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Abstract— At present, the problem to steer general non-
Markovian processes between specified end-point marginal
distributions with minimum energy remains unsolved. Herein,
we consider the special case of a non-Markovian process y(t)
which assumes a finite-dimensional stochastic realization with a
Markov state process that is fully observable. In this setting, and
over a finite time horizon [0,T ], we determine an optimal (least)
finite-energy control law that steers the stochastic system to a
final distribution that is compatible with a specified distribution
for the terminal output process y(T ); the solution is given
in closed-form. This work provides a key step towards the
important problem to steer a stochastic system based on partial
observations of the state (i.e., an output process) corrupted by
noise.

I. INTRODUCTION

Throughout we will be considering a controlled evolu-
tion of the n-dimensional Gauss-Markov process {x(t) | 0≤
t ≤ T} that obeys the linear stochastic differential equation

dxu = A(t)xu(t)dt +B(t)u(t)dt +B(t)dw(t), (1a)
xu(0) = ξ a.s.

Here, as it is customary, w is an m-dimensional standard
Wiener process and ξ is an n-dimensional Gaussian random
vector which is independent of w. For simplicity we suppose
that ξ has zero mean, and that it has density

ρ0(x) = (2π)−n/2 det(Σx
0)
−1/2 exp

{
−1

2
x′ (Σx

0)
−1 x
}
. (1b)

We also assume that A(·) and B(·) are continuous matrix
functions taking values in Rn×n and Rn×m, respectively, and
the pair (A,B) is controllable. The assumption that control
and noise enter through the same channel (same B(·) matrix)
may be seen as restrictive; though it should be noted
that such problems have been developed in the literature
under the even stronger assumption that B is the identity
matrix for both, control and stochastic excitation, see the
survey [31]. The case of different channels for the control
and stochastic excitation, which is indeed more interesting
from an applications’ standpoint, has been addressed in
[11] for Markovian Gauss processes. It is considerably
more involved. In this first paper we focus on the case of
identical channels, and only briefly discuss the general cases
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Università di Padova, 35121 Padova, Italy; pavon@math.unipd.it

Supported in part by the NSF under grants 1509387, 1901599, the
AFOSR under grants FA9550-15-1-0045 and FA9550-17-1-0435, and by
the University of Padova Research Project CPDA 140897.

in Remark 7. We note however, that this special case of
identical channels is not devoid of practical interest. Indeed,
it is applicable to models of RLC networks with Nyquist-
Johnson noisy resistors, see Section V for further motivation.
It is also used in robotics where dw(t) captures the noise in
implementing a control strategy u. That is, the real input to
the system is udt + dw instead of udt due to disturbances
in real implementations; see [44] and references therein for
more discussions.

In recent years, there has been considerable interest in
the problem of minimum-energy steering of the (Gaussian)
distribution of x(t) to a target distribution N(0,Σx

T ) at time
t = T , [10], [11], [26], [24], [2], as well as in the infinite-
horizon case where the goal is to achieve with minimum
power a specified stationary state. The latter generalizes
the classical work on covariance control of Skelton et al.
[27], [25]. Motivation for such problems is multifarious:
they represent a natural relaxation of classical LQR steering
problems and have applications in quality control and in-
dustrial manufacturing, vehicle path planning [36], statistical
physics as in cooling and the control of nano-to-meter scale
resonators, atomic force microscopy and so forth, see e.g.,
[21], [12].

Historically, the origin of this stochastic steering prob-
lem stems from a Gedankenexperiment formulated by
Schrödinger in the early thirties [41], [42], seeking the most
likely flow of particle distribution between observed end-
point marginals. Schrödinger’s problem was later recognized
to be a problem in the theory of large deviations (which
was unavailable at that time), cf. [22]. Indeed, thanks to
Sanov’s theorem [40], Schrödinger’s problem amounts to
seeking a probability distribution on particle trajectories
having maximum entropy among those in agreement with
the specified end-points marginal distributions [23], [4], [28],
[22], [46]. Then, in the late eighties and early nineties, based
on the work of Jamison, Föllmer, Nagasawa, Wakolbinger,
Fleming, Holland, Mitter and others, a clear connection was
made with stochastic control [18], [19], [37]. The distribution
on paths, corresponding to the uncontrolled evolution, plays
the role of the “prior” measure in the maximum entropy
problem which generalizes Schrödinger’s original one. At
about the same time, Blaquiere [5] studied the control of
the Fokker-Planck equation and later Brockett studied the
Louiville equation [8] along a similar spirit, to steer the
distribution to a target one. A variation of the stochastic
control problem for Markov processes stemming from an-
other application domain has been considered in [20] where,
given a random-vector ζ , the stronger condition xu(T ) = ζ

