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Recent studies suggest that seafloor hydrothermal vents could be an important source of iron (Fe)
to the surface ocean, stimulating plankton growth and biological carbon export. However, quantifying
the supply of hydrothermal Fe to the surface ocean requires accurately modeling its stabilization and
removal processes, which are poorly known. Here, we determine the physical speciation of dissolved Fe
along an oceanographic transect following a coherent hydrothermal plume that emanates from the East
Pacific Rise (EPR) and persists westward over 4,000 km in the Tropical South Pacific. Our observations
show that the plume persists horizontally, but descends vertically, and consists primarily of very
large Fe colloids. Guided by these observations, we develop a new size-resolved mechanistic model of
hydrothermal Fe dispersion in this region, in which the stabilization of hydrothermal Fe is explained by a
reversible particulate exchange process. This model accurately captures the lateral dispersion, downward
settling and physical speciation of hydrothermal Fe along this transect. An alternate model that uses a
hydrothermal source of Fe-binding ligands to facilitate Fe transport within the deep ocean can reproduce
the long-range transport of hydrothermal Fe, but does not reproduce the vertical descent of the plume.
Our model shows that hydrothermal Fe vented from the EPR is trapped in the deep ocean, and only
1% of this iron ever makes it to the surface where it can stimulate biological productivity. At the global
scale, 3-5% of hydrothermal Fe makes it to the surface ocean, the vast majority of which originates from
Southern Ocean vents and upwells in the Southern Ocean. Our best estimate of the global supply of
hydrothermal Fe to the surface ocean, based on data-constrained estimates of ocean circulation, mantle
3He venting, and the hydrothermal Fe:3He ratio from the EPR, is 0.12 + 0.07 Gmolyr~!. This is about
60-70 times lower than the supply of Fe from aerosol dust deposition, but could be regionally important
in the Antarctic zone of the Southern Ocean.
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et al., 2015; Fitzsimmons et al., 2014, 2017), and models suggest
that this iron could provide a significant boost to marine produc-
tivity, particularly in the Fe-limited Southern Ocean (Resing et al.,

1. Introduction

Ocean productivity is limited by iron (Fe) in many nutrient-rich

ocean regions, such as the Southern Ocean and equatorial and sub-
arctic Pacific (Boyd et al., 2007; Moore et al., 2013; Tagliabue et al.,
2017). These remote regions receive little of the wind-blown conti-
nental dust that constitutes the primary source of Fe to most of the
surface ocean, and therefore plankton in these regions rely primar-
ily on Fe from subsurface sources (Tagliabue et al., 2014; Tagliabue
and Resing, 2016). Recent studies have demonstrated long-range
transport of dissolved hydrothermal Fe in the deep ocean (Resing
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2015; Tagliabue and Resing, 2016).

In this study, we evaluate the transport of hydrothermal dis-
solved Fe within the deep ocean, and its capacity to reach the
surface ocean, by measuring and modeling the physical speciation
of dissolved Fe along the GEOTRACES GP16 zonal transect in the
Tropical South Pacific (Moffett and German, 2018). The western
half of this transect follows a well-known basin-scale Fe plume
emanating hydrothermal vents along the East Pacific Rise (EPR;
Fig. 1), and offers the first simultaneous observations of hydrother-
mal Fe in both nearfield and farfield hydrothermal plumes. Iron
cycle models have been unable to reproduce the predominantly
westward propagation and vertical descent of this hydrothermal
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plume (Tagliabue et al.,, 2016), leaving large uncertainties on the
supply of hydrothermal Fe from the EPR to the surface ocean.

Using new observations of the detailed size speciation of dis-
solved Fe within the hydrothermal plume (Section 3.1), we develop
a new model of hydrothermal Fe dispersion. The model predicts
that the stabilization and slow settling of hydrothermal Fe is due
to reversible scavenging of hydrothermal Fe by sinking organic par-
ticles, in which inorganic iron colloids released from hydrothermal
vents is gradually transformed to ligand-bound organic Fe in the
farfield hydrothermal plume (Section 3.2). The overall effect of the
reversible exchange process is to trap hydrothermal Fe released
from EPR vents in deep water masses, severely limiting its supply
to the surface and confining its impact to the Antarctic region of
the Southern Ocean (Section 3.3). When extrapolated globally, our
model predicts that only hydrothermal vents from Southern Ocean
ridge system can supply significant amounts of hydrothermal Fe to
the surface (Section 4). We close by discussing future research av-
enues that can better constrain the role of hydrothermal Fe sources
in the global marine Fe cycle (Section 5).

