCHASTIC (ST.). MOREOVER, WE USE THE ABBREVIATIONS NC FOR NON-CONVEX, SP FOR STATIONARY POINT, STR. FOR
STRONGLY, MIN. FOR MINIMIZATION AND MAX. FOR MAXIMIZATION.

Algorithm Optimality Criterion Det./ St. Assumptions Gradient Complexity !
f NC in z/Polyak-Lojasiewicz in y o 1
Multi-Step GDA [361, [37] 2 1et ondor Nash equilibe Dt h(z) = 0, g(y) = 0 O(e?log(y))
st order Nash equilibrium . 7NC in z/concave in y o Tas) (l)))
h(z) =0, g(y) =0 G
NC i 2T -
3 st order SP for min. problem f7 Cin @/linear in y O(e79)
Robust optimization [13] Optimali p bl St h(z) =0, g convex, smooth
obust optimization [13 ptimality gap for max. problem . 7NC in a/linear in B+
h(xz) =0, g str. convex, smooth € €
f= % ? L yTei(x), ei(z) NC g str. convex O(ne=2 + e %)
f NCin z, f concave in y g convex 6(5*6)
PG-SMD/ PGSVRG [34] 4 1st order SP for min. problem St. —
L -2
f=aXia i g str. convex O(ne™?)
fNCinz D e—2 —6
f concave in y g convex O(ne™ +e77)
-2
f NC in z/strongly concave in y O(e™)
. Det. A —
HiBSA (our work) 5 Ist order SP (def. (17)) £ NC in 2/ linear in y O™
Pe— 1
6 f NC in z/concave in y O(e™* log(¢))

! Gradient complexity refers to the total number of gradient evaluations required to reach an e-stationary solution, where the definition of stationarity can vary for different works.
2 The approximate stationarity condition for (%, §) is — ming (V, f(%,9),z — ) < e,YVz € X : |z — || < L and max, (Vy f(Z,9),y — §) <e,Vy e V: |y — g < 1.
3For the minimization problem, convergence is established using the stationarity gap, i.e ||V, f(z,y)|| < e, while for the maximization problem the optimality condition

max, /.y f(x,y') — f(z,y) < eis used.

4The optimality measure is the norm of the gradient of the Moreau envelope of the minimization problem, i.¢ |V~ (z)| < € with ¢ () = min. {¢(z) + (1/27) ||z — z||*}

and ¢(2) = maxy{f(z,y) - g(v)}-

3 A point (Z, §) such that |\g,fj (%,9)|| < e and 8 This complexity is obtained for the algorithm given in the supplementary document of the current work [40].

have been developed which can solve the convex-concave saddle
problem optimally; see [27]-[31] and the references therein.
However, when the problem is non-convex, the convergence
behavior of such alternating type algorithms has not been well
understood.

Although there are many recent works on the non-convex
minimization problems [32], only a few of them have been
focused on the non-convex min-max problems. An optimistic
mirror descent algorithm is proposed in [33], and its convergence
to a saddle point is established under certain strong coherence
assumptions. In [13], algorithms for robust optimization are
proposed, where the = problem is unconstrained, and y linearly
couples with a non-convex function of x [cf. (4)]. In [34], a
proximally guided stochastic mirror descent method (PG-SMD)
is proposed, which provably converges to an approximate sta-
tionary point of the outer minimization problem. An oracle
based non-convex stochastic gradient descent for generative
adversarial networks (GAN) is proposed in [35], where the
algorithms solve the maximization subproblem up to some
small error. Moreover, in [36] a multi-step GDA scheme is
introduced, where the maximization problem is approximately
solved using a number of gradient ascent steps. In [37] the
convergence of a primal-dual algorithm to a first-order stationary
point is established for a class of GAN problems formulated as
a special min-max optimization problem where the coupling
term is linear w.r.t the discriminator. More recently, in [38] it
has been shown that GDA can converge to a stationary point of
the outer minimization problem in the (strongly) concave case
under certain conditions. Under the same optimality criterion
and assuming that the inner problem is concave, [39] proves
convergence using a proximal dual implicit accelerated gradient
method.

It is worth noting that, in the works discussed above, different
optimality criteria are often utilized. Since these conditions are
not equivalent to each other, one cannot directly compare the
convergence guarantees of algorithms that reach these criteria.
On the other hand, these optimality criteria often share some
interesting implicit connections. For example, it can be shown
that, no matter if the inner maximization problem is strongly
concave or concave, as long as a point (z*,y*) is an (exact
or approximate) stationary point defined in this current work
[see (17)], then it is also an (exact or approximate, respectively)
stationary point in the sense defined in [34]; see [38] for detailed
discussions. In Table I we provide a summary of some algorithms
discussed above, including the complexity and the respective
optimality criterion.

C. Contribution of This Work

In this work, we design effective algorithms for the min-max
problem by adopting the popular block alternating minimiza-
tion/maximization strategy. The studied problems allow non-
convexity and non-smoothness in the objective, as well as non-
linear coupling between variables. The algorithm proposed in
this work is named the Hybrid Block Successive Approximation
(HiBSA) algorithm, because it updates the variables block by
block, where each block is optimized using a strategy similar
to the idea of successive convex approximation (SCA) [41] —
except that to update the y block, a concave approximation is
used (hence the name “hybrid”). Despite the fact that such a
block-wise alternating optimization strategy is simple and easy
to implement (for example it has been used in the popular block
successive upper bound minimization (BSUM) framework [41],
[42] for minimization-only problem), it turns out that having the
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maximization subproblem invalidates all the previous analysis
for minimization-only algorithms.

The main contributions of this paper are listed as follows.
First, a number of applications in SPCOM have been formulated
in the framework of non-convex, one-sided min-max problem
(1). Second, based on different assumptions on how x and y vari-
ables are coupled, as well as whether the y problem is strongly
concave or merely concave, three different types of min-max
problems are studied. For each of the problem class, a simple
single loop algorithm is presented, together with its convergence
guarantees.” The major benefits of using the block successive
approximation strategy are twofold: 1) each subproblem can
be solved effectively, and 2) it is relatively easy to integrate
many existing algorithms that are designed for only solving
minimization problems (such as those based on the BSUM
framework [41], [42]). Finally, extensive numerical experiments
are conducted for selected applications from SPCOM to validate
the proposed algorithms.

Overall, to the best of our knowledge this is the first time that
the convergence of the alternating block successive approxima-
tion type algorithm is rigorously analyzed for the (one-sided)
non-convex min-max problem (1).

Notation: The notation || - || denotes the vector 2-norm || - ||2;
® denotes the Kronecker product; I is the N x N identity
matrix; (-, -) is the Euclidean inner product; Zy (z) denotes the
indicator function on set X’; in case the subscript is missing the
set is implied by the context; [K] := {1,..., K}. Finaly, the
notation O denotes big O notation O up to some logarithmic
factor.

II. THE PROPOSED ALGORITHMS AND ANALYSIS

In this section, we present our main algorithm. Towards this
end, we will first make a number of blanket assumptions on
problem (1), and then present the HiBSA algorithm in its generic
form. We will then discuss in detail about various algorithmic
choices, as well as major challenges in the analysis.

