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Abstract— We propose a new framework to estimate the
evolution of an ensemble of indistinguishable agents on a hidden
Markov chain using only aggregate output data. This work can
be viewed as an extension of the recent developments in optimal
mass transport and Schrödinger bridges to the finite state space
hidden Markov chain setting. The flow of the ensemble is
estimated by solving a maximum likelihood problem, which
has a convex formulation at the infinite-particle limit, and we
develop a fast numerical algorithm for it. We illustrate in two
numerical examples how this framework can be used to track
the flow of identical and indistinguishable dynamical systems.

I. INTRODUCTION

State tracking of a set of agents is an important issue
in many areas, e.g., target tracking, see [4] and references
therein. In this case, one is often interested in tracking one
single or a set of multiple distinct targets. However, in many
applications information for each agent may not be available,
e.g., if the population is too large to track every single agent,
as in many biological systems, or due to data privacy [24].
In this work, we thus consider tracking the evolution of a
finite ensemble of indistinguishable agents. Based on reduced
and incomplete measurements of the whole population at
different time points, we aim to recover an estimate of the
discrete-time flow of the ensemble. Related state estimation
problems for a continuum of agents and in continuous time
have been considered in [10], [35] (see also [6]).

In this work, we use a hidden Markov model (HMM)
to describe the particle flows and aggregate observations,
similar to [2], and seek the most likely paths that the agents
have taken. These paths are found by maximizing the log-
likelihood function of the flow, subject to the constraint that
the flow matches the given measurements. This gives rise to
a convex maximum entropy type optimization problem, and
we derive an efficient algorithm for solving it.

The problem of finding the most likely path for the
evolution of a distribution is related to a discrete Schrödinger
bridge problem [28].

Schrödinger’s thought experiment [31] has indirectly given
rise to the concept of reciprocal processes [5], [22], [25],
which connects this work to tracking of moving objects using
reciprocal processes [18], [32], [34]. However, as mentioned
before, we consider estimating the flow of an ensemble rather
than single target tracking.
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The outline of the paper is as follows: Section II presents
background material, in particular on HMMs, Schrödinger
bridges, and optimal mass transport. In section III we derive
the maximum likelihood problem for a Markov chain with
a known initial and final distribution, and relate it to prior
work on the Schrödinger bridge problem [28]. In Section
IV, which contains the main contribution, we extend this
maximum entropy framework to HMMs with indirect and
noisy observations. Moreover, we derive the corresponding
maximum likelihood problem, and develop a fast iterative
algorithm for solving it. The method is demonstrated on two
examples in section V, and section VI contains conclusions
and future directions. Some proofs are deferred to the ap-
pendix for improved readability.

II. BACKGROUND

A. Notation

By ./, �, log(·), and exp(·) we denote elementwise divi-
sion, multiplication, logarithm, and exponential of matrices
and vectors. Moreover, by supp(·) we denote the support of
a matrix, i.e., the non-zero elements.

B. Hidden Markov chains

In this work, we consider hidden Markov models
for stochastic modeling of a group of indistinguishable
agents/particles. For an introduction to HMMs, see, e.g.,
[21], [29]. An HMM is a structure that consists of two
stochastic processes. The first part is a Markov chain that
evolves over a hidden set of states X = {X1, X2, . . . , Xn}
and is used to model the unobserved, underlying state of the
system. We denote the state at time t by qt. The stochastic
state transitions are encoded in the state transition matrix
A = [aij ]

n
i,j=1, where aij = P (qt+1 = Xj |qt = Xi). The

second part is an observation process providing partial and
noisy information of the underlying process; here we use
the observation symbols Y = {Y1, Y2, . . . , Ym}. Moreover,
the observation process is also Markovian with respect to
the underlying state in the hidden Markov chain, i.e., the
observation probabilities can be summarized in a matrix
B ∈ Rn×m with elements bjk = P (Yk at t|qt = Xj).