almost surely, is imposed. This circle of control problems for
uncertain systems has recently been linked to yet another fast
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developing topic, Optimal Mass Transport (OMT) [45], when
it was realized that Schrödinger’s bridge problem (SBP) may
be viewed as a regularization of OMT [33], [34], [35], [31],
[13]; interestingly, SBP naturally mitigates computational
challenges of OMT and has been developed to this end from
different angles [3], [15], [16], [39].

Extending the Schrödinger problem to the case of non-
Markov processes is a tantalizing and natural next step.
While the general case is currently open1, in the present
paper we work out the special case of steering the output
of a Gauss-Markov model whose state is fully observable.
More specifically, in conjunction with (1a), we consider the
output process

y(t) =C(t)xu(t), (1c)

where C(·) is continuous and takes values in Rp×n for p < n.

In general, y by itself is not a (vector) Markov process.2
This situation arises when we consider steering only some
components of the state to a prescribed terminal distribution
(see Section V). Problems where only a portion of the state
needs to be specified arise, for instance, in thickness control
(film extrusion) [1], [2] where the remaining components of
the state vector might either not be of interest or may be
difficult/expensive to measure. In path planning problems
for robot manipulators, the target is usually specified in the
workspace (output), which may correspond to infinitely many
possible configurations (state) [30]. This also serves as a
motivating example for our problem formulation. In Section
V, we discuss a case where it is of interest to regulate only
the distribution of the momentum of a stochastic oscillator.
Although the setting considered in this paper is not the most
general, in that a finite-dimensional stochastic realization of
the non-Markovian process is assumed to be available, the
fact that the optimal control can be obtained in closed-form is
still noteworthy. Indeed, our main contribution in this paper
is the closed-form optimal control strategy for the covariance
steering problem (Problem 3) for the system (1a)-(1c).

The outline of the paper is as follows. In Section II,
we recall some central results from [10] in the case of a
Markovian prior. In Section III, we give a precise formulation
of our stochastic control problem. In Section IV, we provide
a closed-form solution to our problem by finding the terminal
time state covariance which can be reached with minimum
energy among those complying with the assigned covariance
of y(T ). Section V illustrates the results in a problem of
steering the momentum distribution of a stochastic oscillator
to a desired final one. Finally, in Section VI, we draw the
conclusions and discuss some future developments.

1See [38] for a considerably simpler ”half-bridge” problem where only
the final distribution is prescribed.

2It might be worthwhile to recall that a Gaussian process always admits
a Markovian representation/stochastic realization (1a)-(1c) where, however,
the state process might be infinite-dimensional or of dimension varying with
time, see [32].

II. BACKGROUND

Let U(Σx
0,Σ

x
T ) be the family of adapted3, finite energy

control functions such that (1a) has a strong solution on [0,T ]
and x(T ) has distribution N(0,Σx

T ). The optimal steering
problem reads

Problem 1: Determine

u∗ := argmin
u∈U(Σx

0,Σ
x
T )

J(u) := E
{∫ T

0
u(t)′u(t)dt

}
.

In [10, Theorem 8], it was shown that, under controllability
of the pair (A(·),B(·)) on the given time interval, U(Σx

0,Σ
x
T )

is nonempty and the (unique) optimal control is a linear
feedback of the state given by

u?(t) =−B(t)′Q(t)−1x(t). (2)

Here, P(t) and Q(t), taking values in the set of symmetric,
n×n matrices, are the unique nonsingular solutions on [0,T ]
of the system of linear matrix equations

Ṗ(t) = A(t)P(t)+P(t)A(t)′+B(t)B(t)′, (3a)
Q̇(t) = A(t)Q(t)+Q(t)A(t)′−B(t)B(t)′, (3b)

nonlinearly coupled through the boundary conditions

(Σx
0)
−1 = P(0)−1 +Q(0)−1, (4a)

