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Abstract— We formulate a new class of two-person zero-
sum differential games, in a stochastic setting, where a specifi-
cation on a target terminal state distribution is imposed on the
players. We address such added specification by introducing
incentives to the game that guides the players to steer the join
distribution accordingly. In the present paper, we only address
linear quadratic games with Gaussian target distribution. The
solution is characterized by a coupled Riccati equations system,
resembling that in the standard linear quadratic differential
games. Indeed, once the incentive function is calculated, our
problem reduces to a standard one. Tthe framework developed
in this paper extends previous results in covariance control, a
fast growing research area. On the numerical side, problems
herein are reformulated as convex-concave minimax problems
for which efficient and reliable algorithms are available.

I. INTRODUCTION

Differential games [1], [2] represent a class of games
where players are constrained by continuous-time dynamics.
They represent a natural marriage of game theory and
optimal control, and have had a huge impact in economics,
management sciences, operations research as well as more
traditional control involving several interacting agents [1],
[2]. Standard (non-cooperative) differential games stipulate
that each player seeks a strategy that maximizes her/his
payoff. Thus, the counterpart of optimal control policy in
this setting is a Nash equilibrium [3] –the optimal strategy
for each requires/assumes that the other agents choose an
equilibrium-policy where none gains by moving away from.
In general, differential games are challenging both in theory
as well as in implementation and numerics.

In this work, we consider two-player zero-sum differ-
ential games, a special type of differential games involving
two agents competing with each other where one’s gain is
precisely the other’s loss. Such models are often encountered
in economics [2], and turned out to play an important role
in robust control theory [4]. From an optimization point of
view, deriving a Nash equilibrium strategy is equivalent to
finding a saddle point of the utility function. For general
minimax optimization [5], a global, sometimes even local,
saddle point may not exist. One condition that guarantees
existence of global saddle point is that the cost is convex over
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the minimization variable and concave over the maximization
variable [6], [7]. In this paper, we focus on linear-quadratic
games [8]–[12] where the convex-concave assumption is
indeed valid.

In most of the literature on differential games, the focus
is on existence and properties of solutions to specific prob-
lems. Herein, we advance a somewhat different perspective,
and seek a systematic approach of introducing incentives to
the game, so as to steer the response of the players towards
some desirable pattern. In general terms, our rationale is
similar to that of “mechanism design,” in economic theories,
to regulate via incentives. More precisely, it is akin to a
cost selection in optimal control problems, so as to induce
an optimal policy with desired properties. However, one
major difference is that in control problems, there is a direct
correspondence between cost and optimal policy, whereas
in differential games, in principle, the agents may respond
in a variety of ways to the same incentive. The situation
is remedied and the correspondence is restored when we
hypothesize that the players are rational and follow Nash
equilibrium policies.

In the present work, specifically, we consider stochastic
games and our goal is to design a proper incentive so that
the system state of the players reaches a target probability
distribution, always under the tacit assumption that they
follow a Nash policy. In other words, although the game is
noncooperative in that each player seeks maximal advantage,
an implicit level of cooperation is imposed by the end-
point requirement of specifying a target state distribution.
Thus, while in economics and social sciences, game theory
provides a model and an explanatory frame [13], our set-
ting is motivated by design where we seek to modify the
players behavior in a manner that forces the said terminal
target distribution. The linear-quadratic setting is amenable
to develop the basic paradigm of how to steer antagonistic
players in a zero-sum game towards a desirable stochastic
state distribution via a suitable choice of a quadratic teminal
cost to serve as an incentive. We note that a similar viewpoint
has been explored in a mean-field-game setting, representing
competition among a huge group of identical agents, with the
goal to steer the distribution of the cohort via incentives [14].