2. Sampling and analysis

Trace metal samples were collected onboard RV Thompson in
the late 2013 in the Tropical South Pacific using the US GEO-
TRACES sampling protocol (Moffett and German, 2018; the tran-
sect is known as GP16 and the station locations along its west-
ern portion are shown in Fig. 1A). Samples were initially filtered
through 0.2- pm Acropak™ capsule filters. Aliquots of those fil-
tered samples were ultra-filtered applying a Cross Flow Filtration
(CFF) technique on board the ship (Roshan and Wu, 2018). CFF cas-
settes (cutoff sizes of 5, 10, 30, and 300 kDa) were purchased from
Pellicon™ and cleaned using 10 L of trace-metal grade nitric acid
(HNO3) with pH 1.5 in a trace-metal clean laboratory before going
to sea. Peristaltic pumps and Teflon tubing were used to flush the
samples though filters. Each size cutoff filtration was conducted on
separately-sub-sampled aliquots. Between samples, the ultrafiltra-
tion devices were restored and cleaned using pH ~ 1.5 ultra-clean
hydrochloric acid (HCl) (20 min, flow rate = 5 mlmin—!), neutral-
ized using deionized water (resistivity = 18.2 M; 20 min, flow
rate = 5 mlmin—!), and preconditioned using the same sample
before collection (15 min, flow rate = 5 mlmin~!). All the trace
metal grade acids used in this study were purified using an in-
house all-Teflon distillation unit purchased from Savillex™. All the
filtered (0.2 pm) and ultra-filtered (5, 10, 30, and 300 kDa) seawa-
ter samples were stored in pre-cleaned LDPE bottles. After trans-
portation to the inland lab (at the University of Miami), samples
were acidified (to pH~ 1.8) using trace metal grade concentrated
HNOj3 and stored at room temperature for at least 2 months prior
to analyses.

Total dissolved and ultra-filtered samples were determined
for Fe, Mn and Cu concentrations using a magnesium hydroxide
(Mg(OH),) co-precipitation technique coupled to an inductively-
coupled plasma mass spectrometer purchased from Thermo
Scientific™. The efficiency of the co-precipitation step was quanti-
fied using an isotope dilution technique for Fe and Cu (i.e., spiking
the samples with >7Fe and 8°Cu isotopes before starting the entire
process), and a recovery calibration curve technique for Mn (i.e.,
using >7Fe, >2Cr and *°Co to construct calibration curves based on
standard seawater samples; details can be found in Wu and Boyle
(1998) and Wu et al. (2014)). The standard deviation among the
replicates (2 or 3) was ~0.03 nM for the total dissolved Fe and
~0.02 nM for soluble (i.e., ultra-filtrated) Fe. Colloidal Fe concen-
trations were determined by residual, and assuming independent
errors have an uncertainty of ~0.035 nM.

3. Results
3.1. Characteristics of the East Pacific Rise hydrothermal Fe plume

The western portion of the GP16 transect follows one of the
most distinctive and well-studied hydrothermal Fe plumes in the
ocean, emanating from the Southern East Pacific Rise (SEPR) at
2,500 m depth. The primary hydrographic signature of the plume
is a core of elevated §3He (Fig. 1A), which results from the input
of 3He-rich hydrothermal fluids from active vents along the SEPR
(Jenkins et al., 2018). The §3He plume is advected westward with
the prevailing currents at this latitude in the deep Southeast Pacific
(Stommel, 1982), and extends over 4,000 km (Fig. 1A). Coincident
with the plume of elevated §3He is a striking plume of elevated
dissolved Fe (Fig. 1B), presumed to originate from the same hy-
drothermal vents along the SEPR (Resing et al., 2015; Fitzsimmons
et al, 2017). However, unlike the 3He plume, which retains its
symmetry around the 2,500 m depth horizon as it mixes with the
surrounding seawater (Fig. 1A), the core of the dissolved Fe plume
becomes deeper with distance from the vent (Fig. 1B).

The features of this hydrothermal Fe plume, including its distal
extent and vertical descent, have been described previously (Resing
et al., 2015; Fitzsimmons et al., 2017). Here, we expand on the in-
sights of these previous studies by performing multi-cutoff molec-
ular weight-partitioning to reveal the detailed size spectrum of
dissolved Fe in the plume, between ~2000-3000 m depth (Fig. 2).
We find that the size spectrum of dissolved Fe in the plume is
bimodal, with almost all dissolved Fe occurring as either large col-
loids (>300 kDa, where 1 Da = 1 gmol~!) or as truly soluble
Fe (<5 kDa) (Fig. 2). We found very little dissolved Fe in the in-
termediate size classes, suggesting that dissolved Fe in the plume
is composed of two very distinct Fe species. The size partitioning
of dissolved Fe is coherent throughout the plume, displaying little
spatial variation (Suppl. Fig. 2).