C. Schrödinger bridges and large deviations

In the early 1930s, Schrödinger discussed the problem of
determining the evolution of particles between two observed
distributions [31]. Assuming a cloud of independent Brown-
ian particles is observed at time instance t = 0, the expected
distribution at t = 1 would be described by

ρ1(x1) =

∫
Rn

qε(0, x0, 1, x1)ρ0(x0)dx0, (1)
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where qε is the Brownian transition probability kernel

qε(s, x, t, y) =
1

(2π(t− s)ε)n/2
exp

(
−‖x− y‖

2

2(t− s)ε

)
,

and where the parameter ε denotes a diffusion coefficient.
Schrödinger studied the problem where the observed particle
distribution differs from the expected distribution (1). The
most likely particle evolution connecting, hence bridging, the
two marginals is called the Schrödinger bridge.

The Schrödinger bridge problem was later formulated in
the context of large deviation theory [19, Sec. II.1.3], the
study of rare events in the sense of deviations from the
law of large numbers [15], [16]. As the number of trials
(or particles) goes to infinity, the probability of such rare
events approaches zero. Large deviation theory studies the
rate of this decay, which can often be characterized by the
exponential of a so called rate function.

Modeling the particle evolutions as independent identically
distributed random variables on path space, a Schrödinger
bridge is a probability measure P on path space that is most
likely to describe the rare event of observing the two particle
distributions. Such a measure is obtained by minimizing the
corresponding rate function, which turns out to be the relative
entropy with respect to the underlying probability law of the
Brownian motion. In other words, P is the measure that is
“most similar” to the Wiener measure W in the sense that it
minimizes the relative entropy [26]

H(P | W) =

∫
log

(
dP
dW

)
dP (2)

over all probability measures that are absolutely continuous
with respect to W and have the given particle distributions
as marginals. The Schrödinger bridge can be constructed
from the solution to a certain system of equations, called the
Schrödinger system. A space and time discrete Schrödinger
bridge problem for Markov chains is analysed in [8], [20],
[28].

D. Optimal mass transport

Another recently established connection of Schrödinger
bridges is to the problem of optimal mass transport (OMT)
[7], [9], [26], [27]. As the diffusion coefficient ε in (1)
approaches 0, the solution to the Schrödinger bridge prob-
lem tends to the solution to a corresponding optimal mass
transport problem [26]. Moreover, the Schrödinger bridge
formulation is a regularization of OMT, as it is strictly convex
and therefore guarantees a unique solution.

We introduce a discretized formulation of the OMT prob-
lem. For an extensive discussion of OMT see, e.g., [33].
Consider a discretization {x1, . . . , xn} of a compact space
X and two distributions µ0, µ1 ∈ Rn defined on this
discretization. Given a cost matrix C = [cij ]

n
i,j=1, where cij

denotes the cost of transporting a unit mass from point xi
to xj , we seek a transport plan M = [mij ]

n
i,j=1, where mij

denotes the amount of mass being transported from xi to
xj , that minimizes the total transportation cost tr

(
CTM

)
between the two distributions, i.e., the transport plan is

required to satisfy M1 = µ0 and MT1 = µ1, where 1
denotes an n× 1-vector of ones.

Solving this linear program is computationally expensive
for large n. It was therefore proposed to regularize the
problem by introducing a Kullback-Leibler divergence term
(sometimes called entropy term) to the objective [12].

Definition 1: Let p and q be two nonnegative vectors or
matrices of the same dimension. The Kullback-Leibler (KL)
divergence between p from q is defined as

H(p|q) :=
∑
i

pi log

(
pi
qi

)
where 0 log 0 is defined to be 0. Note that H(p|q) is jointly
convex over p, q. See, e.g., [11] for more properties and
interpretation of the KL divergence.
The discretized and regularized OMT problem then reads

minimize
M∈Rn×n

trace
(
CTM

)
+ εH(M |1n×n)

subject to M1 = µ0, MT1 = µ1,
(3)

where ε > 0 is a regularization parameter and 1n×n denotes
an n×n-matrix of ones. The solution to this problem may be
found by Sinkhorn iterations, which correspond to the fixed
point iteration for the Schrödinger system in [7].