(Σx
T )
−1 = P(T )−1 +Q(T )−1. (4b)

The solutions to these equations can actually be provided in
closed form as a function of (Σx

0,Σ
x
T ), see [10, Section III]

for further details. The case in which the initial and final
Gaussian distributions have prescribed non-zero means can
be handled in a similar way. In fact, the control of mean
and covariance can be fully decoupled and therefore can be
considered separately. The mean control is a standard optimal
control problem see [10, Remark 9] for the details. Therefore,
throughout, we assume that the means are 0.

Let C(0,T ;Rn) be the space of continuous functions
from [0,T ] to Rn, and let P0 and Pu be the probability
measures on C(0,T ;Rn) corresponding to the solutions of
(1a) with control 0, and u ∈U(Σx

0,Σ
x
T ), respectively. Also let

π0(x0,xT ) and πu(x0,xT ) be their initial-final joint densities,
respectively. In [10, Section IV], a well known decomposi-
tion of the relative entropy [22] was extended to the case
of degenerate diffusions to show that the Schrödinger bridge
problem with marginals densities ρ0 = N(0,Σx

0) and ρT =
N(0,Σx

T ) can be reduced to the following maximum entropy
problem for distributions on a finite-dimensional space:

Problem 2: Minimize over densities πu on Rn×Rn the
Kullback-Leibler index

D(πu‖π0) :=
∫ ∫ [

log
πu(x,y)
π0(x,y)

]
πu(x,y)dxdy (5)

subject to the (linear) constraints∫
πu(x,y)dy = ρ0(x),

∫
πu(x,y)dx = ρT (y). (6)

3u(t) only depends on t and on {xu(s);0≤ s≤ t} for each t ∈ [0,T ].
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Let Σu
0,T be the covariance of πu(x0,xT ). Since u ∈

U(Σx
0,Σ

x
T ), Σu

0,T has necessarily the structure

Σ
u
0,T =

[
Σx

0 Y u

(Y u)′ Σx
T

]
(7)

for some Y u. Let S0,T instead be the covariance correspond-
ing to π0(x0,xT ). Then, it has the form

S0,T =

[
Σx

0 Σx
0Φ(T,0)′

Φ(T,0)Σx
0 ST

]
(8)

where

ST = Φ(T,0)Σx
0Φ(T,0)′+

∫ T

0
Φ(T,τ)B(τ)B(τ)′Φ(T,τ)′dτ,

with Φ(t,s) denoting the state-transition of A(·) determined
by

∂

∂ t
Φ(t,s) = A(t)Φ(t,s), Φ(t, t) = I.

It was shown in [10, Section IV] that the covariance S0,T is
non-singular under the assumption that (A, B) is controllable.
Thanks to the explicit form of relative entropy (Kullback-
Leibler index) for Gaussian distributions [17], Problem 2 can
be expressed in terms of covariances as follows:

argmin
(Y u)∈Qx

− logdetΣ
u
0,T + trace(S−1

0,T Σ
u
0,T ) (9)

where Σu
0,T is as in (7) and

Qx :=
{

Y ∈ Rn×n : Σ
x
T −Y ′(Σx

0)
−1Y > 0

}
,

see [10, Section IV] for the details.

III. PROBLEM FORMULATION

We consider the output process in (1c) and assume
that the state xu(t) is fully observable and that the finite-
dimensional Markovian representation (stochastic realiza-
tion) for y provided by (1a)-(1c) is available. Such a rep-
resentation, as is well-known, constitutes the starting point
of Kalman filtering and much of optimal control theory, and
the construction of such a model with minimal state vector
dimension has been the subject of intense study [32]. This
is also our starting point.

Let us denote by U(Σx
0,Σ

y
T ) the family of adapted

control functions such that (1a) has a strong solution on
[0,T ] and y(T ) has distribution N(0,Σy

T ). We formulate the
following Schrödinger Bridge Problem with non-Markov
prior (1a)-(1c):

Problem 3: Determine

u∗ := argmin
u∈U(Σx

0,Σ
y
T )

J(u) := E
{∫ T

0
u(t)′u(t)dt

}
.