Let the superscript r denote iteration number. For notational
simplicity, we will define the following:

1.l +1 NK
w =y, a] € RV (9a)
1.t +1 N(K-1
w' = el el a] € RY ), (9b)
N(K-1
T = [T T, g, ] € RVED, (9¢)

Throughout the paper, we will assume that problem (1) satisfies
the following blanket assumption.

Assumption A: The following conditions hold for (1):

Al f:REN+M R is continuously differentiable; the
feasiblesets ¥ = X; x --- x Xk andY C RM are con-
vex and compact. Further ¢(x, y) is lower bounded, that
is, £(z,y) > £, Ver € X,y € Y.

A2 h;(-)’s and g(+) are convex and non-smooth functions;

A.3 f has Lipschitz continuous gradient w.r.t. ; for every i
with constant L, that is:

IVa, f(2) = Vo, f(2)|| < La,

zZ—z||,Vz,z € X x V;
(10)

2In addition to the algorithm presented in the main text, we also provide an
alternative double-loop algorithm for the case where the y problem is concave,
in the supplementary document of this article [40].
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Furthermore, f has Lipschitz continuous gradient w.r.t.
y with constant L, that is:

IVyf(2) = Vy f(2)]| < Lyllz = 2[,V2,2 € X x Y. (11a)
Next we describe the proposed HiBSA algorithm.

Hybrid Block Successive Approximation (HiBSA)
Algorithm

At each iterationr = 1,2, 3, - -

[S1]. Fori =1, ..., K, perform the following update:

.
o= arg migfl_Ui(;L’q;; witt yT) + hq(:cz)—l-%ﬂzq — 27|

TiEA;
(12)
[S2]. Perform the following update for the y-block:
s ‘s T ’YT
y = argmax Uy (y:2" ") — g(y) — - Iyl*. (13)
yey 2

[S3]. If converges, stop; otherwise, set » = r + 1, go to
[S1].

Note that {3" > 0} and {7" > 0} are some algorithm pa-
rameters, whose values will be specified shortly in the next
section. Properly designing the regularization sequence {y"}
is the key to ensure that the algorithm works when the y
problem is concave but not strongly concave. Further, each
Ui(w,y) : RN — R (resp. Uy(-,w,y)) is some approxima-
tion function of f(-,z_;,y) (resp. f(x,-)). For the U;(-)’s the
following assumptions hold.

Assumption B: Each U; () satisfies the following conditions:
B.1 (Strong convexity): Each U;(-;w,y) is strongly convex

with modulus p; > 0:

Ui(ziyw,y) — Ui(zisw, y) > (V2 Ui(zisw,y), @5 — 2i)
+ %sz —zi||2,Vw € X,y € Y, 14,2 € Xi.
B.2 (Gradient consistency): Each U;(-; w, y) satisfies:
V. Ui(zi; 2, y) =V, f(x,y),Vi,Vo € X,y € V.

B.3 (Tight upper bound): Each U;(-; w, y) satisfies:
Ui(zi;2,y) = f(x,y),and Ui (zi; 2, y) = f(2,y),
Vee X,ye ), z € A,
B.4 (Lipschitz gradient): Each U, (-; w, y) satisfies:
IVUi(z5;w,y) — VUi(vi;w, y)|| < L,
Ywe X,y € Vv, 2 €X;.

Clearly, the « update step [S1] closely resembles the BSUM
algorithm [41], [43], which is designed for minimization prob-
lems. Similarly as in BSUM, approximation functions are used
to simplify the update for each subproblem; see [41] for anumber
of such functions often used in signal processing applications.

However, a key difference from the BSUM, or for that matter,
all successive convex approximation (SCA) based algorithms
such as the inexact flexible parallel algorithm (FLEXA) [44]-
[46], the concave-convex procedure (CCCP) [47], is the presence
of the ascent step in [S2]. This step is needed to deal with
the inner maximization problem, but unfortunately the use of
it invalidates the existing analyses for SCA-type algorithms,
because all of them critically depend on consistently achieving
some form of descent as the algorithms progress. As a result,

v — zil|,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 09,2020 at 01:45:39 UTC from IEEE Xplore. Restrictions apply.



3680

—-Alternating Gradient Descent-Ascent
—Proposed Method

Optimality Gap

-4
0 500 1000 1500
Iteration Number

2000

Fig. 1. Behavior of (14) and Alg. 1. The y-axis is the 1st-order optimality gap
|| Az||% + |lyT A||%, which ideally should go to zero. The solid line represents
the HiBSA algorithm with v = 1/\/r, 8" =r, Vr.

how to properly implement and analyze the proposed algorithm
represents a major challenge.

We note that it is not straightforward to design algorithms
for one-sided non-convex min-max problems, as compared with
non-convex minimization problems. For the former problem,
simple algorithms like gradient descent-ascent can diverge (see
Example 1 or [30]), but if we specialize such an algorithm to
the latter problem (which becomes the well-known gradient
descent), then it will converge to a second-order stationary
solution [48]. We refer the readers to a few recent works [38] [39]
for more discussions.

Example 1 [30]: Consider a special case of problem (1), where
K =1 (asingle block variable), and A is a randomly generated
matrix of size N x M:min, gy max,cgn y” Az. Letus apply
a special case of the HiBSA algorithm by utilizing the following
approximation function:

Ur(viw,y) = y"Av + Jlo = w|?,

1
Uy(us 2, y) = u' Az = o[lu = y||*.
Letting 4" = 0 and 8" = 0 for all r, the HiBSA becomes an

alternating gradient descent-ascent algorithm
1
af ="t = Z ATy gy =yt L 20A”, Y (14)
Ui

Unfortunately, one can verify that for almost any A, regardless
the choices of 7, A, (14) will not converge to the desired solution
satisfying: ATy* = 0 and Az* = 0; see Fig. 1. This is because
the linear system describing the dynamics of the vector (", y")
is always unstable.

The above example motivates us to introduce both the proxi-
mal term 3" /2||x — 2"||? in [Step 1] of HiBSA, and the penalty
term — 2~ ||y"||2 in [Step 2]. By properly selecting the sequences
{B", 4" f, we will show in the next section, that the HIBSA will
converge for a wide class of problems (including Example 1 as
a special case).

III. THEORETICAL PROPERTIES OF HIBSA

We start to present our main convergence results for the
HiBSA. Our analysis will be divided into three cases according
to the structure of the coupling term f(x, y). Separately consid-
ering different cases of (1) is necessary, since the analysis and
convergence guarantees could be different. Note that throughout

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

this section, we will assume that g(y) is convex, but not strongly
convex. In case ¢(z,y) is strongly concave in y, the strongly
concave term will be absorbed into f(z,y).