We determine that, on average, 73 £+ 15% of the dissolved Fe
in the western portion of the GP16 transect occurs in the colloidal
size class, >10 kDa (Fig. 1C). This proportion agrees with that de-
termined by Fitzsimmons et al. (2017) for the same transect. The
maximum concentration of Fe colloids is offset downward by ~400
m from 110° W to 150° W (Fig. 1C; compare the distribution with
the horizontal line drawn at 2,500 m), with a distribution very
similar to that of total dissolved Fe (Fig. 1B). The smaller and less
concentrated species of soluble Fe does not exhibit the same co-
herence in the plume, but its maximum concentration also appears
to be slightly deeper than 2,500 m in the far-field plume (Fig. 1D).

While the detailed size spectrum of dissolved Fe in the hy-
drothermal plume suggests two distinct dissolved Fe species, it
does not reveal the exact chemical composition of the Fe. Com-
paring the size fractionation of Fe in the plume with that of other
metals may shed some light on the chemical characteristics of the
hydrothermal Fe species. Thus, in addition to Fe, we also measured
the detailed size speciation of manganese (Mn) and copper (Cu) in
the hydrothermal plume (Fig. 2). Dissolved Mn occurs almost ex-
clusively as truly-soluble species (Fig. 2), most likely as inorganic
Mn(Il) (Stumm and Morgan, 1996), and is dispersed away from the
hydrothermal vent without descending at all (Suppl. Fig. 3). This
indicates that the descent of Fe (including truly-soluble Fe) may
reflect some association with organic matter. Copper is completely
organic-associated and does not have a hydrothermal source along
the GP16 transect (Roshan and Wu, 2018). It also has a bimodal
size distribution (Fig. 2) and occurs as ~40% large colloids and
~60% truly soluble Cu (Roshan and Wu, 2018). Since the type of
organic matter that can bind to Cu and Fe appear to be similar
(Martell and Smith, 2013; Abualhaija et al., 2015), it is reasonable
to infer that some Fe in the plume is also organically-bound. How-
ever, the much larger fraction of Fe in the large colloidal phase,
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Fig. 1. Measured distributions of (A) $*He (defined as ((*He/*He)sample/(*He/*He)ir - 1)x100)), (B) total dissolved Fe (<0.2 pm), (C) colloidal Fe (10 kDa - 0.2 pm) and (D)
soluble Fe (<10 kDa) along the western portion of the GP16 transect (location shown by black circles and line in the inset plot of panel A). The data has been first binned
to the coarse grid of our ocean circulation model and then interpolated using Ocean Data View (Schlitzer, 2016) for comparison with our model results (Fig. 4). See Suppl.
Fig. 1 for locations of original measurements. The inset plot in panel A displays a color map of ocean bottom topography with respect to the sea surface in meters (negative
downwards). The continuous meridional segment with bottom depth of ~2,500 m (yellowish hue) at the east of the transect shows the location of the Southern East Pacific
Rise. Color maps were created using Ocean Data View (Schlitzer, 2016). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this

article.)

compared to Cu, suggests that inorganic species also contribute
to large Fe colloids. Based on these observations, we hypothesize
that large Fe colloids consists of both organic and inorganic phases,
while the soluble Fe species are all organic-bound plus some truly-
soluble inorganic species.

In all, these observations support the inferences of Fitzsimmons
et al. (2017) that Fe emerges as inorganic Fe colloids from hy-
drothermal vents, and in the farfield is transformed to organic Fe
and gradually settles due to reversible exchange with organic par-
ticles. Elevated concentrations of soluble Fe in the hydrothermal
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Fig. 2. Fraction of dissolved Fe, Mn and Cu in different molecular weight or size classes. Data are from the core of the hydrothermal plume at 2,200-2,800 m along the
western portion of the GP16 transect (Fig. 1A inset). Error bars represent the standard deviation among all the ultra-filtered samples in that depth range.
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Fig. 3. Schematic of our hydrothermal dissolved Fe model (not to scale). The diagram shows the proposed processes influencing hydrothermal dissolved Fe after its release
from vents as iron oxyhydroxide colloids (FeOH). The model simulates both FeOH and organic Fe (FeOr = FeL + Fe’ where FeL » Fe’) simultaneously. The reversible exchange
of FeOH and FeL (the major fraction of FeOr) with sinking particulate organic carbon (POC; shown as funnels) is the main process explaining the distal transport and vertical
descent of hydrothermal dissolved Fe, which takes place throughout the ocean. FeOH is also dense enough to sink slowly. Removal of hydrothermal Fe via scavenging and/or
precipitation of free Fe’ ions, by aggregation of FeL molecules, and by burial of Fe that is adsorbed onto POC also takes place throughout the ocean (represented by downward
arrows on the left side of the schematic). Hydrothermal Fe that escapes these fates can be transported to the surface to fuel biological productivity.

plume (Fig. 1D) also clearly support the dissolution of colloidal Fe
to soluble Fe. Based on these inferences, we propose a new model
of hydrothermal Fe dispersion in Section 3.2.

