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Estimating ensemble flows on a hidden Markov chain

Isabel Haasler, Axel Ringh, Yongxin Chen, and Johan Karlsson

Abstract— We propose a new framework to estimate the
evolution of an ensemble of indistinguishable agents on a hidden
Markov chain using only aggregate output data. This work can
be viewed as an extension of the recent developments in optimal
mass transport and Schrodinger bridges to the finite state space
hidden Markov chain setting. The flow of the ensemble is
estimated by solving a maximum likelihood problem, which
has a convex formulation at the infinite-particle limit, and we
develop a fast numerical algorithm for it. We illustrate in two
numerical examples how this framework can be used to track
the flow of identical and indistinguishable dynamical systems.

I. INTRODUCTION

State tracking of a set of agents is an important issue
in many areas, e.g., target tracking, see [4] and references
therein. In this case, one is often interested in tracking one
single or a set of multiple distinct targets. However, in many
applications information for each agent may not be available,
e.g., if the population is too large to track every single agent,
as in many biological systems, or due to data privacy [24].
In this work, we thus consider tracking the evolution of a
finite ensemble of indistinguishable agents. Based on reduced
and incomplete measurements of the whole population at
different time points, we aim to recover an estimate of the
discrete-time flow of the ensemble. Related state estimation
problems for a continuum of agents and in continuous time
have been considered in [10], [35] (see also [6]).

In this work, we use a hidden Markov model (HMM)
to describe the particle flows and aggregate observations,
similar to [2], and seek the most likely paths that the agents
have taken. These paths are found by maximizing the log-
likelihood function of the flow, subject to the constraint that
the flow matches the given measurements. This gives rise to
a convex maximum entropy type optimization problem, and
we derive an efficient algorithm for solving it.

The problem of finding the most likely path for the
evolution of a distribution is related to a discrete Schrodinger
bridge problem [28].

Schrodinger’s thought experiment [31] has indirectly given
rise to the concept of reciprocal processes [5], [22], [25],
which connects this work to tracking of moving objects using
reciprocal processes [18], [32], [34]. However, as mentioned
before, we consider estimating the flow of an ensemble rather
than single target tracking.
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The outline of the paper is as follows: Section II presents
background material, in particular on HMMs, Schrédinger
bridges, and optimal mass transport. In section III we derive
the maximum likelihood problem for a Markov chain with
a known initial and final distribution, and relate it to prior
work on the Schrodinger bridge problem [28]. In Section
1V, which contains the main contribution, we extend this
maximum entropy framework to HMMs with indirect and
noisy observations. Moreover, we derive the corresponding
maximum likelihood problem, and develop a fast iterative
algorithm for solving it. The method is demonstrated on two
examples in section V, and section VI contains conclusions
and future directions. Some proofs are deferred to the ap-
pendix for improved readability.

II. BACKGROUND
A. Notation

By ./, ®, log(-), and exp(-) we denote elementwise divi-
sion, multiplication, logarithm, and exponential of matrices
and vectors. Moreover, by supp(-) we denote the support of
a matrix, i.e., the non-zero elements.

B. Hidden Markov chains

In this work, we consider hidden Markov models
for stochastic modeling of a group of indistinguishable
agents/particles. For an introduction to HMMs, see, e.g.,
[21], [29]. An HMM is a structure that consists of two
stochastic processes. The first part is a Markov chain that
evolves over a hidden set of states X = {Xy, Xo,..., X}
and is used to model the unobserved, underlying state of the
system. We denote the state at time ¢ by ¢;. The stochastic
state transitions are encoded in the state transition matrix
A = [a]};_,, where a;; = P(ge+1 = Xjlg: = X;). The
second part is an observation process providing partial and
noisy information of the underlying process; here we use
the observation symbols Y = {¥1,Y5,...,Y,,}. Moreover,
the observation process is also Markovian with respect to
the underlying state in the hidden Markov chain, i.e., the
observation probabilities can be summarized in a matrix
B € R™™™ with elements bj;, = P(Y} at t|g; = X;).