III. PARTICLE DYNAMICS OVER A MARKOV CHAIN

Consider a cloud of N particles, where each particle
is evolving according to a Markov chain as described in
Section II-B. Let the vectors µt ∈ Nn describe the particle
distributions at time t ∈ {0, 1}, where the i-th element (µt)i
denotes the number of particles in state Xi at time t. In
analogy to the OMT framework, we define the mass transfer
matrix M = [mij ]

n
i,j=1, where mij denotes the number of

particles that transit from state Xi to state Xj . Note that the
mass transport matrix satisfies M1 = µ0 and MT1 = µ1.

The state transition matrix A = [aij ]
n
i,j=1 contains the

particle transition probabilities. Thus, given the initial state
µ0, the probability of a mass transfer matrix M is

Pµ0,A(M) =

n∏
i=1

( (µ0)i
mi1,mi2, . . . ,min

) n∏
j=1

a
mij

ij

 , (4)

where
( ·
·,...,·

)
denotes a multinomial coefficient. The expected

distribution at time t = 1 is then given by E(µ1|µ0) =
ATµ0. If µ1 is observed to be different from ATµ0 a discrete
version of the Schrödinger bridge problem can be solved (see
Section II-C). That is, to find the matrix M that maximizes
Pµ0,A(M) subject to that the constraint MT1 = µ1 on the
final marginal is satisfied.

If the number of particles is large, then the log-likelihood
of (4) can be approximated in terms of a KL divergence.

Proposition 1: Given A, let µ(N)
0 ∈ Nn be a sequence

of distributions with N particles, and M (N) ∈ Nn×n be a
sequence of mass transfer matrices such that M (N)1 = µ

(N)
0

and supp(M(N)) ⊆ supp(diag(µ
(N)
0 )A). Then there exists a
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constant C > 0 such that for all N it holds that∣∣∣log
(
P
µ
(N)
0 , A

(M (N))
)

+H
(
M (N)

∣∣diag(µ
(N)
0 )A

)∣∣∣
≤ C log(N).

Proof: See appendix.
Proposition 1 implies that for sequences µ(N)

0 and M (N)

satisfying the assumptions, if
1

N
µ

(N)
0 → µ̄0 and

1

N
M (N) → M̄

as N →∞, then
1

N
log
(
P
µ
(N)
0 , A

(M (N))
)
→ −H

(
M̄
∣∣diag(µ̄0)A

)
as N →∞. This means that the KL divergence approximates
the log-likelihood of Pµ0,A(M) with increasing accuracy as
the number of particles increases. We write this informally
as

Pµ0,A(M) ∼ e−H(M |diag(µ0)A).

In terms of large deviation theory, we thus interpret
H(·|diag(µ0)A) as the rate function for Pµ0,A(·). In fact,
Proposition 1 can also be derived from a large deviation
principle (see, e.g., [15, Ch. 2.1.1]).

For systems with many particles, we may therefore for-
mulate the problem of finding the most likely mass transfer
matrix M between distributions µ0 and µ1 with underlying
state transition matrix A as the convex optimization problem

minimize
M∈Rn×n

H (M |diag(µ0)A)

subject to M1 = µ0, MT1 = µ1.
(5)

Remark 1: Let A and µ0 be strictly positive. With the cost
matrix

C = −ε log(diag(µ0)A),

the entropy regularized OMT problem (3) is equivalent to
problem (5). Note that entropy regularized OMT problems
have previously been solved by formulating them in terms
of KL-projection problems [1].

A. Connection to Schrödinger bridges
We note that given the prior distribution µ0, the objective

in (5) may be written as

H(M | A)−H(µ0 | 1)

where the second term is constant. Hence, if we associate A
and M with the measures dW and dP in (2), the problem
in Proposition 1 relates to a discretized Schrödinger bridge.
Our problem formulation indeed corresponds to the time and
space discrete Schrödinger bridge from [28]. To see this,
consider a Markov chain of length T . Using Proposition 1,
knowing the marginals µ0 and µT , we can find the most
likely evolution of the particles between them as the solution
to

minimize
M[1:T ],µ[1:T−1]

T∑
t=1

H(Mt |diag(µt−1)A)

subject to Mt1 = µt−1, MT
t 1 = µt,

for t = 1, . . . , T.