The present builds on recently developed theory of opti-
mal control with stochastic state-constraints that is known (in
the linear-quadratic Gaussian setting) as covariance control
[15]–[26]. Covariance control is motivated by the desire to
enforce precise probabilistic specifications so as to reduce
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conservativeness and improve effectiveness of control strate-
gies. Surprisingly, covariance control ties stochastic control
with two other seemingly disconnected research topics with a
long history, optimal mass transport (OMT) and Schrödinger
bridges (SB), see [27] and the references therein. Despite
clear differences in the rationale for covariance control with
that of the present paper, there are deeper points of contact
and, in fact, the latter can be viewed as an extension of the
former.

The paper is structured as follows. Section II contains
background material as well as a formulation of our basic
problem. Its solution is given in Section III whereas results
for the case of infinite horizon are presented in Section IV.
We conclude with a few short remarks in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

We briefly introduce the covariance control and linear
quadratic differential game theories. Both are needed to solve
the covariance steering problems in differential games, whose
problem formulation is also presented in this section.

A. Covariance control

We begin by considering a standard linear stochastic
system

dx(t) = Ax(t)dt+Bu(t)dt+Cdw, x(0) ∼ N (0,Σ0), (1)

where x ∈ Rn denotes the state, u ∈ Rm is the control input,
and w is a standard Wiener process (Brownian motion).
The pair (A, B) is assumed to be controllable. The goal in
covariance control over, e.g., a finite time interval [19], [20],
is to determine an optimal feedback control law that drives
the state from an initial Gaussian distribution N (0,Σ0) to
a target terminal Gaussian distribution N (0,ΣT )1 at time
t = T while minimizing the quadratic cost functional

J(u) = E{
∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2]dt}. (2)

As usual, Q is a suitable matrix that defines cost in the
state variables. It is a nonstandard stochastic control problem
due to the constraint x(T ) ∼ N (0,ΣT ). Nevertheless, the
optimal policy is similar to that in standard linear-quadratic
regulator theory and given in state feedback form [19], [20],

u(t, x) = −B′Π(t)x,

where Π is a time-varying matrix which, together with
a second time-varying matrix H , satisfies the following

1For the simplicity of exposition, we focus only on zero-mean distribu-
tions. The cases with nonzero-mean distributions can be analyzed similarly.

coupled system of differential equations

Π̇ = −A′Π−ΠA+ ΠBB′Π−Q (3a)
Ḣ = −A′H −HA−HBB′H +Q (3b)

+(Π +H)(BB′ − CC ′)(Π +H)

Σ−1
0 = Π(0) +H(0), (3c)

Σ−1
T = Π(T ) +H(T ). (3d)

Equations (3) relate to a system of nonlinear equations
in classical 1932-work by Erwin Schrödinger on the so-called
Schrödinger bridge problem [28], and can also be seen to
constitute a coupled pair of a Fokker-Planck equation and a
Hamilton-Jacobi equation, see [20], [27]. When B = C, Π
and H are only coupled through the boundary conditions. In
this special case, the equations have a closed-form solution
[19], [21]. In general, not only closed-form solutions may
not exist but even the existence remains an open research
topic [20]. However, a numerical scheme allows constructing
solutions that are approximately optimal to an arbitrary
precision [20] and so, from a practical point of view, the
covariance control problem described in this section can be
considered completely solved.

B. Linear quadratic differential games

Consider now the stochastic dynamical system

dx(t) = Ax(t)dt+B1u(t)dt+B2v(t)dt+Cdw, x(0) ∼ ρ0

(4a)
where x ∈ Rn is the (combined) state, u ∈ Rm, v ∈ Rp
are the control inputs of the two players, player 1 and 2,
respectively, and w is standard Wiener process as before. The
pairs (A, B1) and (A, B2) are assumed to be controllable.
The initial state x(0) is taken to be a random vector with
probability distribution ρ0. The two players compete with
each other aiming at minimizing their own cost through
proper feedback control policies [1].