Notice that on one side, at t = 0, the boundary constraint
requires matching the covariance for the state vector (which
can be relaxed) while on the other end, at t = T , requires
matching the covariance of the output

Σ
y
T =C(T )Σx

TC(T )′. (10)

The value of Σx
T is a parameter and there are in general

several values for it such that (10) is satisfied4. Correspond-
ing to each one of them, there is a feedback control in
U(Σx

0,Σ
x
T ) optimally performing the transfer of distributions

according to [10]. Thus, the problem may be also viewed as
that of determining the one final covariance Σx

T , among those
compatible with Σ

y
T , whose corresponding optimal control (2)

has minimum energy.

Inspired by the reduction of the classical case leading
to Problem 2, we proceed in the next section to derive a
closed-form solution of Problem 3.

IV. SOLUTION TO THE NON-MARKOVIAN STEERING
PROBLEM

Note that the matching of the covariance of the output
(10) is only required at time t = T . For simplicity, below, we
suppress the argument and write C instead of C(T ). Problem
3 can be rewritten as

argmin
u∈U(Σx

0,X)

E
{∫ T

0
u(t)′u(t)dt

}
subject to x(0)∼N(0,Σx

0), x(T )∼N(0,X),

CXC′ = Σ
y
T ,

(11)

where Σx
0 > 0, Σ

y
T > 0 constitute the given data while X

is a parameter. We assume that C is full row rank to
avoid triviality; otherwise the problem is infeasible. We now
proceed to cast Problem (11) as in (9).

Problem 4: Given Σx
0, Σ

y
T , and S = S0,T as in (8)

argmin
(X ,Y )∈S+×Rn×n

− logdetΣ+ trace(S−1
Σ)

subject to Σ =

[
Σx

0 Y
Y ′ X

]
> 0, CXC′ = Σ

y
T ,

where S+ denotes the cone of n× n symmetric positive
definite matrices.

Let now

Q :=
{
(X ,Y ) ∈ S+×Rn×n : X−Y ′(Σx

0)
−1Y > 0

}
,

and partition

S−1 =

[
N V
V ′ P

]
conformally to Σ. By applying the Schur complement on Σ,
the optimization problem (11) can be recast as

argmin
(X ,Y )∈Q

− logdet
(
X−Y ′Σ−1

0 Y
)
+ trace(PX +2V ′Y )

subject to CXC′ = Σ
y
T , (12)

Suppressing the argument for simplicity, and writing Σ0
instead of Σx

0, we consider the Lagrangian for problem (12)

L(X ,Y,M) =− logdet
(
X−Y ′Σ−1

0 Y
)
+ trace(PX)

+ trace
[
M(CXC′−Σ

y
T )
]
+2trace(V ′Y ),

4The case where only Σ
y
0 and Σ

y
T are prescribed can be treated in a similar

fashion by optimizing also with respect to Σx
0.
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where M = M′ is a Lagrange multiplier. We consider next
the unconstrained minimization problem

inf
(X ,Y )∈Q

L(X ,Y,M). (13)

We first check the convexity of L with respect to (X ,Y ).

Proposition 1: L is jointly convex in (X ,Y ) over Q.

Proof: We compute δL(X ,Y,M;δX ,δY ), the first vari-
ation of L in direction (δX ,δY ) (since Q is open, any pair
(X ,Y ) is an interior point in any direction). Applying the
chain rule, we get

δL(X ,Y,M;δX ,δY ) =
d

dε
L(X + εδX ,Y + εδY,M)|ε=0

=− trace[(X−Y ′Σ−1
0 Y )−1

δ
(
X−Y ′Σ−1

0 Y ;δX ,δY
)
]

+ trace
[
(P+C′MC)δX +2V ′δY

]
=− trace[(X−Y ′Σ−1

0 Y )−1(δX−Y ′Σ−1
0 δY −δY ′Σ−1

0 Y )]
+ trace

[
(P+C′MC)δX +2V ′δY

]
.

To check the convexity, we compute the second variation

δ
2L(X ,Y,M;δX ,δY ) =

d2

dε2L(X + εδX ,Y + εδY,M)|ε=0.