(6)

Note that for a nonnegative matrix Mt and strictly positive
marginal µt−1, the first constraint asserts that there is a
row-stochastic matrix M̄t such that Mt = diag(µt−1)M̄t.
Plugging this expression for the matrices Mt into (6) gives

minimize
M̄[1:T ],µ[1:T−1]

T∑
t=1

∑
i

(µt−1)iH
(
(M̄t)i·, Ai·

)
subject to M̄t1 = 1, µt = M̄T

t µt−1,

for t = 1, . . . , T.

(7)

Here Ai· denotes the i-th row of A. This is precisely
the formulation of a Schrödinger bridge over a Markov
chain from [28, eq. (24)] with time invariant transition
probabilities. In [28] it is shown that a unique solution to
a corresponding Schrödinger system exists if µT is a strictly
positive distribution and all elements are strictly positive
in the matrix A raised to the power T . The solution to
the Schrödinger system may be obtained by a fixed point
iteration [20], which is linked to the Sinkhorn iterations for
entropy regularized OMT problems, cf. Section II-D.

We note that the optimization problem (7) is non-convex
and will thus work with the formulation (6) in the remaining
part of this article.

IV. PARTICLE DYNAMICS OVER HIDDEN MARKOV CHAIN

In this section, we extend our framework to the setting of
a hidden Markov chain. The initial marginal distribution is
assumed to be known. In case the hidden states are linked
to the observations by a deterministic linear mapping, they
may be estimated in a similar fashion as in [17]. Here instead,
we consider the non-deterministic case where the available
observations emerge from the hidden distributions through
an observation probability matrix B ∈ Rn×m.

Equivalently to the mass transfer plans M , define the
observation matrix D ∈ Nn×m, with entries djk denoting the
number of particles that are in hidden state Xj and observed
in state Yk. Given a hidden state µ, the probability for any
observation matrix D is given by Pµ,B(D) as defined in (4).
Hence, the large deviation result in Proposition 1 holds for
D with rate function H(·|diag(µ)B).

Given an initial distribution µ0 ∈ Nn and a set of
measurements Φ1, . . . ,ΦT ∈ Nm, we seek the most likely
set of matrices M1, . . . ,MT and D1, . . . , DT such that for
some set of hidden distributions µ1, . . . , µT it holds that

Mt1 = µt−1, MT
t 1 = µt,

Dt1 = µt, DT
t 1 = Φt, for t = 1, . . . , T.

(8)

This model is illustrated in Figure 1. The maximum like-
lihood solution is obtained by solving the optimization
problem

maximize
M[1:T ],D[1:T ],µ[1:T ]

T∏
t=1

Pµt−1,A(Mt)Pµt,B(Dt)

subject to (8). From Proposition 1 it follows that

log

(
T∏
t=1

Pµt−1,A(Mt)Pµt,B(Dt)

)
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µ0 µ1 µ2 µT

Φ1 Φ2 ΦT

M1 M2 M3 MT

D1 D2 DT

Fig. 1: Illustration of the hidden Markov model correspond-
ing to (8).

can be approximated by

−
T∑
t=1

(
H(Mt | diag(µt−1)A) +H(Dt | diag(µt)B)

)
(9)

when the number of particles is large. We thus estimate the
matrices M1, . . . ,MT , D1, . . . , DT and the hidden states
µ1, . . . , µT by maximizing (9) subject to the constraints (8),
i.e., by solving

minimize
M[1:T ],D[1:T ],µ[1:T ]

T∑
t=1

H(Mt | diag(µt−1)A)

+

T∑
t=1

H(Dt | diag(µt)B)

subject to Mt1 = µt−1, MT
t 1 = µt

Dt1 = µt, DT
t 1 = Φt

for t = 1, . . . , T.