The cost function for agent 1 is

J1(u, v) = E{
∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt

+x(T )′Fx(T )} (4b)

and the cost for agent 2 is

J2(u, v) = −J1(u, v), (4c)

For suitable quadratic forms specified by matrices Q and
F that dictate running and terminal state cost, respectively.
Overall, in this zero-sum-game setting, agents/players seek
the solution of the minimax problem

min
u

max
v

J1(u, v) (4d)

where the optimization is taken over all the feasible feedback
control policies. For notational simplicity we take ‖u(t)‖2,
‖v(t)‖2 as the running cost for the respective control vari-
ables, that is, with respective “weights” the identity matrices.
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More generally, when using suitable weighted quadratic
norms, one may proceed in a similar manner. Either way, the
solution is similar to that in linear quadratic control problems
and is provided in the following theorem [8]–[10].

Theorem 1: If the solution to the Riccati equation

Π̇ +A′Π + ΠA−Π(B1B
′
1 −B2B

′
2)Π +Q = 0, Π(T ) = F

(5)
exists over the time interval [0, T ], then the differential game
associated with (4) has a unique solution, given by the linear
state feedback control

u∗(t, x) = −B′1Π(t)x (6a)
v∗(t, x) = B′2Π(t)x. (6b)

We provide an elementary derivation below that relies
on “completion of squares.” Complete arguments to further
argue uniqueness follow along similar lines in [9], [11], [12],
to which we refer for specifics. Let Π be the solution to
the Riccati equation (5), then E{x(0)′Π(0)x(0)} is clearly a
constant depending only on the initial distribution ρ0. Thus,
the cost J1(u, v) is equivalent to

E{
∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt

+d[x(t)′Π(t)x(t)]}

= E{
∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt

+(Ax(t)dt+B1u(t)dt+B2v(t)dt+ Cdw)′Π(t)x(t)

+x(t)′Π(t)(Ax(t)dt+B1u(t)dt+B2v(t)dt+ Cdw)

+ tr(ΠCC ′)dt+ x(t)′Π̇(t)x(t)dt}

= E{
∫ T

0

‖u(t) +B′1Π(t)x(t)‖2 − ‖v(t)−B′2Π(t)x(t)‖2

+ tr(ΠCC ′)dt},

where we have used the Riccati equation (5) and the fact
that E{dw} is zero in the above. Clearly, the policy in (6)
is a stationary point of J1(u, v). Indeed, for any feedback
control policy u, v, we have that

J1(u∗, v∗)−J1(u∗, v) = E{
∫ T

0

‖v(t)−B′2Π(t)x(t)‖2dt}≥0,

and

J1(u, v∗)−J1(u∗, v∗) = E{
∫ T

0

‖u(t)−B′2Π(t)x(t)‖2dt}≥0.

C. Problem formulation

We consider the covariance control problem over a
differential game system. Departing from the problem in (4),
in our new problem the terminal cost x(T )′Fx(T ) is a design
parameter and the goal is to drive the state to a target terminal
distribution. This is formally stated as follows.

Problem 1: Consider the differential game with
stochastic dynamics

dx(t) = Ax(t)dt+B1u(t)dt+B2v(t)dt+ Cdw

x(0) ∼ N (0,Σ0)

and cost J2 = −J1,

J1(u, v) = E{
∫ T

0

[x(t)′Qx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt

+x(T )′Fx(T )}.

Here F is a design parameter. Determine a value for F so that
the state reaches the specified target distribution N (0,ΣT )
at terminal time t = T , assuming that the two players are
rational.

We remark that the Riccati equation (5) may fail to have
a solution [8], [12]. The choice of F in that case requires
great care.

III. MAIN RESULTS

Starting from a proper F , the Nash equilibrium is
characterized by Theorem 1, yielding the closed loop system

dx = Ax−B1B
′
1Πx+B2B

′
2Πx+ Cdw.

Its state covariance Σ(t) = E{x(t)x(t)′} satisfies the Lya-
punov equation

Σ̇ = (A−B1B
′
1Π +B2B

′
2Π)Σ

+Σ(A−B1B
′
1Π +B2B

′
2Π)′ + CC ′ (7)

with initial condition Σ(0) = Σ0. Let

H = Σ−1 −Π.