C. Schrodinger bridges and large deviations

In the early 1930s, Schrodinger discussed the problem of
determining the evolution of particles between two observed
distributions [31]. Assuming a cloud of independent Brown-
ian particles is observed at time instance ¢ = 0, the expected
distribution at ¢ = 1 would be described by

pl(xl):/ qe(0, w0, 1, 21) po(z0)dzo, )]
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where ¢. is the Brownian transition probability kernel

qe(s,x,t,y) = S exp <_||x — y||2>
T (2n(t — s)e)™? 2(t—s)e)’

and where the parameter € denotes a diffusion coefficient.
Schrodinger studied the problem where the observed particle
distribution differs from the expected distribution (1). The
most likely particle evolution connecting, hence bridging, the
two marginals is called the Schrodinger bridge.

The Schrodinger bridge problem was later formulated in
the context of large deviation theory [19, Sec. II.1.3], the
study of rare events in the sense of deviations from the
law of large numbers [15], [16]. As the number of trials
(or particles) goes to infinity, the probability of such rare
events approaches zero. Large deviation theory studies the
rate of this decay, which can often be characterized by the
exponential of a so called rate function.

Modeling the particle evolutions as independent identically
distributed random variables on path space, a Schrodinger
bridge is a probability measure P on path space that is most
likely to describe the rare event of observing the two particle
distributions. Such a measure is obtained by minimizing the
corresponding rate function, which turns out to be the relative
entropy with respect to the underlying probability law of the
Brownian motion. In other words, P is the measure that is
“most similar” to the Wiener measure )V in the sense that it
minimizes the relative entropy [26]

HP|W)= /log (jfv) dpP (2)

over all probability measures that are absolutely continuous
with respect to W and have the given particle distributions
as marginals. The Schrodinger bridge can be constructed
from the solution to a certain system of equations, called the
Schrodinger system. A space and time discrete Schrodinger
bridge problem for Markov chains is analysed in [8], [20],
[28].

D. Optimal mass transport

Another recently established connection of Schrédinger
bridges is to the problem of optimal mass transport (OMT)
[71, [9], [26], [27]. As the diffusion coefficient ¢ in (1)
approaches 0, the solution to the Schrodinger bridge prob-
lem tends to the solution to a corresponding optimal mass
transport problem [26]. Moreover, the Schrodinger bridge
formulation is a regularization of OMT, as it is strictly convex
and therefore guarantees a unique solution.

We introduce a discretized formulation of the OMT prob-
lem. For an extensive discussion of OMT see, e.g., [33].
Consider a discretization {z1,...,z,} of a compact space
X and two distributions g, ;1 € R™ defined on this
discretization. Given a cost matrix C' = [c;;]7';_;, Where ¢;;
denotes the cost of transporting a unit mass from point x;
to x;, we seek a transport plan M = [mij]zjzl, where m;;
denotes the amount of mass being transported from z; to
;, that minimizes the total transportation cost tr (C7 M)
between the two distributions, i.e., the transport plan is

required to satisfy M1 = ug and MT1 = pu;, where 1
denotes an n x 1-vector of ones.

Solving this linear program is computationally expensive
for large n. It was therefore proposed to regularize the
problem by introducing a Kullback-Leibler divergence term
(sometimes called entropy term) to the objective [12].

Definition 1: Let p and ¢ be two nonnegative vectors or
matrices of the same dimension. The Kullback-Leibler (KL)
divergence between p from ¢ is defined as

H(plq) := Zp log (5)

where 0log 0 is defined to be 0. Note that H(p|q) is jointly

convex over p,q. See, e.g., [11] for more properties and

interpretation of the KL divergence.

The discretized and regularized OMT problem then reads
minimize  trace (CT M) + eH(M|1,x,)
MERnxn 3)
subject to M1 = g, MT1=p,

where € > 0 is a regularization parameter and 1,,x, denotes
an n X n-matrix of ones. The solution to this problem may be
found by Sinkhorn iterations, which correspond to the fixed
point iteration for the Schrédinger system in [7].

III. PARTICLE DYNAMICS OVER A MARKOV CHAIN

Consider a cloud of N particles, where each particle
is evolving according to a Markov chain as described in
Section II-B. Let the vectors p; € N™ describe the particle
distributions at time ¢ € {0, 1}, where the i-th element (1),
denotes the number of particles in state X; at time t. In
analogy to the OMT framework, we define the mass transfer
matrix M = [m;;]7;_,, where m;; denotes the number of
particles that transit from state X; to state X ;. Note that the
mass transport matrix satisfies M1 = po and M7T1 = p;.