(10)

Remark 2: The modeling assumptions leading to this op-
timization problem require knowledge of the initial distri-
bution as well as the transition and observation probabilities
for the hidden Markov model. However, in practice these are
typically not known exactly. In the examples in Section V, we
illustrate that the estimation is accurate even when there are
significant model errors. The generalization of the proposed
method to the case where the initial distribution is not known
will be discussed in a forthcoming paper.

A. Computational method

In this section we develop a numerical method to solve
problem (10). To this end, recall from Remark 1 the connec-
tion between KL-minimization problems and entropy regu-
larized OMT problems. The latter can be efficiently solved
by Sinkhorn iterations [12], which in turn are equivalent to
a block coordinate ascent in a dual problem [23]. Motivated
by this, we choose to follow a similar approach.

Proposition 2: Let u1 ∈ Rn and vt ∈ Rm, for t =
1, . . . , T , be positive initial values, and iterate the following
steps:

(1) u1 = e1./(Aw1)
(2) vt = eΦt./

(
BT (yt � (Awt+1))

)
for t = 1, . . . , T ,

where in each step and for each t in step (2), the vectors yt
and wt are recursively defined as

y1 = AT (µ0 � u1),

yt = AT (yt−1 � (Bvt−1)) , t = 2, . . . , T

and

wT = BvT

wt = (Bvt)� (Awt+1), t = 1, . . . , T − 1.

In the limit point of the iteration, the estimates for the hidden
marginals are then recursively constructed, starting from the
known µ0, as

µt = diag(wt)A
T (µt−1./(Awt)) , t = 1, . . . , T.

Furthermore, the corresponding mass transfer matrices are
given by

Mt =
1

e
diag(µt−1 � ut)A diag(wt),

Dt =
1

e
diag(µt � xt)B diag(vt),

where
xt = e1./ (Bvt)

ut = e1./ (Awt)

for t = 1, . . . , T.
Proof: See appendix.

It is worth noting that intermediate results of the vec-
tors yt and wt may be stored, such that the update of
u1 requires only one matrix-vector multiplications with A,
and the update of vt, for any t = 1, . . . , T , involves two
multiplications with B and one with A. One iteration sweep,
i.e. one update of u1 and the set vt, for t = 1, . . . , T , thus
requires O(Tnmax(n,m)) operations.

V. SIMULATIONS

A. Particle dynamics

Consider a cloud of 1000 particles evolving from an initial
distribution µ0 ∈ Rn with n = 100 states. The particles
transition matrix is given by Ã ∈ Rn×n with elements

ãij ∼ exp

(
1

2σ2
ã

(i− j − 1)2

)
, with σã = 0.5,

which corresponds to a discretization of a normal distribution
N (1, 0.5), and thus induces a drift on the dynamics of the
cloud. The true dynamics of the particles are assumed to be
unknown and instead modeled by a transition matrix A ∈
Rn×n with elements

aij ∼ exp

(
1

2σ2
a

(i− j)2

)
, with σa = 2.

At each time instance, the particles are observed in m = 5
bins, where the observation probability matrix B ∈ Rn×m
has elements

bij ∼ exp

(
1

2σ2
b

(
j − i+ 10

20

)2
)
, with σb = 0.5.

We estimate the flow of the particles and hidden particle
distributions solving problem (10) for T = 50 time instances
with the method proposed in Proposition 2. One estimate
is formed using the true initial distribution µ0 as a prior
distribution, and for a second estimate we use a uniform
prior.
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Figure 2 shows the true hidden particle cloud, the corre-
sponding observations, and the two estimates. With full in-
formation of the initial states available, the proposed method
provides a good estimate of the hidden states despite discrep-
ancies between the true and assumed transition matrices Ã
and A. In the case of no prior information, i.e., the prior
distribution is set to be uniform, we see that the estimate
converges to the estimate with true prior within a few time
steps. This indicates that the proposed method is robust to
modeling uncertainties and lack of information in the initial
state.

B. Tracking ensembles over a network

In this example we consider the problem of tracking a
number of indistinguishable agents over a network given
measurements from sensors that are distributed around the
network. This is inspired by [13], where an HMM is used
to estimate the flow of a crowd in an urban environment
based on observations generated when cell phones connect
to Wi-Fi sensors. The environment is modeled as a network
of nodes and arcs, where the arcs represent walking paths
in the area and the nodes are the intersections between the
paths.