Then, a straightforward calculation shows that H satisfies
the differential equation

Ḣ = −A′H −HA−H(B1B
′
1 −B2B

′
2)H +Q

+(Π +H)(B1B
′
1 −B2B

′
2 − CC ′)(Π +H)

for some suitable boundary condition. To achieve the target
covariance Σ(T ) = ΣT , Π, H must satisfy Π(T ) +H(T ) =
ΣT . Thus, we arrive at the coupled system of differential
equations

Π̇ = −A′Π−ΠA+ Π(B1B
′
1 −B2B

′
2)Π−Q (8a)

Ḣ = −A′H −HA−H(B1B
′
1 −B2B

′
2)H +Q (8b)

+(Π +H)(B1B
′
1 −B2B

′
2 − CC ′)(Π +H)

Σ−1
0 = Π(0) +H(0), (8c)

Σ−1
T = Π(T ) +H(T ) (8d)

Theorem 2: Suppose (8) has a solution over t ∈ [0, T ],
then F = Π(T ) solves Problem 1.

Proof: When the terminal cost in (4) is x(T )′Fx(T ),
by Theorem 1, the differential game (4) has a unique solution
given by (6). The resulting state covariance satisfies the
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Lyapunov equation (7). Since by definition Σ−1 = Π+H , it
matches the boundary condition Σ(T ) = ΣT . This completes
the proof.

The equation system (8) has a similar structure to that in
(3). When B1 = B,B2 = 0, (8) reduces to (3). Indeed, in this
case, player 2 does not affect the system and Problem 1 boils
down to the standard covariance control problem described in
Section II-A. When B1B

′
1−B2B

′
2 = CC ′, the two variables

Π, H are coupled only through the boundary conditions. If
in addition B1B

′
1 − B2B

′
2 ≥ 0 and (A,B1B

′
1 − B2B

′
2) is

controllable, then (8) has a closed form solution [21]. In
general, whether the solution to (8) exists remains an open
question. However, just like the covariance control problem,
the solution to Problem 1 can be approximated to an arbitrary
precision, as shown below.

A. Alternative formulation

Since the optimal policies to linear quadratic differential
games are linear, without loss of generality, when taking an
optimization approach, we can restrict ourself to the linear
policies u = K1x, v = K2x. The cost function function
J1(u, v), excluding the terminal cost, becomes∫ T

0

tr(QΣ +K1ΣK ′1 −K2ΣK ′2)dt.

This leads to the minimax problem

min
K1

max
K2,Σ>0

∫ T

0

tr(QΣ +K1ΣK ′1 −K2ΣK ′2)dt

Σ̇ = (A+B1K1 +B2K2)Σ

+Σ(A+B1K1 +B2K2)′ + CC ′

Σ(0) = Σ0, Σ(T ) = ΣT .

Adopting a standard reparametrization Y1 = K1Σ, Y2 =
K2Σ, we obtain

min
Y1

max
Y2,Σ>0

∫ T

0

tr(QΣ + Y1Σ−1Y ′1 − Y2Σ−1Y ′2)dt

Σ̇ = AΣ + ΣA′ +B1Y1 + Y ′1B
′
1 +B2Y2 + Y ′2B

′
2 + CC ′

Σ(0) = Σ0, Σ(T ) = ΣT .