We have

δ
2L(X ,Y,M;δX ,δY ) =

= trace
[(
(X−Y ′Σ−1

0 Y )−1(δX−Y ′Σ−1
0 δY −δY ′Σ−1

0 Y )
)2
]

+2trace
[
(X−Y ′Σ−1

0 Y )−1(δY ′Σ−1
0 δY )

]
.

which is clearly non-negative on Q.

Thus

δL(X ,Y,M;δX ,δY ) = 0, ∀(δX ,δY )∈ S×Rn×n, (14)

is a sufficient condition for a minimum pair for L over Q.
Condition (14) yields the two equations

P+C′MC− (X−Y ′Σ−1
0 Y )−1 = 0, (15)

V +Σ
−1
0 Y (X−Y ′Σ−1

0 Y )−1 = 0. (16)

To compute the optimal (X ,Y ), we use these equations in
the Lagrangian and then proceed to maximize the resulting
(concave) functional with respect to M. Accordingly, the last
equation we need is given by

δL(X ,Y,M;δM) = 0, ∀δM ∈ S ⇐⇒ CXC′ = Σ
y
T . (17)

Let Z := X −Y ′Σ−1
0 Y and note that Z = Z′ > 0. We

immediately get X = Z +Y ′Σ−1
0 Y and, from (15)-(16),

(15) ⇐⇒ Z−1 = P+C′MC, (18)
(16) ⇐⇒ Y =−Σ0V Z.

Therefore, X = Z +ZV ′Σ0V Z and

(17) ⇐⇒ CZC′+CZV ′Σ0V ZC′ = Σ
y
T . (19)

At this point we only need to find Z from equations (18),
(19). Since we can always find a state space transformation
x̂ =U−1x such that Ĉ =CU = [I 0], without loss of gener-
ality, we can always assume that C = [I 0].

Remark 5: One way to construct the transformation
matrix U is as follows. Write U as [U1 U2] with U1 being
of the same dimension with C′. It is easy to find a matrix
U1 so that CU1 = I. Clearly U1 is of full column rank. Next,
choose a matrix U2 of compatible dimension whose columns
span the orthogonal complement of the range of U1. This
is standard and leads to CU2 = 0. The resulting matrix U
satisfies CU = [CU1 CU2] = [I 0] and is nonsingular.

Let

Z =

[
Z11 Z12
Z21 Z22

]
, V =

[
V11 V12
V21 V22

]
, P =

[
P11 P12
P21 P22

]
.

Equation (19) becomes

Z11 +
[
Z11 Z12

][K11 K12
K21 K22

]
︸ ︷︷ ︸

V ′Σ0V >0

[
Z11
Z12

]
= Σ

y
T , (20)

while equation (18) can be equivalently written as[
I 0
0 I

]
=

[
Z11(M+P11)+Z12P12 Z11P12 +Z12P22
Z21(M+P11)+Z22P21 Z21P12 +Z22P22

]
(21)

which reduces to the system of equations
Z11P12 +Z12P22 = 0
Z21P12 +Z22P22 = I
Z12 = Z′21

⇐⇒


Z21 =−P−1

22 P21Z11

Z12 = Z′21

Z22 = P−1
22 −Z21P12P−1

22
(22)

Plugging Z12, Z21 and Z22 into (20), we get

Z11 +Z11 W Z11 = Σ
y
T , (23)

where

W :=
[
I −P12P−1

22

][K11 K12
K21 K22

][
I

−P−1
22 P21

]
> 0.

Equation (23) is a quadratic equation with two solutions

Z±11 =W−
1
2

[
±
(

1
4

I +W
1
2 Σ

y
TW

1
2

) 1
2
− 1

2
I

]
W−

1
2 , (24)

where F1/2 denotes the unique positive symmetric square
root of the positive definite symmetric matrix F . Clearly, Z =
X−Y ′Σ−1

0 Y > 0 by Schur complement, which implies Z11 >
0. This singles out the solution Z+

11. We can now recover
Z from (22) and then X = Z +ZV ′Σ0V Z and Y = −Σ0V Z.
Finally, from (21), one can find the multiplier M:

M = (Z+
11)
−1−P11− (Z+

11)
−1Z12P12.

The above results can be summarized as follows.