A. Optimality Conditions

First, let us elaborate on the type of solutions we would like to
obtain for problem (1). Because of the non-convexity involved
in the minimization problem, we will not be able to use the
classical measure of optimality for saddle point problems (i.e.,
the distance to a saddle point). Instead, we will adopt some
kind of first-order stationarity conditions. To precisely state our
condition, let us define the proximity operator for x and y blocks
as follows:

Px? (v;) := arg min h;(z;) + b
CEiEX 2

1
Py’ (w) = arg max —(y) - ;pHy —wl*. (15)

Moreover, we define the stationarity gap for problem (1) as:
Blay = Px{ (21 = 1/8V,, f(2,1)))

VS () = s
B(rx — Pxp(rx — 1/BVay f(2,y)))
1/p(y — Py (y + pV, f(z,9))) 6

We say that a tuple (z*,y*) is a first-order stationary solution
for problem (1) if it holds that:
IVG) (", y7)I| = 0. (17)
To see that (17) makes sense, first note that if h =0,g9 =
0,y = RM, X =RNK then it reduces to the condition
I[Vaf(z*,y"); Vy f(a*,y*)]|| = 0, whichis independent of the
algorithm parameters (3, p). Further, we can check that if y is
not present, then condition (17) is equivalent to the first-order
stationary condition for the resulting non-convex minimization
problem (see, e.g., [32]). Further, if z is not present, then con-
dition (17) simply says that y* € arg maxyey {f(-,y) — 9(v)}.
Following the above definition, we will say that (z*, y*) is an
e-stationary solution if the following holds

VG, @,y < e (18)

As mentioned in the introduction, the stationarity conditions
(17) and (18) are related to the stationarity conditions utilized
in [34], [38]. To illustrate this point, consider the case where h =
0,9 = 0, X = RVK; the stationarity condition (17) reduces to:

IVG (@, )| = [Vaf (. y), y—projy(y + Vy f(z, )] || = 0.
First, consider the case where f is strongly concave in y. Then,
it can be shown that if (z*,y*) is an e-stationary point in the
sense of (18), then it is also an O(¢) stationary point in the sense
defined in [34], that is:

IVF@)| <0e), Fl):=maxf(r,y).  (19)
Moreover, in the case where f is concave in y, for an e-stationary
point according to definition (18), it holds that ||V Fy 9, (z*)|| <
O(e), where F /9, is the Moreau envelope of F' defined as

Fyjo0() :n}li)nF(w)—l—EHw—xHQ. (20)

For more details the readers can refer to [38].

Based on the above definition of the first-order stationarity,
we establish the equivalence between a few optimization formu-
lations discussed in Section 1.
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Proposition 3.1: Problems (2) and (3) are equivalent, in the
sense that every KKT point for problem (2) is a first-order
stationary solution of (3) (in the sense of (17)), and vice versa.

Proof: For simplicity of notation we assume N = 1. Con-
sider the following KKT conditions for problem (2)

(Vof(a") + & (2")+ ATy o — a7)
—(y",& — ") > 0,V feasible (x, Z)
Az* =2
where £*(2*) € Oh(x*) and y is the Lagrange multiplier. Now

consider a stationary point (z*, Z*, y*) of problem (3). Then the
stationarity condition (17) implies that

x* = arg min <ATy* + Vo f(@"),x — :z:*>

21

+h(z) + gllz e (22a)
¥ =argmin (—y*, & — ") + éHJE — | (22b)
TEZ 2

* * ~ * 1 * (|12

y"=argmax (Az" — %"y —y") — —|ly—y'|°. (22¢)
Yy 2p

The optimality conditions for these problems imply
ALY + Vo f@) +£(7) =0 (23)
(—y",2—-2"Yy>0,Vz e Z, Az"—-1"=0. (24)

Clearly, the conditions (23)—(24) imply (21).

Conversely, suppose (21) is true. By setting z = x* in (21)
we obtain condition (24). Moreover, in order to obtain condition
(23) we set £ = z* in (21) and take into account the fact that
(21) holds Vo € REN , The proof is completed. Q.E.D.

Proposition 3.2: Consider the problem:

max min Ry (),
zeX k

and its reformulation (5). They are equivalent in the sense that,
an equivalent smooth reformulation of the former has the same
first-order stationary solutions as those of the latter [in the sense
of (17)].

Proof: A well-known equivalent smooth formulation of the
min-utility maximization problem is given below (equivalent in
that the global optima of these two problems are the same)

max A, s.t. Rp(z) >\, Vk. (25)
)\,wEX
The partial KKT conditions of the above problem are
K
<Z §iVaRi(2), x — x> <0, Vx € X, (26)
i=1

DoGi=1, 9 >0, §:(A— Ri(#)) = 0, Ri(%) > X, Vi,
where {7); }1 | are the respective Lagrange multipliers, which

together with (), ) satisfy the KKT conditions.
Now consider a stationary point (z*, y*) of problem (5). Then
the optimality conditions (17) imply that
K

. . « % * B *1]2
z*= arggé%< Eﬂ YiVoRi(z"),x — x >+ > |z — ||
(27a)
* (—R(z") Y= =y — o[ (27b)
= argmax (—R(z"),y —y") — —||y —
Yy g R Yy —Y 2p y—vy )
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where R(z*) := [Ry(z*);...; Rx(2")]. Let us define

A= '_min {R;(z")}

1=

so it holds that R; (z*) > \*,
Plugging (z*,y*) into the optlmahty conditions of (27a),
(27b), we obtam

K
<Z —y; Vg, Ri(2"), x — x*> >0, Ve e X (28a)
i=1

(—R(z"),y —y") <0, Vy € A, y" € A. (28b)
For all 7 such that R;(z*) = A" obviously it holds that y; (\* —
R;(x*)) = 0. Let 4,j be indices such that R;(z*) > \* and
Rj(z*) = A". Then, plugging y; = 0,y; = y; +y; and yx =
yik #i,j into (28b) yields y!(R;(z*) — Ry(2*)) > 0. Be-

cause R;(z*) — R;(z*) < Oand y} > 0 it must necessarily hold
y: = Oandthus y; (A" — R;(z*)) = 0. Asaresult the conditions
(26) are satisfied.

Conversely, assume (z*,y*) satisfies conditions (26). Note
that R;(x*)y; > \'y; forany y € A, so

K K
—y") =) Ri(z >3 X(yi—y;) =0,
=1 =1

for all y € A,y* € A. It is not difficult to see that (z*,y*)
satisfies the rest of the conditions in (28a)—(28b). As a result
the opposite direction also holds. Q.E.D.

(R(z%),y

B. Convergence Analysis: f(x,y) Strongly Concave iny

Starting this subsection, we will analyze the convergence of
the HiBSA algorithm or HiBSA. For the ease of presentation,
we relegate all the details of the proof to the appendix.

We will first consider a subset of problem (1), where f(z,y)
is strongly concave in y. Specifically, we assume the following.

Assumption C-1: For any x € X, f(-) satisfies the following:

Fla,2) F(2,9) < @0). 2 — ) oz — o250, 2€,

where 6 > 1 is the strong concavity constant. Further assume:

<vyf($a y)7

where p > 0 is some fixed constant. |

We note that it can be verified that the jamming problem
(8) satisfies Assumption C-1. Next we will present a series of
lemmas which lead to our main result in this subsection. The
detailed proof can be found in Appendix sections A — D.

