The Surprising Power of Constant Depth Algebraic
Proofs

Russell Impagliazzo
Department of Computer Science and
Engineering
UC San Diego
russell@cs.ucsd.edu

Abstract

A major open problem in proof complexity is to prove su-
perpolynomial lower bounds for AC?[p]-Frege proofs. This
system is the analog of AC®[p], the class of bounded depth
circuits with prime modular counting gates. Despite strong
lower bounds for this class dating back thirty years ([28, 30]),
there are no significant lower bounds for AC®[p]-Frege. Sig-
nificant and extensive degree lower bounds have been ob-
tained for a variety of subsystems of AC®[p]-Frege, includ-
ing Nullstellensatz ([3]), Polynomial Calculus ([9]), and SOS
([14]). However to date there has been no progress on AC®[p]-
Frege lower bounds.

In this paper we study constant-depth extensions of the
Polynomial Calculus [13]. We show that these extensions are
much more powerful than was previously known. Our main
result is that small depth (< 43) Polynomial Calculus (over a
sufficiently large field) can polynomially effectively simulate
all of the well-studied semialgebraic proof systems: Cut-
ting Planes, Sherali-Adams, Sum-of-Squares (SOS), and Posi-
tivstellensatz Calculus (Dynamic SOS). Additionally, they can
also quasi-polynomially effectively simulate AC®[q]-Frege
for any prime g independent of the characteristic of the un-
derlying field. They can also effectively simulate TC’-Frege
if the depth is allowed to grow proportionally. Thus, prov-
ing strong lower bounds for constant-depth extensions of
Polynomial Calculus would not only give lower bounds for
AC®[p]-Frege, but also for systems as strong as TC?-Frege.

CCS Concepts: « Theory of computation — Proof the-
ory; Proof complexity; Complexity theory and logic.

Keywords: Proof Complexity, Polynomial Calculus, Alge-
braic proofs, AC?[p]-Frege, bounded depth
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1 Introduction

Proof complexity has evolved in parallel to circuit complexity,
typically with circuit lower bound techniques being eventu-
ally used to show lower bounds for analogous proof systems.
One stubborn exception is the analogous proof system for
AC®[p], the class of bounded depth circuits with prime mod-
ular counting gates. Despite strong lower bounds for this
class dating back thirty years ([28, 30]), there are no signif-
icant lower bounds for AC®[p]-Frege. Since the only lower
bounds for circuits with modular operations are via repre-
sentations of functions by polynomials ([28, 30]), it seems
natural to use algebraic proof systems (e.g, Nullstellensatz
([3]), Polynomial Calculus (PC) ([9]), Positivstellensatz aka
Sum-of-Squares (SOS) ([14]), ideal proofs ([15])) to extend
these bounds to the proof complexity case. However, despite
progress on these proof systems, a super-polynomial lower
bound for AC? [p]-Frege remains open. This paper offers one
explanation for this failure: small modifications of these alge-
braic proof systems to handle constant depth overshoot and
allow reasoning far beyond that possible by AC?[p] circuits.

Since lower bounds for Polynomial Calculus itself do not
imply lower bounds for AC?[p]-Frege systems, various re-
searchers have suggested ways to strengthen PC to cre-
ate algebraic systems which do p-simulate AC?[p]-Frege
([8, 13, 23]). Unfortunately, it is not clear how to extend lower
bound techniques for PC to these systems. As an illustra-
tion of how small extensions can increase the power of these
proof systems, consider Polynomial Calculus where we allow
changes of bases. Many strong lower bounds are known for
the size of PC proofs for tautologies like the Pigeonhole Prin-
ciple [29], [19] and Tseitin tautologies [5]. All of the above
lower bounds use a degree-size connection, which roughly
states that a linear lower bound on the degree of any refuta-
tion translates to an exponential lower bound on its size. But
this connection is highly basis dependent. The connection
only holds true over the {0, 1} basis, and even allowing a


https://doi.org/10.1145/3373718.3394754
https://doi.org/10.1145/3373718.3394754
https://doi.org/10.1145/3373718.3394754

LICS °20, July 8-11, 2020, Saarbriicken, Germany

change to the {-1, 1} basis immediately gives a polynomial
sized proof for the mod 2 Tseitin tautologies. Grigoriev and
Hirsch [13] noted the above and in addition showed that
allowing for introduction of new variables which are linear
transformations of the original variables gives a short proof
of the Pigeonhole principle as well. They also generalized
the notion of a linear transformation by considering trans-
formations obtained by applying constant depth arithmetic
circuits and arithmetic formulas to the original variables.
The resulting systems turn out to be quite powerful, and it
is shown in [13] that the latter simulates Frege systems, and
the former simulates depth d AC®[p]-Frege proofs by using
arithmetic circuits of depth d” = ©(d). Raz and Tzameret [27]
defined a proof system along similar lines where the trans-
formations are restricted such that each line of the proof is a
multilinear formula in the original variables. It was shown
that even under these restrictions, linear transformations
allow small proofs of the functional Pigeonhole principle and
Tseitin tautologies. They also showed in [26] that Polyno-
mial Calculus with added linear transformations simulates
the system R(CP*) of Krajicek [20], which is stronger than
Cutting Planes with bounded coefficients.

1.1 Our Work

Here, we show that these extensions to PC are even more
powerful than previously known. Over a sufficiently large
field of characteristic p, the same extensions that allow PC
to simulate depth d AC®[p] proofs also allows it to simulate
much stronger proof systems. So to prove a lower bound
on AC?[p] proofs via such systems would seem to require
proving lower bounds for systems as strong as TC%-Frege.

More precisely, consider the following additions to PC. In
an additive extension, we introduce a new variable y and
a new defining equation y = } a;x; + b where a;,b € F.
In a multiplicative extension, we introduce a new variable
y and a new defining equation y = b [](x;)¢. Depth-d-PC
allows the usual (syntactic) reasoning of Polynomial Calculus
using these extension variables (i.e. multiplying a line by the
variable y is allowed), with each line having up to d — 2
alternating layers of additive and multiplicative extensions.
(The new variables in a depth d-PC proof are equivalent to
depth d — 2 algebraic circuits, and polynomials in terms of
these variables are depth d algebraic circuits.)

A note regarding the notion of simulation. All our
simulation results below use the notion of effective simu-
lation from [25] (see Definition 4). For the rest of the paper,
"simulate" refers to an effective simulation. This is an impor-
tant distinction, since Alekseev et. al. [1] show that assuming
the Shub-Smale hypothesis, even very strong algebraic sys-
tems like the Ideal Proof System [16] cannot simulate (in the
usual sense — see Definition 3) weak semi-algebraic systems

like SOS.
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We remove the restriction of polynomially bounded co-
efficients from the result of [26] and show how to perform
arithmetic with large coefficients, and as a result effectively
simulate Cutting Planes with unbounded coefficients and the
Sum-of-Squares (SOS) proof system. (Our theorem works for
the stronger system Positivstellensatz Calculus [14]).