Theorem 6: Assume a coordinate transform has been
applied so that C = [I 0]. Let Z+

11 be as in (24) and
Z,X ,Y be derived accordingly. Then (X ,Y ) solves Problem
4. Furthermore, the solution to Problem 3 coincides with the
solution to Problem 1 with Σx

T = X .
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Remark 7: When the input and noise enter the system
through different channels, that is, the noise term in (1a) is
B1dw(t), Problem 3 doesn’t have a nice closed-form solu-
tion. Nevertheless, the problem allows for an optimization
formulation

min
K(·)

∫ T

0
trace(K(t)Σ(t)K(t)′)dt

Σ̇(t) = (A−BK(t))Σ(t)+Σ(t)(A−BK(t))′+B1B′1
Σ(0) = Σ

x
0, CΣ(T )C′ = Σ

y
T ,

where the controller is restricted to linear state feedback
u(t) =−K(t)x(t). With a standard change of variable U(t) =
K(t)Σ(t), it can be transformed into a convex optimization
problem. See [11] for more details on feasibility and com-
putation issues.

V. EXAMPLE

Controlled stochastic oscillators play an important role
in Atomic Force Microscopy, molecular dynamics and cool-
ing of nano-to-meter scale resonators, see e.g. [6], [7],
[29], [21], [12]. A standard model for these applications
is the Ornstein-Uhlenbeck process. Consider controlling the
Ornstein-Uhlenbeck model

dqu(t) = pu(t)dt
d pu(t) =−β pu(t)dt−Kqu(t)dt +u(t)dt +dw(t)

(25)

corresponding to a given quadratic potential V (q) = 1
2 q′Kq

with K symmetric, positive-definite, and u(·) the control
force. By setting

x =
(

q
p

)
, A =

(
0 I
−K −β I

)
, B =

(
0
I

)
,

model (25) becomes

dxu(t) = Axu(t)dt +Bu(t)dt +Bdw(t)
xu(0) = ξ a.s.

where ξ is zero-mean Gaussian with Σx
0 = I/2, and the

pair (A,B) is controllable. We consider a state dimension
of n = 2 and we assume, to simplify the exposition, that
the units are such that K = I and β = 1. We would like to
steer the Gaussian distribution of the momentum to a final
distribution at time T = 1 with Σ

p
1 = 1/16 minimizing the

quadratic control energy under the controlled dynamics (25).
In other words, we are prescribing only the final covariance
matrix of y(t) = C x(t) with C = [0 I]. Figure 1 shows the
trajectories of the state variables in phase space (left) and the
corresponding control efforts (right). Figure 2 highlights in-
stead the trajectories of position (left) and momentum (right)
with the corresponding confidence interval. In all figures, the
transparent blue tube represent the ”3σ” confidence interval,
whose intersection with the plane

{
(τ,q, p) ∈ R3 : τ = t

}
is

given by {
(q, p) ∈ R2

∣∣∣∣ [q p
]

Σ
−1
t

[
q
p

]
≤ 32

}
.

The figures highlight the reduction of the variance of the
momentum process as time increases to T = 1.

0

0.5

1

−2

0

2

−2

0

2

t

q(t)

p(t)

0 0.5 1

−6

0

6

t

u(t)

Fig. 1: Steering the momentum distribution. Trajectories in
phase space (left) and relative control efforts (right).
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−2
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2

t

q(t)

0 0.5 1

−2

0

2

t

p(t)

Fig. 2: Steering the momentum distribution. Position’s tra-
jectories (left) and momentum’s trajectories (right).

VI. CONCLUSION AND OUTLOOK

In this paper, we have considered optimal steering for
the distribution of the output of a linear stochastic system
whose state is fully observable. The problem has been trans-
formed into a maximum entropy problem whose solution has
been provided in closed-form. Using the results of [10], we
then obtained a closed-form expression for the minimum-
energy control that steers the output from the initial to the
final prescribed distributions. This work should be seen as a
first step towards the more challenging steering problem of
general Gaussian non-Markov processes. A research direc-
tion of great interest consists of the steering problem where
only partial observations of the state corrupted by noise are
available. To this end, we expect that the results of this paper,
together with those in [9], will help accomplishing the task;
we note that this latter paper considers steering the state
under partial observation while allowing for different control
and noise channels.
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