Lemma 1 (Descent Lemma on x): Suppose that Assump-
tions A, B and C-1 hold. Let (2", y") be a sequence generated
by HiBSA, with v" =0, and 8" = 8 > 0, Vr. Then we have
the following descent estimate:

) e - et

E(.IZT—H, yr) _ K(xj” yr)
<- z (50 -

Lemma 2 (Descent Lemma on y): Suppose that Assump-
tions A, B and C-1 hold. Let (", y") be a sequence generated
by HiBSA, with v" =0, and 8" = 8 > 0, Vr. Then we have
the following descent estimate:

€($T+1, yr—i-l)

1
Uy(u;z,y) = ufy%ﬁ\ufyu?, (29)

1
— (=" y") < ;Ily’+1

—y"|?
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1 L S pLZ .
— (6= . Y r_ ,r—1)2 Yy r+1 _ 7 2
( <2p+2 ))ny v e -

Lemma 3: Suppose that Assumptions A, B and C-1 hold. Let
(z",y") be a sequence generated by HiBSA, with v" = 0, and
8" = B >0, Vr. Let us define a potential function as

rPr+1:: E(:ETJF:[, yr+1)

2 1 1 L2
e — 4= Yy r+1 _ 7 2.

(30)
When the following conditions are satisfied:
2 p L, .
<—, B>L}|—+"* - = iy ¥ 31
P 4L2 p y<92p+2)+ 5 M T (31
then there exist positive constants ¢y, {CQZ-}Z-I\Ll such that:
K
Pt =P < —arlly =y 1P =D caill T - 2|,
i=1
(32)

Combining the above analysis, we can obtain the following
convergence guarantee for the HiBSA algorithm.

Theorem 1: Suppose that Assumptions A, B, C-1 hold. Let
(z",y") be a sequence generated by HiBSA, with 7" = 0, and
BT =[5 >0, Vr, satisfying (31). For a given € > 0, let T'(e)
denote the first iteration index, such that the following holds:

T(e) = min{r | [|VG, (", y" )| < er > 1}
Then, T'(e) = O(Z%).

C. Convergence Analysis: f(x,y) Concave iny

Next, we consider the following assumptions for (1).
Assumption C-2: Assume that f(-) in (1) satisfies:

f(x7y) - f(l‘,Z) S <vyf(xaz)7y _Z>a vyaz S y,f S X
That is, it is concave in y. Further, assume that

Uyusa,y) = flow) =gyl G
That is, the y update directly maximizes a regularized version of
the objective function. Note that U, (u; x; y) is strongly concave
in u, which satisfies the counterpart of Assumption B.1 for
Uy (- ) : u

Despite the fact that f(x, y) is no longer strongly concave in
vy, the y-update in [S2] is still relatively easy since it maximizes
a strongly concave function. However, the absence of strong
concavity of f(x,y) in y poses significant challenges in the
analysis. In fact, from Example 1 it is clear that directly utilizing
the alternating gradient type algorithm may fail to converge
to any interesting solutions. Towards resolving this issue, we
specialize the HiBSA algorithm, by using a novel diminishing
regularization plus increasing penalty strategy to regularize the
y and x update, respectively (by using a sequence of diminishing
{¥"}, and increasing {" }).

We have the following convergence analysis. The proofs of
the results below can be found in Appendix Section E — G.

Lemma 4 (Descent lemma): Suppose that Assumptions A, B
and C-2 hold. Let (2", y") be a sequence generated by HiBSA,
withy" > 0 and 8" > L,,, Vr,i. Then we have:

E(x7-+17yr+1) _ g(lj"yr) < 27;0”% _ yr—1||2
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T L2
B (62 e /)2> o+t —am?

! T 7t
(T - D) =+ T - L

-1 r
S +12
+ Ty,
Next we show that there exists a potential function, given

below, which decreases consistently

1 2 2/ 1 1
Prl= (+ +( - >) y =y
20 p*y" p\pytt py” | |

r—1

r+ r4 ’y r4 2 2 ’y ] r+ 2

Lemma 5: Suppose that Assumptions A, B and C-2 are sat-
isfied. Let (", y") be a sequence generated by HIBSA. Suppose
the following conditions are satisfied for all r,

412 1 1 _p
B" > pL2 + —% —2u, B> L,,,Vi, pran i
() Yy (35)

then the change of potential function can be bounded through

v L2 2L
Prl< P (ﬁg - (pzy " p(,yﬁ’p))IIwT“ a7

1 ,Yr—l _,yr
- m“yrﬂ —y"[I*+ f”?f“”z

2 ,yr72 ,yrfl
+( ) e
P\ v

Before proving the main result in this section, we make the
following assumptions on the parameter choices.

Assumption C-3: Suppose that the following conditions hold:

1) The sequence {7"} satisfies

(34)

)

(37)

V=" >0, 4" =0,

=, . 1 1 _p (38)
(=00 o — S5
r=1 v v
2) The sequence 3" satisfies
T 2 4L§ T :
B" > pLy + =5 — 24, B" > Ly, Vi (39)
p(Y")
Note that the above assumption on {~"} can be satisfied, for
example, when " = m%/él; see the discussion after (69). ||

Theorem 2: Suppose that Assumptions A, B, C-2 and C-3
hold. Let (z",y") be a sequence generated by HiBSA. For a
given e > 0, let T'(¢) be defined similarly as in Theorem 1. Then,
T(e) = O(%).

It is important to note that, when the problem is only concave
in y, the condition (33) asserts that in each step a strongly
concave problem has to be solved exactly. However, for a
generic objective function, this step does not involve a closed-
form solution. In the supplementary material accompanying this
paper [40], we extend this algorithm to the case where the
maximization problem is solved by performing a finite number
of gradient ascent steps.
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D. Convergence Analysis: f(x,y) Linear iny

Finally, we briefly discuss the case where the coupling term
in (1) is linear in y. The derivation of the results in this section
largely follows from what we have presented in Section III-C,
therefore we choose to omit it.

Assumption C-4: Assume that problem (1) simplifies to:

minmax y! F(z1, o, . ..
z oy

K
,TK) + 2 hi(zi) — g(y) w0

st. v, €X,yeY, i=1,....K

where F(-) : RNX — RM s a vector function. Further assume
that (33) holds for U, (). |

Note that (40) contains the robust learning problem (4), the
min utility maximization problem (5), and Example 1 as special
cases. It is worth noting that, due to the use of the strongly
concave approximation function U, (u; x,y) as defined in (33),
we are able to perform a simple gradient step to update y, while
in the algorithm proposed in the previous section, each iteration
has to solve an optimization problem involving .

It is worth mentioning that, in this case the analysis steps are
similar to those in Section III-C. In particular, we can show
that the potential function (35) has the same behavior as in
Lemma 5. Therefore, we state our convergence result in the
following corollary.

Corollary 3.1: Suppose that Assumptions A, B, C-3 and C-4
hold. Let (2",y") be a sequence generated by HiBSA. For a
given € > 0, let T'(¢) be defined as in Theorem 1. Then, T'(e) =

O(z)-

IV. NUMERICAL RESULTS

We test our algorithms on three applications: a robust learning
problem, a rate maximization problem in the presence of a
jammer and a coordinated beamforming problem.

Robust learning over multiple domains. Consider a scenario
where we have datasets from two different domains and adopt a
neural network model in order to solve a multi-class classifica-
tion problem. The neural network consists of two hidden layers
with 50 neurons, each endowed with sigmoid activations, except
from the output layer where we adopt the softmax activation.
We aim to learn the model parameters using the following two
approaches:

[1] Robust Learning: Apply the robust learning model (4) and
optimize the cost function using the HiBSA algorithm with~y" =
ﬁ and the Multi-step GDA algorithm [36] with one gradient
descent and five gradient ascent steps per iteration. Note that we
treat the minimization variable as one block and use the first-
order Taylor expansion of the cost function as the approximation
function.