The state transition matrix A = [a;;]{';_; contains the
particle transition probabilities. Thus, given the initial state
Lo, the probability of a mass transfer matrix M is

P#OyA(M) = H (m (/’LO)Z . > HGZLU , (4)
9 wm j:].

iy i1, M2, - -

where ( ) denotes a multinomial coefficient. The expected
distribution at time ¢ = 1 is then given by E(u1|po) =
AT . If 11 is observed to be different from A%y a discrete
version of the Schrodinger bridge problem can be solved (see
Section II-C). That is, to find the matrix M that maximizes
P,,.4(M) subject to that the constraint M71 = py on the
final marginal is satisfied.

If the number of particles is large, then the log-likelihood
of (4) can be approximated in terms of a KL divergence.

Proposition 1: Given A, let ,u(()N) € N” be a sequence
of distributions with N particles, and M (V) € N"X" be a
sequence of mass transfer matrices such that M (M1 = uéN)

and supp(M™)) C supp(diag(u{™’)A). Then there exists a
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constant C' > 0 such that for all N it holds that
‘log (P#(N) A(M(N))) +H (M(N) |diag(uéN))A)‘
0
< Clog(N).
Proof: See appendix. [ ]
Proposition 1 implies that for sequences ME)N) and M(N)
satisfying the assumptions, if
1 _
as N — oo, then
1 T g
 log (PMI A(M(N))) — —H (M | diag(jig) A)

as N — oo. This means that the KL divergence approximates
the log-likelihood of P, 4(M) with increasing accuracy as
the number of particles increases. We write this informally
as

P

o, A (M) ~ e~ H(M|diag(po)A)

In terms of large deviation theory, we thus interpret
H(-|diag(po)A) as the rate function for P, a(-). In fact,
Proposition 1 can also be derived from a large deviation
principle (see, e.g., [15, Ch. 2.1.1]).

For systems with many particles, we may therefore for-
mulate the problem of finding the most likely mass transfer
matrix M between distributions po and p; with underlying
state transition matrix A as the convex optimization problem

minimize H (M |diag(uo)A)
MeRnxn (5)
subject to M1 = pg, MT1=p;.

Remark 1: Let A and pg be strictly positive. With the cost
matrix
C = —elog(diag(po)A),

the entropy regularized OMT problem (3) is equivalent to
problem (5). Note that entropy regularized OMT problems
have previously been solved by formulating them in terms
of KL-projection problems [1].

A. Connection to Schrodinger bridges

We note that given the prior distribution p, the objective
in (5) may be written as

H(M | A) = H(po | 1)

where the second term is constant. Hence, if we associate A
and M with the measures d/V and dP in (2), the problem
in Proposition 1 relates to a discretized Schrodinger bridge.
Our problem formulation indeed corresponds to the time and
space discrete Schrodinger bridge from [28]. To see this,
consider a Markov chain of length 7". Using Proposition 1,
knowing the marginals po and pp, we can find the most
likely evolution of the particles between them as the solution

to
T

minimize
Mpy.ry,pp11 -1 =1

H(M,|diag(pi—1)A)

(6)
subject to M1 = s, MtTl = Uy,

for t=1,...,T.

Note that for a nonnegative matrix M; and strictly positive
marginal g1, the first constraint asserts that there is a
row-stochastic matrix M; such that M; = diag(us_1)M;.
Plugging this expression for the matrices M; into (6) gives

T
_mlmmlze ZZ(,U,tfl)ZH ((Mt)zaAz)
A/[[I:T]HU'[I:T—I] t=1 i (7)
subject to M1 =1, ;= M,
for t=1,...,T.

Here A;. denotes the i-th row of A. This is precisely
the formulation of a Schrodinger bridge over a Markov
chain from [28, eq. (24)] with time invariant transition
probabilities. In [28] it is shown that a unique solution to
a corresponding Schrodinger system exists if pr is a strictly
positive distribution and all elements are strictly positive
in the matrix A raised to the power T. The solution to
the Schrodinger system may be obtained by a fixed point
iteration [20], which is linked to the Sinkhorn iterations for
entropy regularized OMT problems, cf. Section II-D.