Theorem 1. Depth-43-PC can effectively p-simulate Cutting
Planes and Positivstellensatz Calculus over F,m for any prime
p, where m is logarithmic in the maximum number of mono-
mials in any proof line.

Clote and Kranakis [10] mention a proof, due to Krajicek,
of Cutting Planes being simulated by the bounded-depth
threshold logic system PTK of Buss and Clote [7]. Since we
simulate a modified version of PTK to show Theorem 2 be-
low, it already follows that our system simulates Cutting
Planes. However, the above proof by Krajicek is non-explicit
and does not provide a value of the depth at which the simu-
lation happens. Determining this value is posed as an open
problem in [10]. Theorem 1 provides an upper bound of
d < 43 through an explicit simulation. The following is a
brief outline. Given a polynomial P, to assert that it is non-
negative using a set of low depth polynomial equations, we
introduce a signed bit representation for P by representing
the coeflicient of each monomial using the bit vector of its
two’s complement representation, and performing bitwise
addition over these bit vectors to obtain a bit vector repre-
senting P. The method of carrying out bitwise addition is
carefully chosen so that not only is the resultant vector of
low depth, but the correctness of this process can also be
proved in low depth, which is crucial to carrying out the
simulation. With this representation in hand, the line P > 0
is represented by sign(P) = 0 where sign indicates the sign
bit (which is zero if and only if the number being represented
is non-negative). The simulation of the semi-algebraic proof
system is then carried out step by step, where a derivation
of P, > 0 from P; > 0 is mimicked by deriving sign(P;) = 0
from sign(P;) = 0. Finally, since a semi-algebraic refutation
can be assumed to end with the line —1 > 0, our simulation
gives us the line sign(—1) = 0, which is simply the line 1 = 0,
a contradiction. The constant of 43 is obtained since the con-
struction we use for low depth bitwise addition is of depth
about 10, but proving its correctness requires stacking up
four layers of it. We have not tried to optimize this constant,
and this is just a rough estimate. Theorem 1 is proved in
section 4.4.

We improve the results of Grigoriev and Hirsch in the
constant depth case in two ways. We show that AC?[p]-Frege
can be simulated with a fixed constant depth, but with a
quasipolynomial blowup. Significantly, this simulation also
simulates modular gates of different characteristic than the
field we are working over.

Theorem 2. Let p be an arbitrary prime and n be a positive
integer. For some m = O(poly(log(n))), depth-9-PC over Fpm
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can effectively quasipolynomially simulate AC®[q]-Frege over
n variables for any prime q.

Buss et al. [6] showed that an AC®[p]-Frege proof of depth
d can be collapsed to a depth 3 AC®[p]-Frege proof with a
quasipolynomial blowup. In conjunction with [13], this im-
plies the above theorem for the case of g = p. Thus, apart
from being more general, our result also provides an alter-
native and perhaps simpler proof of the case of g = p. We
prove Theorem 2 in sections 4.2.1 and 4.2.2.

We also show that allowing for arbitrarily large but con-
stant depth transformations enables the simulation of TC%-
Frege.

Theorem 3. A TC®-Frege proof of depth d can be effectively
p-simulated by depth-d’-PC over F,m, where d’ = O(d) and
m is logarithmic in the size of the largest threshold gate, for
any prime p.

The proof of Theorem 3 is shown in section 4.3.

We also improve the results of Raz and Tzameret [26] to
show that Polynomial Calculus with linear transformations
can simulate semantic Cutting Planes with small coefficients.

Theorem 4. Depth-3-PC can effectively p-simulate semantic
CP* over Q.

Theorem 4 is proved in sections 3.1 and 3.2.

1.2 Related Work

Pitassi [23, 24] introduced powerful generalizations of the
Polynomial Calculus that operate directly on formulas. Gro-
chow and Pitassi [16] introduced the more general IPS proof
system, and proved that superpolynomial lower bounds for
IPS would imply the longstanding problem of separating VP
from VNP. However, these algebraic systems are not Cook-
Reckhow proof systems since proofs are not known to be
checkable in polynomial time (but rather in randomized
polynomial-time.)

In 2003, Grigoriev and Hirsch [13] introduced a Cook-
Reckhow style algebraic proof system for formulas, with
derivation rules corresponding to the ring axioms. Motivated
by understanding how many basic ring identities are needed
to verify polynomial identities, Hrubes and Tzameret [17]
introduced a very closely related equational proof system
for proving polynomial identities over a ring. Even earlier,
[8] study essentially the same proof system but where the
focus is over finite fields. Finally, Raz and Tzameret [26]
introduced the Res(lin) proof system, which generalizes Res-
olution using extension variables given by linear forms, in
a similar way to our generalization of PC using extension
variables. They also showed that Res(lin) simulates the sys-
tem R(CP*) (defined in [20]) and Polynomial Calculus over
depth 3 formulas can simulate Res(lin). Alekseev et. al. [1]
also considered generalized versions of Nullstellensatz and
Sum-of-Squares over algebraic circuits of arbitrary depth.
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Conditioned on the assumption that a certain subset sum
principle has a small IPS proof, they make use of bitwise
arithmetic to show that these systems are equivalent to IPS.
Although we also use bitwise arithmetic to prove Theorem 1,
our work vastly differs from theirs in the following aspects.
Firstly, the proof systems considered by them are not Cook-
Reckhow systems, i.e. it is not known whether the proofs in
these systems can be verified in deterministic polynomial
time. These systems are hence much more powerful than the
ones we consider here, and in particular they are not con-
cerned with performing bitwise arithmetic in constant depth,
which is the main focus of our simulations. Secondly, while
we use the notion of effectively p-simulation [25] for all our
results, they chiefly focus on the more conventional notion of
p-simulation. Effective simulation allows for a formula in the
simulated system to be “pre-processed” in a truth-preserving
way before it is represented in the simulating system, while
p-simulation is only defined for two proof systems which
can express the same set of formulae.

1.3 Organization of the paper

The rest of the paper is organized as follows. In section 2.1,
we discuss some basic definitions and notations. In section
2.2, we define the notions from proof complexity and proof
systems used in this paper. In section 2.3, we formalize the
system of bounded depth Polynomial Calculus. In section
3.1, we sketch the simulation of syntactic Cutting Planes
with bounded coefficients from [26], since it is essential for
a significant part of the subsequent discussion. In section
3.2, we extend the simulation to the semantic case, proving
Theorem 4. In section 4.1, we prove an analog of the results
in section 3.1 over a large enough finite field extension, for
use in subsequent sections. In sections 4.2.1, 4.2.2, 4.3, we
use techniques from this analog to prove Theorems 2 and 3.
Finally in section 4.4, we prove Theorem 1. Technical details
of simulations from each of the above sections are contained
in the full version [18].