[2] Mutltitask Learning: Apply a multitask learning
model [49], where we optimize the sum of the respective
empirical risks correspsonding to the two domains/tasks; the
weights associated with each task are fixed to 1/2. The problem
is optimized using gradient descent.

Moreover, we evaluate the above algorithms by using the
minimum accuracy across the two domains, over both training
and test datasets. That is, accuracy = min{accuracy on domain
1, accuracy on domain 2}.

In our experiments we use the MNIST [50] dataset whose data
points are images of handwritten digits of dimensions 28 x 28.
We select two different parts of the MNIST dataset as the two
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Evolution of accuracy on train and test datasets
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Fig.2. The results on the experiments performed on the MNIST dataset [50].
The top figure depicts training and testing accuracies, while the second one
depicts the convergence behavior of the two algorithms.

different domains we mentioned above. The first part consists
of the digits from O to 4, while the second one contains the rest.
Moreover, for the first domain we use 5000 images for training
and 1000 for testing, while in the second one we employ 25000
and 5000 images respectively. Finally, we average the results
over 5 iterations.

Note that we do not perform extensive parameter tuning, since
the purpose of this experiment is not to support the superiority
of the robust model, but merely to illustrate that the proposed
HiBSA computes a reasonable model similar to what can be
computed by multistep GDA, and to what can be obtained by
multi-task learning. Indeed, the results presented in Fig. 2 sup-
port this view, since different approaches achieve approximately
the same accuracy on the test set.

Power control in the presence of a jammer: Consider the
multi-channel and multi-user formulation (8) where there are N
channels, K collaborative users and one jammer. We can verify
that the jammer problem (i.e., the maximization problem over
y) has a strongly concave objective function over the feasible
set.

We compare HiBSA with the classic interference pricing
algorithm [51], [52], and the WMMSE algorithm [53], which are
designed for solving the sum-rate optimization problem without
the jammer. Our problem is tested using the following setting.
We construct a network with K = 10, and the interference
channel among the users and the jammer is generated using
the uncorrelated fading channel model with channel coefficients
generated from the complex zero-mean Gaussian distribution
with unit covariance [53]. All users’ power budget is fixed at
P = 105NR/10 For test cases without a jammer, we set o7 = 1
for all k. For test cases with a jammer, we set a,f =1/2 for
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Fig.3. The convergence curves and total averaged system performance com-

paring three algorithms: WMMSE, Interference Pricing, and HiBSA. The first
figure shows a single realization of the algorithms, and in the second figure, each

point represents an average of 50 realizations. The total number of the users is
10, and SNR = 1.

all k, and let the jammer have the rest of the noise power, i.e.,
Po,max = IN/2. Note that by splitting the noise power we intend
to achieve some fair comparison between the cases with and
without the jammer. However, it is not possible to be completely
fair because even though the total noise budgets are the same,
the noise power transmitted by the jammer has to go through
the random channel, so the total received noise power could be
different. Nevertheless, this setting is sufficient to demonstrate
the behavior of the HiBSA algorithm.

From the Fig. 3 (top), it is clear that the pricing algorithm
monotonically increases the sum rate (as is predicted by theory),
while HiBSA behaves differently: after some initial oscillation,
the algorithm converges to a value that has a lower sum-rate.
Further in Fig. 3 (bottom), we do see that by using the proposed
algorithm, the jammer is able to effectively reduce the total sum
rate of the system.

Coordinated MISO beamforming design: Consider the coor-
dinated beamforming design problem [14] described in Section I
over a MISO interference channel. In this problem we exper-
iment with the scenario where there are K = 10 transmitter-
receiver pairs, each transmitter is equipped with N =6 an-
tennas. We adopt the min-rate utility, i.e., U({R;(z)}X,) =
min;— g {R;(z)}. Moreover, the transmission is performed
over a complex Gaussian channel, and we set the power budget
to be p = 1. The channel covariance matrices {C;;},4,j =

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

1,...,10 are generated at random and their maximum eigen-
values are normalized to 1, if ¢ = j, and to some constant
A > 0, if ¢ # j. Thus, the parameter A quantifies the level of
intereference.

The problem of interest is to design the users’ beamformers in
order to maximize the system’s utility function under constraints
in power and outage probability. We approach the solution of the
problem using two different algorithms:

[1] BSUM-LSE [14]: Substitute the min-rate utility function
with a popular log-sum-exp approximation, i.e.,

1 K
Z:IImHK{RZ(x)} = Tmin(T) = > logs (2 QuRz) )
Note that v specifies the level of approximation with higher v’s
corresponding to tighter bounds for the approximation error.
Then following what is suggested in [[14], Section C], we
formulate the respective problem using the surrogate function,
and solve the resulting problem iteratively using the projected
gradient descent.

[2] HiBSA: We apply the HiBSA to solve the formulation in
(5). The z-subproblem is solved similarly as in BSUM-LSE.
Moreover, in the maximization problem we use 4" = 1/r/4.

We run both algorithms for 1000 complete iterations (one
complete iteration involves one update of all the block variables,
and 1000 iterations are sufficient for both algorithms to converge
in all scenarios) and set the stepsizes 3 and p of HIBSA and the
respective stepsize of BSUM-LSE all equal to 1072, We also
average the final results over 10 independent random problem
instances. Moreover, in order to evaluate the effect of the log-
sum approximation we show the achieved min-rate utility of
BSUM-LSE, by using 3 different values of v € {1, 5, 7}.

InFig. 4 we plot the min-rate utility for 7 different values of the
noise variance and 2 different levels of interference. Notice that
the HiBSA algorithm achieves higher utility than BSUM-LSE,
while as expected the larger the value of v the higher the utility
achieved by the latter algorithm.

Furthermore, since large values of the parameter v lead to low
approximation error bounds, it is of interest to consider exper-
iments with large v for the BSUM-LSE algorithm. Intuitively,
we expect the resulting objective to be very close to the min-rate
utility and thus the achieved min-rate of the BSUM-LSE al-
gorithm should approach the respective min-rate of HiBSA. In
order to determine the behavior of BSUM-LSE in that range
of v’s we consider an experiment with K = 10, N = 6 and
A = 0.6. Regarding the stepsizes we keep them constant across
the different values of 1/ o2, however an effort was made to
select the optimal ones for all algorithms in order to ensure fair
comparisons. Moreover, we terminate both algorithms when the
relative successive differences of the min-rate utility becomes
small, i.e., |[Tmin (") — 7min (27)]/|7min (z7)] < 1077, or the
number of iterations becomes larger than 5,000. Finally, the
results are provided in Fig. 5.