We note that the optimization problem (7) is non-convex
and will thus work with the formulation (6) in the remaining
part of this article.

IV. PARTICLE DYNAMICS OVER HIDDEN MARKOV CHAIN

In this section, we extend our framework to the setting of
a hidden Markov chain. The initial marginal distribution is
assumed to be known. In case the hidden states are linked
to the observations by a deterministic linear mapping, they
may be estimated in a similar fashion as in [17]. Here instead,
we consider the non-deterministic case where the available
observations emerge from the hidden distributions through
an observation probability matrix B € R®*™,

Equivalently to the mass transfer plans M, define the
observation matrix D € N**™ with entries d;;, denoting the
number of particles that are in hidden state X; and observed
in state Y. Given a hidden state p, the probability for any
observation matrix D is given by P, g(D) as defined in (4).
Hence, the large deviation result in Proposition 1 holds for
D with rate function H (-|diag(u)B).

Given an initial distribution pg € N” and a set of
measurements Pq,..., Py € N™, we seek the most likely
set of matrices My,..., My and D1,..., Dy such that for
some set of hidden distributions 1, ..., ur it holds that

Mt]-:,ut—la M;T:l:,uh
D1 = puy, DI'1t =&, fort=1,...,T.

This model is illustrated in Figure 1. The maximum like-
lihood solution is obtained by solving the optimization
problem

®)

T

maximize  [[ Pu,_,.a(Mi) Py, 5(Dy)
M7y, Dparyppaem) =1

subject to (8). From Proposition 1 it follows that

T
log <H PMtl,A(Mt)PMuB(Dt))
t=1
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Fig. 1: Illustration of the hidden Markov model correspond-
ing to (8).

can be approximated by

- Z (H(Mt | diag(pi—1)A) + H(Dy | diag(ut)B)) 9
=1

when the number of particles is large. We thus estimate the
matrices My,..., Mp, Dy,...,Dr and the hidden states
Wi, - .-, ur by maximizing (9) subject to the constraints (8),
i.e., by solving
T
minimize H(M,; | diag(ui—1)A)
M[l;T]7D[1:T]7M[1:T] =1

T
+ " H(D, | diag() B)

P (10)
subject to Ml =1, M]1=p,
D1 = py, DI'1 =&,
fort=1,...,T.

Remark 2: The modeling assumptions leading to this op-
timization problem require knowledge of the initial distri-
bution as well as the transition and observation probabilities
for the hidden Markov model. However, in practice these are
typically not known exactly. In the examples in Section V, we
illustrate that the estimation is accurate even when there are
significant model errors. The generalization of the proposed
method to the case where the initial distribution is not known
will be discussed in a forthcoming paper.

A. Computational method

In this section we develop a numerical method to solve
problem (10). To this end, recall from Remark 1 the connec-
tion between KL-minimization problems and entropy regu-
larized OMT problems. The latter can be efficiently solved
by Sinkhorn iterations [12], which in turn are equivalent to
a block coordinate ascent in a dual problem [23]. Motivated
by this, we choose to follow a similar approach.

Proposition 2: Let u; € R™ and v, € R™, for t =
1,...,T, be positive initial values, and iterate the following
steps:

(1) ug =el./(Aw)

(2) vy =e®y./ (BT (ys © (Awpyq))) for t =1,...,T,
where in each step and for each ¢ in step (2), the vectors y;
and w; are recursively defined as

y1 = AT (uo ® uy),

yr = A" (-1 © (Bvy—1)), t=2 T

geeey

and
wr = B’UT
we = (Bl}t)G(A’lUt+1), t= 1,,T*1

In the limit point of the iteration, the estimates for the hidden
marginals are then recursively constructed, starting from the
known p, as

e = diag(w) AT (je—1./(Awy)),

Furthermore, the corresponding mass transfer matrices are
given by

t=1,...,T.