2 Preliminaries and Generalizations of
Polynomial Calculus
2.1 Preliminaries

2.1.1 Notation. Integers are represented by letters a, b,
c. For an integer a, let a* = a if a > 0 and 0 otherwise.
Define |a| to be the length in binary of a. Sets of integers are
represented by letters A, B, C. Indices to sets are represented
by letters i, j, k, ¢.

Variables are represented by x, y, z, w where x usually
represents the original variables and the others represent the
extension variables. Monomials are represented by upper
case letters X, Y, Z. Polynomials are represented by P, Q, R.
Boolean formulae are represented by ¢.

We treat all the above as one dimensional objects. Multi-
dimensional objects, or vectors, are represented in boldface.
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Constant vectors are represented by a, b, c. Vectors whose
components may be variables or polynomials are represented
byy, z, w.

Calligraphic letters R, S are used for special expressions
which are contextual.

Definition 1 (Straight Line Program (SLP)). A SLP S over
variables {xi, ...,x,} and a field F is a sequence of compu-
tations (yi,...,Yk) such that each y; is equal to one of the
following, whereC; € {1,...,j—1}

x; for somei € {1---n}

Dieec; eye for some constants ap € F

HlECj Ye

We view a SLP as a directed acyclic graph where internal

nodes are labelled with either Product or Plus gates and the
leaf nodes are labelled with a variable x;. The size of a SLP is
therefore the number of nodes in the corresponding directed
acyclic graph, and the depth is the maximum number of nodes
on a root to leaf path in the directed acyclic graph.

2.2 Propositional proof systems

Definition 2 (Cook-Reckhow proof system). For a language
L ¢ {0,1}*, a Cook-Reckhow proof system is a polynomial
time deterministic verifier V such that

- Ifx € L, there exists a proof 7 such that V (x, i) accepts.
- Ifx ¢ L, for all proofs rr, V(x, 7r) rejects.

Definition 3 (p-simulation ). For two proof systems V; and
V, defined over the same language L, V; is said to p-simulate
Vi if there exists a polynomial time computable function f
such that for every x € L, if my is a proof of x for Vi, f (1) is
a proof of x for V;.

Definition 4 (Effectively p-simulation [25] ). For two proof
systems V; and V, over languages L, and Ly, V; is said to effec-
tively p-simulate V if there exist polynomial time computable
functions f, g such that x; € Ly if and only if g(x;) € L, and

if my is a proof of x1 for Vi, f(my) is a proof of g(x1) for V,.

In this paper, we are only concerned with effective simu-
lations. The propositional proof systems we will work with
are defined below.

Definition 5 (Cutting Planes). LetA = {Ay,...,An} beaset
of unsatisfiable integer linear inequalities in boolean variables
X1,...,Xn Of the form A; = X;aijx; > b; where a;; and b;
are integers. A Cutting Planes refutation of A is a sequence of
lines By, ..., Bs such that B is the inequality 0 > 1 and for
everyf € {1,...,s} By € A or is obtained through one of the
following derivation rules for j, k < ¢

Addition. FromBj = },; ¢c;jx; > dj and By = X; cix; > dy.,
derive

Z (Cij + Cip )X = dj +dp
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Multiplication by a constant. From B; = }; ¢;jx; > d;,

derive
c Z cijx; > cd;

1

for an integer ¢ > 0.

Division by a nonzero constant. FromB; = }; ¢;jx; > d;
and an integer ¢ > 0 such that c divides c;; for all i, derive

Cij
> i = [dj/e]
— ¢
The semantic version of the system also has the following
rule

Semantic inference. IfB; = 3, c;jx; > dj, By = X, cuex; > dj
and By = }; ciex; > dj are inequalities such that every assign-
ment to x1,...,X, that satisfies B; and By also satisfies By,
then from lines Bj and By, derive B,.

The size of a line is the size of its bit representation. The size
of a proof is the sum of sizes of each line. The length of a Cutting
Planes proof is equal to the number of lines in the proof. We
define the coefficient size of a Cutting Planes proof to be equal
to the maximum of the absolute values of all the constants
that appear in the proof. CP* is a subsystem of Cutting Planes
where the coefficient size is bounded by a polynomial in the
number of variables. Without loss of generality, the coefficient
size can be bounded by 2P°VY (") where ¢ is the length of the
proof due to [11].

Definition 6 (Polynomial Calculus (PC)). LetT = {P;,..., Py}
be a set of polynomials in variables {x, ..., x,} over a field F
such that the system of equations Py = 0, ..., P, = 0 has no
solution. A Polynomial Calculus refutation of T is a sequence
of polynomials Ry, ...,R; where Ry = 1 and for every ¢ in
{1,...,s}, R, € T oris obtained through one of the following
derivation rules for j,k < £

Ry = aRj + BRy fora, f€F

R, = xiRy. for somei € {1,...,n}

The size of the refutation is Y,;_; |R;|, where |Ry| is the num-

ber of monomials in the polynomial R,. The degree of the
refutation is max; deg(Ry).

The following system is known to simulate PC, SOS and
Sherali-Adams.

Definition 7 (Positivstellensatz Calculus/Dynamic SOS [14]
). LetT ={Py,...,Pp} and A = {Qs,...,0Q;} be two sets of
polynomials over R such that the system of equations Py =
0,-+,Pp =0,Q1 20,---,0, > 0 is unsatisfiable. A Dy-
namic SOS refutation of T, A is a sequence of inequalities
Ry >0,...,R; > 0 whereRg = —1 and forevery £ in{1,...,s},
R, € T U A or is obtained through one of the following deriva-
tion rules for j,k < ¢

1. From R; = 0 and Ry = 0 derive aR; + BRy = 0 for o,

eR
2. From Ry = 0 derive x;Ry = 0 for somei € {1,...,n}
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3. FromR; > 0 and Ry > 0 derive aR;+pRi > 0 fora > 0,
f>=0eR

4. FromR; > 0 and R > 0 derive RjR; > 0

5. Derive R? > 0 for some polynomial R € R[x1,. .., Xy]

The size of a line is the size of its bit representation. The size
of a Dynamic SOS refutation is the sum of sizes of each line of
the refutation.

2.3 Generalizations of Polynomial Calculus

We now define a variant of Polynomial Calculus, XIIX-PC
where the proof system is additionally allowed to introduce
new variables y; corresponding to affine forms in the original
variables x;. Thus, each line of the proof is represented by a
SIIX algebraic circuit.

Definition 8 (ZIIXZ-PC). Let T = {Pi,...,Pn} be a set of
polynomials in variables {xy, ..., x,} over a field F such that
the system of equations Py = 0, ..., Py, = 0 has no solution. A
SI13-PC refutation of T is a Polynomial Calculus refutation of a
set
" ={Py,...,Pp,Q1,...,0k} of polynomials over variables
{x1,...,xn} and {y1, ..., yx} where Q1,...,Qy are polynomi-
als of the form Q; = y; — (ajo + X; aijx;) for some constants
ajj € F.