3.2. A data-constrained mechanistic model of hydrothermal Fe
dynamics

Based on the inferences in Section 3.1 we propose a new
mechanistic model of hydrothermal Fe cycling, which is illustrated
schematically in Fig. 3. In this model, the Fe vented from hy-
drothermal systems occurs as inorganic Fe colloids. The processes
creating these inorganic colloids occur at the subgrid scale and are
not explicitly represented in the model. At the subgrid scale, Fe(II)
in hot and acidic hydrothermal fluid rapidly oxidizes to insoluble
Fe(Ill) at the initial stages of plume mixing with oxygenated sea-
water. Insoluble Fe(IlI) is swiftly converted to inorganic Fe particles
(Rudnicki and Elderfield, 1993), with a fraction remaining in the
dissolved phase as large colloids. This colloidal Fe is the ultimate
source of hydrothermal Fe in our model, and is dense and quasi-
stable without assistance from organic ligands (Yiicel et al., 2011;
Feely et al., 1996). Following Fitzsimmons et al. (2017), we refer to
these inorganic Fe colloids as iron oxyhydroxide (FeOH), since neg-

ligible particulate sulfur can be found in the SEPR hydrothermal
plume (FeS is the other major constituent of hydrothermal inor-
ganic iron) (Yicel et al., 2011; Hoffman et al., 2018).

Upon release from hydrothermal vents, these FeOH colloids may
persist in the water column as they drift slowly downwards due to
their high density and large size. FeOH colloids may also reversibly
exchange with sinking organic particles, or they may be dissolved
into free Fe ions (Cullen et al., 2006). These free Fe ions (Fe’) may
in turn form complexes with naturally-occurring organic ligands
(FeL complexes), or they may undergo irreversible removal via pre-
cipitation or scavenging, after which it is assumed that this iron
is not available to re-enter the dissolved pool (Fig. 3). Dissolved
Fe is also removed when particle-bound FeL and FeOH deposit on
the seafloor (Fig. 3). An equilibrated reversible exchange of seawa-
ter FeOH and FeL with the background biogenic particulate organic
carbon (POC; represented as funnels in Fig. 3) allows hydrother-
mal Fe to slowly descend in the water column. In all, our model
carries two dissolved Fe tracers, inorganic Fe (FeOH) and organic
Fe (FeOr, which is the sum of Fe’ and FeL). Additional details and
model equations can be found in the Supplementary Materials.

We implemented this hydrothermal Fe model in a global
steady-state ocean circulation inverse model (DeVries and Holzer,
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2019). The circulation model has a resolution of 2° in the horizon-
tal with 24 vertical levels, ranging in thickness from ~30 m near
the surface to ~500 m in the deep ocean, and has been optimized
to closely reproduce the distribution of five circulation tracers: po-
tential temperature, salinity, radiocarbon (A14C), CFC-11, and §3He
(DeVries and Holzer, 2019). The model also provides an estimate
of mantle 3He venting rates from mid-ocean ridges (DeVries and
Holzer, 2019), which we use to simulate hydrothermal Fe sources
using a constant Fe:3He ratio. The modeled §3He shows excellent
agreement with the observations along the GP16 transect (Fig. 4A;
R = 0.98) and in other ocean regions (DeVries and Holzer, 2019).
The circulation model is used offline to provide the physical trans-
port of dissolved Fe in our model. We use five different variants
of the model which differ in terms of their subgrid diffusivities
(DeVries and Holzer, 2019), in order to estimate uncertainties in-
troduced by ocean circulation in our model.

Our Fe model simulates the venting and dispersion of hy-
drothermal Fe emitted from all mid-ocean ridges, just like previous
3-dimensional global Fe models (e.g. Resing et al., 2015), but does
not include Fe from any other sources. Our model has twelve un-
certain parameters, and we use our size-resolved dissolved Fe data
from the GP16 transect (Fig. 1) to estimate the values of these
parameters where possible. Six of the parameters are specifically
related to the behavior of hydrothermal Fe and can be indepen-
dently constrained using our dissolved Fe observations, so we refer
to these parameters as “control parameters”. The other six param-
eters are related to the generic Fe cycle and cannot be constrained
using our dissolved Fe observations, and we refer to these pa-
rameters as “hyperparameters” (see Suppl. Fig. 4). After fixing the
hyperparameters at reasonable values, we used a genetic algorithm
to find the set of control parameters that minimized the misfit be-
tween our modeled soluble and colloidal hydrothermal Fe, and the
observations shown in Fig. 1. We repeated this optimization 64
times using the control (CTL) version of our circulation model (De-
Vries and Holzer, 2019), each time using a different combination of
hyperparameters that were varied within realistic ranges. We then
combined these 64 different parameter sets with the five different
variants of our circulation model, to produce 320 unique simu-
lations of hydrothermal Fe. These simulations are used to report
uncertainties on the quantities calculated with our model, which
reflect the standard deviation across these 320 simulations. Further
information on the model parameters and optimization scheme is
provided in the Supplementary Material.