Note that, for large values of v, i.e., v = 50, 100, 1000, the
achieved rate of BSUM-LSE is close but still inferior to that
of HiBSA. Additionally, for the same »’s the HiBSA is faster
than BSUM-LSE; in fact the larger the v is the longer the
runtime will be. On the other hand, the former algorithm is in
general slower than BSUM-LSE with v = 5, however in that
case HiBSA achieves higher min-rate utility. Overall, note that
even though large v leads (in most cases) to improvements in
the attained min-rate utility, it also incurs longer runtimes. This
can be attributed to the fact that for high v the log-sum-exp
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Fig. 4. The min-rate utility achieved using the HiBSA and the BSUM-LSE

algorithm [14] for two different interference levels in a scenario where we
have K = 10 users equipped with N = 6 antennas. Note that the top figure
corresponds to alower interference level (A = 0.6) than the bottom one (A = 1).
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objective approaches a non-smooth function, which is difficult to
optimize. In conclusion, HiBSA in general outperforms BSUM-
LSE in terms of runtime and attained min-rate utility.

V. CONCLUSION

In this paper, motivated by the min-max problems arising in
the areas of signal processing and wireless communications, we
propose an algorithm called HiBSA. By leveraging the (strong)
concavity of the maximization problem, we conduct analysis on
the convergence behavior of the proposed algorithm. Numer-
ical results show the effectiveness of the proposed algorithms
for solving the min-max problems in robust machine learning
and wireless communications. There are many potential future
research directions we plan to explore. For example, it will be
interesting to develop algorithms for more challenging problems
where the y problem is also non-convex. Further, it will also
be interesting to establish some lower complexity bounds for
non-convex and/or non-concave min-max problems, which char-
acterize the best performance one can achieve when optimizing
such a family of problems.

APPENDIX

A. Proof of Lemma 1

By using the assumption that f has Lipschitz gradient, h;
is convex (cf. Assumption A), and by noticing that w’“+1

(z7,w" '), we obtain the following:
E(x?_l i+1a ) ) - E(Qf ,wT+1’ yT’)
L.
< (Vi f ) 4 07—ty Bt e
(41)

for some ¥} "' € Oh;(x] ).
Second, the optimality condition for the x; update step
(12) is

<VLU1( T+1 wr+17yr)

+ 97 BT —al), 2l — 2Ty > 0. (42)

So adding and subtracting (V. U; (275w, ™, y"), o7 — 2/ ™'} in
(42), and by applying assumptions B.1 (strong convexny) and
B.2 (gradient consistency), we obtain the following:

(Vo 7, ar =) + (077 2l = )
< —pille} ™t — alll? - Blla - .

Then, combining the above expression with (41) results in

it w Ty — (] w Ty

L ' T
< (=5 gt Lo Yt -t

Summing over ¢ € [K] we obtain the desired result.  Q.E.D.

B. Proof of Lemma 2

For notational simplicity, let us define

g/(errl,y) _ f r+1 +Zh r+1

Iy(y) — 9(y)-
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Notice that for any y € Y, we have ¢/(x" 1 y) = £(a"T1 y).
The optimality condition of the y-step (13) becomes

1

0=V, fa"y") - ;(y’““ —y") =&

(43)
where £ € O(Zy(y"t) + g(y" ™)) is a subgradient vector.
Since ¢'(x,y) is concave with w.r.t. y, we have

gl(zr+1 r+1) o gl(lﬂﬂrl

")
_ Er7yr+1 _ yr>

—y P -y -

Y
S <vyf(x'f'+17 yT)

(43) 1

= —[ly"**
P

y")

(a) 1
= —|ly
p

- vyf(xray

1
- ;<yr+1 -y

r+1

+H(Vy (2™ y7)
rfl)’yr—i-l _ yr>

— (W -y )y

-y +

r+1 yr>

(b 1

=—|y
P

- vyf('rr7

by
o v~

Ty (Y, Sy

—y")

r+1

-y I*+

yrfl) yr+1

- 1 1
' lHz—%lly —@/T\IQ—%HW“II2

(91

§ 7||yr+1 o o yr71H2

1
+ 5=y

ZEr||2
2p

L2
yr”Z + pTnyr+1 o

1 r ro,r
- jpllv P+ (V)

=V f(a"y )y =) (44)
where (a) follows from the optimality conditions of the y-step

(13) at iterations 7 + 1 and r; in (b) we apply the following
identity:

<’UT+1,yT+1 _ y7>
1 ; _
=5 (™ =y 1P+ 1 =y =y %), ()
where we have defined
o=y T — (" =y (46)
in (¢) we add and subtract a term (V, f(z",y"),y" ™1 —y"),
and apply the Young’s inequality and obtain:
(Vyf@ ") =V f(@ "),y —y")
pLy . Lo, .
e A e e e VA N C 1))

- 2 2p
where L, is defined in (11a). By applying the strong concavity of
f(z,y) in y, the Young’s inequality and the Lipschitz condition
w.r.t y, we can have the following bound for the inner product
term in (44):

(Vyf(a"y") =V f(a"y" 1),y =)
<V f@"y") = Vyf@ gy "), o +y" =y
pL12/ Sz, L 1192 —12
< DY — o T — Bl — " . (48
< o lly" =y + 2pllv I ly" =y |17, 48)

Combining the above with (44) completes the proof.  Q.E.D.
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At this point, by simply combining Lemmas 1-2, it is not
clear how the objective value behaves after each = and y update.
To capture the essential dynamics of the algorithm, the key is to
identify a proper potential function, which decreases after each
round of x and y updates.

C. Proof of Lemma 3

According to (43), the optimality condition of y-problem (13)
at iterations r + 1 and r are given by:

1
- vyf(xT+17yT‘) + §T+1 + 7(yT+1 - yr) = 07 (49)

- r 1 r r—
=~V @y T+ S -y =0, (50)
where £" € 9(Zy(y") + g(y")). We subtract these two equal-

ities, multiply both sides by y"*! — ", utilize the defining

property of subgradient vectors: (£7t1 — &7yt —yr) >0,
and we obtain:
1
- UT+1,yr+1 _ yr
p< )
S (Vyf(x”l, yT) - Vyf(xr,yr)’ errl - yr>
H(Vy f@"y") =V f@y )y =),

where v"*! is defined in (46). Applying (45) to the LHS to the
above expression, and using similar techniques as in (47), (48)
for the RHS of the above expression (note that this time we use
a constant ¢ instead of p, when applying (47)), we obtain the

following:

1
i | P o N A TP
2plly y'll

1 1 L2
< ly" — r—=112_ = ||,,v+1)12 “Y | .r+1 2
<l =y P g e o

9 pL? 1

Tl 2 yn,r __ ,r—1y2 T, L2
gl I G T
—Olly" =y
= Ly g e s Ly e

2p 260 2

pL; .