For this application, the optimization problem (10) needs
to be extended to allow for multiple measurements. To this
end, let Φst be a set of observations from measurement unit
s at time point t, for t = 1, . . . , T , and for s = 1, . . . , S.
We obtain the maximum likelihood solution as the optimal
solution to1

minimize
M[1:T ],D[1:T ],[1:S],µ[1:T ]

T∑
t=1

H(Mt | diag(µt−1)A)

+

T∑
t=1

S∑
s=1

H(Dst | diag(µt)Bs)

subject to Mt1 = µt−1, MT
t 1 = µt (11)

Dst1 = µt, DT
st1 = Φst

for t = 1, . . . , T, and s = 1, . . . , S.

Consider a hidden Markov model where the states X =
{X1, . . . , Xn} are the edges in the directed graph G =
(V,X), and where the edge Xi = (V in

i , V
out
i ) goes from

V in
i ∈ V to V out

i ∈ V . In this example we will use the
graph illustrated in Figure 3, consisting of 11 nodes and
n = 28 edges. For the true model, transition probabilities
are defined according to weights in the graph that represent
which walking paths are preferred by the pedestrians. For the
model used in the estimation we assume that this information
is not known and use uniform weights. More specifically, the

1This is a convex optimization problem which in principle can be solved
with off-the-shelf solvers. In this example we use an efficient algorithm in
the spirit of Proposition 2, but due to lack of space we defer the exact
algorithm to a forthcoming paper.

True states
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Time
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Observations

10 20 30 40

Time

S
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Estimation with true prior

10 20 30 40 50

Time

S
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te

Estimation with uniform prior

10 20 30 40 50

Time

S
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Fig. 2: Particle cloud reconstructed from observations.

Fig. 3: Network and sensors.

transition probabilities are given by

ãij =



0.5, if j = i

0.5wij

 ∑
{k:V in

k =V out
i }

wik

−1

if V in
j = V out

i

0, else,

where {wij} is a set of weights. For the transition matrix A
used in the estimation we assign uniform weights wij = 1,
for all (i, j) with V in

j = V out
i . For the true transitions the

weights are defined as

wij =


20, Xj ∈ W and V out

j 6= V in
i

0, V out
j = V in

i

1, else,

for (i, j) such that V in
j = V out

i , and where W is the set
of edges highlighted in Figure 3. Note that the second case
implies that agents do not transition to the reverse edge in
the next time step.

The agents are observed by a set of S = 7 sensors
located at the positions indicated in Figure 3. The observation
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Fig. 4: Ensemble flow over network.

probability for an agent on edge Xi to be detected by a
given sensor s is defined as bsi1 = min(0.99, 2e−5d), where
d denotes the Euclidean distance between the location of s
and the midpoint of Xi. Consequently the probability of not
being detected is bsi2 = 1− bsi1.

Given an initial distribution of 100 agents on the edge
(1, 3), the flow and the measurements for the true ensemble
are computed for T = 20 time steps using the true transition
and observation probabilities. Then we estimate the flow by
solving the optimization problem (11). The true and esti-
mated particle distributions are compared for some time steps
in Figure 4, where the width of each edge is proportional to
the number of agents on it. As can be seen in the figure
the proposed method provides a good estimate also for this
example.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we propose a method for estimating the flow
of an ensemble of particles on a hidden Markov chain. The
estimation, which is formulated as a maximum likelihood
problem, can be recast as a convex optimization problem,
for which we provide an efficient algorithm.

There are several natural directions in which this work
can be extended. One restriction in this paper is that the
number of agents are fixed and known, thus extensions with
a variable number of particles, such as birth/death processes,
could be of interest (cf. [14]). Furthermore, the model may
be extended to continuous-state dynamics. Another natural
direction is to study the connections to reciprocal processes.