Invoking the Schur complement, we deduce the equivalent
problem

min
Y1,Z1

max
Y2,Z2,Σ

∫ T

0

tr(QΣ + Z1 − Z2)dt (9a)

Σ̇=AΣ+ΣA′+B1Y1+Y ′1B
′
1+B2Y2+Y ′2B

′
2+CC ′(9b)

Σ(0) = Σ0, Σ(T ) = ΣT (9c)[
Z1 Y1

Y ′1 Σ

]
≥ 0,

[
Z2 Y2

Y ′2 Σ

]
≥ 0. (9d)

The cost is convex over Y1, Z1 and concave over Y2, Z2,Σ,
and the constraints are convex, therefore the above for-
mulation (9) is a convex-concave minimax problem. We
remark that the feasible set is not empty [20]. Though, the

optimization variable is of infinite dimension. The problem
in a finite-dimension setting has been extensively studied
and many algorithms have been proposed [5]–[7]. The La-
grangian multiplier associated with the constraint (9b) turns
out to be Π. The optimal F in Problem 1 can therefore be
recovered by taking F = Π(T ).

IV. INFINITE HORIZON CASES

In this section we investigate the covariance steering
problem for differential games in the infinite horizon setting.
The goal is to select some incentive function so that the
system-state attains a stationary Gaussian distribution with a
specified covariance, formally stated below.

Problem 2: Consider the differential game associated
with the dynamics

dx(t) = Ax(t)dt+B1u(t)dt+B2v(t)dt+ Cdw (10)

and costs J2 = −J1,

J1(u,v)=lim sup
T→∞

1

T
E{
∫ T

0

[x(t)′Qx(t)+‖u(t)‖2−‖v(t)‖2]dt}
(11)

where Q is a design variable. Find a Q such that the state
reaches the stationary distribution N (0,Σ), provided the two
players are rational. By “rational” we mean that they both
seek to gain maximal advantage, while at the same time,
assume that their opponent does the same.

In the above, we assume that (A,C) is controllable, to avoid
possibly degeneracy of the state distribution. Again, without
loss of generality, we only consider the linear policy u =
K1x, v = K2x. Assuming the controlled system

dx = (A+B1K1 +B2K2)xdt+ Cdw

is stable, namely, A + B1K1 + B2K2 is Hurwitz, then the
state covariance reaches the specified value Σ > 0 with

(A+B1K1 +B2K2)Σ+Σ(A+B1K1 +B2K2)′+CC ′ = 0.

The cost J1, with Q = 0, can then be written as

tr(K1ΣK ′1 −K2ΣK ′2).

Consider the minimax optimization

min
K1

max
K2

tr(K1ΣK ′1 −K2ΣK ′2) (12a)

(A+B1K1 +B2K2)Σ + Σ(A+B1K1 +B2K2)′

+CC ′ = 0, (12b)

where Σ > 0 is a given target covariance. Clearly, the
cost is convex over K1 and concave over K2. Suppose the
feasible set is not empty, then a solution to (12) exists. In
fact, under the assumption that B1, B2 are of full column
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rank, the solution is unique. With the new parametrization
Y1 = K1Σ, Y2 = K2Σ, (12) can be rewritten as

min
Y1

max
Y2

tr(QΣ + Y1Σ−1Y ′1 − Y2Σ−1Y ′2) (13a)

AΣ + ΣA′ +B1Y1 + Y ′1B
′
1 +B2Y2 + Y ′2B

′
2

+CC ′ = 0. (13b)

The feasible set is not empty if and only if (13b) has a
solution (Y1, Y2), which is equivalent to the condition [29]

rank

[
AΣ + ΣA′ + CC ′ B

B′ 0

]
= rank

[
0 B
B′ 0

]
, (14)

where B = [B1B2].

When R(B) ⊂ R(C), the constraint (12b) guarantees
that A+B1K1 +B2K2 is Hurwitz, by Lyapunov theory. In
general, the condition that A + B1K1 + B2K2 be Hurwitz
needs to be verified separately; it may have eigenvalues on
the imaginary axis. Nevertheless, it is possible to maintain
a state covariance that is arbitrarily close. Indeed, for any
feasible K1,K2, let