The size of a XI13-PC refutation is equal to the size of the
Polynomial Calculus refutation of T".

We would now like to generalize the above proof system
to an arbitrary depth d.

Definition 9 (Depth-d-PC). Letd > 2 be an integer. LetT’ =
{P1,...,Pm} be a set of polynomials in variables {x, ..., x,}
over a fieldF such that the system of equations P; = 0, ..., Py, =
0 has no solution. LetS = (y1, . .., yx) bea SLPover{xy, ..., xp}
andF of depthd—2 defined byy; = Qj(x1,...,Xn, Y1, .. ., Yj-1)-
A depth-d-PC refutation of T is a Polynomial Calculus refu-
tation of the set T' = {P1,...,Pm,y1 — Q1,...,yx — Qx} of
polynomials over {x1,...,x,} and {y, ...,y }.

The size of a depth-d-PC refutation is the size of the Polyno-
mial Calculus refutation of T’

Viewing a refutation in depth-d-PC as a depth d algebraic
circuit in the original variables {x1, ..., x,} (with each line
of the refutation being a gate in the circuit), it is easy to see
that the above definition of size for a refutation coincides
with the usual notion of size for an algebraic circuit up to
polynomial factors.

Although we define the size of a proof in depth-d-PC in
terms of the number of monomials, we will be using the
number of lines as a measure of the size, since in our simu-
lations no line contains more than a polynomial number of
monomials.

To conclude this section, we state the following result
from [26], which is the starting point of our work.
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Theorem 0. [26] SII>-PC over Q can simulate syntactic
Cutting Planes with size polynomial in n and the coefficient
size.

3 Simulations over Q

In this section we outline how we translate inequalities into
polynomials over Q, and simulate proofs involving these
inequalities into Polynomial Calculus derivations over their
translations.

Consider a line Aj = }}; a;jx; > b; in a CP* proof, where
|a;|, |b| are bounded logarithmically in n. We define its trans-
lation over Q as the following

Definition 10 (Translation from CP* to XIIX-PC ). For a
line Aj = 3; aijx; = bj its translation in SIIX-PC is defined

to be the following pair of lines

+
2iai;=b;

[T w-»=0

b=0

yj = Z aijx; = bj

1

In addition, for alli, the equations x;(x;—1) = 0 are included
in the translation.

That is, we introduce a variable y; = 3; a;;x; — b; and
indicate the range of values it can take which satisfy the
constraint }}; a;jx; > b;. For convenience, we will denote by
z € A the equation [J,cx(z —a) = 0.

The key idea is to note that given two equations z € A and
z € B, we can derive in XIIX-PC the equation z € AN B. We
call this the Intersection lemma. A formal proof is provided
in the full version [18].

3.1 Simulating syntactic CP*

We now sketch how all the derivations rules of syntactic CP*
can be simulated with the help of the Intersection lemma,
concluding Theorem 0 (originally proved in [26]). For in-
stance, given equations y; € A and y, € B, we derive the
range of values a variable z = y; + y; takes as follows. For
every a; € A, we derive an equation which states z € a; + B
ORy; € A\ {a;} where a; + B = {a; +b | b € B}. This
equation is formally represented as

1_[ (z-¢) l_[ (y1—a)=0

cea;+B acA\{a}

We can multiply each of these equations by appropriate
variables, so that the part about z is the same in all of them.
We would now like to eliminate the part about y; from these
equations. Noting that N;A\{a;} = 0, we use the Intersection
lemma inductively to eliminate y;.

For simulating division by an integer ¢ given a variable
z = ),; ¢;x; and an equation z € C such that c divides every
element of C, we first derive z € I, where I is all possible
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integer values of the expression ;; ¢;x;, by using our simu-
lation of addition. We then introduce a variable z’ = z/c and
from the former equation, we get a set of integer values for
z" and from the latter, we get a set of rational values. Using
the Intersection lemma now gives the right range for the
variable z’ = z/c.

For a formal proof, see the full version of the paper [18].

3.2 Simulating semantic CP*

In this section we extend the above simulation to include
semantic CP*, hence completing the proof of Theorem 4.
Let Ly = Y;a;x; = di, Ly = X, bix; > dy be two lines in a
Cutting Planes proof and let Ly = }}; ¢;x; > d3 be a seman-
tic consequence of L; and L,. Let y = }; aix;, 2 = 2; bix;
andw = Y cixi. Let A={0,...,2;af}, B={0,...,2; bf
andC={0,...,>; clfr}. Using the simulation of addition in
syntactic CP*, we can derive the equations

[Jo-a=0

acA
]_[(z —b)=0
beB
l_[(w -¢)=0
ceC

This restricts the values that can be taken by the tuple
(y, z, w) to the three dimensional grid A X B X C. Let a point
(i, j, k) in the grid be infeasible if the tuple (y, z, w) never
evaluates to it for any assignment to {x;}. Our first step is
to derive infeasibility equations of the form

[Jo-a]]e-0)][w-c=0

acA beB ceC
a#i b#j ctk

which for (i, j, k) € AXBXxC tells us that the point (i, j, k)
in the grid is infeasible for the tuple (y, z, w).

Lemma 1. For every infeasible point (i, j,k) € AX B X C,
SII3-PC can derive an infeasibility equation of the above form
in O((X; a) (X b7)*(Xi ¢f)?) lines
The proof of this lemma is left to the full version [18].
The next step is to use the ranges of y and z specified in
lines Ly and L, to narrow down the possible values that can
be taken by w. Our goal will be to get an equation of the

form
1_[ (w=¢)=0
ceC’

such that each c in C’ is feasible for w under the constraints
L; and L, on y and z respectively.

Let P; be the translation of L; in XIIX-PC, for i = 1, 2, 3.
Let 7,5 denote the set of all infeasibility equations for points
of the form (a, b, k) for some k € C. For an equation P of the
form [aea, (¥ = @ [Tpep, (2 = @) [eec, (w — @) = 0, denote
by R,(P) the set Ay, that is the range of values specified
by the equation for the variable y. R, and R,, are defined
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analogously. We describe how to obtain the set C’ by the
algorithm w-FEASIBLE which operates on the range sets.

procedure w-FEASIBLE(Py,P;)
C'<0
for (a,b) € Ry (P;) x R (P;) do
S<C
forI e 1,; do
S—SNR,(I)
end for
C’'«—C'US
end for
return C’
end procedure

Consider a pair (g, b) € Ry(P;)xR;(P,).For any equation
I e 1,5, Ry(I) gives a list of possible values the variable
w can take when (y,z) = (a,b). By Lemma 1, (y,z,w) =
(a, b, ¢) is infeasible if and only if there is an equation I € 7,
such that ¢ ¢ R,,(I). Therefore, (| R.(I) is precisely the

Iel,y
feasible set of values for w, given (y,z) = (a,b). C’ is the
union of such sets over all possible pairs (g, b) € R, (P;) X
R, (P,) and hence is the set of all feasible values of w.