The optimization was able to find parameters that allow an ex-
cellent agreement between the modeled and observed Fe along the
GP16 transect (Fig. 4; R = 0.88 for the mean of our 64 different
optimized models). The model captures all of the main features
of the observations, including the westward advection of the hy-
drothermal Fe plume, the vertical descent of the Fe plume, and
the bimodal peak in dissolved Fe with local maxima at both 115°
W and 125° W (Fig. 4B, c.f. Fig. 1B). The model fidelity to the col-
loidal Fe data (Fig. 4C, c.f. Fig. 1C) is better than that to the soluble
Fe data (Fig. 4D, c.f. Fig. 1D), which is expected given the larger
uncertainty to variability ratio associated with the soluble Fe mea-
surements (see section 2). The model slightly underestimates solu-
ble Fe above the core of the hydrothermal plume, while it slightly
overestimates soluble Fe below the core of the plume (Fig. 4D, c.f.
Fig. 1D), indicating that the settling of soluble Fe (driven by the
reversible scavenging of Fe colloids and their dissolution to solu-
ble Fe) may be slightly overestimated in the model. In all other
respects the model is close to the observations.

Our model also predicts changes in the chemical speciation of
hydrothermal dissolved Fe along the GP16 transect (Fig. 5). Near
the hydrothermal vents along the EPR, the plume is composed pri-
marily of inorganic FeOH that is released from the vents (Fig. 5A).
A secondary maximum of FeOH at ~125° W indicates FeOH re-

leased from upstream vents along the EPR and circulated to the
transect, a feature also seen in the §3He data along this tran-
sect (Jenkins et al., 2018). West of ~125° W, the plume becomes
dominated by organic Fe (FeOr), which comprises ~70-80% of the
dissolved Fe in the far western part of the transect (Fig. 5B, C).
At ~150° W, the core of the FeOH plume is found at ~3,000 m,
about 500 m below the EPR vent depths (Fig. 5A), while the core of
the FeOr plume is only slightly below 2,500 m (Fig. 5B). This indi-
cates that the downward settling of the hydrothermal Fe plume in
our model is driven primarily by FeOH. Our optimization finds that
the adsorption coefficient for FeOH is roughly 10 times larger than
that for FeL (Suppl. Fig. 4), which allows FeOH to be more strongly
scavenged by sinking particles than FeOr, and to be brought deeper
into the water column.

3.3. Fate of hydrothermal Fe released from the East Pacific Rise

Our optimized model diagnoses a Fe:*He ratio of 64 + 0.7
nmol Fe:fmol 3He, which is slightly lower than the value of 7.5
+ 0.8 nmol Fe:fmol 3He determined by Resing et al. (2015) from
their dissolved Fe measurements in the plume. Using the mantle
3He source map of DeVries and Holzer (2019) yields a Fe hy-
drothermal input rate of 1.5 + 0.2 Gmolyr~! from the EPR vents
(Table 1). Once released from the vents of the EPR, hydrothermal
Fe is stabilized by reversible scavenging onto sinking organic par-
ticles, which aid in the distal transport of hydrothermal Fe. Our
model shows that hydrothermal Fe from EPR vents is transported
throughout the deep Pacific Ocean (Fig. 6A). In addition to pro-
moting long-range transport of hydrothermal Fe away from vent
locations, reversible scavenging also slowly settles hydrothermal Fe
to the deep ocean, where it enters the densest waters of the deep
ocean (Fig. 6B).