Kε
1 = K1 −

1

2
εB′1Σ−1, Kε

2 = K2 −
1

2
εB′2Σ−1

for ε > 0, then

(A+B1K
ε
1 +B2K

ε
2)Σ + Σ(A+B1K

ε
1 +B2K

ε
2)′

= −CC ′ − εBB′ ≤ −εBB′,

which implies that A+B1K
ε
1 +B2K

ε
2 is Hurwitz. The real

state covariance Σε satisfies

(A+B1K
ε
1+B2K

ε
2)Σε+Σε(A+B1K

ε
1+B2K

ε
2)′+CC ′ = 0,

Its difference ∆ = Σ− Σε ≥ 0 to Σ solves

(A+B1K
ε
1 +B2K

ε
2)∆+∆(A+B1K

ε
1 +B2K

ε
2)′ = −εBB′,

which is clearly of order o(ε).

Therefore, without loss of generality, we assume that
the unique solution to (9) corresponds to a stable closed loop
system. Next we discuss how (12) is related to Problem 2.
The minimax problem (9) can be rewritten as

min
K1

max
K2,Σ̂

tr(K1ΣK ′1 −K2ΣK ′2) (15a)

(A+B1K1 +B2K2)Σ̂ + Σ̂(A+B1K1 +B2K2)′

+CC ′ = 0, (15b)
Σ̂ = Σ. (15c)

Relaxing the last equality constraint using Lagrange multi-
plier method we arrive at

min
K1

max
K2,Σ̂

tr(K1ΣK ′1 −K2ΣK ′2) + tr(ΠΣ̂)

(A+B1K1 +B2K2)Σ̂ + Σ̂(A+B1K1 +B2K2)′

+CC ′ = 0,

which is exactly the optimization formulation to a standard
infinite horizon differential game problem with dynamics
(10) and cost

lim sup
T→∞

1

T
E{
∫ T

0

[x(t)′Πx(t) + ‖u(t)‖2 − ‖v(t)‖2]dt}.

In view of (11) we conclude that the solution to Problem 2
is Q = Π where Π is the optimal Lagrangian multiplier of
(15) associated with the constraint (15c).

V. CONCLUSION

We formulated and studied a class of two-player zero-
sum linear-quadratic differential games with the added spec-
ification of a terminal state covariance of the combined
system dynamics. Such an added specification may be used
to limit the range of operation for the combined two-
player dynamics. Thus, the two players must abide by this
extra specification while, independently, also compete to
ensure optimal individual gains. We show that a suitable
modification of the cost functional provides the appropriate
incentive that drives the combined dynamics towards meeting
the terminal state constraint. We characterized solutions and
numerical algorithms that effect convex-concave minimax
optimization.

The present work is perhaps the first attempt to extend
covariance control to the differential game setting. Potential
applications range from probabilistic path planing involving
competitors, to the classic pursuit-evasion problems. Possible
future directions include general distribution-steering for
more general dynamics, nonzero-sum games, and games
involving more than two players. On the technical side, it
will be important to study the implications of relaxing the
standing assumption made in Section II-B that the pairs
(A, B1) and (A, B2) are controllable, to controllability
of the pair (A, [B1, B2]). Under our current assumption,
individual players have control over the complete combined
state space, whereas the relaxed condition will allow for the
possibility that players can only control respective individual
dynamics.
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[6] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point
problems,” Journal of optimization theory and applications, vol. 142,
no. 1, pp. 205–228, 2009.

[7] Y. Chen, G. Lan, and Y. Ouyang, “Optimal primal-dual methods for
a class of saddle point problems,” SIAM Journal on Optimization,
vol. 24, no. 4, pp. 1779–1814, 2014.

[8] D. Lukes and D. Russell, “A global theory for linear-quadratic dif-
ferential games,” Journal of Mathematical Analysis and Applications,
vol. 33, no. 1, pp. 96–123, 1971.

[9] T. Basar, “On the uniqueness of the nash solution in linear-quadratic
differential games,” International Journal of Game Theory, vol. 5, no.
2-3, pp. 65–90, 1976.