This algorithm over range sets can be easily translated
to a proof of [[.ccr(w — ¢) = 0 from P; and P, in 3IIXZ-PC
as follows. To simulate the inner for loop, we use the In-
tersection lemma inductively over all equations in 7, to

get equations J, such that R,,(Jop) = () Rw(I). Note
IEfa,b

that Ry(Jop) = A\ {a} and R;(Jaop) = B\ {b}. Thus us-
ing the Intersection lemma again inductively over the set
{Jap} (analogous to simulation of addition in syntactic CP*)
would give an equation free of y and z, where w ranges over

U Rw(Jap)- Any semantic consequence P; must be such
(ab)
that R,,(P3) 2 C’ and hence is easily derived.

4 Simulations over F,m
4.1 Simulating syntactic CP*

We now carry out the simulation from [26] in Section 3.1
in depth-d-PC over a large enough field extension F,m of a
finite field F,,. This will be of use in the next section, where
we simulate AC°[p]-Frege in depth-d-PC over F,m. For the
following discussion, we set d = 5.

To represent large integers over F,m, we choose a primi-
tive element « and for each of the original variables x; per-
form the linear transformation y; = 1+ (& — 1)x;. Since x; is
boolean, y; is essentially equivalent to the mapping x; — .
The expression Y); a;x; is thus represented as a2 %*, The
goal here is to show that all the steps of the simulation in
section 3.1 can still be performed after this transformation.

Theorem 5. Depth-d-PC over F,m can simulate syntactic Cut-
ting Planes with the number of lines polynomial in n and the
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coefficient size, where m is logarithmic in n and the coefficient
size.

Let s; be the coefficient size of the Cutting Planes proof.
Define s = ns;. Choose m to be the smallest integer such that
2s? < p™ — 1. Let a be an arbitrary primitive element of Fjm.

Definition 11 (Translation of Cutting Planes to depth-d-PC
over F,m ). The translation of }.; a;x; > b; is defined as fol-
lows, where y; and y are new variables.

yi = (@ = Dx; +1
y=1—[yi

(y=a")(y—a"™) - (y-a) =0

An integer ¢ such that 0 < ¢ < s is represented as a°,
whereas for —s < ¢ < 0 we represent it as o~ 1¢l = (»"~D~lel,
Since 2s < 2s? < p™ — 1, these representations are unique.

The technical details of the simulating the rules of CP are
largely similar to that over Q and are hence left to the full
version [18].

4.2 Simulating AC®[q]-Frege

4.2.1 Case of g = p. For the purpose of this section, we
set d = 9. We will use the simulation of AC?[p]-Frege in
[21] to show that the same can be carried out in depth-d-
PC over F,n. We fix m to be a large enough integer such
that m = O(poly(log(n))), so that the field we are working
over is quasipolynomial sized. Below we describe the proof
system of [21] and their simulation of AC?[p]-Frege.

The Proof System of Maciel and Pitassi. Maciel and
Pitassi [21] define a proof system with mod p, negation,
AND, OR and threshold connectives, based on the system
PTK by Buss and Clote [7] which we describe below.
Connectives Let x; - - - X, be boolean variables. For 0 < j < p,
let eaf (x1 -+ - x,) denote the connective which is 1 if and
only if }}; x; = j mod p. For any integer ¢, let Thy(xy - - - x)
denote the connective which is 1 if and only if }}; x; > t. Let
A(x1 -+ xp), V(x1 - -+ x5,) denote AND and OR connectives
of arity n and — denote the NOT gate.
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The proof system of Maciel and Pitassi [21]

initial sequents.
1. ¢ — ¢ for any formula ¢
2.5 A0 ; V() —
3.@?() — for 1 §j<p;—>®g()
4. Th() —
5. — Tho(¢1-- - @x) forany k > 0

structural rules.

weakening: LA [oTA
T oAl ToT,ohN
T A I’ r I’ N
contract: o B = o
Lp,A > T’ L >IN
T A I’ T I’ Y
permute: > 01, @2, A — i - I, @1, P2, /
[opz0 A>T T —>T, 0,01, A
cut rule.
Fp—>A T/ — N
LT — A A
logical rules.
- A o, I = A
—|(p,1" — A I —» —|(p,A
A-left: ?1, /\((Pz o (Pk),r — A

Ay @), T — A

i oA T = Mg A
I — Ao, 02 i), A
V-left: o, T > A V(pz - ), T > A
V(gL @2 o), T — A
T \V coo A

\/—right: - ?1, ((PZ (Dk)»

I'— V(g1 - or), A
®;-left:

?1, @f_l((l’z et q)k),r — A @lp(q)z coo (pk)’I‘ N q)l;A
& (¢1. 02+~ @), T — A

EBl-—right:
or.T > & (g2 o). A T — 1,00 (92 i), A
T — &l (prp2 1), A

Th,-left:
The(pz - @), T = A @1, Thi—1(@2--- 1), T — A

Thi(@1, 02+ @r), T — A

Tht—righti
[ — @, Thi(pz - k), A T — Thy1(@z- - ¢x), A
I — The(p1, 02 @), A

Formulas. A formula is recursively defined as follows. Input
variables x; - - - x,, are formulas of size 1 and depth 1. A for-
mula ¢ is an expression of the form g(¢; - - - k), where g
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is any of the connectives described above and ¢; - - - ¢ are
formulas. The depth(¢p) is defined as Z]le depth(¢;)+1. The
size(¢) is defined as Zle size(¢;) + k + 1if g is not a thresh-
old connective, and it is defined as YX_, size(p;) + t + k + 1
if g is a threshold connective of the form Th,(¢; - - - ¢i).
Cedents and Sequents. A cedent I is defined as a sequence of
formulas ¢ - - - pr. We will use capital Greek letters to denote
cedents. A sequent is an expression of the form I' — A,
where I' and A are cedents. The interpretation of a sequent
is that the AND of all the formulas in I' implies the OR of
all the formulas in A. The size and depth of a cedent are
respectively the sum of sizes and the maximum of depths
of all the formulas in it. The size of a sequent is the sum of
sizes of both cedents, and the depth is the maximum of the
depths of both cedents.
Definition of a Proof. A proof in this system is defined as a
sequence of sequents S; - - - Sy, such that each S; is either
an initial sequent, or is derived from sequents S; for j < i
through one of the rules listed below. The size and depth of
a proof are respectively the sum of sizes and the maximum
of depths of all sequents in it.

The initial sequents and the derivation rules are listed
below.