The settling effect of reversible scavenging can be seen by com-
paring the distribution of EPR-vented hydrothermal Fe in our re-
versible exchange model, with that from a previously-hypothesized
model in which hydrothermal Fe is stabilized by organic ligands
produced at hydrothermal vent sites (Resing et al., 2015; Tagliabue
and Resing, 2016; Sander and Koschinsky, 2011). We implemented
such a model in our ocean circulation framework, and optimized it
following the same procedure as that for our reversible exchange
model (see Supplementary Materials for details). Both our “re-
versible scavenging” model, and the previously-hypothesized “hy-
drothermal ligand” model, predict that hydrothermal Fe released
from EPR vents can build up to significant concentrations (~0.1-
0.6 nmol/kg) in the deep Pacific Ocean for equivalent input rates,
and can be transported across the entire basin (Fig. 6A and C).
However, the hydrothermal ligand model cannot reproduce the ob-
served descent of the hydrothermal Fe plume (Suppl. Fig. 5), and
the vertical distribution of hydrothermal Fe differs from that of
the reversible scavenging model (Fig. 6B and D). The hydrother-
mal ligand model predicts high Fe concentrations confined to
mid-depths and intermediate waters (~2,500 m depth) (Fig. 6D),
while the reversible scavenging model also predicts significant
amounts of hydrothermal Fe in the deep ocean below 2,500 m
depth (Fig. 6B).

The vertical distribution of hydrothermal Fe has important im-
plications for how and where this Fe may ultimately reach surface-
dwelling plankton and stimulate biological productivity. Intermedi-
ate waters generally have shorter transit times to the surface and
upwell in multiple regions such as the equator, North Pacific, and
Southern Ocean, whereas deep Pacific waters experience longer
transit times to the surface and upwell almost exclusively in the
Southern Ocean (DeVries and Primeau, 2011). Ultimately, of the
1.5 £ 0.2 Gmolyr~! of Fe released from EPR vents, our simula-
tions with the reversible scavenging model show that only 0.017
+ 0.015 Gmolyr~! reaches the surface ocean, with roughly 90% of
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Fig. 4. Distributions of modeled §3He (A), total dissolved Fe (B), colloidal Fe (C) and soluble Fe (D) along the western segment of the GP16 transect (locations shown in
Fig. 1). Results are the average of 64 different optimized versions of our reversible exchange model of hydrothermal Fe. The right-hand panels in each row compare the
modeled and observed (see Fig. 1) quantities along the transect, with colors indicating depth, for observations below 1,000 m. R values represent the correlation coefficient
between modeled and observed concentrations. The model is able to reproduce both the distal transport and vertical descent of the plume, with the depth of maximum Fe
concentration increasing west of the vent location at 2,500 m depth (marked by dashed orange lines). The color map settings (e.g., range and spectra) are identical to those
of Fig. 1A-D. Color maps were created using Ocean Data View (Schlitzer, 2016).

this in the Southern Ocean (Table 1). The remainder is removed The total amount of hydrothermal Fe reaching the surface from

via various mechanisms such as precipitation or scavenging of free EPR vents is two orders of magnitude smaller than Fe deposited
from aeolian dust, which is ~6-8 Gmolyr—! (Mahowald et al,

2009; Scanza et al., 2018). In the Southern Ocean, dust deposition

Fe, aggregation of FeL complexes, or burial of FeOH adsorbed onto
sinking organic particles (Suppl. Table 1).
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Table 1
Estimates of hydrothermal Fe venting rates and supply to the surface ocean in reversible exchange model.
Vent System Venting rate Amount reaching surface Percentage in the
(Gmolyr—1)? (Gmolyr—1)° Southern Ocean®
East Pacific Rise 1.5+02 0.017 £ 0.015 90 + 9%
0.8 £ 0.1 0.015 £ 0.012 94 + 6%
12+ 04 0.016 £+ 0.014 92 + 6%
Southern Ocean 09 £ 0.1 0.05 + 0.04 99 + 2%
21 +£0.2 0.14 £+ 0.07 99 + 2%
1.5+ 06 0.10 £+ 0.07 99 + 2%
Global 39 £ 05 0.12 £ 0.07 82 + 5%
52 + 0.6 0.28 + 0.15 75 £ 7%
46 + 0.8 0.20 + 0.14 78 £ 7%

2 Based on mantle 3He venting rates from DeVries and Holzer (2019) (top row for each vent system) and Holzer et al. (2017) (middle row
for each vent system) and our optimized Fe:3He ratio of 6.4 & 0.7 for SEPR ridge vents. Bottom row for each vent system is the average of
the first two rows.

b Based on 320 different simulations using our reversible exchange hydrothermal Fe model and 5 different circulation models from DeVries
and Holzer (2019).

¢ Of the total amount of hydrothermal Fe reaching the surface, what percent reaches the surface in the Southern Ocean (south of 45° S).
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supplies ~0.1-0.4 Gmol Fe yr—!, which is still an order of mag-
nitude larger than hydrothermal Fe from EPR vents. Overall, these
results suggest a limited impact of hydrothermal Fe from EPR vents
on surface biological activity.