1 .. .
M, = gdlag(ut_l © u) Adiag(wy),

1
D, = —diag(pe © z,) B diag(vy),

where
xy = el./ (Buvy)
up = el./ (Awy)
fort=1,...,T.
Proof: See appendix. [ ]

It is worth noting that intermediate results of the vec-
tors y; and w; may be stored, such that the update of
uy requires only one matrix-vector multiplications with A,
and the update of v, for any t = 1,...,7T, involves two
multiplications with B and one with A. One iteration sweep,
i.e. one update of u; and the set vy, for ¢ = 1,...,7, thus
requires O(Tn max(n,m)) operations.

V. SIMULATIONS

A. Particle dynamics

Consider a cloud of 1000 particles evolving from an initial
distribution pp € R™ with n = 100 states. The particles
transition matrix is given by A € R™*" with elements

1
Gij ~ €Xp (202 (i—j— 1)2> ,  with 05 = 0.5,

which corresponds to a discretization of a normal distribution
N(1,0.5), and thus induces a drift on the dynamics of the
cloud. The true dynamics of the particles are assumed to be
unknown and instead modeled by a transition matrix A €
R™ "™ with elements

1 . N2 .
a;; ~ exp <203 (i —7) ) ,  with o, = 2.
At each time instance, the particles are observed in m = 5
bins, where the observation probability matrix B € R™*™

has elements
. 2
1 .1+ 10 .
bij ~ exp (w (] - 20) > s with o = 0.5.

We estimate the flow of the particles and hidden particle
distributions solving problem (10) for 7" = 50 time instances
with the method proposed in Proposition 2. One estimate
is formed using the true initial distribution pg as a prior
distribution, and for a second estimate we use a uniform
prior.
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Figure 2 shows the true hidden particle cloud, the corre-
sponding observations, and the two estimates. With full in-
formation of the initial states available, the proposed method
provides a good estimate of the hidden states despite discrep-
ancies between the true and assumed transition matrices A
and A. In the case of no prior information, i.e., the prior
distribution is set to be uniform, we see that the estimate
converges to the estimate with true prior within a few time
steps. This indicates that the proposed method is robust to
modeling uncertainties and lack of information in the initial
state.

B. Tracking ensembles over a network

In this example we consider the problem of tracking a
number of indistinguishable agents over a network given
measurements from sensors that are distributed around the
network. This is inspired by [13], where an HMM is used
to estimate the flow of a crowd in an urban environment
based on observations generated when cell phones connect
to Wi-Fi sensors. The environment is modeled as a network
of nodes and arcs, where the arcs represent walking paths
in the area and the nodes are the intersections between the
paths.

For this application, the optimization problem (10) needs
to be extended to allow for multiple measurements. To this
end, let ,; be a set of observations from measurement unit
s at time point ¢, for ¢t = 1,...,7, and for s = 1,...,5.
We obtain the maximum likelihood solution as the optimal
solution to'

T
minimize H(M,; | diag(us—1)A)
M1.11, D17y, (1:8] B1:T) =1
T
+ Z Z H(Dy | diag(pe)Bs)
t=1 s=1
subject to  M;1 = p;—1, MI1=py, (11)
Dst]-:,uft; DZ;]-:(I)%

fort=1,...,7T, and s=1,...,5.

Consider a hidden Markov model where the states X =
{X1,...,X,} are the edges in the directed graph G =
(V,X), and where the edge X; = (V/",V°u) goes from
Vit e V to V' € V. In this example we will use the
graph illustrated in Figure 3, consisting of 11 nodes and
n = 28 edges. For the true model, transition probabilities
are defined according to weights in the graph that represent
which walking paths are preferred by the pedestrians. For the
model used in the estimation we assume that this information
is not known and use uniform weights. More specifically, the

I'This is a convex optimization problem which in principle can be solved
with off-the-shelf solvers. In this example we use an efficient algorithm in
the spirit of Proposition 2, but due to lack of space we defer the exact
algorithm to a forthcoming paper.

True states Observations

Q Q
= =
@ @
10 20 30 40 50 10 20 30 40
Time Time
Estimation with true prior Estimation with uniform prior
Q Q
I =
@» @
10 20 30 40 50 10 20 30 40 50
Time Time

Fig. 2: Particle cloud reconstructed from observations.

o2 Network
2.5 ¥ Sensors |

-05F

Fig. 3: Network and sensors.

transition probabilities are given by
0.5,
0.5 w; j Z Wik

{k:vkin:‘/‘out}
0, else,

ifj=i
—1
dij:

if V‘jin — V'iout

where {w;;} is a set of weights. For the transition matrix A
used in the estimation we assign uniform weights w;; = 1,
for all (i,j) with Vji“ = V°"*. For the true transitions the
weights are defined as

20, X; € W and VP # Vi»
V'jout — ‘/iin

1, else,

wij = 0,

for (i,7) such that V;* = V;°**, and where W is the set
of edges highlighted in Figure 3. Note that the second case
implies that agents do not transition to the reverse edge in
the next time step.