<9 - ) ly" =y (51)
By combining Lemmas 1 and 2 we obtain
é(mr+1’yr+1) 7£($r’yr)

K 2
L,, pL;

< _ L Ty Ty r+1 _ r2
<=3 (oG b )

1, . ) 1 pL? S
- r+1 _ 7|2 _ 9_ o Y r_ ,r—12
+p||y y"l < <2p+2 )) ly" =y "

Multiplying both sides of (51) by 4/(6p), and adding the

resulting inequality to the above expression, we have

(g™l
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r+1

S g(l,r r71||2

3
+ Sy =y
p

K 2 2
in ZLy pLy r+1 _ _ry2
—Z:</8+Mz—2—<92p+ 5 [l i ||
72
( < J)) ly" —y" 2

4 pL2 T r—12
9<9—2> ly" —y" " [I"
1

Finally, adding in both sides the term <27) — 4(% —
%2))||yr+1 —y"||? and using the definition of the potential

function (30), we obtain the following

3 1 1 L
r+1< r 7_4 - r+1 _ 712
PSP+ <p+2p (p 29>> ly 'l

K 2 2
qu‘ 2L pL T r
-3 (ﬂm 5 <92;‘ +2y)> oy + - a7
i=1

In the inequality above we do not include 6 — pLz /2 (from
RHS of the descent estimate in Lemma 1) because by the choice
of p this term is positive. Therefore, when

0 o f 2 L, )
p<4L2, B>Ly(92 + ) 5 iy Vi
we have sufficient descent of the potential function P"+!. This
completes the proof. Q.E.D.

Ny
W)+ gl =

(52)

D. Proof of Theorem 1

We first bound the ith block of the optimality gap (16) by
(VG (@, y"))il

< Bllai ™t — 2l + Blla7

—Px] (2] = 1/8Va, f(a" "))
< glarie ZT||+BIIPXf< (ﬁww“ w:“,w))

—PxP (2] — %vﬁf(x’”,yr))\\

7+1

() r+l 7+1 r

o7 || + Ly, ||@ -

< (B + Lui + LQTL) er+1 - erv
where in (a) we use the optimality conditions w.r.t to x; in
(12); in (b) we use the nonexpansiveness of the proximal op-
erator, V., U;(x7;wi ™ y") = V., fi(wi T y") (Assumption
B2), Assumption B4 (Lipschitz grad1ent) as Well as the follow-
ing identity
leUz( a~+17 ,w_r+17 r) _ Vmif(l'r; yr)
- vﬂflU ( T+17w:+17y7’) - v’chl('r;’" w
+ VLU%(m:? w17_‘+17 y'r') - vzl f(xTv yr).

Moreover, utilizing the same argument for the optimality con-
dition w.r.t to y problem (13), we obtain:

(VG (=", y"

il + Le, [w

Ty

N+l
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(@1 r r 1 r T r
< =lly™ =yl + ;llel/p(y +pVy (" yn)

— Py P (y" + pV, f (2", y")) |

(b) 1 ‘s s ‘s s ‘s
< ;Hy Ty [+ [V f(@ T y") = Vy f (2", y")||
(C) T ' 1 T T

< Lylla™ —a"| + ;Hy Ty,

where in (a) we use the optimality conditions w.r.t y, in (b) we
use the nonexpansiveness of the proximal operator and finally
in (c) the Assumption A.3. Combining (32) and the above two
inequalities, we see that there exist constants 01 > Oand oo > 0
such that the following holds:

IVG @ y)IP < Z(Pr =P, (53
01
Summing the above inequality over r € [T'], we have
Z ||Vgﬁ ”2 72(731 . 7;T+1) < @(Pl —0),
g1 g1
(54)

where in the last inequality we have used the fact that P is
decreasing (by Lemma 3) and lower bounded by ¢. The latter
fact is because, when condition (31) holds true, the coefficient
in front of ||y"*! — y"||? is positive, therefore P"+! is lower
bounded by /(2" 1, y"*1), according to Assumption Al. By
utilizing the deﬁmtlon T(e), the above inequality becomes
T(e)e? < Z2(P! —0).
g1

Dividing both sides by €2, the

obtained.

desired result is
Q.E.D.

E. Proof of Lemma 4

Following similar steps as in Lemma 1 and using the assump-
tion 8" > L,,, Vi we obtain

vy = (G u) e o, o)

where £ 1= min;e (g p;. To analyze the y update, define

é($r+1,yT) _ g(xr

Ot y) = fat, +Zh Y = Ty(y) - 9(v).
The optimality condition for the y update is
1
£r+l v f( r+1 r+1) 4 7(yr+1 ) + ’YT r+1 O7
p
(56)

where " € O(Zy(y™ ') + g(y"™1)). Using this, we have the
following series of inequalities:

el(xr+1’ yT+1) o E,(IT+1, yr)
( <V f( T+1 T)’yTJrl _ yr> _ <€T’y7‘+l _ yr>
<V f(l,r-‘rl 7“) v f( T‘+1 T+1)yy7“+l _yr>
+ %Ily’"*1 yIP "y Y =)
(T =y =)
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© 1
& ’YT 1<yr7yr+1 o yr> +;”yr+1

< yf( r+1 r)_

1
o ;<UT+17 y =y

Vyf(@"y"),y =y

@ 1 L?
< solly =y R+ S - )
A . .
(G- -
0 v gl 7"
Dl = TP + T+,
(57)

where (a) uses the concavity of ¢'(z, y); in (b) we use (56); (c)
follows from (56), the optimality condition for y atiteration r and
plugging the resulting €™ — £7;in (d) we use the quadrilateral
identity (45) for the term involving v and ignore the resulting
negative term —;—pHvT“HQ, the Lipschitz continuity of V, f
(cf. Assumption A. 3), the Young’s inequality, as well as the
following identity:

,Yr71<yr’yr+1 o yr>
"/P 192 2 1
= U™ 2 =1y 1P = Ny = o[
- lT|| P2

A1 2 1 2
5 Uy 112+ ™™ =97 11%)

r—1 T
Yo=Y r
+ (55 e
Combining (55) and (57), we obtain the desired result. Q.E.D.

FE. Proof of Lemma 5

To simplify notation, define f™+! := f(z"+!,
timality conditions of y problem are given by

1
(Vyfr ;(2/””1—

y"+1). The op-

r,r+1_

Yyt 9Ty e

y") — y) > 0 (58a)

1 - rT— T T T
(Vif = 2" =y ="y =97y —y) 20, (S8b)
forall y € Y, where 9”1 € dg(y"+1).

Plugging in y = y" in (58a), y = y" ! in (58b), adding them

together and utilizing the defining property of subgradient vec-

tors, i.e (971 — 97 "L — ¢y > 0, we obtain
1 _
;<v”1,yr+1 e R A U T TUR R T
SV T =V Ty =y, (59)

where v"*! is defined in (46). In the following, we will use
the above inequality to analyze the recurrence of the size of the
difference between two consecutive iterates. First, we have

(Yytt =y Yy — )
= (YT =Y Y =Yy =)
=9y =y P+ (=LY =)
="yt —y"|I?
,yr _ ,Yr—l
(™1 =y 1P = ™" =1
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'YT + ,yrfl ,yrfl _ 'YT
= — =y (= )
(60)
Substituting (60) and (45) into (59), we have
1 ,)/7‘71 o ,y'r
Q*pllyr+1 S e A
B 1 o Y,
r 192 _ = q,r+1)2 T2
< 5ol =y = ol - T
,yrfl_’_ 'YT
= Ty I (VT =y )
(a) 1 ,yr—l _ ,yr
< r_,r=12 _ .7 r+1 _ r)n2 _ T2
< 2pIIy yE =AMy Y| LA
+(Vyf (@™ y") =V f (@™ y"),y" =)
(b) 1 ’Yr7 _,}/r
< ly" — r—12 _ T2
< 2plly y 5y
Li 1 s " 1 2
gl == oy -y

where (a) is true because of the fact that 0 <" <"1,

which implies that — ¥ " < 0 and — 22" < —4", and
the concavity of function f(z,y) in y; in (b) we use the Young’s
inequality. Next, let us define