4. Discussion

Our new model of hydrothermal Fe dispersion can be used
to estimate the global supply of hydrothermal Fe to the surface
ocean, keeping in mind the uncertainties associated with scaling
a model optimized using data from one particular ridge system to
the global scale. The global supply of hydrothermal Fe to the sur-
face ocean depends on a wide variety of factors, including the rate
and pattern of hydrothermal Fe input, the stabilization and scav-
enging of hydrothermal Fe, and the circulation and ventilation of
the deep ocean. The circulation and ventilation of the deep ocean
is well-constrained in the suite of ocean circulation inverse models
used here (DeVries and Holzer, 2019), and our models that were
optimized against the size-resolved Fe data from the GP16 tran-
sect provide strong constraints on the stabilization and scavenging
of hydrothermal Fe, assuming that the behavior of the SEPR plume
is representative of hydrothermal Fe plumes in other basins.

The rate and pattern of hydrothermal Fe input is by far the
largest unknown in scaling our results to the global scale. In our
model and in other marine Fe cycle models (e.g. Resing et al.,
2015; Tagliabue et al., 2014), the hydrothermal Fe input is param-
eterized using a Fe:3He venting ratio multiplied by the 3He input
at each individual vent site. Although the Fe:3He ratio along the
SEPR is well constrained at ~6.4 nmol:fmol in our model, differ-
ent ridge systems may have different Fe:3He ratios in their vent
fluids. Indeed, ratios as high as 70 &+ 30 nmol:fmol have been sug-
gested for vents in the South Atlantic (Saito et al., 2013), while
lower ratios of 1.5 nmol:fmol have been inferred for some South-
ern Ocean vents (Tagliabue et al., 2010). The extremely high Fe:>He
ratios found in the Atlantic Ocean (Saito et al., 2013) are probably
not applicable for global models such as ours, since those num-

bers were derived from measurements very close to the vent site,
and these ratios cannot be extrapolated to coarse-resolution mod-
els that do not simulate the near-field dynamics of Fe scavenging
and precipitation. Here, we apply a uniform Fe:*He ratio derived
from the SEPR vent system globally, with the understanding that
there are likely large-scale spatial variations of at least a factor of
two in this number. For the hydrothermal 3He input field we use
the map of DeVries and Holzer (2019), which is designed to be
consistent with the observed §3He distribution and yields a global
3He input of ~600 molyr~!, similar to a previous data-based es-
timate (Bianchi et al., 2010). As a measure of uncertainty, we also
apply the mantle 3He input field of Holzer et al. (2017), which has
a slightly larger global 3He input of ~800 molyr—!, with substan-
tially more He input from Southern Ocean ridges (~350 molyr—!
compared to ~150 molyr—! in the estimate of DeVries and Holzer
(2019)).

In all, we perform 640 different global hydrothermal Fe simu-
lations with our model, by combining our 64 different optimized
hydrothermal Fe models (Section 3.3) with five different circu-
lation models from DeVries and Holzer (2019) and two differ-
ent mantle 3He input maps from DeVries and Holzer (2019) and
Holzer et al. (2017). Using the 3He input map of DeVries and
Holzer (2019) yields a global hydrothermal Fe input of 3.9 4+ 0.5
Gmolyr~!, while using the larger 3He input rates from Holzer et
al. (2017) yields a global hydrothermal Fe source of 5.2 + 0.6
Gmolyr~!. These values are within the range of previous estimates
for the global dissolved Fe source from hydrothermal vents (1 to 11
Gmolyr~1) (Resing et al., 2015; Tagliabue and Resing, 2016; Tagli-
abue et al., 2010).

The amount of hydrothermal Fe reaching the surface is roughly
0.12-0.28 Gmolyr—!, which represents about 3-5% of the total hy-
drothermal Fe venting rate, depending on the mantle 3He input
map used in the model (Table 1). About 80% of hydrothermal Fe
from global ridge systems that reaches the surface does so in the
Southern Ocean, with the rest reaching the surface primarily in
the North Pacific and North Atlantic (Fig. 7A). A significant portion
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of the hydrothermal Fe that reaches the surface ocean originates
from Southern Ocean ridge systems, while the ridge systems of
the EPR play a negligible role in supplying hydrothermal Fe to
the surface, even though they account for ~25% of the global hy-
drothermal Fe source (Table 1). Our model simulations predict that
0.16 £ 0.11 Gmolyr~! of hydrothermal Fe makes it to the South-
ern Ocean surface, which is almost equivalent to the supply of Fe
from dust deposition in the Southern Ocean (0.1-0.4 Gmolyr—1).
These results are consistent with observations demonstrating that
algal blooms can be triggered by upwelling of hydrothermal Fe in
the Southern Ocean (Ardyna et al.,, 2019). Outside of the South-
ern Ocean, the supply of hydrothermal Fe to the surface ocean is
negligible compared to the supply of Fe from aerosol dust (Fig. 7).