Translating lines. We will now define translations of
lines in the above proof system. For a formula ¢, we denote
its translation in depth-d-PC by tr(¢). Let x; - - - x, be the
variables of the original proof. Below we list the translations
for a formula built with each connective. The interpretation
is that for any formula ¢, tr(¢) = 0 if and only if ¢ is true.

tr(x;)) =1-x;

tr(V(er--- i) = [1:(tr(e:)

tr(ACr---@r)) = 1= [1; tr(=g:)

tr(af (p1--- gx)) = (X5_, tr(p)) — )P foro < i < p
tr(The(pr---91) = (y—a') -+ (y — o)

where y = [T,((a - V(=) +1)

tr(=¢) = 1—tr(p) if ¢ does not contain a Th; connec-
tive

tr(=The(pr-- ) = (y—1) - (y— ')

where y = [[;((a¢ — 1)tr(=¢;) + 1), fort > 1

The translation tr(S) of a sequent S of the form
@1 @k — @1 ¢, is given by the equation

k K
[ [eren [ [er(ep =0
i=1 j=1

Note that the translations of all the connectives except
the threshold connective take only boolean values over
:]F m

.

Simulating proofs. We now describe the connection be-
tween AC®[p]-Frege and the proof system of Maciel and
Pitassi. By the following theorem of Allender [2], any AC?[p]
circuit can converted to a depth three circuit of a special
form.
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Theorem 6 ([2]). Any AC®[p] circuit can be converted to a
quasipolynomial sized depth three circuit with an unweighted
threshold gate at the top, MOD,, gates of quasipolynomial fan-
in in the middle and A gates of polylogarithmic fan-in at the
bottom

Depth three circuits with an unweighted threshold, A or
V gate at the top, MOD,, gates in the middle and A gates
of polylogarithmic fan-in in the size of the circuit at the
bottom are referred to as flat circuits by [21]. For an AC?[p]
circuit ¢, its flattening fl(¢) is defined as the flat circuit
given by the above theorem. Proofs in AC®[p]-Frege can be
thought of as a list of sequents such that every formula that
appears in each of them is an AC%[p] circuit. For a sequent
@1 @k — @1 ¢, that appears in a AC®[p]-Frege proof,
we can define a flattening of the sequent fI(¢;) - - - fl(¢r) —
fl(e7) -+ fl(¢,) in the proof system of Maciel and Pitassi.
A flat proof of such a sequent is such that every formula that
appears in the proof is a flat circuit. The simulation theorem
of [21] states the following

Theorem 7 ([21]). Let S be a sequent which has a depth d
proofin AC®[p]-Frege. Then its flattening f1(S) has a flat proof
of size 2(°8 MY in the proof system of Maciel and Pitassi.

We will show that flat proofs can be simulated in depth-d-
PC by showing the following

Theorem 8. Let S be a sequent which has a flat proof of size
s in the proof system of Maciel and Pitassi. Then there is a
proof of the equation tr(S) in depth-d-PC from the equations
xi(x; — 1) = 0 with poly(s) lines.

To prove the above theorem, it is sufficient to show that
for each rule that derives a sequent Ss from sequents S;
and Sy, there is a derivation of the equation tr(S3) from the
equations tr(Sy), tr(S,) and x;(x; — 1) = 0 in depth-d-PC.
The details of how each such rule can be simulated are left
to the full version [18].

4.2.2 Case of ¢ # p. We now extend the simulation of the
previous section to show that AC?[q]-Frege can be simulated
in depth-d-PC over Fj,m, for distinct primes p and g, hence
proving Theorem 2. Using the theorem of Maciel and Pitassi
(Theorem 7 above) for AC?[q]-Frege, we obtain a flat proof
with @? connectives. To simulate it, we can reuse the lemmas
of the previous section, except for the 69? connectives. To
define their translation, choose m such that ¢ | p™ — 1 and
let r = (p™ — 1)/q. The translation is now defined as

tr(&l (o1 or) = ((y - “ir))pm_l

where y = [1;((a"~1)tr(=¢;)+1) and tr (=& (91 - - 1)) =
1—tr(&] (o1~ 1))

Simulating the rules is similar to the previous section. See
the full version [18] for more details.
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4.3 Simulating TC°-Frege

In this section, we show that a TC?-Frege proof of depth d
can be transformed into a depth-d-PC proof over F,=, where
d = O(dy), proving Theorem 3. In the previous section we
translated Th; (¢; - - - ¢i) as

tr(The(o1- @) = (y—a') -+ (y — o)

tr(=Th(p1-- ) = (y =1 (y —a'™)

where y = [];((a — 1)tr(=¢;) + 1). Clearly this translation
requires tr(¢;) to be boolean and can itself take non-boolean
values. Since there is only one top threshold gate in a flat
circuit, the formulae ¢; were threshold free and thus tr(¢;)
only took on boolean values. But in a TC?-Frege proof, the
formulae ¢; can themselves contain threshold gates and thus
tr(¢;) may be non-boolean. To fix this problem, we rede-
fine the translation of a threshold gate to be the following,
essentially forcing it to be boolean.

tr(The(r - 00) = ((y — ') -+ (y — &))"

wherey = [[;((a=1)tr(—¢;)+1) and tr(=Th (@1 - - - ) =
1= tr(The (o1~ @x))-

It is easy to derive the fact that the above translation only
takes boolean values. Now, note that any rule other than
the Th; is unaffected by this new translation since it only
assumes that its arguments are boolean and hence we can
use the lemmas of the previous section directly. However,
simulation of the Th; rule relies on the old translation. To
bridge the gap, we only need to show that the old and new
translations of Th; and —Th; are interchangeable within the
proof system. The following lemmas are proved in the full
version [18].

Lemma 2. Given the equation
(y=a') - (y-a)"" " =0

we can derive

(y=a')(y=a¥) =0
and vice versa.
Lemma 3. Given the equation

1-((y-a)(y-d)) =0

we can derive

(y-1--(y-ah=0
and vice versa.

4.3.1 Existence of Feasible Interpolation. Bonet, Pitassi
and Raz [4] have shown that TC?-Frege does not have fea-
sible interpolation unless Blum integers can be factored by
polynomial sized circuits. By the above simulation, we can
state the following
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Theorem 9. Depth-d-PC does not have feasible interpolation
unless Blum integers can be factored by polynomial sized cir-
cuits

4.4 Dealing with large coeflicients — Simulating CP
and Dynamic SOS

In this section, we work over a field Fym for an arbitrary
prime p, where p™ is greater than square of the number of
monomials we wish to represent in any CP/SOS proof line
(See Definition 17).

It is well-known that arbitrary threshold gates can be
simulated by simple majority gates of higher depth. In par-
ticular, a tight simulation was proven by Goldmann, Hastad
and Razborov [12] who show that depth d + 1 TC? circuits
are equivalent to depth d threshold circuits with arbitrary
weights. However, the analogous result has not been proven
in the propositional proof setting. In order to simulate ar-
bitrary weighted thresholds in our low depth extension of
PC, we will we use a different simulation of high weight
thresholds by low weight ones.