APPENDIX

A. Proof of Proposition 1

Let µ(N)
0 and M (N) be as described in the statement of

the proposition. Moreover, let Z(N) = {(i, j) | m(N)
ij 6= 0},

which is non-empty, and let Z(N)
i = {j | (i, j) ∈ Z(N)},

which is non-empty if and only if (µ
(N)
0 )i > 0. Furthermore,

let Y(N) = {i | (µ(N)
0 )i > 0}. Then, using Stirling’s formula

√
2πnn−1/2e−n ≤ n! ≤ enn−1/2e−n,

see, e.g., [30], for i ∈ Y(N) the multinomial coefficient in
(4) can be bounded from above by

(
(µ

(N)
0 )i

m
(N)
i1 ,m

(N)
i2 , . . . ,m

(N)
in

)
≤ e−(|Z(N)

i |−1) exp

( ∑
j∈Z(N)

i

m
(N)
ij − (µ

(N)
0 )i

)

· (µ(N)
0 )

(µ
(N)
0 )i+

1
2

i

∏
j∈Z(N)

i

(m
(N)
ij )−(m

(N)
ij + 1

2 )

≤ (µ
(N)
0 )

(µ
(N)
0 )i+

1
2

i

∏
j∈Z(N)

i

(m
(N)
ij )−(m

(N)
ij + 1

2 ),

where |Z(N)
i | denotes the cardinality of the set, and where the

second inequality follows from the fact that
∑
j∈Z(N)

i
mij =∑n

j=1mij = (µ0)i, and that e−(|Z(N)
i |−1) ≤ 1. Thus, the log-

likelihood of the probability for a transfer plan M (N) can be
upper-bounded as follows:

log
(
P
µ
(N)
0 ,A

(M (N))
)

≤
∑

(i,j)∈Z(N)

(
m

(N)
ij log(aij)−

(
m

(N)
ij +

1

2

)
log(m

(N)
ij )

)

+
∑

i∈Y(N)

(
(µ

(N)
0 )i +

1

2

)
log((µ

(N)
0 )i)

=
∑

(i,j)∈Z(N)

(
m

(N)
ij log

(
(µ

(N)
0 )iaij

m
(N)
ij

))

−
∑

(i,j)∈Z(N)

1

2
log(m

(N)
ij ) +

∑
i∈Y(N)

1

2
log((µ

(N)
0 )i)

≤ −H
(
M (N),diag(µ

(N)
0 )A

)
+
n

2
log(N),

where the last inequality comes from the second-to-last
expression by i) identifying the first term as the KL diver-
gence, ii) noting that the second term is nonpositive, and iii)
overestimating the third term by taking (µ

(N)
0 )i = N for

i = 1, . . . , n.
Similarly, underestimating the multinomial coefficients
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gives that the log-likelihood can be bounded from below by

log
(
P
µ
(N)
0 ,A

(M (N))
)

≥
∑

(i,j)∈Z(N)

(
m

(N)
ij log

(
(µ

(N)
0 )iaij

m
(N)
ij

)
− 1

2
log(m

(N)
ij )

)

+
∑

i∈Y(N)

1

2
log((µ

(N)
0 )i)−

1

2
n(n− 1) log(2π)

≥ −H
(
M (N),diag(µ

(N)
0 )A

)
− 1

2

(
n2 +

n(n− 1) log(2π)

log(N)

)
log(N).

By using the two inequalities, the result follows.

B. Proof of Proposition 2

We solve (10) by a block coordinate ascent in the
dual. First note that since µ0, A, B, and Φt are all
elementwise nonnegative, so will the optimal solution
M∗[1:T ], D

∗
[1:T ], µ

∗
[1:T ] also be. We can therefore add the

constraint µ[1:T ] ≥ 0 to (10) without changing the optimal
solution. For this problem, we relax the constraints in (10)
with corresponding dual variables λMt

, νMt
, λDt

, νDt
. Let

M := M[1:T ], D := D[1:T ], and define the Lagrangian

L(M,D, µ[1:T ], λM, νM, λD, νD)

=

T∑
t=1

(∑
ij

mt
ij log

( mt
ij

µt−1
i aij

)
+ λTMt

(µt−1 −Mt1)

+ νMt
(µt −MT

t 1) +
∑
ij

dtij log
( dtij
µtibij

)
+ λTDt

(µt −Dt1) + νDt
(Φt −DT

t 1)

)
.