The agents are observed by a set of S = 7 sensors
located at the positions indicated in Figure 3. The observation
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Fig. 4: Ensemble flow over network.

probability for an agent on edge X; to be detected by a
given sensor s is defined as b3, = min(0.99, 2e~5%), where
d denotes the Euclidean distance between the location of s
and the midpoint of X;. Consequently the probability of not
being detected is bj, = 1 — b5;.

Given an initial distribution of 100 agents on the edge
(1,3), the flow and the measurements for the true ensemble
are computed for 7" = 20 time steps using the true transition
and observation probabilities. Then we estimate the flow by
solving the optimization problem (11). The true and esti-
mated particle distributions are compared for some time steps
in Figure 4, where the width of each edge is proportional to
the number of agents on it. As can be seen in the figure
the proposed method provides a good estimate also for this
example.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we propose a method for estimating the flow
of an ensemble of particles on a hidden Markov chain. The
estimation, which is formulated as a maximum likelihood
problem, can be recast as a convex optimization problem,
for which we provide an efficient algorithm.

There are several natural directions in which this work
can be extended. One restriction in this paper is that the
number of agents are fixed and known, thus extensions with
a variable number of particles, such as birth/death processes,
could be of interest (cf. [14]). Furthermore, the model may
be extended to continuous-state dynamics. Another natural
direction is to study the connections to reciprocal processes.

APPENDIX

A. Proof of Proposition 1

Let uéN) and M) be as described in the statement of

the proposition. Moreover, let Z(V) = {(i, §) | mgj-v) # 0},
which is non-empty, and let Zi(N) ={j| (,5) € 2N},
which is non-empty if and only if (uéN))i > (. Furthermore,
let YY) = {5 | (,u(()N))Z- > 0}. Then, using Stirling’s formula

V2™ Y2em < pl < en™ M2,

see, e.g., [30], for ¢ € Y®) the multinomial coefficient in
(4) can be bounded from above by

(N)

( (ﬂo )i )
) )

(2 ? wmn

<= ey (T n - ),)

jez™
N)y(§)i+3 N)y—(mV) 41
'(N(() ))iuo : H (mE_] Nymlmi )
jez™
II (m =m0+ ),

(N)\(1§™)i+3
( a

S (:u’O )1
jez®

where |Zi(N) | denotes the cardinality of the set, and where the

second inequality follows from the fact that Zj cz(N) Mij =

Z?:l m;j = (o), and that e (1271-1) < 1. Thus, the log-
likelihood of the probability for a transfer plan M (N) can be
upper-bounded as follows:

log (PM3N>7A(M(N)))

N Ny 1 N
< X (nloutan) - (w4 5 ) ogm}))
(4,5)€ZMN)

>

ieY(N)

((M(()N))i + ;) log((15™)s)
= >

(N)
(N) (o *)iaij
(mij log ((N)>>
(i.4)e2(™ My

— Y Jloaml)+ D S loa((™))

(i,5)€ZWN) ieYN)

<-H (M(N>,diag(uéN)>A> + glog(N),

where the last inequality comes from the second-to-last
expression by i) identifying the first term as the KL diver-
gence, ii) noting that the second term is nonpositive, and iii)
overestimating the third term by taking (u(()N))i = N for
t=1,...,n.

Similarly, underestimating the multinomial coefficients
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gives that the log-likelihood can be bounded from below by

log (PME)M,A(M(N)))

m (6 i\ 1 (N)
> E log ™ | 3 IOg(mi]‘ )
m

(‘J)ez(m

+ Z log

zEy(N)
> H(M(N diag(p (N))A>

1 n(n — 1) log(27)
~3 (n2 + T log(V) > log(N).

By using the two inequalities, the result follows.