The basic idea will be to use simple, shallow formulas that
compute the iterated addition of n binary numbers, each
with & = poly(n) bits [22]. Let ay,ay, ..., a, be the set of
n binary numbers, each of length ¢ = poly(n), where a; =
aig -+, a;1. We will break up the & coordinates into £/log &
blocks, each of size log &; let L;(a;) denote the 7P block of a;.
The high level idea is to compute the sum by first computing
the sum within each block, and then to combine using carry-
save-addition.

In more detail, let ay denote the “odd" blocks of a; — so ay
consists of &/log & blocks, where for j odd, the j’h block is
L;(a;), and for j even, the j th block is all zeroes (and similarly,
af denotes the even blocks of a;). Let S be equal to ;¢ [, a7,
and similarly let S¢ be equal to }’;c [, af. We will give a SLP
for computing the bits of S° and S¢ and then our desired sum,
S°+S¢, is obtained using the usual carry-save addition which
can be computed by a depth-2 SLP. The main point is that we
have padded a? and a{ with zeroes in every other block; this
enables us to compute S° (and similarly S¢) blockwise (on the
odd blocks for S° and on the even blocks for §¢), because no
carries will spill over to the next nonzero block. Then since
the blocks are very small (log & bits), the sum within each
block can be carried out by brute-force.

Our construction below generalizes this to the case where
the a;’s are not large coefficients, but instead they are the
product of a monomial and a large coefficient. After formally
describing this low-depth representation, it remains to show
how to efficiently reason about these low-depth represen-
tations in order to carry out the rule-by-rule simulation of
general Cutting Planes and SOS. We outline the main steps
below, with technical details left to the full version [18].

4.4.1 Bitvectorrepresentations of CP/SOS prooflines.
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Definition 12 (Derivations in depth-d-PC). To indicate that
a new extension variable y; is being introduced and set to a
value a;, we write

yi =aj

To indicate that a line P = 0 in depth-d-PC can be derived from
P1=0,P,=0,--- P =0, we write

Py, Py, -+ P+ P

To indicate that a line P = 0 can be derived just from the
axioms of the form x? = x; for all boolean variables x;, we
write

+ P

Below we formally define the representation of binary
numbers as bit vectors.

Definition 13 (Bit vectors). We represent an integer using
its bit representation by introducing a variable for each of
its bits. Let a be an integer with bits ag - - - a;. A bit vector
a = [ag---a1] representing the integer a in our system is a
set of auxiliary variables yy - - - y; such that y; := a;. Define
a(i) = y; = a;. Integers which are represented as vectors are
written in boldface.

Let & be an upper limit on the number of monomials in
any polynomial we wish to represent and let & be an up-
per limit on any coefficient we wish to represent. Set ¢ =
10[log(&y) + log(&1)]. The bit vectors in this simulation will
all be of dimension &, i.e. all integers we represent will be of at
most & bits. Any vector of dimension > & generated in any op-
eration is automatically truncated to dimension & by dropping
the higher order bits.

The bit representation chosen is two’s complement. That is,
a positive integer is represented in binary in the usual way. Let
b be a positive integer represented by b. Let by be the vector
obtained by flipping all the bits in'b. Then we define the vector
—b as by ® 1, where @ operation on vectors, defined below,
simulates the usual bitwise addition operation and 1 is the
vector representation of the integer 1. 0, the all zeros vector,
represents the integer 0. For any vector a, a(&) is the sign bit
of a. a is said to be negative if the sign bit is one.

In order to make correct computation using the above
Two’s complement representation of binary numbers, we
need to ensure that the bit length of all numbers represented
is bounded. We therefore define the length of a vector in our
simulation, and later show that such vectors are of bounded
length.

Definition 14 (Length of a vector). The length of a non-
negative vector a is the highest index i such that a(i) # 0 and
zero if such an i does not exist. The length of a negative vector
b is the highest index i such that b(i) # 1. Equivalently, the
length of a vector a is the highest index i such that a(i) # a(&).
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We now define the usual addition operation for binary
numbers, over their vector representations. Since we work
in a low depth setting, we need to use Carry-Save addition
to represent the sum and carry bits.

4.4.2 Operations on bit vectors.

Definition 15 (The Bitwise Addition operation & ). We de-
fine below the operator on vectors corresponding to the usual
carry-save addition. For two bits y and z, let y & z represent
the XOR of the bits. Given two bit vectorsy = [yg - - y;] and
z = [zg- - z1], the bitwise addition operation'y ® z produces
a vector [wgyq - - - wi] such that

w; =YDz D¢

fori < & and wgyy == cg where

¢i = V<i(yj ANzj Njck<i (Uk © z1))
for1 <i<&andc :=0.
c; are referred to as the carry bitsiny @ z

Monomial terms a;X; in our system are represented by
a “scalar multiplication" of X; with the vector a;, which we
define below.

Definition 16 (Scalar multiplication). Fora bitz and a vector
y, let zy = yz represent the vector obtained by multiplying
every bit of y by z.

In order to represent a line a1 X; + -+ + a, X, —ap > 0 in
Cutting Planes, we define an operation S over the vectors
a;Xj, - -+, ay X}, such that the resultant vector is a representa-
tion of a1 X1+ - -+a, X, —ap and has alow depthin X7, - - - , Xj,.
This uses the idea of representing high weight thresholds
using low depth majority gates described earlier.

Definition 17 (The Set Addition operation S(.) ). We will
now define the representation of the bitwise addition of vec-
torsa; Xy, - - ,a; Xy, whereay, - - - ,a; are integer constants and
Xy, -+, X; are monomials.

Let & = [€/log(&)]. For a constant a, partition the bits of
a into &, blocks of length at mostlog(&,). Let Lj(a), j € [&]
denote the j*" block of bits, so that the bits ofa can be obtained
by a concatenation of the bits L, (a)...L1(a). Since Lj(a) is
onlylog (&) bits long, its magnitude is at most &. Let [L;(a)]
refer to the integer represented by the vector Lj(a). Define a°
to be the vector obtained by replacing all even numbered blocks
of a with zeroes. a° is analogously defined by zeroing out the
odd numbered blocks. For monomials Xy ---X; and t < &),
we would like to define bit vectors S°(a1 Xy, - ,a,X;) and
S¢(a; Xy, -+ ,a,X;) to be the bit representations of the poly-
nomials Yi_, alX; and > a;X;. We accomplish this using
constant depth SLPs as follows.

We define a constant depth SLP to compute the k' bit of
the j'™ block of S°, represented by L;(S°). The important
observation is that we can compute S° two blocks at a time
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since for odd j, 3; [L;(a?)]1X; is at most & and thus can be
represented by 21og(&y) bits or exactly two blocks. Let C; be
the set of integers in [£2] such that the £'" bit of their binary
representation is one. Then for odd j, Ljx(S°) is one if and

only if
[T w@xi-p)=o
ﬁeck i
and for even j, L (S°) is one if and only if

1—1 (Z [Lj-1(a])]X; - ﬁ) =0

BeCuog(gp)+k 1

Therefore, the bit Lj; (S°) can be represented as a constant
depth SLP of size O(&) by representing the left hand side
of the above equations as a SLP over a finite field extension
larger than &, similar to the simulation of CP* in the earlier
sections, and then raising the result of that SLP to the order of
the multiplicative group that we are working in. The bits of S¢
are represented analogously.