It is interesting to contrast the rates and patterns of hydrother-
mal Fe supply to the surface in our reversible scavenging model
with the previously-hypothesized hydrothermal ligand model. In
the hydrothermal ligand model, about 4-7% of hydrothermal Fe
makes it to the surface (Suppl. Table 2 and Suppl. Table 3), com-
pared with 3-5% in the reversible scavenging model. However, only
~40% of the Fe in the hydrothermal ligand model reaches the sur-
face in the Southern Ocean (Suppl. Table 3). The overall effect
is that there is 25% less hydrothermal Fe reaching the Southern
Ocean surface in the hydrothermal ligand model compared to the
reversible scavenging model (Fig. 7). This difference is tied to the
downward settling of hydrothermal Fe in the reversible scaveng-
ing model, which causes the Fe to become trapped in dense deep
water masses that preferentially outcrop in the Antarctic region
of the Southern Ocean. In the hydrothermal ligand model, the Fe
vented from mid-ocean ridges does not settle into the deep ocean,
and significant amounts reach the surface outside of the Southern
Ocean in the tropics and northern high latitudes (Fig. 7).

It is beyond the scope of this study to determine the impact
of hydrothermal Fe on carbon export in the Southern Ocean, as
this depends in complex ways on the relative supply of Fe from
other sources and the spatial distribution of each source (Wadley
et al., 2014). Our simulations suggest that the supply of hydrother-
mal Fe to the Southern Ocean surface rivals that of Fe from aerosol
dust deposition, but with a spatial distribution that is more con-
centrated in the Antarctic region south of the polar front (~55°
S), due to the predominance of deep water upwelling in this re-
gion (Fig. 7). The small spatial extent of hydrothermal Fe in the
Southern Ocean could ultimately limit its impact on carbon export,
as demonstrated by the modeling study of Tagliabue and Resing
(2016). Furthermore, other regional sources of Fe from the melt-
ing of icebergs, glaciers, and sea ice (Death et al., 2014; Laufkotter

et al,, 2018), as well as Fe released from shelf sediments (Wadley
et al.,, 2014), could render hydrothermal Fe less important in this
region.

5. Conclusion

Here, we presented new observations of the size speciation of
dissolved Fe in a basin-scale hydrothermal plume in the Southeast
Pacific, and proposed a new mechanistic model to explain these
data. In this model, Fe is released from hydrothermal vents as large
inorganic colloids, and is gradually transformed to organic forms
further away from the vents. Reversible scavenging of inorganic Fe
colloids drives a gradual downward settling of hydrothermal Fe,
leading to the accumulation of hydrothermal Fe in dense deep-sea
water masses. Unlike previous studies in which the stabilization of
hydrothermal Fe was explained by the release of ligands from hy-
drothermal vents, our model can recreate both the observed lateral
extent and downward settling of the hydrothermal plume. When
implemented in a global data-constrained circulation model, our
new model of hydrothermal Fe dispersion demonstrates that hy-
drothermal Fe can build up to high concentrations in the deep
ocean (reaching ~0.2-0.4 nM in the deep Pacific Ocean; Suppl.
Fig. 6), but only ~3-5% of hydrothermal Fe ever makes it to the
surface ocean. Furthermore, the surface impact of hydrothermal Fe
is confined to the Antarctic region of the Southern Ocean where
the densest water masses outcrop.

These results suggest several avenues for further research that
can help to better understand the role of hydrothermal Fe in the
global marine Fe cycle. First, in order to provide stronger con-
straints on models of hydrothermal dispersion, it will be important
to characterize the size speciation and chemical composition of Fe
in other large-scale hydrothermal plumes (e.g., Lough et al., 2019;
Cotte et al., 2020). Given the success of the reversible scaveng-
ing model at reproducing the observed downward settling of hy-
drothermal Fe in the Southeast Pacific, future observational studies
should examine the ubiquity of reversible scavenging of Fe in the
ocean, and whether the scavenging of Fe in the ocean (Tagliabue
et al., 2019; Ohnemus et al., 2019) can be more generally mod-
eled as reversible like for other trace metals such as copper (Little
et al., 2013; Richon and Tagliabue, 2019) and zinc (Weber et al.,
2018). Furthermore, given the dominance of Southern Ocean ridge
systems in supplying hydrothermal Fe to the surface ocean, stud-
ies should be performed to determine the rate of Fe venting from
Southern Ocean ridges, and to constrain the Fe:3He ratio at differ-
ent locations along the Southern Ocean ridge system. Lastly, the
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reversible scavenging model of hydrothermal Fe should be imple-
mented in global biogeochemical models, to examine the impact
of hydrothermal Fe on carbon export in the Southern Ocean.
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