) -

B. Proof of Proposition 2

We solve (10) by a block coordinate ascent in the
dual. First note that since pug, A, B, and ®; are all
elementwise nonnegative, so will the optimal solution

[1 L D[*1 T]’“E:T] also be. We can therefore add the
constraint gy > 0 to (10) without changing the optimal
solution. For this problem, we relax the constraints in (10)
with corresponding dual variables Ay, var,, Ap,, Vp,. Let
M := M1.1), ® = Djy.7, and define the Lagrangian

LM, D, pi1.1s )\szmtJ\z),V@)

— Z <Zm” log ) + )\Mf(,ut 1 — M;1)
=1 Qi
dt.
+ var, (pe — M{1) + deg log (—)
- Nz‘biy

+ )\gt (/,Lt - Dt1> + VD, (‘Dt - DtT].)> .

Minimizing this with respect to the matrices M; and D,
gives explicit expressions for the optimal solution in terms
of Hio:T) and the dual variables, i.e.,

1 . .

M, = —diag(pe—1 © ur) Adiag(w,),
1

D; = gdiag(,ut © x;) B diag(vy),

where u; = exp(Ang, ), wr = exp(vay, ), ¢ = exp(Ap,) and
vy = exp(vp,), for t = 1,...,T. Plugging these into the
Lagrangian, we get the modified Lagrangian

T

1
e Z(Mtfl O] Ut)TAwt

t=1

L(pp.ry, uon, won, o, Vo) =

T
1
s > (e © @) Bug +log(u) g

t=1
T-1

+ > ni (log(uprr) + log(we) + log())
t=1

T
+ ph(log(wr) + log(xr)) + Z log(vy)T ®@;.
t=1

Noting that since p[1.7) occurs linearly in L, for the modified
dual functional inf,, >0 L(pp7), Aoms von, Ao, vo ) to be
bounded from below, the corresponding factors need to be
elementwise nonnegative. In this case the corresponding
terms will be zero when taking the infimum, and thus the
dual problem is to maximize

T

1
- g(,uo ®u1)" Awy + log(ur) " po + Z log(vy) " @y (12)
t=1

subject to

1. 1.
—gdlag(utﬂ)Ath - gdlag(fﬂt)th

(13)
+log(uy1) +log(xs) + log(wy) >0
fort=1,...,T7—1, and
1
- gdiag(xT)BvT + log(zr) + log(wr) > 0. (14)

Note that neither the objective function (12), nor the first
T —1 constraints (13) depend on z7. Thus the optimal choice
of x7 is the one creating the most slack in the last constraint,
i.e., the one maximizing the first two terms of (14). This is
achieved by xr = el./(Bvr), and for this choice of zr the
constraint (14) can be replaced by

—log(Bvr) + log(wr) > 0. (15)

Similarly, the slack in (13) is maximized by selecting
xy=e€l./(Bv), t=1,...,T
ug =el./ (Awy), t=2,...,T.

and thus the constraints (13) can be replaced by

— log(Aws11) — log(Buw:) + log(wy) > 0, (16)

fort =1,...,T—1. Next, note that if some of the constraints
(15) and (16) are not fulfilled with equality, the objective
function (12) can be improved by increasing the values of
the corresponding v;. Therefore, in an optimal point we must
have that

wr = BUT

wy = (Bvy) © (Awgqq) fort=T-1,...,1.
This gives an expression for wy, that depends on vy, t =
1,...,T. Inserting this into the objective (12) leads to an
unconstrained problem that depends only on w; and vy, t =
1,...,T, which we solve using block coordinate ascent. To

this end, the unconstrained objective is first maximized with
respect to w1, which gives

u; = el./(Awn).

Further, note that the gradient of the unconstrained objective
with respect to v; is

1
s O] (BT(yt © Awt+1)) + @4 /vy,
where y; is defined by the recursion

= AT(,LLO O] u1)7

ye = AT (g1 © (Bui—y)), t=2,...,T.
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Hence, maximization with respect to v; is achieved by

As

U = B(I)t./ (BT(yt O] Awt+1)) .

the unconstrained problem is convex and the objective

function continuously differentiable, the block coordinate
ascent method converges [3, Prop. 2.7.1]. In the limit point,

the
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