The operation S over vectors a; Xy, - - - , a; Xy is now defined
as S° (a1 Xy, -+ ,a: Xy) &S (a1 Xy, - -+, anXy).

4.4.3 Representing aline from CP/SOS in depth-d-PC.
We now define the translation of aline a; X+ - -+a, X —ag >
0 in Cutting Planes/SOS, where X; ... X} are monomials.
Definition 18 (Representing an inequality). Let P = a1 X +
-+ ar Xy be a polynomial where the X; are monomials. Then
the line P > 0 is represented as

S(arXy, -+, aXk)(§) =0
and P = 0 is represented as
S(a; Xy, - ,aXg) =0
Let R(P) denote the vector S(a; Xy, - - - , agXx).
4.4.4 Simulating Cutting Planes.

Addition. Before we prove the simulation for addition,
we need the following key properties of the vector represen-
tation. They are proved in the full version [18].

The lemma below states that our system can prove the
associativity of the operation @ over vectors.

Lemma 4. For any three bit vectors y, z and w

Fyoz)dow—-y@ (zdwW)

We then need to be able to interchangeably use the opera-
tions S and @ for vector addition

Lemma 5. + S(y1, - ,Vi) — Sy, - ,¥i-1) ®Y;

We then extend this to show that the vector representation
of the sum of two lines is the & of the vector representations
of each line.

Lemma 6. Let P and Q be two polynomials. Then R(P+Q) =
R(P) ® R(Q).
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Finally, we need to show that the as long as P and Q have
coefficients not exceeding bit length ¢, we can derive from
R(P)(&) = 0and R(Q) (&) = 0 the lines R(P+Q) (&) =0.1tis
an easy observation that if the bit lengths of the coefficients
in P and Q are bounded, then the vectors R(P) and R(Q) are
of bounded length. Thus it suffices to show the following.

Lemma 7. For any two vectors a and b of length at most
t<éE-1

a(£),b(é) F (a@b)(&)
This concludes simulation of the addition rule.

Multiplication by a constant. In order to simulate mul-
tiplication by a power of two, we left-shift bits of the corre-
sponding bit vector by the required amount, and add zero
bits at the end. Multiplication by any constant can then be
simulated by the above in combination with the Addition
rule.

Division by a constant. To simulate the division rule in
Cutting Planes we use the following lemma.

Lemma 8. LetP = ajx; + -+ + apx, — ag where a; are non-
negative, ay - - - a, are even and ay is odd. Then we can derive

R(P)(&) F R(P-1)(§)

Proof. 1t is easy to derive

a9(1) =1+ (-a)(1) —1

Since we have + R(P) — (S(aixy, -+, a,x,) ® (—a9)) by
Lemma 5, and a; - - - a, are even, we derive

FR(P)(1) - 1

Since —1 is represented by the all ones vector, for every
carry bit ¢; in the sum R(P) @ (—1) it is easy to derive from
the definition of ¢;

Fei—1

Now using the definition (R(P) @ (—1))(¢) = R(P)(¢) @

1®ce and Lemma 5 we derive

R(P)(§) F R(P=-1)(§)
]
We can now simulate the division rule by using the above

lemma and then dropping the last bit of the vector R(P — 1)
(which would be zero).

4.4.5 Simulating Dynamic SOS. Rules 1, 2 and 3 of Defi-
nition 7 follow from the above simulation of Cutting Planes.
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Multiplication of two lines. To simulate the multiplica-
tion rule of SOS, we need to define an operation which, given
the vectors a; and by, produces a vector that is equivalent to
the representation of a; b;. We define it as a shifted sum based
on the grade school algorithm for binary multiplication.

Definition 19 (Shifted sum). For a vectory, let 2Ky denote
the vector obtained by shifting the bits of y to the left by k
positions, and padding the least significant k positions with
zeros. Given two vectorsy and z = [zg_ -+ - zo] , the shifted
sum of y and z is defined as the vector

SS(y.z) = S(zoy. - . 26127 'y)

We then show that our system can prove that the vector
obtained by using this operation is indeed what we want.

Lemma 9. Let P and Q be two polynomials, represented by
bit vectorsyg andz = [zz_y - - - 29|, with at most & monomials
and coefficients bounded by & in absolute value. Then,

FR(PQ) — SS(yo,2)

We now extend Lemma 7 to show that we can derive
PO > 0from P > 0and Q > 0, ie. R(PQ)(§) = 0 from
R(P)(§) = 0and R(Q)(§) = 0.

Lemma 10. Lety and z be two non-negative vectors of length
¢ such that3¢ < & — 1. Then

y(€),2(§) F SS(y,2)(§)

This completes the simulation of the rule which takes the
product of two lines in SOS.

Squaring rule. To simulate the rule in SOS which intro-
duces a line P> > 0 for any polynomial P, we need the
following lemmas.

The lemma below states that if the sign bit of y is one,
then the sign bit of —y is zero.

Lemma 11. For any vectory of length¢ < £ —1,

y(&) -1+ (=y)(&)

The following lemma shows that for a vector representing
a polynomial P, the negation of it represents the polynomial
-P.

Lemma 12. Let P be a polynomial represented by a vectory.
Then+ R(-P) — (-y).

The rule which derives P? > 0 can now be easily simulated
by branching on the sign bit of the vector R(P). Assuming
it to be zero, we can use Lemma 10 to derive R(P?)(&) = 0.
In the other case, we can use Lemma 11 and Lemma 12 to
derive that the sign bit of R(—P) is zero. We can now use
Lemma 10 again to derive R(P?)(£) = 0.

Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi

4.4.6 Concluding the simulation. By simulating any refu-
tation in Cutting Planes/SOS rule by rule using the above
lemmas, we end up with the representation of the line —1 > 0
ie.

R(=1)() =0
Since —1 is represented by the all ones vector, this gives a
contradiction.
Open Problems

The obvious open problem is to prove a lower bound for
AC®[p]-Frege systems, whether using algebraic proofs or
not.

As stepping stones towards this goal, we think it would
be interesting to:

1. Find any technique for proving lower bounds on the
sizes of Polynomial Calculus proofs that doesn’t go
through degrees. More precisely, prove size lower bounds
for PC proofs where we view variables as taking values
1, -1, and replace the axioms x% — x with x% — 1.

2. Prove lower bounds for the system Trinomial-IIX-PC.

3. Our simulations require a sufficiently large extension
field. Can we either p-simulate Polynomial Calculus
over a large extension field with Polynomial Calculus
over the base field, or prove that no simulation exists?
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