Minimizing this with respect to the matrices Mt and Dt

gives explicit expressions for the optimal solution in terms
of µ[0:T ] and the dual variables, i.e.,

Mt =
1

e
diag(µt−1 � ut)Adiag(wt),

Dt =
1

e
diag(µt � xt)B diag(vt),

where ut = exp(λMt
), wt = exp(νMt

), xt = exp(λDt
) and

vt = exp(νDt), for t = 1, . . . , T . Plugging these into the
Lagrangian, we get the modified Lagrangian

L(µ[1:T ], uM, wM, xD, vD) = −1

e

T∑
t=1

(µt−1 � ut)TAwt

− 1

e

T∑
t=1

(µt � xt)TBvt + log(u1)Tµ0

+

T−1∑
t=1

µTt (log(ut+1) + log(wt) + log(xt))

+ µTT (log(wT ) + log(xT )) +

T∑
t=1

log(vt)
TΦt.

Noting that since µ[1:T ] occurs linearly in L, for the modified
dual functional infµ[1:T ]≥0 L(µ[1:T ], λM, νM, λD, νD) to be
bounded from below, the corresponding factors need to be
elementwise nonnegative. In this case the corresponding
terms will be zero when taking the infimum, and thus the
dual problem is to maximize

− 1

e
(µ0 � u1)TAw1 + log(u1)Tµ0 +

T∑
t=1

log(vt)
TΦt (12)

subject to

−1

e
diag(ut+1)Awt+1 −

1

e
diag(xt)Bvt

+ log(ut+1) + log(xt) + log(wt) ≥ 0
(13)

for t = 1, . . . , T − 1, and

− 1

e
diag(xT )BvT + log(xT ) + log(wT ) ≥ 0. (14)

Note that neither the objective function (12), nor the first
T−1 constraints (13) depend on xT . Thus the optimal choice
of xT is the one creating the most slack in the last constraint,
i.e., the one maximizing the first two terms of (14). This is
achieved by xT = e1./(BvT ), and for this choice of xT the
constraint (14) can be replaced by

− log(BvT ) + log(wT ) ≥ 0. (15)

Similarly, the slack in (13) is maximized by selecting

xt = e1./ (Bvt) , t = 1, . . . , T

ut = e1./ (Awt) , t = 2, . . . , T.

and thus the constraints (13) can be replaced by

− log(Awt+1)− log(Bvt) + log(wt) ≥ 0, (16)

for t = 1, . . . , T−1. Next, note that if some of the constraints
(15) and (16) are not fulfilled with equality, the objective
function (12) can be improved by increasing the values of
the corresponding vt. Therefore, in an optimal point we must
have that

wT = BvT

wt = (Bvt)� (Awt+1) for t = T − 1, . . . , 1.

This gives an expression for w1, that depends on vt, t =
1, . . . , T . Inserting this into the objective (12) leads to an
unconstrained problem that depends only on u1 and vt, t =
1, . . . , T , which we solve using block coordinate ascent. To
this end, the unconstrained objective is first maximized with
respect to u1, which gives

u1 = e1./(Aw1).

Further, note that the gradient of the unconstrained objective
with respect to vt is

−1

e
�
(
BT (yt �Awt+1)

)
+ Φt./vt,

where yt is defined by the recursion

y1 = AT (µ0 � u1),

yt = AT (yt−1 � (Bvt−1)), t = 2, . . . , T.
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Hence, maximization with respect to vt is achieved by

vt = eΦt./
(
BT (yt �Awt+1)

)
.

As the unconstrained problem is convex and the objective
function continuously differentiable, the block coordinate
ascent method converges [3, Prop. 2.7.1]. In the limit point,
the hidden marginals can be reconstructed from

µt = MT
t 1 =

1

e
diag(wt)A

T (µt−1 � ut)

= diag(wt)A
T (µt−1./(Awt)).
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