[10] P. Bernhard, “Linear-quadratic, two-person, zero-sum differential
games: necessary and sufficient conditions,” Journal of Optimization
Theory and Applications, vol. 27, no. 1, pp. 51–69, 1979.

[11] P. Zhang, “Some results on two-person zero-sum linear quadratic
differential games,” SIAM journal on control and optimization, vol. 43,
no. 6, pp. 2157–2165, 2005.

[12] M. C. Delfour, “Linear quadratic differential games: Saddle point
and riccati differential equation,” SIAM Journal on Control and
Optimization, vol. 46, no. 2, pp. 750–774, 2007.

[13] J. W. Friedman, Game theory with applications to economics. Oxford
University Press, USA, 1990.

[14] Y. Chen, T. T. Georgiou, and M. Pavon, “Steering the distribution of
agents in mean-field games system,” Journal of Optimization Theory
and Applications, vol. 179, no. 1, pp. 332–357, 2018.

[15] A. Hotz and R. E. Skelton, “Covariance control theory,” International
Journal of Control, vol. 46, no. 1, pp. 13–32, 1987.

[16] R. E. Skelton and M. Ikeda, “Covariance controllers for linear
continuous-time systems,” International Journal of Control, vol. 49,
no. 5, pp. 1773–1785, 1989.

[17] K. Yasuda, R. E. Skelton, and K. M. Grigoriadis, “Covariance
controllers: A new parametrization of the class of all stabilizing
controllers,” Automatica, vol. 29, no. 3, pp. 785–788, 1993.

[18] R. E. Skelton, T. Iwasaki, and D. E. Grigoriadis, A unified algebraic
approach to control design. CRC Press, 1997.

[19] Y. Chen., T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, Part I,” IEEE
Trans. on Automatic Control, vol. 61, no. 5, pp. 1158–1169, 2016.

[20] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, Part II,” IEEE
Trans. on Automatic Control, vol. 61, no. 5, pp. 1170–1180, 2016.

[21] ——, “Optimal steering of inertial particles diffusing anisotropically
with losses,” in Proc. American Control Conf., 2015, pp. 1252–1257.

[22] ——, “Optimal steering of a linear stochastic system to a final
probability distribution, Part III,” IEEE Transactions on Automatic
Control, vol. 63, no. 9, pp. 3112–3118, 2018.

[23] E. Bakolas, “Optimal covariance control for stochastic linear systems
subject to integral quadratic state constraints,” in 2016 American
Control Conference (ACC). IEEE, 2016, pp. 7231–7236.

[24] J. Ridderhof and P. Tsiotras, “Uncertainty quantification and control
during mars powered descent and landing using covariance steering,”
in 2018 AIAA Guidance, Navigation, and Control Conference, 2018,
p. 0611.

[25] K. Okamoto and P. Tsiotras, “Optimal stochastic vehicle path planning
using covariance steering,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 2276–2281, 2019.

[26] E. Bakolas, “Finite-horizon covariance control for discrete-time
stochastic linear systems subject to input constraints,” Automatica,
vol. 91, pp. 61–68, 2018.

[27] Y. Chen, T. T. Georgiou, and M. Pavon, “On the relation between
optimal transport and Schrödinger bridges: A stochastic control view-
point,” Journal of Optimization Theory and Applications, vol. 169,
no. 2, pp. 671–691, 2016.

[28] Wakolbinger, “Schrödinger bridges from 1931 to 1991,” in 4th Latin
American Congress in Probability and Mathematical Statistics, Mexico
City 1990, ser. Contribuciones en probabilidad y estadistica matemat-
ica, vol. 3, 1992, pp. 61–79.

[29] T. T. Georgiou, “The structure of state covariances and its relation to
the power spectrum of the input,” IEEE Transactions on Automatic
Control, vol. 47, no. 7, pp. 1056–1066, 2002.

8209

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 09,2020 at 01:58:46 UTC from IEEE Xplore.  Restrictions apply. 