1 ,}/7"71 o ’)/T
Frtim g -y - 12
2p 2
Then we have
4]_—-7"—&-1 7“—1”2 _ g (,yr—l _ 1) ||yr||2
2 P e P\
2 r+1 T2 ; r+1 72
*;Hy -y +WH$ —z"
4F" 2 1 1 _
S gt ( H)IIy’“ -y
PY pPe\Y Y
2 ,yr72 ,yrfl
+ 2T - T e
2 L2
- ;Ilzf+1 -y + —pwy)z lz7+t — 2|2 (61)

Furthermore, adding (34) and (61), and ignoring the negative

term fgﬂy”“ — 9" || we have

,Yr 4]:7“—&-1
e B
,.erl 5 AFT 1 1 9
<" y") = ——lly"ll ==yt =y
2 Pt p
r L? 212
: (62 e <p2y ’ p(vT'y)Q>>|xr+1 o
,yrfl _ ,yr
+ ey ?

2

2/1 1
+- -+ —=-
p\4  py

1 _
W) ——
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1
+= —— ) lIy"I*
p A\t >” |
2

Finally, by adding to both sides the term ;(
Ze)lly
Py Y

2 (’YT2 ’7T7

T
— y"||2, using the definition {P"} in (35), we obtain
-1 r
e
2% YIIF+ =

g pL 2L] L2
+ — + . x -
(2 p ) ) [

2 1 2 r—2 r—1
i R e

™ 1 I
—Pr <=yt -

Pr-i—l ||yr+1||2

According to the above, to achieve descent in ||y" 1 — 3" || we

need to ensure that the following holds:
—1/2p+2/p*(1/7" = 1/7") <0 (62)

Note that, (62) is equivalent to the condition 771“ — = < p/4,

which holds by condition (36). This completes the proof Q.E.D.

G. Proof of Theorem 2

For simplicity, let G} := (G5 (z",y"))s.
proof of Theorem 1, we have

IGT I < (B" + Lu, + Lo, )llz" = 2", Vi € [K].

For the corresponding bound for y we have

Similarly as in the

V@i iall
1 1, i )
< =yt =yl + Sl o PyMe(y" 4+ pV, f (2" ")l
(a) 1 r r
= —lly =y
1 ‘s s ‘s rT..T
+ ;HPyl/p(y +pVy fa™ Ty ) — oy

—PyYP(y" + pV, f(2",y"))|

(v) 1

Lol =l (3L ) I = L
where in (a) we use the optimality conditions w.r.t y/; in (b) we
use the nonexpansiveness of the proximal operator, as well as the
the Lipschitz gradient condition w.r.t y two times. Combining
the above two bounds we obtain

K
IVGI? < 37 (8" + Lu, + Lo, )P la" ! — a7

=1
7\2 r+1112 2 r+1 2
+3(y)2 [y + BL2 |z — a7
1 2
3 (S )l -y P

r||2

< (K(L+p")*+3LY) 2"t — =

1 2 T T T T
+3(p+4w)w+1—y2+3W)2y+1% ©3)
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where we defined L = maX;c[k] (Ly, + Ls,). Moreover, we
choose

b, (64)
— 2l

p(77)?

where £ is chosen to satisfy x > 2, 3% > L., Vi.

By condition (38), it is clear that 37T > 37. Combining this
with the choice of x we have: 37 > 8% > L., Vi,r. Thus, this
choice of 8" satisfies Assumption C-3.

Moreover, such a choice implies that

Lz 2L?2 k—2)L2
O(T +H_<M+ 212):( )2y.
2 2 p(7) p(Y")

Using these properties in (63), the constants in front of ||z" ! —

2"||? becomes
2
2
- 2u> +3L,

2
T 2
2a ) + 3Ly

ro__ 2

(65)

KL+ 84302 — K (L4 o124 2750
(L+pB")"+3L, = +p y+p(7)

@ (KQL + pK2L, — 2uK? + K2

b

< (dra'y? (©6)
in (a) we use the identity shown in (65); (b) always holds for
some d; > 1 (which are both independent of r), since a” is
an increasing sequence, and o is bounded away from zero.
Note that since y lies in a bounded set, there exists o, such
that [|y"t1[|* < 02, Vr. Using (66), setting z := 3(L, + %)2,
we obtain

IVG" |1 < (dra")?||a"*! —

= y"|I* +3(v")%0y.

p(WL)Q — 2p and smce

r||2

+ 2|yt (67)

Furthermore, when 8" = pL

L < 5, the bound of the potential function (37) becomes

o~
1
Pr+1 < pr— @Hyr+l _ yrH2 o OzTHJ?T—H _ erZ
,yrfl _ ’YT 2 ,yT72 ,yrfl
+ #HyHlHQ‘F; 1T ly"|I%.

Because {a"} is increasing and [|y"||* < o7, the above rela-
tion implies the following

1
T A B A
r—1 _ .7 2 r—2 r—1
<pro_ptp L 7<7§+<71—7 )aj
2 P\ o

(68)
Let us define

dy = rnin{10 }/max{z dia"}.
Then by combining (68) and (67), we obtain
HVQTHQ % dg S Pr _ rPrJrl

r—1 r r—2 r—1
i 2 (v Y r .
) 05 + ; (77__1 — o ) 05 + 3(y )203 X db.
Summing both sides from r = 1 to T, and noting that condition
(38) implies — T < 1.2, Vr, we obtain

+
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T T 2 2
3(k—2)L:o
S dgver| < Y g
r=1 r=1 pa
0 T -1 T-1
_pie (Xt 2 A
7 P+0y( 2 +p(7° o ))

where we have defined

0 T -1 T-1
_pl o (V. - 2 Y .
w=P - peol (g2 (BT ))
P is a lower bound of P, which is a finite number due to the
lower boundness assumption of £ and the compactness of ) (see
Assumption A.1). Notice that since d; > 1, we have

dy <d4

T —_—

2 = 2 = Y
dja™ ~ a’
where dy = min{%ﬂ, 1}, Also,

max{j—i, 750} such that dj > ?{lr.
By utilizing the definition of 7T'(¢) and the above bounds, we

know that

there exists ds >

k—2)L2o2 €
dady + 210D, ST 1
2 P (ar)

T(e
Zrz(l) %
Moreover, when " = %/4 ,it can be verified that the following
holds: -

(69)

1 1

,yr—&-l ~
because (r +1)/* — (r)*/* is a monotonically decreasing
function and its maximum value is achieved at » = 1. We can
plug in this choice of 7" into (65), and obtain

o = (k—2)pLi\/r.

Using these choices of {7", @"}, and by utilizing the bounds
that Y7, 1/r < ¢In(T) (for some ¢ > 0),and 37, 1//7 >
VT, the relation (69) becomes:

2 - Clog(T(e)

T(e)
where C' > 0 is some constant independent of the iteration.
Then, the desired result follows directly from (70). Q.E.D.

Vr>1,

; (70)
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